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Abstract—Speech is a complex signal produced by a highly constrained
articulation machinery. Neuro and psycholinguistic theories assert that
speech can be decomposed into molecules of structured atoms. Although
characterization of the atoms is controversial, the experiments support
the notion of invariant speech codes governing speech production and
perception. We exploit deep neural network (DNN) invariant represen-
tation learning for probabilistic characterization of the phone attributes
defined in terms of the phonological classes and known as the smallest-
size perceptual categories. We cast speech perception as a channel for
phoneme information transmission via the phone attributes. Structured
sparse codes are identified from the phonological probabilities for
natural speech pronunciation. We exploit the sparse codes in information
transmission analysis for assessment of phoneme pronunciation. The
linguists define a single binary phonological code per phoneme. In
contrast, probabilistic estimation of the phonological classes enables us
to capture large variation in structures of speech pronunciation. Hence,
speech assessment may not be confined to the single expert knowledge
based mapping between phoneme and phonological classes and it may be
extended to multiple data-driven mappings observed in natural speech.

I. PROBABILISTIC PERCEPTION CHANNEL

Phonemes are the set of unit sounds that distinguish one word from
another in a particular language. The phoneme classes are denoted
by an L dimensional random variable S with categorical distribution
(ps1 , . . . , psL) where psl is the probability of phoneme sl. Each
phoneme possesses some phone attributes. The phone attributes are
defined in terms of phonological classes that describe some properties
of sound production such as [vowel], [fricative], [dental] and [labial].
For example, a sound “m” has the following attributes: [anterior],
[voice] and [nasal]. The set of K phonological classes is denoted
by Q = {q1, . . . , qK} where qk is a discrete random variable taking
binary values {0, 1}, with probability p(qk = 1) = pqk .

The linguists define a binary association between phonemes and
phonological classes [1]. The production theory of speech perception
relies on detection of the underlying phone attributes and their
unique combination to form the higher level phoneme perception. In
practice however, detection of the phonological classes is not perfect.
Hence, the present study relies on probabilistic characterization of
the phonological classes as developed in [2].

To perform perceptual assessment, we consider speech perception
as a channel having the phonological random variables at the input
and phoneme random variables at the output [3]. Hence, we define
zt as the random variable which can take values of the set of
phonological classes Q = {q1, . . . , qK}; t indexes the temporal
window. The posterior probabilities of all phonological classes
{p(zt = q1|xt), . . . , p(zt = qK |xt)} are estimated by K deep neural
network (DNN)s, each specifically trained to detect one of the classes
from the input acoustic feature xt [2]. Given the speech transcription,
the posterior representation of the frames labelled as phoneme sl
yields p(zt|sl, xt). Accordingly, the posterior representation of the
frames labelled as phonological class qk yields p(zt|qk, xt).

The amount of information transmitted by the phone attribute qk

for perception of phoneme sl is estimated as the multivariate mutual
information expressed as follows where H denotes the entropy:
Ik ≡ I(qk, sl, zt) = H(qk, sl, zt)−H(qk, sl)−H(sl, zt)

−H(qk, zt) +H(sl) +H(qk) +H(zt)
(1)

To calculate this quantity, the DNN phonological posteriors are
used as follows. If the acoustic frame xt is the result of the production
of phoneme sl, we assume that p(xt|zt, sl) = p(xt|sl); the intuition
is that the physical process leading to the production of xt is
guided by sl and the variable zt is an abstract notion to exploit
probabilistic association of the DNN outputs to all phonological
classes. Hence, given the physical state of sl, the observation xt

is independent of zt or by Bayes theorem p(zt|sl, xt) = p(zt|sl).
Similarly, p(zt|qk, xt) = p(zt|qk) are used for the joint probabilities
required to calculate (1) [3].

II. INFORMATION OF PRONUNCIATION CODES

The perception of a trained speaker is sensitive to the structures
underlying phone attributes during phoneme pronunciation [4]. To
identify these structures, we consider binary representation of the
phonological posteriors obtained via quantization [5]. The permissible
structures corresponds to the indices of the non-zero components.
The active components determine the posture of vocalization. Due to
the constraints in articulation machinery, the binary codes are sparse.
Fig. 1 illustrates an example of the structured sparsity underlying
phonetic and phonological posteriors. The codes generated by vo-
calization are highly constrained. The linguists define unique binary
codes per phoneme [1]. Probabilistic estimation of the phonological
classes enables us to capture large variation in structures of speech
pronunciation.

Figure 2 depicts the pronunciation assessment procedure. We
identify all the unique sparsity structures from a large speech corpora
and construct a codebook of permissible pronunciations [5, 6]. Speech
perception operates on the principle of merging independent evidences
based on the sparse pronunciation codes. We define a code associated
to phoneme sl as the set of cl = {q1, . . . , qKl} phonological
classes. Following the principle of speech perception as partial
recognition of independent phonological cues [7, 8], the probability
of phoneme perception is calculated as independent combination of
the constituting phonological class probabilities [3]. The information
conveyed by the phonological code for perception of phoneme sl
is calculated as Il =

∑Kl
k=1 Ik. The difference in the transmitted

information calculated for perfect speaking and distorted pronunciation
demonstrates the level and well as the major phoneme classes distorted
due to imperfect pronunciation. An example result is illustrated in
Fig. 3; the single expert knowledge based pronunciation code is used
for this illustration.
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Fig. 1: Posteriograms of phonetic and phonological posteriors. We use the open-source pre-trained DNNs for estimation of posteriors [2].
Binary structures define the variants of the permissible pronunciations. The structured sparse binary codes of phonological posteriors form the
codebook of permissible pronunciations. The codes generated by vocalization are highly constrained. If Q denote the number of phonological
classes (e.g. Q = 20), 2Q codes may be formed in theory. However, the investigation on large speech corpora of more than 100 hours of
spontaneous conversational speech identifies less than 104 for the entire English speaking variations.
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Fig. 2: Phoneme perception operates on the basis of detecting the phonological classes and merging evidences for inference of the phonemes.
Linguists define a single binary phonological code per phoneme [1]. Probabilistic estimation of the phonological classes enables us to capture
large variation in structures of speech pronunciation. Hence, speech assessment may not be confined to the single expert knowledge based on
mapping between phoneme and phonological classes [1] and it can be extended to multiple data-driven mappings as observed in natural
speech. Exploiting DNNs in probabilistic estimation of phonological classes is crucial in determining the data-driven natural pronunciation
codes from phonological posteriors.
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Fig. 3: Perceptual information loss due to impaired speech pro-
nunciation demonstrated for the top 20 most affected phonemes.
The phonemes are described in [9]. TORGO database of dysarthric
speech is used for the experiments [10]. We can see that articulation
impairment is most exhibited in pronunciation of a selective set
of phonemes as recommended by the clinical tests. The source
information may be analyzed at larger granularity than phonemes
such as syllables. In this case, co-articulation is represented by the
codebook of natural pronunciation codes.
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