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Dynamic time warping (DTW) is an algorithm to find out the sim-
ilarity between two temporal sequences of varying length. Previous
works in this field can be traced back to as early as [1], for automatic
speech recognition (ASR). Although this technique became obsolete
for ASR with the advent of Hidden Markov Models (HMM) [2] and
Deep Neural Network (DNN) based hybrid models [3], [4], DTW was
found to be highly effective for spoken query detection, which refers
to the task of searching a spoken query within an audio document.
The key distinction is, unlike HMM and DNN solutions that require a
large amount of annotated data to train the models, DTW can operate
in low-resource conditions when training data is scarce. Therefore,
DTW based systems are the state-of-the-art solutions for spoken
query detection using one or a few examples of the query.

Traditional DTW algorithm performs an end-to-end comparison
between two temporal sequences. This is not exactly applicable to
spoken query search because, the query can occur anywhere in the
test audio as a sub-sequence. Therefore, variants of DTW such as
segmental DTW [5] and sub-sequence DTW [6] are developed to
address this limitation. In order to use these methods, phone posterior
features are extracted [8] from the speech data as shown in Fig. 1.
Now, given a query and an audio document, a distance matrix is
computed between their phone posterior representations where each
element of the matrix represents a frame-level distance. It is followed
by a dynamic programming technique to find an optimal alignment
between the frames of a query and a test audio.

Although the methods discussed above are able to consider the
sequential information present in a spoken query, they do not take into
account the low-dimensional subspace structure of speech. Previously,
we have proposed a novel sparse subspace modeling approach for
query detection that exploits this property of speech [7], [8] where,
we construct two dictionaries for sparse representation characterizing
the subspace of the query and background speech independently. The
sparse recovery reconstruction error is used as the score for query
detection. To incorporate the sequential information, adjacent frames
were concatenated to perform a frame-level detection. However,
this approach lacks a proper framework to exploit the temporal
information inherent to spoken queries.

We observe that the two kinds of systems discussed above use
complementary information present in speech to perform the same
task. In order to take advantage of both systems, we propose a
new DTW technique considering the subspace structure in speech.
This method relies on the notion that a spoken query lies in a low-
dimensional subspace which can be represented as a sparse linear
combination of corresponding training data. The training examples of
the query are used to construct a dictionary for sparse representation
which models the query subspace. These dictionaries can be used
to obtain a sparse representation of test audio frames which can be
further utilized to calculate reconstruction error for each frame [9].
The error for a test frame can be considered as the distance between

the query subspace and the corresponding frame.

We propose to use the subspace based distance to regularize
the distance matrix for DTW. Each column of the distance matrix
corresponds to the frame-level distance between a test frame and all
frames of the query. Whereas, we have only one number representing
the distance from a test frame to the query subspace as a whole.
Thus, to regularize the distance matrix, we consider a column of it
corresponding to a test frame and take a weighted average of each
element in this column with the subspace based distance obtained
using the same test frame. Now, we perform dynamic programming
on this regularized distance matrix to obtain the region of occurrence
of the query and calculate the likelihood of its occurrence. A
comprehensive block diagram for the proposed system is presented
in Fig. 2.

The key idea behind the proposed method is, the frame-level
distance provides local similarity and helps to capture the temporal
information inherent to speech whereas, subspace based distance
captures the similarity on subspace-level which considers all the
frames present in the query for each test frame. A combination of
these two distances provide better likelihoods for making a decision
as can be seen through performance improvement. In principle, our
approach can work with any variant of DTW by regularizing the
corresponding distance matrix. However, in this work, we implement
the system presented in [10] and perform the proposed regularization
over the distance matrix followed by dynamic programming to obtain
the region of occurrence along with likelihood score. The system
in [10] is based on segmental DTW and is one of the best systems
available for this task. Thus, we use this system as baseline for
comparison purposes.

We have performed spoken query detection experiment on AMI
meeting corpus [11] to show the potential of our approach. There
are approximately 12k words in the training, out of which 200
frequent words are used as queries for our detection experiments.
Then, these queries are divided into 2 sets of 100 queries each, to
have development and evaluation queries. The feature vectors of each
query serve as the dictionary for sparse coding as well as the reference
template for DTW. Different parameters of the system are optimized
using development queries. The results on evaluation queries are
shown using detection error trade-off (DET) curve in Fig. 3. It is
clear from the plots presented in Fig. 3 that, our proposed system
significantly outperforms the baseline system. These results further
show that, the low-dimensional subspace structure of speech can be
very useful for spoken query detection.
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Block diagram of the proposed system. The procedure is as follows: (1) Extract the posterior features from the test utterances, (2) Use the query

dictionary (consisting of query posteriors) for sparse recovery and calculate the reconstruction error for each frame to generate the subspace based distance
vector. (3) Calculate the distance matrix for DTW using the query posterior features as the template. (4) Regularize each column of the DTW distance matrix
using the errors from the sparse reconstruction. (5) Apply DTW to detect the spoken query considering the hypotheses with more than half of the minimum
length of the query to reduce false alarms. The detection score threshold is optimized on the cross-validation set.
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Posterior feature extraction using a deep neural network: First, Mel
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Frequency Cepstral Coefficient (MFCC) based features are extracted over a

sliding window of 25ms with a shift of 10ms. These features are then fed to [4]
a DNN to calculate phone conditional posterior probabilities.
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Fig. 3. DET curves for the proposed subspace regularized DTW and the (1]

baseline DTW system evaluated on the test set. Only a single example per

query is used as the training data.
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