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A statistical perspective on turbulence

Statistics of scalar quantities (temperature, salinity,. . . ):
• understanding intermittency (time and space dispersion of

turbulence events);
• hints on the mechanisms leading to mixing;
• identification of different regimes at different scales.

Well-studied topics (laboratory, numerics):
• passive scalars in isotropic turbulent flows (Warhaft, 2000);
• active scalars in convective turbulence (Zhou and Xia, 2002);
• scalars in stably stratified turbulent flows?

In the field:
• We cannot control what we observe in the field

e.g. control parameters are variable / undefined

• Statistics can help extracting information from “noisy” data
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Sensors: NIOZ-HST (high-speed thermistors)

Main features:
• precision better than 5 × 10−4 K;
• response time 0.25 s;
• sampling frequency ≤ 2 Hz;
• long endurance (up to two years).

van Haren et al. (2009)
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Data

Latitude 36◦ 58.885′ N
Longitude 13◦ 45.523′ W

Max. depth 2205 m
Min. height above seafloor 5 m

Seafloor slope 9.4◦

Number of sensors 144
Vertical spacing 0.7 m

Depth range 100.1 m
Deployment 13 Apr 2013

Recovery 12 Ago 2013
Sampling rate 1 Hz

(Supercritical slope, γcrit ≈ 5.7◦ for M2 tide)
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Data

Cooling phase (upslope) Warming phase (downslope)

Andrea Cimatoribus — Turbulence theories in the field 5/17



Introduction Methods Results Theory Lake Geneva Conclusions References

Taylor’s hypothesis

Transform data to the spatial domain using
Taylor’s hypothesis (frozen turbulence)

Time series
(time rate 1 s)

Spatial series (horizontal
spatial resolution 0.2 m)

∆x = v∆t

Using time-dependent velocity from ADCP data
(only mean flow information)

All results are averages over the 4 months of data for each segment of
the mooring, for each tidal phase
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Methods I: generalised structure functions (GSF)

GSFs provide a way to characterise intermittency of the turbulent
flow:

γq ≡ γq(r) =
⟨
|∆rθ|q

⟩
In the inertial range:

γq ∼ rζ(q),

with ζ(q) = q/3 according to the classical (non-intermittent) theory of
Kolmogorov-Obukhov-Corrsin, and for r within the inertial range.
In presence of intermittency limq→∞ ζ(q) = ζ∞
(in practice for q > 10):

• Grid turbulence, shear driven → ζ∞ ≈ 1.4
• Convective turbulence, buoyancy driven → ζ∞ ≈ 0.8

Zhou and Xia (2002)
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Methods II: flux estimates

Estimate the flux of a scalar quantity (temperature) with the method
suggested by Winters and D’Asaro (1996):

• enable to resolve the fluxes vertically;
• clear definition of “background” stratification;
• no assumptions on the flow;
• estimate of the irreversible flux.

Flux as a function of the local temperature:

ϕθ(θj) = −κ

(
dzT

dθ

)
(θj)

⟨
|∇θ|2

⟩
(θj)

θj: potential temperature at j-th sensor, κ: molecular diffusivity, dθ/dzT :
background temperature gradient.

Biased low due to limits in resolution (for gradient estimation), but
compensation is possible.
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Generalised structure functions

γq ≡ γq(r) =
⟨
|∆rθ|q

⟩

Dashed line: ζ(2) = 2/3 slope. Dotted lines: “grid turbulence” slope.
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Scaling exponents and saturation of GSFs

Scaling exponent within the turbulence scaling range.

Dashed line: ζ(q) = q/3 slope. Dotted line: “grid turbulence” asymptote.

Much more on statistics in Cimatoribus and van Haren (2015)
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Estimates of the flux

∂θ
∂t = ∂ϕ

∂z = dϕ
dθz

θzz

Phillips (1972), Posmentier (1977)

z

θ
θzz < 0

Unstable

dϕ
dθz

< 0

∂θ

∂t
> 0

Stable

dϕ
dθz

> 0

∂θ

∂t
< 0

Cooling

Warming
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A framework for interpretation

A minimal analytical model:
• Based on Balmforth et al. (1998),
• steady states for kinetic energy density e and density gradient g.
• Mixing length (l) model (turbulent flux ∝ l),
• horizontally homogeneous (1D vertical model).
• l constrained by the density gradient and by the height above the

seafloor (h).
• Energy production = internal waves breaking at a particular scale λ

(scaling break of γq).

. . . after non-dimensionalisation, and some algebra. . .

rh2eg −
(

e + h2g
)(

h2

1 + h2 − e
)

= 0,

with r a non-dimensional constant.
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A framework for interpretation

Model Observations

equilibrium flux: f0 = le1/2
0 g0 =

he0g0

(e0 + h2g0)
1/2 .

Cimatoribus and van Haren (2016)
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Conclusions (partial)

• A detailed “statistical” view on turbulence in the deep ocean.
• Generalised structure functions have some points of contact with

laboratory results. . .
• . . . but show some specific behaviour too (“outer intermittency”).
• Scaling break suggests that the forcing, from internal waves,

takes place at a specific length scale.
• Flux estimates show smooth, simple average behaviour,

supports idea of “spontaneous” layer formation by stratified
turbulence.

• The model suggests:
validity of mixing length hypothesis,
seafloor limits both the mixing length and the forcing,
irrelevance of friction at the seafloor.

• Convection: in the statistics, but not in the model!
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A simpler (?) case: internal variability in a lake

Lake Geneva

“Standard” interpretation of observations:
• combination of long internal waves (seiches)
• linear or weakly nonlinear

Saggio and Imberger (1998)
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A simpler (?) case: internal variability in a lake

Lake Geneva

Kinetic energy spectra

Observations, model, slope = -1, dashed lines: linear modes frequencies
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A simpler (?) case: internal variability in a lake

Lake Geneva

Kinetic energy spectra

Observations, model, slope = -1, dashed lines: linear modes frequencies

Near shore

Off shore
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A simpler (?) case: internal variability in a lake

∂vh
∂t = N + C + P + F −D = −v · ∇vh − 2Ω × vh −∇hp + forcing − dissipation

Greens: ∥N∥, gray contour: ∥F − D∥ = 10−6 ms−2, black contour: ∥F − D∥ = 10−5 ms−2
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Conclusions

• Field observations begin to enable the characterisation of
probability density functions of different quantities

• A statistical description enables to test theories in a natural
(uncontrolled) environment

• Sometimes, statistical quantities can surprise:
Simple behaviour out of highly turbulent environments
Nonlinear behaviour (instabilities? vortices?) in a low energy
environment

from very common power spectra!
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Thanks for listening.

Andrea.Cimatoribus@epfl.ch
[La Palma, Islas Canarias]
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Extra slides

Taylor’s hypothesis of frozen turbulence

Time series (time rate 1 s) → Spatial series (spatial resolution 0.2 m)

Pdf of velocity
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v = ⟨v⟩+ v′

⟨v⟩: lowpass filter
1/σ = 3000 s

• Lowpass filter defines the mean flow
component

• Average velocity within each segment is
used

• Velocity is not constant, thus the spatial
time series obtained has variable step

• Interpolation to have a constant spatial
step

• Dataset size is reduced to 1/2
• Increments are computed close in time

(approximately one hour maximum)
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NIOZ-HST thermistors data processing

1 Read raw data from the thermistor memory (integer numbers)
Often subsampling is necessary due to the large amount of data
recorded

2 Calibrate raw data using data from a calibration bath, or CTD
data

3 Remove sensor drift by requiring a stable (or at least “smooth”)
stratification on “long” time scales
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Wavenumber spectra

Spectra averaged by tidal phase and mooring segment
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Skewness of temperature increments

µ3 (∆rθ) =

⟨
(∆rθ − ⟨∆rθ⟩)3

⟩
⟨
(∆rθ − ⟨∆rθ⟩)2

⟩ 3
2
, for increments ∆rθ = θ(r + r0)− θ(r0)
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Convective structures and plus/minus increments

Convective structures have been studied using “plus” and “minus”
increments:

horizontal: ∆rθ
± = (|∆rθ| ± ∆rθ) /2

vertical: ∆zθ
± = (|∆zθ| ± ∆zθ) /2

• Convective plume = sharp front, gentle tail
• The skewness of plus and minus increments is sensitive to this

difference

warm plume
{

µ3
(
∆zθ

+) < µ3
(
∆zθ

−)
µ3

(
∆rθ

+) > µ3
(
∆rθ

−)
• More in general:

characterise the spatial asymmetry of temperature anomalies

Zhou and Xia (2002)
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Extra slides

Plus/minus increments – results
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Plus/minus increments – results
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