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AABSTRACT 

  

Photolithography is one of the earliest technologies used to transfer patterns to a 

substrate. It is also known as optical lithography since it uses light to transfer the pattern. This 

technology is the backbone of the semiconductor industry. Several types of exposure techniques 

exist for printing the feature patterns. The main techniques are projection printing, contact 

printing, and proximity printing. Projection printing technology uses optical elements between 

mask and wafer to project the feature on the mask to the wafer. This is very expensive and delivers 

the highest resolution. In contact printing, the mask and wafer are in contact with each other and 

in proximity printing, the mask is kept at some proximity distance away from the wafer. Proximity 

printing is an easy and cost effective printing technique because the damage to the mask will be 

less and also no optical elements between mask and wafer are used. The main drawback of the 

proximity printing is the diffraction effect caused by the proximity gap between mask and wafer, 

which limits the resolution. The main objective of this thesis is to study the limitations of 

proximity printing and to increase its resolution.  
 To study the limitations, different types of design strategies and verification methods are 

used in the thesis. First is the simulation technique which is performed with GenISys Layout LAB. 

This is specially designed for proximity printing. The software gives the aerial image and final 

resist pattern as output. The most interesting and important aspect is the second verification 

technique which is the experimental setup. A measurement setup has been built to study the light 

propagation from different masks and to study the aerial image at different proximity gaps. The 

setup is known as High Resolution Interference Microscopy (HRIM). The setup is basically a Mach- 

Zehnder interferometer having different light sources, sample plane and reference arm which are 

used according to the samples. The final verification is achieved using the mask aligner. Both the 

simulation and experiments are carried out using a special illumination optics called MO exposure 

optics from Süss MicroOptics. 
 There exist several types of Resolution Enhancement Techniques (RET) for increasing the 

resolution in printing. The thesis mainly focuses on the rule based optical proximity correction 

technique which is a simple method for mass production. Correction structures are designed for 

one dimensional and two dimensional features in amplitude masks. Adding lines near the edge to 

improve the edge slope will be discussed as the one dimensional correction. The different 

intensity cutting planes and the comparison between simulation and experimental results will be 
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discussed along with that. A unified correction structure is designed to solve corner rounding 

problem and will be studied as the two dimensional study. The structure is defined to print 

different line widths at single proximity gap on single exposure. 
Usually, all the structures in the amplitude mask are studied with their aerial image 

intensities at different proximity gaps. But, here the study extends to phase evaluation also. The 

measurement technique can measure both intensity and phase evolution from the mask 

structures. Phase evolution from amplitude correction features will be discussed and how the 

phase modulates the intensity patterns is also studied. The role of fundamental principles like 

phase singularities, phase shifts are also discussed to find its effects on proximity printing 

structures. The study also leads to the intensity and phase propagation from phase shifting mask. 

The structure evaluated is a group of corners in a phase shifting mask. The propagation evaluation 

can be evaluated considering Lohmann images and the fractional Talbot effect. 

The powerful simulation tool with capable measurement system HRIM helps to design, 

characterize, and verify the functions of various types of masks. The tools will also help to study 

fundamental principles of optics and approximations in the near field zone of microstructures and 

has potential for further studies. 

KKeywords: Photolithography, proximity printing, resolution enhancement techniques, optical 

proximity correction, GenISys Layout LAB, high resolution interference microscopy, MO exposure 

optics, edge slope improvement, corner rounding, phase shifts and phase singularities, phase 

shifting mask, Lohmann images. 
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RÉSUMÉ 

  

La photolithographie est l'une des premières technologies utilisées pour transférer des 

motifs à un substrat. Elle est également connue sous le nom de lithographie optique, car elle utilise 

la lumière pour transférer le modèle ; cette technologie est à la base de l'industrie des semi-

conducteurs. Plusieurs types de techniques d'exposition existent pour imprimer les motifs. Les 

techniques principales sont l'impression par contact, l'impression de proximité et l'impression 

par projection. Lors de l'impression par contact, le masque et le wafer sont en contact l'un avec 

l'autre et dans l'impression de proximité, le masque est maintenu à une certaine distance de 

proximité du wafer. La technologie d'impression par projection utilise des éléments optiques 

entre le masque et le wafer pour projeter le motif du masque sur le wafer. L'impression de 

proximité est une impression facile et rentable car les dommages au masque seront moins 

importants que pour l’impression par contact et aucun élément optique entre le masque et le 

wafer n'est utilisé. Mais l'inconvénient principal de l'impression de proximité est l'effet de 

diffraction causé par l'écart de proximité entre le masque et le wafer et ceci limite également la 

résolution. Le but principal de la thèse est d'étudier les limites de l'impression de proximité et 

d'augmenter la résolution. 

Pour étudier les limites, différents types de stratégies de conception et de méthodes de 

vérification sont utilisés dans la thèse. La première est la technique de simulation qui est réalisée 

avec GenISys Layout LAB et spécialement conçue pour l'impression de proximité. Le logiciel 

donne l'image aérienne et le motif final de la résine photosensible comme résultat. L'aspect le plus 

intéressant est la deuxième technique de vérification qui est la vérification expérimentale. Un 

système optique de mesure a été construit pour étudier la propagation de la lumière à partir de 

différents masques et étudier l'image aérienne à différents intervalles de proximité. Le système 

est connu sous le nom de Microscopie à Interférence Haute Résolution (HRIM). C’est 

fondamentalement un interféromètre de Mach-Zehnder ayant plusieurs parties : différentes 

sources de lumière, un bras avec le plan pour l’échantillon et le bras de référence. La source peut 

être choisie selon l’échantillon. La vérification finale est réalisée en utilisant l'alignement du 

masque. La simulation et les expériences sont réalisées à l'aide d'une optique d'illumination 

spéciale appelée « MO Exposure Optics » de Süss MicroOptics. 

Il existe plusieurs types de techniques d'amélioration de la résolution (RET) pour augmenter la 

résolution lors de l'impression. La thèse se concentre principalement sur la technique de 
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correction optique de proximité basée sur des règles empiriques, qui est une méthode simple pour 

la production de masse. Les structures de correction sont conçues pour des motifs 

unidimensionnels et bidimensionnels dans le masque d'amplitude. L'ajout de lignes près du bord 

pour améliorer la verticalité du bord sera discuté comme correction unidimensionnelle. Les 

différents plans de coupe d'intensité et la comparaison entre la simulation et les résultats 

expérimentaux seront discutés avec cela. Une structure de correction unifiée est conçue pour 

résoudre le problème d'arrondi d'angle et sera étudiée comme le cas bidimensionnel. La structure 

est définie pour imprimer différentes largeurs de ligne à un seul écart de proximité en exposition 

unique. 

Habituellement, toutes les structures du masque d'amplitude sont étudiées avec leurs intensités 

d'images aériennes à différents écarts de proximité. Mais, ici, l'étude s'étend à l'évaluation de 

phase aussi. La technique de mesure peut mesurer à la fois l'intensité et l'évolution de phase à 

partir des structures du masque. L'évolution de phase à partir des motifs de correction 

d'amplitude sera discutée et la façon dont la phase module les distributions d'intensité est 

également étudiée. Le rôle des principes fondamentaux comme les singularités de phase, les 

déphasages sont également discutés pour en trouver les effets sur les structures d'impression de 

proximité. L'étude est étendue également à l'intensité et la propagation de phase à partir du 

masque de déphasage. La structure évaluée est un groupe de coins sur un masque de déphasage. 

L'évaluation de la propagation porte également sur la création d'images Lohmann et l'effet 

fractionnaire de Talbot. 

Le puissant outil de simulation avec système de mesure HRIM permet de concevoir et de 

caractériser différents types de masques. Les outils permettront également d'étudier et de vérifier 

les principes fondamentaux qui existent jusqu'à présent. 
 

Mots clés : Photolithographie, impression de proximité, technique d’amélioration de résolution, 

correction optique de proximité, GenISys Layout LAB, microscope à interférence à haute 

résolution, MO Exposure Optics, amélioration de verticalité de bord, coins arrondis, déphasages 

et singularités de phase, masque de déphasage, images de Lohmann. 
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CHAPTER 1 

Introduction 
Photolithography is a vast and highly progressing field in the micro-fabrication industry. 

Fabrication can be done with the help of visible optical radiation, which ranges from 400 nm to 

780 nm and can also be done with high energy radiations which are of shorter wavelength and in 

the ultraviolet (UV, < 400 nm), deep ultraviolet ( DUV, λ = 248 nm,193 nm) or extreme ultraviolet 

(EUV, 124 nm< <10 nm). Because of this property, photolithography is often known as optical 

lithography, UV lithography, and EUV lithography.  
 

1.1 History of photolithography    

The lithographic technology started in 1798. Alois Senefelder was a German theater drama 

writer who was seeking less costly ways to reproduce his plays [1.1]. He started producing his 

own copper plate engravings, but reverse engravings were very difficult at that time. So he 

decided to use limestone instead of copper and he also developed a ‘correction fluid’ with a 

mixture of wax, soap, lamp black and rainwater to correct his frequent mistakes. He found out that 

the image with the correction fluid on limestone would repel water and the surface can hold the 

water. This made him to use this as the printing plate where the image areas will hold water and 

the rest will not. The writing ink on the wet stone was then pressed on to the printing plate so that 

the ink will stay on the image areas only and can be easily transferred to paper. The word 

“Lithography” was derived from Greek after this process: ‘lithos’ meaning stone and ‘Graphene’ 

meaning to write. The first lithography involving a chemical process started and Senefelder 

designed his own press with automatic engraving in 1817. Even today, lithography uses the same 

principle, where ink coated on desired plates are active only on the designed images or structures.    

At the same time, Jean Senebier, a Swiss pastor found that some resins become insoluble 

in turpentine when they are exposed to sunlight. With his inspiration, Nicephore Niepe managed 

to copy an etched print on oiled paper in 1822[1.2]. He put the oiled paper on top of a glass plate 

which was coated with asphalt (bitumen) on certain areas and was dissolved in lavender oil. He 

exposed this to sunlight for some hours and noticed that the unshaded areas of bitumen became 

hard compared to the shaded areas. The shaded areas became more soluble and could be washed 

away easily with turpentine and lavender oil. The world’s first photograph got introduced by this 

process. 
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The photo masking with chemical processing and using light led to “Photolithography”.  

Photolithography is the process of making lithographic plates by photographic techniques and it 

was introduced by Louis Poitevin, in August 1855 [1.3]. Poitevin patented photolithographic 

process and a Parisian writer printed 700 impressions with this technology. The idea of 

photolithography opened a new era in fabrication and semiconductor industry.  

The first application of printed circuit board (PCB) was introduced by Paul Eisler in 1943, 

after 100 years of photolithography invention [1.4, 1.5]. Just before PCB invention, negative and 

positive resists were invented. In 1935 Louis Minsk of Eastman Kodak developed the basis of the 

first negative photo resist and in 1940 Otto Suess at Kalle Division of Hoechst AG developed the 

first positive photoresist [1.6]. With the above developments, lithography industry was making 

its entry to the micro fabrication world.   

In late 1950’s, Jack Kilby of Texas instruments and Robert Noyce of Fairchild 

semiconductor developed the first integrated circuit (IC) in their research labs [1.7]. Early 1960s 

was the time when a new chapter in semiconductor industry started: the first Integrated Circuits 

(IC) were patterned and commercially introduced with the help of photolithography [1.8]. Since 

then, the semiconductor industry is reaching its limits by creating new goals in patterning and 

printing [1.9].  In 1960’s 5 μm geometries were not properly generated and shadow printing was 

the technology used at that time. In 1970, Bell Laboratories implemented an integrated mask 

making system for second generation mask aligners which reduces the feature size to 2 μm. But 

the damage to the wafer and mask by contact printing got increased and as a result, projection 

printing was introduced at this stage.  

Demand for high throughput and high resolution paved the way for introducing steppers 

and scanners in the mid-1990s. Every year, the demand increased and critical dimension size 

decreased from 350 nm in 1990 to 100 nm in 2003. Surprisingly up to now and despite of all 

challenges the industry faced, semiconductor industry still follows ‘Moore’s law’ [1.10].  The 

feature size has decreased from 70 nm to 7 nm in the last 10 years. Nowadays, sub nanometer 

accuracy can be attained by using photolithography, e-beam lithography or x-ray lithography 

[1.11]. The new resolution limits and size reduction have forced the industry to reconsider 

Moore’s law to more Moore’s law [1.12].   

 

1.2 Photolithographic process 

The main steps involved in photolithographic printing are [1.13]  

 Wafer cleaning: Contaminants on the wafer are removed by chemical cleaning. This 

technique is used to remove traces of organic, ionic and metallic impurities. 
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 Wafer priming: In order to assist and make the photoresist coat easily, some adhesion 

promoters are used. For silicon wafers, siloxane linkage (Si – O – Si) based products are 

used, for eg. HMDS, TCPS, BSA etc. For gallium arsenide, monazoline and xylene are used. 

 Photoresist coating: Wafer is placed on the chunk of a spin coater at vacuum. Resist can be 

either positive or negative depending on the purpose. Resist is uniformly coated on the 

wafer by spin coating. For positive photoresist, the photoresist region exposed to light 

exposure is soluble in developer and for negative photoresist, the region exposed to light 

is insoluble in developer.  Resist thickness can be set by resist viscosity and rotational 

speed of the spin coater. 

 Soft baking: It is used to evaporate the coating solvent and also to densify the resist. The 

thickness of both positive and negative resist is usually decreased by 25% in prebaking. 

 Mask alignment and Exposure: The photomask has the master patterns which are 

transferred to wafers. The photomask is aligned with the wafer surface so that the pattern 

can be transferred easily. Next step is the exposure, and it is most important step in the 

lithographic process. Different types of exposure systems exist. They are contact printing, 

proximity printing and projection printing. 

o Contact printing – The wafer is placed on the vacuum chuck and it is brought into 

physical contact with the photomask. Since both the wafer and photomask is in 

contact, high resolution is possible with this printing. The main disadvantage is 

that mask can be damaged easily, and debris between resist and mask can cause 

defects in the pattern. 

o Proximity printing – The wafer is kept at some distance with the mask (10 to 25 

micron) and the distance is known as proximity gap. The proximity gap reduces 

the mask damage.  

o Projection printing – Mask designs are projected to wafer using imaging optics. 

Steppers and scanners are example of projection systems. 

 

Exposure systems strategies are represented in Fig.1.1. 
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Figure 1. 1: Different types of exposure techniques. 

 Post-baking: In order to reduce the standing wave formation in the resist and solvent bust 

effects, post- baking is performed. It also removes remaining traces of the resist or 

developer.  

 Development: After exposure, photoresists are developed using developer solutions. The 

resist – developer reactions influence the final pattern to a large extent. 

 
Figure 1. 2: Resist development and pattern transfer on the wafer. 

 Hard baking: This step is to stabilize and harden the photoresist. This increases the 

adhesion of resist to the wafer. 

 Photoresist removal and post process cleaning: The hardened resist after hard baking acts 

as an easy way to etch the oxide layer above the semiconductor in order to expose the 
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semiconductor. After the oxide etching, the remaining resist is removed with the help of 

strong acid mixtures. Post process cleaning and drying gives the final window to process. 

 

The history of photolithography and its process steps, paved the way to develop my interest in 

this technology. This thesis will help to contribute more to the field of proximity lithography. 

 

1.3 Thesis outline 

This thesis is a study of proximity lithographic printing and its limits with different 

characterization techniques. The main motivation of this thesis is to understand the unknown 

properties of proximity printing with discussing several problems and solutions. The study 

characterizes the proximity printing technology and to use it in a better way for the future. 

Chapter 2 discusses different exposure techniques in detail and the advantages of proximity 

printing over other techniques. The chapter also discusses how proximity printing can be 

improved using resolution enhancement techniques (RETs). RETs are mainly classified in to three, 

phase shifting mask (PSM), off-axis illumination (OAI) and optical proximity correction (OPC) and 

the chapter discusses these techniques in detail. 

Chapter 3 is about design and verification techniques that are used to study proximity printing. 

The first technique is the simulation. Simulations are carried out with the help of a software called 

Layout Lab and it is a specialized software for proximity printing. The software gives the result of 

the final resist pattern. Main technique is the experimental analysis of the aerial images. The main 

aim is to experimentally analyze the propagation of light from the mask. The aerial images are 

observed with high resolution interference microscopy (HRIM). HRIM is a Mach- Zehnder 

interferometer which efficiently measures the intensity and phase of light through different 

samples. The last and final verification technique is the printing.  The analyzed results are printed 

using MA8 Gen3 mask aligners from Süss MicroOptics. 

Chapter 4 starts with the problems and solutions in proximity printing. It describes the analysis 

of simple 1dimensional structures in an amplitude mask and an example structure is an ‘edge’. 

The chapter presents an idea to improve the edge slope and the line edge roughness with easy 

optical proximity corrections. This chapter describes how the simulation and experimental results 

work and how similar the results are. It also describes methods to define the process window for 

different proximity gaps at different exposure doses. 

Chapters 5 and 6 pave the way to a next level hypothesis and solutions: 2 dimensional structures. 

Study of lines and its diffraction patterns at different proximity gaps are mentioned in chapter 5. 

The aim of chapter 6 is to find an easy solution for the most severe problem of lithography 

industry: ‘corner rounding’. A new rule based optical proximity correction is designed for the 

corners and characterized with simulation, experimental and printing results. The newly designed 
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structure helps to print features of different sizes at single proximity gap with single exposure on 

a single wafer. 

Chapter 7 discusses phase measurements and phase singularities. Printing industry is usually 

concerned with aerial images or the intensity results. This chapter explains about phase from 

amplitude mask. The intensity evolution from optical proximity correction structures has been 

widely studied but the role of phase to get the desired pattern has not yet been revealed. Phase 

from one dimensional and two dimensional correction features is studied in this chapter. 

Chapter 8 is the most interesting chapter and it is about the study of phase shifting mask. The 

chapter explains the intensity and phase propagation from corner structures in a phase shifting 

mask. It also gives a chance to rethink about the concept that shorter proximity gaps give better 

results. The chapter summarizes the Talbot effect and fractional Talbot effect and gives a new 

definition to design the masks. 

Chapter 9 summarizes all of the outputs and results.  

  

The research has received funding from CTI project 12782.1 PFNM-NM.  
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CHAPTER 2 

Proximity printing and Resolution Enhancement 

Techniques (RETs) 
Exposure systems and imaging theories are main two factors which define the lithography 

industry. Other factors are material science properties, micro/nano mechanics etc. Proximity 

printing is one of the oldest printing technique and this technique will be studied in the chapter. 

The main aim is to overcome the limits of proximity printing with resolution enhancement 

techniques. There are various techniques available to increase the resolution and they will be 

discussed here.    

 

2.1 Exposure system technology 

Exposure systems that existed earlier, were contact printing and proximity printing. 

Kulick and Soffa was one of the early suppliers of contact mask aligners on the market (1965) 

[2.1]. They were very successful in 1960’s and withdrew the company in 1970. At that time Kasper 

Instruments was founded (1968) and took over the market. Their contact mask aligners were 

equipped with proximity technology also. In 1970 Canon also announced its first mask aligner and 

started dominating the market.  

In contact and proximity systems, the wafer is held in contact or in close proximity to make 

the exposure [2.2]. Contact printing provides higher resolution compared to the proximity 

printing but the risk of mask damage is high. Even if large amount of care was given in cleanliness, 

some dirt will be there on the surface of the wafer and eventually on the mask. Because of these 

reasons, contact printing is not used in the mainstream semiconductor industry. In proximity 

printing, the wafer is held at several micron distance from the mask. The wafer position can be 

adjusted with respect to the mask with a wafer positioning system. In general, the distance is 20 

μm. It is believed that larger proximity gap reduces the resolution. The resolution achieved by 

proximity lithography is calculated with the formula  
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(2. 1) 
Where R is the lateral resolution, bmin is the structure width or critical dimension, λ is the 

wavelength, g is the proximity gap, z is thickness of the resist and k1 is the factor which depends 

on illumination and resist parameters. In the proximity printing situation k1 takes a value of 3/2. 

[2.3]. If we insert the values in the formula for a thin resist of thickness 1 μm, wavelength of 405 

nm and the proximity gap 20 μm, the minimum feature size possible is 2.02 μm. 

The proximity technology started losing its market because of failure in reducing the 

resolution beyond 2 μm. The market was good from 1959 to 1970. The half pitch of the feature in 

1959 was 120 μm and in 1980, the feature size reduced to 1.5 μm. Using ultraviolet band (450 nm 

– 350nm), and deep UV (248 nm, 193 nm) the maximum resolution attained was 2 μm and 1.5 μm 

respectively.  

In 1970s 1X projection printers replaced the proximity printing technology. The first 

scanning projection printer was invented by Perkin Elmer in 1973. The diffraction limited optics 

reached the quality to meet the requirements of the semiconductor industry in early 1970s. 

Projection technology uses an additional imaging lens between mask and wafer. The typical mask 

to wafer distance in projection printing was 80 cm or larger.  This made the mask and wafer 

movement easy without any damages.  The resolution and Depth of Focus (DOF) of a projection 

printer is described as follows  

 

 

(2. 2) 

 

(2. 3) 
Where W is the printable minimum feature width, λ is the wavelength, k1 is the process 

related factor and NA is the numerical aperture [2.3]. Increasing NA, decreases the minimum 

printable feature width W. But DOF will be less with high NA values. Small NA results in large DOF 

and large NA results in small DOF. So a comparable situation should be selected between NA and 

DOF. Consider a system using a wavelength of 248 nm, k1 of 0.5, DOF of 0.6 μm and having a NA of 

0.7, then printable minimum feature width W will be 150 nm.  
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There are two major projection lithography printers: one is the scanning printers and 

other is the step and repeat printers [2.4]. Scanners replaced proximity printing in 1970 and 

steppers took the market at 1980 from scanners. Printing 1 μm feature was difficult with 1X 

scanners (mask and image 1:1 ratio). The early step and repeat system was introduced in 1978 

by GCA. Semiconductor market got revolutionized by steppers. Steppers dominated until the 

feature size reached 250 nm. In early 1990s, hybrid step and scan method was introduced and 

used for manufacturing below 250 nm. Till now it is continuing with reaching the resolution limit 

of 20 nm [2.5]. The main producers of projection printing machines are ASML, Nikon, Canon, and 

Ultratech. Different types of projection printing technologies are explained in Fig. 2.1. 

 
Figure 2. 1: Different types of projection printing technology. 

Figure 2.1(a) represents a full wafer projection system without any demagnification. It is 

one of the earlier 1X projection systems. Next is the scanning projection printing system (Fig.2.1 

(b)), the feature is projected on the wafer by scanning a ring shaped image field. Because of 

increase in wafer size, full wafer printing in 1X magnification was getting difficult. The process of 

demagnification of the image on the wafer started with step and repeat systems (Fig.2.1(c)). With 

the increase in chip size reduction, a new system was introduced. It is a hybrid of full wafer 

scanning systems and step and repeat systems. The hybrid system is represented in Fig.2. 1(d).  

 

2.2 Comparison between proximity printing and projection printing 

Most prominent effect with proximity printing is the diffraction effect due to propagation 

(since the wafer is kept at a distance from the mask). Diffraction effect causes resist exposure 

outside the projected pattern and the resulting feature will be different from the mask feature in 

proximity printing. In projection printing, the aerial image will be inside the resist threshold but 

the feature shape will vary. 
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Figure 2. 2: Light intensity profile on the wafer for different printing technologies. Here the light 

propagates through a slit width, so the design in the resist profile should look like a slit but in reality 

due to diffraction the shape changes into resist profile as shown for technologies. 

 Proximity image is the shadowing effect of the mask feature on the wafer, on the other 

hand projection image depends on the lens system used for the exposure. 

 Proximity printing failed to go below 2 μm with UV illumination source and 20 μm 

proximity gap. Printing below that gap can damage the mask or the wafer. Projection 

printing made the 1X printing at lower resolution limit. The distance between mask and 

wafer were also in centimeters. Projection printing allows the placement of mask 

protecting pellicles at both sides which defocuses the foreign particle that may fall on the 

mask.  

 For both these types of printing, resolution increases when the wavelength is reduced. But 

for projection printing, depth of focus (DOF) plays a vital role and it gives negative effect 

on resolution with reduction of wavelength. So a balance needs to be maintained between 

DOF and wavelength in projection printing. On the other hand, for proximity printing, 

wavelength reduction always gives a positive effect. 

 Other important factor is the exposure field. In proximity printing, exposing a 100 mm 

wafer at one shoot is not difficult. But in projection printing, it is decided by the imaging 

lens parameters [2.6, 2.7]. 
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Type Parameters 

Proximity 

printing 

( Süss MA300 

Gen2) 

Projection Printing 

( Canon FPA-5500 (I-

line)) 

Technical 

Parameters 

System size Small Large 

Cost/Investment Low (<1.0M$) High (3.1 – 4.0M$) 

Field size High (300mm ) Small(52x34mm) 

Optical 

Parameters 

Resolution Low (2-4μm) High(<1/1.5/>2μm ) 

Propagation 
Free space, 

Diffraction effects 

Diffracted limited 

imaging(NA 0.10/0.18) 

Table 2. 1: Comparison between different printing machines. 

As seen from the table, the comparison is made with two different type of machines – Süss 

MA300 Gen2 (proximity printing) and Canon FPA -5500 I- line (projection printing). The technical 

parameters give a clear idea that proximity printing is better than projection printing comparing 

the system size, cost and field size. Cost and investment is low for proximity printing and also 

larger wafer can be printed at the same time. But the optical parameters like propagation and 

resolution are compared, then projection printing will give better results [2.8]. Free space 

propagation in proximity printing will create diffraction effect and reduces the resolution. 

Proximity printing has been used for different applications like microlens making, wave guide 

fabrication etc. [2.9 - 2.12].The main challenge in our project is to increase the resolution of 

the proximity printing by overcoming these limits. Study the proximity printing 

technology, its limitations and propose ideas and solutions to increase the process window. 

 

2.3 Resolution Enhancement Techniques (RETs) 

Resolution Enhancement Techniques (RETs) are used to enhance the contrast and 

resolution of the image on the wafer by adjusting or manipulating the wave front that falls on the 

photomask. In general, a normal optical wave can be defined using an amplitude, phase and 

direction. So the parameters that can be modified for a wave are these three [2.13]. Three principle 

techniques used to increase resolution are Optical Proximity correction (amplitude variation), 

Phase Shifting mask (Phase variation) and Off- Axis Illumination (direction variation).  
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2.3.1 Off- Axis Illumination (OAI) 

As the name suggest the aim of this technology is to tilt the light beam from its axis such 

that the light beam is off-axis. The normal incident beam is shifted to reduce the on-axis 

illumination component [2.14]. By changing the illumination angle, the diffraction pattern of the 

mask feature is also shifted. The shift is within the illumination lens.  If the incident light is at a 

normal angle, then the zero-th diffracted order continues to be along the optical system axis, while 

the other orders are diffracted sideways. For small pitch of grating, only the zero-th diffraction 

order manages to make it through the projection lens, with the other orders being lost and no 

pattern will be created on the wafer. By making the illumination off-axis, all the diffraction orders 

are tilted, which makes it more likely that the higher diffraction orders can make it through the 

projection lens and help form the image of the mask onto the wafer. The angle shift is decided by 

the distance between zeroth order and first order and it depends on the feature size opening. 

Different shapes are introduced to modify the angle in the photomask illumination. Some 

examples of shapes are annular, quadruple, dipole [2.15]. In order to use it efficiently, the shape 

and size of the illumination shape should be optimized for the specific mask designs. 

 
Figure 2. 3: On-axis and off-axis illumination techniques. Comparing the on-axis and off-axis diffraction 

orders. The off –axis illumination has shifted the zeroth order. Due to the shift in the illumination angle we 

can capture a larger angle between zero and first order. Consequently, the resolution increases.

2.3.2 Phase Shifting Mask (PSM) 

PSM technology is one of the widely used techniques in lithography industry to increase 

the resolution. As the name suggests, the phase of the wave is varied here. The technology was 

invented by M. D. Levenson in 1982 [2.16]. Constructive interference of light fields from the mask 

features maximizes the amplitude and reduces the resolving power. The idea he used is to create 

a destructive interference, creating a phase difference of 180° between two adjacent features. To 
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create the phase difference a phase shifter or an extra chemical layer is added in the required 

feature areas. These masks are named as phase-shifting mask or ɸ -mask. This technique 

increased the resolutions of fine line lithography. Scientist Lord Rayleigh mentioned about the 

resolving power of light from the microscope images by creation of a black line in one of his 

manuscript - “On the Theory of Optical Image, with Spatial Reference to the Microscope” [2.17]. 

These days, instead of adding an additional phase layer, quartz mask are etched deeply to create 

the phase difference on the required areas.  Phase masks have structures which are etched in such 

a way that, for particular wavelengths, the phase shift becomes π. 

 
Figure 2. 4: Light intensity distribution through conventional mask and phase shifting mask. The mask in the 

right is the Phase shifting mask. The yellow colored region is where the depth is changed to half a 

wavelength. So when the light passes through the mask, field amplitude from both will have a phase 

difference of 180° and final intensity will be as shown above. 

There are several types of phase shifting masks that exist [2.18]. The main two are 

Attenuated Phase Shift Mask (AttPSM) and Alternating Phase Shift Mask (AltPSM) [2.19]. In 

AttPSM, an extra layer is coated on the quartz mask (eg: MoSi) on the desired areas which allows 

small percent of light transmission through the area (normally 6% to 18%). Thickness of the extra 

layer is selected according to the phase. The light passing through the feature is 180° out of phase 

with the neighboring quartz area but with transmission of light. In AltPSM, chrome and 180° 

etched quartz are placed alternatively.  
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Figure 2. 5: Different types of PSM. 

PSM mask is used for different applications in semiconductor industry and each time it 

sets high resolution targets [2.20, 2.21, and 2.22]. The main disadvantage with this technology is 

the mask fabrication cost. The phase mask costs more than twice that of the normal amplitude 

mask which makes this technique less accessible to the small scale industries.  

 

2.3.3 Optical Proximity Correction (OPC) 

As discussed earlier, because of the diffraction of the propagating wave and interference, 

features on the wafer can change its shape and won’t be the same as the feature on the mask in 

appearance. The change in pattern line width or length to the desired pattern and its effects are 

called Optical Proximity Effects (OPE). These effects can be originated from mask designs, printing 

gap, or resist used.  Optical Proximity Correction (OPC) is a simple and cost efficient technique to 

reduce OPEs. Here the modification is done in the amplitude of the wave. OPC is the method where 

adding or subtracting some features like lines or spaces on the mask makes the feature on the 

wafer as close to the desired design [2.23]. There are two methods to do the correction. One is the 

Rule based OPC and other is the Model based OPC. 

 Rule Based OPC – A set of rules are introduced with lot of analysis to solve the common 

problems in printing. The fist automated rules were introduced by O. W. Otto [2.24]. Mask 

patterns are modified by pre written rules by adding sub resolution features or moving 

the edge positions [2.25, 2.26]. It is a more practical approach for full chip correction since 

the rules are clearly defined. 

 Model Based OPC – This is the most common technique used in OPC. This method is done 

with iteratively simulating the structure until the precision or the perfect match with the 

desired structure is formed [2.27 - 2.30]. It is a time consuming process since each 

structure needs to be taken care to get the uniform precision. 
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Figure 2. 6: The features on the mask after model based optical proximity correction [2.5]. (a): The 

mask structure that we need to print; (b): Feature printed on wafer with mask structure in (a); (c): The 

corrected Structure of (a) with model based Optical Proximity Correction technique; (d): The feature on 

wafer with corrected structure. 

From Fig. 2.6, it is visible that corrected structures give better results than the exact 

structures.  OPC is an easy and cost efficient method compared to the other two RETs. The aim of 

the thesis is to create easy and cost efficient solutions for mask aligner industry to increase their 

resolution limit. The method we chose is by creating rules for one dimensional structure and to 

higher dimensional structure by optical proximity correction method. There exist many rule 

based OPC methods for projection printing but not for proximity printing. This is the main 

challenge of project.  Study each structure carefully and create and establish the rules on wafers. 

The next chapter explains the methods used to create and analyze the structures. 

 

Conclusion 
Several exposure techniques exist in lithography industry and they all have advantages 

and disadvantages. The main two techniques like proximity printing and projection printing are 

studied with example machines and comparisons are figured out. The chapter also discussed the 

various Resolution Enhancement Techniques that exist in the industry and its detailed 

explanations. The main aim of the chapter is to understand the limitations of proximity printing 

(mask aligners) and find a way to solve the limitations with a cost effective method. The 

discussions ended up with selecting OPC as the cost efficient method and to apply the technique 

to increase the resolution in mask aligners. The methods used to develop and study the OPC 

techniques will be discussed in the following chapter.  
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CHAPTER 3 

Design and Verification techniques  
This chapter describes the design and verification techniques that are used to obtain and 

characterize the results of this research on proximity printing. To start any study, simulation is 

the best technique. Simulation helps us to picturize the output which leads to a fast optimization 

of the results. The simulation software that is used for the study is GenISys Layout LAB-software 

which is designed for lithography simulations [3.1]. The software and its working is explained in 

the following sections. Once the results are optimized with simulation, experimental analysis is 

the next step. A specialty here is that, the amplitude and phase propagation are analyzed from the 

samples at different proximity positions with a High Resolution Interference Microscopy (HRIM) 

[3.2]. HRIM is an optical interferometer which can record 3D interferograms and both amplitude 

and phase can be tabulated with a mathematical algorithm. The working principle and recording 

of interferograms are explained in detail in the second part of this chapter. Both simulation and 

characterization techniques use a specialized optical system setting for modeling or mimicking 

the uniform illumination. The uniform illumination system applied here is known as MO exposure 

optics and available from Süss MicroOptics [3.3]. MO exposure optics is a specialized 

homogenization optics which uses micro-lens arrays, illumination filter plate (IFP) and a Fourier 

lens to obtain a uniform intensity illumination keeping a well-defined illumination angle. The final 

characterization technique is the Süss MicroTech MA/BA8 GEN3 mask aligner, to print at 

proximity distance. In this chapter, we also compare the results obtained with simulation and 

experimental analysis to prove the credibility and similarity of the results. 

 

3.1 Simulation: GenISys Layout LAB 

GenISys Layout Lab is a specialized simulation software for lithographic simulations. It 

includes the possibility of simulating proximity printing, projection printing, laser and e-beam 

lithography.  Integrated circuit (IC) development and process optimization is a time consuming 

process if we do it experimentally; but the simulation techniques make it easier [3.4] especially if 

many parameters are involved. Layout LAB is a single platform for all the lithographic simulations 

and helps to visualize the final resist patterns on the wafers. Software accurately calculates aerial 

images and intensity patterns which help to optimize the mask layout, resist parameters and 
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verify the process flow. This reduces the wastage of wafers and a fast optimization of process 

window can be done. Figure 3.1 shows the layout of the simulation with its main features.  

 

 
Figure 3. 1: Simulation module of Layout LAB. 

Different modules in Fig.3.1 are explained here. In general mask designs are stored in 

formats like GDSII, OASIS, CIF, and DXF and are loaded to layout LAB by the ‘Import’ function. 

‘Mask’ definition is used to define the mask properties. Mask can be a normal amplitude mask, 

grey tone mask or a phase shifting mask. The mask properties (bright field or dark field) and phase 

levels of each layer and cell are also mentioned. Next is the stack module which is used to define 

the wafer properties. Material properties, thickness of the substrate and resist coating are defined 

here. Exposure is one of the most important part of the simulation. We are using proximity 

exposure for our calculation since we use mask aligners [3.5]. The illumination parameters are 

defined in the module.  Source and wavelength of the spectrum, exposure dose (mJ/cm2), 

proximity gap, illumination angle and type of illumination can be defined here. Illumination can 

be parallel or user defined. It is indeed an advantage that a special illumination technique called 
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MO exposure optics from Süss MicroOptics can be imported to the simulation software [3.6]. MO 

exposure will be explained in next section.  

Propagation theory used to calculate diffraction pattern or aerial image is Rayleigh – 

Sommerfeld diffraction theory and transfer matrix method [3.7]. Rayleigh – Sommerfeld theory 

belongs to scalar diffraction theory (the scalar amplitude of one transverse component of either 

the electric or the magnetic field is considered). Scalar diffraction theory works well in two 

situations. One situation is when the sample size (diffraction aperture) is bigger than the 

wavelength used and the other situation is when the observation plane is not too close to the 

diffracting object field. These two conditions are suitable for proximity printing diffraction pattern 

calculations.  

Sommerfeld used Green’s functions in calculating the diffraction patterns and introduced 

the Rayleigh-Sommerfeld diffraction theory in 1896 [3.7]. Gustav Kirchhoff was the first person 

who defined diffraction theory using Green’s function.  But in Kirchhoff theory of diffraction and 

boundary conditions, it is suggested that the diffracted field must be zero everywhere behind the 

aperture. But it is not true and theory failed to produce the diffraction field near to aperture. In 

Sommerfeld theory, an alternative green function is introduced to define the diffraction field near 

the aperture. The theory considered two identical point sources mirror image of each other at the 

sides of the aperture which are oscillating with 180° phase difference (Fig. 3.2). 

 
Figure 3. 2: Constructing greens function by mirror method. P is the actual observation point to get the 

diffraction field. P’ is mirror point and R and R’ are the distance vectors. 

If Green’s function G is the difference of the spherical waves originating from P and P’ like 

 

(3. 1) 

If G is the sum of the spherical waves in the plane of the screen, G becomes 
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(3. 2) 

Inserting these two greens functions in Kirchhoff integral will yield first and second 

Rayleigh – Sommerfeld diffraction integrals (RS1 and RS2). 

Diffraction field U1(r) and U2 (r) with respect to above functions may be expressed as,  

 

(3. 3) 

 

(3. 4) 

It is assumed that Rayleigh – Sommerfeld integral is valid throughout the space. In general, 

there is no maximum size for the aperture size and observation field for the Rayleigh – 

Sommerfeld theory. This makes the proximity printing calculation easy. One of the other methods 

used for calculating field is the transfer matrix method [3.8]. This method is used to analyze the 

propagation of electromagnetic waves through a medium. It is based on Maxwell equations and 

matrix operations defined for transmission and reflection. It becomes particularly useful if the 

refractive index change is along the propagation direction and the gradients (or surface normal of 

multilayers) are also parallel to the propagation direction.  

After the aerial image calculation, next important factor is the resist calculation. In general, 

a method called Mack4 is used for positive resist calculation and inverse Mack is used for negative 

resist model calculations. Mack4 is the resist development model suggested by Chris Mack which 

considers four parameters and is based on simple kinetic considerations [3.9]. Calibration of the 

data is done in user defined resist positions and resist heights.  To make the calibration simple 

and to get the target values, one can use specialized functions like ‘Loop’, ‘Optimizer’ and ‘Split’. 

2D and 3D visualization of the resist profile and aerial image are possible with the software. It also 

gives the advantage of viewing in continuous color mode or in the discrete line mode with user 

defined cut lines and the results can be exported as ASCII files or .PNG files.   

 

3.2 MO exposure optics  

As it is known, most of the printing machines today employ some special optical systems 

to make uniform illumination on the wafer. Köhler illumination is one of the optical techniques 

for making uniform illumination [3.10]. August Köhler invented a technique for microscopy which 
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allowed for adjusting the numerical aperture and size of the illumination area independently of 

each other. Köhler illumination works with two lenses and two diaphragms (collector lens, 

condenser lens, field diaphragm and aperture diaphragm). The first lens called collector lens 

images the light source to a plane where the aperture diaphragm is placed. This aperture 

diaphragm is at the same position of the front focal plane of the condenser lens. With this 

arrangement all the rays from aperture diaphragm are imaged to infinity, refer to Fig 3.3 red 

colored rays. The field diaphragm is placed just after the collector lens. The condenser lens images 

it to the object plane and a proper adjustment of the distance between condenser lens and object 

plane is needed. 

 
Figure 3. 3: Köhler illumination technique. 

Köhler illumination provides a uniform illumination in the object plane independent of 

source size, shape and angular spectrum. It decouples the information from source spectrum and 

creates each point as source of homogenous illumination. 

Süss MicroTech have developed their own uniform illumination optics with the concept of Köhler 

illumination using microlens arrays. The special illumination technique is named as MO exposure 

optics [3.11, 3.12] and is represented in Fig. 3.4.  
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Figure 3. 4: MO exposure optics [3.3]. 

A microlens array divides the single lens illumination channel to multiple Köhler 

illumination channels and is then summed up. The technique is known as optical integrators or 

Köhler integrators [3.13, 3.14]. The first lens array will split the incoming light from a mercury 

lamp in form of an ellipsoidal reflector to beamlets followed by a condenser lens (Fourier lens), 

an assembly which is presented in Fig. 3. 5. The collimated beam will be collected by a collector 

lens which makes the beam telecentric (ray from all points are perpendicular to the direction of 

arrival and therefore generates a homogenous illumination). There exist a pair of Illumination 

Filter Plates (IFPs) at the image plane of first set of lenses. IFPs are just metals having different 

shapes engraved in to it, to get a homogenous illumination.  They are used to change the angular 

setting of the beam. The IFPs that are commonly used are small ring, large ring, maltese shape and 

quadrupole shape etc. Each IFP helps to provide a different angular light spectrum by changing 

the light propagation behind the mask pattern and also helps to select the incidence angle on the 

mask plane. Second set of optical integrators are placed just after the IFPs. More number of 

integrators means a greater light mixing which gives more uniformity. The principle of beam 

operations is same as the first set of lenses and the final beam will be redirected to the mask plane. 

This technique was mainly invented as an advanced mask aligner lithography technique [3.15].  
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Figure 3. 5: Beam evolution from Köhler integrators.  

3.3 Measurement: High Resolution Interference Microscopy (HRIM) 

High Resolution Interference Microscopy (HRIM) is an interference microscope technique. 

As the name suggests, it works with the principle of interferometry and calculates the light 

propagation factors like amplitude and phase from different samples and records 3D 

interferograms. Interferometers are widely used for surface profiling, wave analysis in different 

fields like astronomy, defense and aerospace and vision systems etc. [3.16]. Recently, gravitational 

waves have been observed with an interferometric technique called LIGO (The Laser 

Interferometer Gravitational-Wave Observatory) [3.17]. The observatory uses Michelson 

interferometer concept to observe gravitational waves. In contrast to the LIGO, here a two arm 

interferometer is used that allows to put optical elements under investigation in one arm. HRIM 

is a proven interferometric measurement system for observing fundamental optical principles 

like nano jet and spot of arago with micro or macro optical samples [3.18, 3.19, and 3.20]. The 

concept of HRIM is explained below using an example from our lithographic studies in the 

following sections.  The instrument setup is represented in Fig. 3.6.   
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Figure 3. 6: High Resolution Interference Microscopy (HRIM). 

3.3.1 Mach- Zehnder Interferometer 

The instrument works as a Mach- Zehnder interferometer. In normal mode, Mach - 

Zehnder interferometer has two beam splitters [3.21].  

 
Figure 3. 7: Mach – Zehnder interferometer. 

As shown in Fig. 3.7, a light beam will be split into two by a first beam splitter and a second 

beam splitter recombines both beams. Depending on the path length, both constructive and 

destructive interference can take place. Usually one path is called measurement arm and the other, 

reference arm. In a Mach Zehnder interferometer, the light passes through the measurement arm 
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only once in contrary to the Michelson interferometer. This technique is widely used in optical 

setups for measuring phase and amplitude information. Our high-resolution interference 

microscope HRIM works in transmission mode and all the light propagations are in free space. 

The first beam splitter that splits the beam to object and reference arm is a polarizing beam 

splitter. The object arm is the path where the sample is placed and reference arm is used to create 

phase difference. Both the beams are combined at the second beam splitter and interferograms 

are recorded by a charge coupled device (CCD) camera - Scion Corporation, CFW1312M camera 

having SONY ICX205AK image sensor of 1360 x 1024 pixels.  

 

3.3.2 Sample stage and microscope 

As mentioned earlier, the object arm contains a sample stage. The sample stage is 

connected to a piezo actuator to achieve a scan range in propagation direction of 500 μm with a 

nominal accuracy of 1 nm (Mad City Labs Inc., Nano-Z500). The CCD camera usually records 2D 

interferograms but with the piezo actuated sample stage, 3D measurement of data is possible by 

scanning the focal plane. In order to get the micro feature sample size and accuracy, a microscope 

is built in the object arm. Microscope objectives are placed with the corresponding tube lens and 

magnification of the objective decides the field of view of the camera. High numerical aperture 

objectives are used to get high resolution measurements. For example, 100X/NA 0.9 dry objective 

(Leica Microsystems, HC PL FLUOTAR) gives a field view of 64 x 48 μm2. With the number of pixels 

of the camera (1360 x 1024 pixels), the sampling interval becomes roughly 50 nm in object space. 

This value is smaller than the optical resolution of the microscope objective. All the recorded 

interferograms are tabulated with numerical algorithms in Matlab to get the amplitude and phase 

information.  

 

3.3.3 Five phase shift mirror 

In the reference arm of the HRIM, a piezo actuated (Mad City Labs Inc., Nano-P15) optical 

mirror is placed to change the optical path length. This is necessary to reconstruct the phase 

information of the recorded data for each plane. A common algorithm known as Schwider-

Hariharan algorithm (five – phase shift algorithm) is used to retrieve phase information [3.22]. 

The mirror introduces a phase shift of 90˚ (λ/4) for five times in order to get an unambiguous 

measurement of the phase. For each phase and intensity, Im (m=1.5) is recorded and a phase value 

can be calculated using the algorithm. One finds 

 

(3. 5) 

Where, ø is the phase and I1, I2, I3, I4, I5 are the five interferograms at different phase shifts.  
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3.3.4 MO exposure optics 

HRIM usually works with a monomode laser in plane wave illumination. But for some 

measurements, it is necessary to change the coherence of the light or control the illumination 

angle. A specialized micro optics illumination setting, the MO optics from SüSS MicroOptics has 

been installed in the object arm of the interferometer (Fig. 3.8) for selected experiments to 

simulate real world conditions. The fly eye condensers, an illumination filter plate (IFP) and the 

final lens are placed to get the same optical characteristics as that of a mask aligner.  

 
Figure 3. 8: MO exposure optics in HRIM. 

3.3.5 Illumination sources and operation 

There are two different types of sources for illumination. One is the coherent illumination 

source, usually lasers, and the other is a non-coherent illumination source, an LED. Single mode 

lasers of different wavelengths are used in HRIM (CrystaLaser, 642nm: DL640-050-3, 532nm: IR-

GCL- 025-S and TOPTICA TopMode CHARM 405 nm, 50 mW). LEDs of 405 nm wavelength, both 

as single chip and with 4 chips are used as non-coherent illumination source. A source of 405 nm 

wavelength is used because this is one of the peak wavelengths in a mercury high pressure lamp. 

The experiment which intends to measure phase is carried out solely with lasers as the light 

source. Experiments which need only aerial images can be done with LED or laser. For 

amplitude/intensity results only the object arm of the HRIM is used. 

To create a uniform illumination, laser beams are focused through pinholes to do spatial 

filtering which are placed at the front focal length of a second lens that expands and collimates the 

beam. It will then pass through a polarizing beam splitter which makes the beam to travel in two 

paths: object arm and reference arm. Object arm is having the sample stage and sample is enlarged 

by the microscope objectives. The light from the sample will pass through the tube lens and then 

to the recombining beam splitter. The beam splitter will combine both the beams and 
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interferograms are recorded. The intensity and phase from the interferograms are tabulated using 

Matlab scripts. 

The light from the LED source will first pass through a Köhler illumination set up. The 

setup has two lenses and two diaphragms to get a uniform illumination. The uniform beam then 

passes through a non-polarizing beam splitter to the object arm. To get the full optical power of 

the beam, the beam splitter is sometimes replaced by a mirror. In general, plane wave illumination 

is used for the experiments but sometimes special illumination regimes are required to create the 

same conditions of a mask aligner. We add micro lens arrays, front lenses and IFPs to create MO 

exposure illumination. The light will propagate through the sample and get recorded by the CCD 

camera.  

 

3.4 Comparison of simulation and measurement  

The simulation and measurement are the two main techniques used to find the limitations 

of proximity printing.  In order to do a performance evaluation and comparison of the techniques, 

an example of light evolution in both techniques is presented. The main research subjects are 

presented in chapters 4 to 8. Here the light propagation through a sample having line is shown for 

illustration.  

The simulations are done with parallel illumination (no MO exposure optics) using 405 

nm as the wavelength. The measurements are done with LED (RSW-P05-400-0) with a 

wavelength of 405 nm to simulate the same illumination regime. The beam will pass through a 

Köhler illumination setup. The objective used for the measurement is high resolution 20X/ NA 

0.75 dry objective (NIKON CFI Apochromat VC) corrected for 405nm. The measurement starts 

with the smallest feature 2 μm. The light evolution from structure till 50 μm behind the structure 

is theoretically studied and experimentally measured with the help of LAB software and z- axis 

scanning stage in HRIM respectively.  
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Figure 3. 9: Propagation measurement (x-z) of a 6 μm line width structure till 50 μm proximity gap. (a) 

Represents the experimental result and (b) the simulation result. Intensities are normalized from 0 to 1. 

The experimental system performance is reliable to the theoretical studies with 

simulation and the results looks very similar in Fig. 3.9. To prove it will also work for x-y 

measurements, another example which is observed with lines of 10 μm at different proximity gaps 

is provided in Fig. 3.10. This is just to quantify that the HRIM can perfectly set the proximity gaps 

with 1 nm step size. 

 
Figure 3. 10: The (x-y) intensity images of a 10 μm line with both simulation and experimental result at 

different proximity gaps respectively. Intensities are normalized from 0 to 1. 
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Intensity images at different proximity gaps of 10 μm width are observed in Fig. 3.10. The 

simulation and experimental images can be accurately calculated at different proximity gaps. It 

can also be noticed that diffraction effects of a line at different proximity gaps and the simulation 

and measurement results looks similar.   

 

3.5 Printing: Mask aligner 

The mask aligner, shown in Fig. 3.11, that is used for printing the structures is a last 

generation Süss MicroTech MA/BA8 GEN3 system with a 350 W lamp house [3.21]. It is used 

to produce optical components, in MEMS production and also for compound semiconductor 

products. The Mask aligner comes with a special tooling called SMILE (SUSS MicroTech 

Imprint Lithography Equipment). The main features of the mask aligner are wafer handling 

of up to 200mm diameter, precise alignment down to 250 nm and it is equipped with MO 

exposure optics which guarantees an excellent light uniformity over the whole field 

(typically +/-2%). In our experiments, the wafers are made of silicon and coated with thin 

resist AZ1518 for our exposures. The proximity gap and printing doses varies according the 

resist thickness and the structure definitions. 

 
Figure 3. 11: Mask aligner set up in clean room [3.23]. 

Conclusion 
Different characterization techniques that are used in the study to get the limitations of 

proximity printing are reviewed. A brief overview of the simulation software Layout LAB, which 

is a powerful tool for lithographic printing technologies, has been discussed. The software works 

with easy graphical user interfaces and calculates the results efficiently with less time. With this 

framework, the special illumination techniques, called MO exposure optics from Süss MicroOptics, 

that have been used within the scope of this research work have also been discussed. MO exposure 

provides uniform illumination using microlens arrays. They use basic Köhler illumination setting 
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with micro lens arrays and Illumination Filter Plates to generate a homogenous illumination on 

the mask plane. The main advantage is that one can import MO exposure optics parameters into 

simulation software to create one’s own illumination. As a third description, the measurement 

method (HRIM) that is used to study the evolution of light from samples and to study the intensity 

and phase propagation have been explained. The important parts of the measurement system like 

illumination sources, sample stage, interferometric technique etc. have also been discussed. The 

measurement system is also adapted to MO exposure optics. An example study with lines with 

simulation and measurement results to show the capability and similarity of both characterization 

techniques has been shown. Lastly, some details about the mask aligner which is used to print the 

samples have been provided. It is an MA/BA8 mask aligner from Süss MicroTech.  
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CCHAPTER 4  

1D correction structures in amplitude mask - Edge  
In the following chapters, theoretical aspects of proximity printing and the 

characterization techniques used to study those aspects will be explained. From this chapter 

onwards, studies are applied to real problems and an attempt is made to find solutions for them. 

All the studies begin from 1D structures and then continue to higher dimensional structures. Here 

also, the study starts with a 1D structure – a simple edge. Edge and its characteristic study is one 

of the early stage study in the field of lithographic printing. This chapter gives details about the 

optical proximity correction designed for edge slope improvement. Studies are done both 

theoretically and experimentally by simulation and experimental set up using HRIM. The results 

have been published partially in SPIE conference proceedings [4.1].  

As the resolution of the features is increasing, at one time it can reach its limits. There are 

several factors which pull back the resolution limits. One such factor is Line Edge Roughness (LER) 

and Line width Roughness (LWR). These are the deviations of a feature that occur on a 

dimensional scale ( ̴100 nm) much smaller the resolution limit of the imaging tool. They are 

basically spatial frequency effects. It is caused by several factors like shot noise, chemical property 

fluctuation on the resist etc [4.2, 4.3].  Mask Error Enhancement Factor (MEEF) is a way to 

calculate these reticle errors in printing [4.4].  MEEF is calculated by finding the incremental 

change in the resist feature to the ideal mask feature size. MEEF depends on how the structure is 

disturbed not only by the structure itself but also by neighboring parameters. These days, MEEF 

is calculated in a matrix form to get a bigger picture [4.5]. Earlier days MEEF considers mainly 

process related factors like illumination parameters and exposure dose. But mask error 

enhancement matrix (MEEM) takes care of feature size change, proximity effects from 

neighboring feature etc. For edges, the MEEF is mainly calculated for edge slope improvement or 

Edge Placement Error (EPE). EPE is the difference in margin between the final edge placements 

on the wafer to the ideal. EPE and edge slope can be improved using OPC method [4.6, 4.7, and 

4.8]. 

Here, the aim is to find a simple OPC solution to focus light at the desired proximity gap to 

print the edges with an improved slope. In general, the proximity gaps used in mask aligners for 

printing starts at 20 μm and it goes larger. The current study concentrates more on the 
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comparison of intensity field measurements both from simulation and experiments and considers 

also large proximity gaps up to 100 μm.   

 

4.1 Structure definition 

The idea is to add fine structures near the edges to shape the intensity on the edges. As we 

know from the design of Fresnel zone plates [4.9], adding rings of a certain size will focus light at 

certain distance [4.10]. Here, the aim is to check whether adding lines to edges will focus the light 

at certain proximity gaps or not to increase the slope.  The following geometries in Fig. 4. 1 are the 

optimized features for printing edges at different proximity gaps with different degree of 

complexity. 

 
Figure 4. 1: The structure definition to study (a) normal edge, (b) edge with one line correction and (c) edge 

with two line correction structures respectively. 

4.2 Simulation and experimental geometries 

The optimized examples of one line and two line corrections near the edges for proximity 

gaps of 30 μm and 50 μm are presented below. The optimization was performed with the help of 

our former colleague Qing Tan. The values are optimized by linearly varying each gap from side 

wall (edge) to the sub resolution line and the finding the best fit to the ideal structure in the mask. 

Several number of iterations are performed to get the optimized structure. 

 For 30 μm  

a) Simple edge = 40 μm.  

b) Edge with one line: - one line and one space; Total = 40+0.9+1 = 41.9 μm.  

c) Edge with two line–two lines and two spaces; Total = 40+0.7+0.7+3.1+0.7= 45.2 μm. 

 
 For 50 μm 

a) Simple edge = 40μm.  

b) Edge with one line: - one line and one space; Total = 40+1.1+1.5 = 42.6 μm.  

c) Edge with two line–two lines and two spaces; Total = 40+1.1+0.7+3.5+0.7 = 46 μm. 
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Simulations are performed with the normal parallel illumination (405 nm) setting from Layout 

Lab. The structure is imported to the module and aerial images are observed at desired proximity 

gaps. The result files are exported as an ASCII file and tabulated using Matlab codes.  

 

4.3 Measurements and recordings 

The target is to get the result of propagation and aerial image at different proximity gaps. 

Experimental measurements are done by 405 nm laser and using 20X/ NA 0.75 dry objectives 

(NIKON CFI Apochromat VC). 20X objective gives a field size of 316 x 239 μm2 and 1 pixel in the 

image plane equals to 233 nm in the object plane. 

To start with, the intensity image at the starting point of light propagation is important. In 

measurements, the mask plane is represented by the x-y plane. Fig 4. 2 represents the one line 

and two line correction structures of edges which are optimized for 50 μm proximity gap and 

intensity profile at 0.1 μm proximity gap is shown as a top view. 

 

Figure 4. 2: x-y intensity images from HRIM optimized for 50 μm proximity gap at 0.1 μm (a) one line edge 

correction and (b) two line edge correction. 

As we know HRIM can measure and record 3D interferograms. The propagation axis of 

HRIM is mentioned as z axis. To study the light evolution from the mask level to different 

proximity gaps, we will have a closer look at the propagation of light from the line cut region which 

is represented by a white dotted line in Fig. 4. 2. 
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Figure 4. 3:  x-z propagation images from HRIM optimized for 50 μm proximity gap (a) one line edge 

correction and (b) two line edge correction. 

 
Figure 4. 4:  x-z propagation images from HRIM optimized for 30 μm proximity gap (a) one line edge 

correction and (b) two line edge correction. 

The propagation measurements of optimized edge at 50 μm and 30 μm are shown in Fig. 

4.3 and Fig. 4.4 respectively. The one-line edge correction and two line edge correction 

propagations are represented. The propagation images of 50 μm optimized structure were 

measured until a propagation distance of 100 μm proximity gap and for 30 μm optimized 

structure, the propagation measurement was done until 50 μm proximity gap. The main criteria 

is to minimize the edge placement error. The interest in the measurement is to see the changes 
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(slope improvement) and the concentration of light at the desired proximity gap points. In Figure 

4. 3 (a) the intensity concentration can be noticed in the corrected edge side and that is 

represented with blue dotted rectangle in the figure. Considering the edge placement error, two-

line correction shows better edge falling and gives better slope. (Fig. 4. 3 (b)). The concentration 

or focusing of light can reduce the edge placement error.  The light transformation can be noticed 

with the 30 μm two-line edge optimized structure (Fig. 4. 4(b)). Constructive and destructive 

interference is happening near the edge and plotted with blue dotted rectangle. To study the 

importance of slope in more detail, intensity line plots will be used. The line plots have been 

deducted from the above images and shown in Fig. 4. 5 and Fig. 4. 6. The simulation results are 

also added to do the comparison and to study the OPC structure effects. The intensity line plots 

are made from the x-y image plots at desired proximity gaps with one line and two line OPC 

correction edges. 

 
Figure 4. 5: x-y line images at 30 μm proximity gap of an optimized structure defined for 30μm. (a) and (b) 

are one line edge corrected simulation and HRIM images respectively. (c) and (d) are two line edge corrected 

simulation and HRIM images respectively. 

Figure 4.5 gives different intensity profiles at 30 μm proximity gap and the peaks are 

normalized with normal edge peak. One thing that is noticeable is slope getting better with 
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corrected structures and also the edge falling position changing. There is a slight modulation in 

measurement results but agreement with simulation result is good. 

 
Figure 4. 6: x-y line images at 50 μm proximity gap of an optimized structure defined for 30μm. (a) and (b) 

are one line edge corrected simulation and HRIM images respectively. (c) and (d) are two line edge corrected 

simulation and HRIM images respectively. 

The intensity line images of both simulation and HRIM results are shown in Fig. 4. 6. From 

the figure, two line corrected slopes are better than the one line corrected slopes. It also gives a 

proof that normal structure edge falling position is not at the desired position but corrected edges 

try to fall at the desired positions. This is the edge placement error. To validate the statement, we 

are considering the line width as a parameter (Fig. 4.7).  
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Figure 4. 7: Edge falling position with an example. 

The line width of the designed structure is 40 μm (3 μm to 43 μm). In general, edge falling 

position of a normal edge should be at 43 μm (x-axis position from Fig.4.7), since the ideal line 

width of the structure is 40 μm. From Fig.4.7 it is noted that the edge falling or the side wall is not 

at 43 μm for normal edge, but for the edge with two line correction the edge tries to fall near to 43 

μm. An improvement has shown in falling with correction structure (black line in Fig. 4.7 

represents the actual line width of the structure). The results in Fig 4.6 show a good agreement 

between measurement and simulation but needs to be further analyzed. Certain parameters that 

allow access to process window calculations have been defined. An example calculation indicating 

the definition of parameters is shown in Fig. 4. 8. 

 

4.4 Parameter definition 

 Defining parameters allows us to understand and compare the result of simulation and 

measurements. Main parameters are the slope and working range for every design. Specific 

intensity values have been set to define contrast and the working range. It is important to define 

the minimum and maximum intensity level in the process window (the points between light 

transmission region and non-transmission region). Imin is the maximum point of the intensity 

variations in the falling position (non-transmission zone - this is the zone which should not be 

exposed) and Imax is the minimum intensity variation point in the light transmission region. If 

exposed below Imin, no structure can be printed and if the intensity is chosen higher than Imax 

everything is overexposed and would not lead to useful results. The range between these two 

points (Imax and Imin) is called the process window. In the process window, resist profile cut off can 

be defined at different positions according to the exposure conditions. Usually, two third of the 

interval between Imax and Imin is defined as I1 and it is the normal cut off resist profile. 
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Figure 4. 8: Example parameters are defined (50 μm two line corrected experimental results). 

 Here, the working region between two intensity points named as Imax and Imin. (x1, I1 ) is the 

normal printing region in the masks. But according to the exposure conditions, it is useful to define 

a higher working region and a lower working region. Higher working region is defined as I2, it is 

at one third between Imax and I1. Lower working region is defined as I3, it is at one third between 

I1 and Imin. Slope is calculated between the range I2 and I3 by linear interpolation. Figure 4. 6 shows 

that the normal edge is not giving sharp slopes. The OPC structures are defined with an 

assumption that sharper edge gives better results and the structures are optimized for slope 

steepness. The tables below summarize the parameters and findings for the proximity gaps and 

designs studied here.  

 Imax Imin I1 x1 I2 x2 I3 x3 Slope 

30_edge 0.73 0.29 0.58 42.39 0.63 42.22 0.39 43.44 0.200 

30_oneline 0.66 0.33 0.55 43.57 0.58 43.42 0.40 44.19 0.233 

30_twoline 0.65 0.33 0.54 43.57 0.58 43.52 0.40 43.90 0.465 
Table 4. 1: Parameters defined for 30μm proximity gap - experimental results. 

 Imax Imin I1 x1 I2 x2 I3 x3 Slope 

30_edge 0.40 0.02 0.27 41.08 0.32 40.77 0.10 42.24 0.144

30_oneline 0.28 0.05 0.20 43.59 0.23 43.38 0.10 44.24 0.146

30_twoline 0.29 0.08 0.22 43.21 0.24 43.16 0.13 43.44 0.417
Table 4. 2: Parameters defined for 30μm proximity gap - simulation results. 
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 Imax Imin I1 x1 I2 x2 I3 x3 Slope 

50_edge 0.72 0.27 0.57 42.00 0.62 41.76 0.37 43.26 0.164 

50_oneline 0.63 0.31 0.52 43.58 0.56 43.38 0.38 44.59 0.151 

50_twoline 0.62 0.32 0.52 42.90 0.55 42.84 0.39 43.30 0.361 
Table 4. 3: Parameters defined for 50μm proximity gap - experimental results. 

 Imax Imin I1 x1 I2 x2 I3 x3 Slope 

50_edge 0.57 0.05 0.40 40.70 0.45 40.58 0.17 42.00 0.203 

50_oneline 0.41 0.06 0.29 43.87 0.33 43.67 0.14 44.72 0.185 

50_twoline 0.38 0.13 0.30 42.90 0.32 42.85 0.18 43.22 0.381 
Table 4. 4: Parameters defined for 50μm proximity gap - simulation results. 

The above tables give access to the parameters that are defined from Fig. 4. 5 and Fig. 4. 6. 

The parameters are given for both simulation and experiment. The behavior of results are exactly 

the same and compare very well for both measurement and simulation (an example result in the 

blue dotted rectangle). The little differences appear since measurements are of high resolution, 

small noises can disturb the system if the chromium in the mask is not perfectly opaque for 

instance. This will give rise to measurement intensity value higher than the simulated intensity 

value. But the different intensity x values for corrected structures are similar for both simulation 

and experiment with less error. If one assumes that steep slopes give sharper corners, there is a 

pronounced slope improvement with correcting structures from tables. There is an interesting 

improvement in steepness (slope) with the corrected structures, mainly with the two line 

correction. The values of one line correction slope improvement is not good when compared to 

two line correction improvement. The slope values are decreasing for 50 μm one line correction 

in comparison to the normal structure. The behavior in slope for measurements and simulation 

results are the same. Now, there are three regions to work for the resist profile from the intensity 

results and can be used according to the need.  

 

Conclusion 
For the first time, measurements and simulation of OPC structures have been compared. 

With the definition of key parameters, we try to systematize the results. The optimized structures 

of 30 μm and 50 μm have been studied. It could be shown that tendencies found in simulation 

predict trends in the measurements. The slope has been improved by adding lines and spaces to 

the normal edge. Adding two lines makes higher improvement than adding single lines in the 

steepness of the edge fall. Three regions defined gives more freedom of exposure window for 
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resist profile printing. 1D correction structure has been studied successfully and next chapters 

will follow 2D structures and corrections. 
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CHAPTER 5  

Lines characterization 
After edges, lines and spaces are the next structures which are known as the building 

blocks of the printing industry. Printing industry is always in need of new correction methods to 

print the desired pattern in the best way. For new correction methods, analyses of the real 

problems are necessary. Here, the parameters for analysis are used in real situations. Proximity 

gaps up to 50 μm and structure sizes down to 2 μm are studied. The main aim is to analyze the 

propagation of light in independent lines in a dark field mask. The chapter describes the 

diffraction effects during propagation with the help of Fresnel number. 

5.1 Theoretical definition 

Effects of Fresnel number in focusing and imaging have been studied by C. J. R Sheppard 

and P. Török in early days [5.1]. The fact that diffraction effects at different proximity gaps are 

related to the Fresnel number at a specific distance is known [5.2]. Fresnel number and Fresnel 

zone region gives the possibility to interpret aerial image intensity of the structure at that plane 

of observation. Analysis of diffraction pattern using Fresnel number is already in use for the x-

ray lithography process optimization [5.3]. The Fresnel number, NF, of a structure with width 2a, 

at a distance z and for a wavelength of λ is defined as [5.4]  

 

(5. 1) 

As we know, proximity printing regions usually falls in the near field diffraction regions. 

The resolution a and the distance z are defined by Fresnel Number NF > 0.5 [5.1].  The main two 

factors which decide on the minimum feature width of proximity printing is the proximity 

distance and the photoresist parameters. The understanding of minimum feature width will be 

easy by studying the Fresnel number and the effects can be clearer when propagation analysis of 

different line widths are studied. The diffraction pattern through different slit widths with 

different diffraction theory approach was summarized by H. Gross [5.5]. The diffraction pattern 

was described using plane wave illumination. Since the optics that we are using is MO 

illumination optics, it is necessary to verify the different line width diffraction pattern and report 

about its influence. MO exposure optics uses different elements to get a uniform illumination. The 
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coherence management is also different in MO exposure optics as comparing to the normal (plane 

wave or parallel) illumination. A difference between the diffraction patterns of parallel 

illumination and MO illumination is represented below. 

 
Figure 5. 1: Simulation result of light evolution (x-z) from a 6 μm line width structure until 50 μm proximity 

gap using parallel illumination and MO exposure optics. 

The simulated light evolution from 6 μm line width structure is shown above in Fig. 5.1 

with two different illumination techniques. One is the normal parallel illumination and other is 

the MO exposure optics. As one can notice, MO exposure provides uniform and limited diffraction 

imaging compared to the normal illumination. MO exposure optics is used with HRA illumination 

filter plate which provides an angle of 3° during propagation. The diffraction features 

(interferences) and scattering is also less pronounced with MO exposure optics. In what comes 

next, our main focus is on the diffraction pattern from different line widths with MO illumination 

optics to study the feature size and proximity gap restrictions of proximity printing. 

5.2 Measurements and recordings 

Simulations are done with MO illumination with 405 nm as wavelength using Layout LAB. 

The experimental measurements are carried out using an LED (RSW-P05-400-0) of 405 nm to 

simulate the illumination regime of a mask aligner. The beam will pass through a Köhler 

illumination setup and through a beam splitter afterwards. The beam splitter splits the beam’s 

path to object arm and reference arm. Since we are analyzing the aerial intensity image only, the 

reference arm is not used for the current measurements.  In the object MO illumination optics is 

placed (Fly eyes, Illumination Filter Plate (IFP), final lens). IFP used for the simulation is HR A 
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with 3° of diffraction angle. The objective used for the measurement is a high resolution 20X/ NA 

0.75 dry objective (NIKON CFI Apochromat VC), corrected for 405 nm. 

 
Figure 5. 2: HRIM and simulation result of light evolution (x-z) from a 2 μm line width structure until 50 μm 

proximity gap. 

The discussion starts with the smallest feature in the evaluation structure, 2 μm. The light 

evolution from 2 μm line width structure to 50 μm proximity gap is theoretically studied and 

experimentally measured with the help of LAB software and z- axis scanning stage in HRIM 

respectively in Fig. 5.2. The image clearly shows the intensity drop during the evolution and also 

the change in the structure definition (width). Understanding of diffraction effects will be easy if 

the image is studied at different proximity gap.  
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Figure 5. 3: HRIM and simulation intensity images(x-y) at different proximity gaps. Proximity gaps are 

written on the top of the images. 

Figure 5. 3 shows the x-y intensity images of 2 μm line width structure at different 

proximity gaps. The distance (proximity gap) at which the Fresnel number turns 0.5 (NF = 0.5) is  

 =  = 4.93 μm = 5 μm. 

The Fresnel number defines the threshold of proximity printing with the parameters like 

feature shape, size, proximity gap and illumination parameters [5.6].  From Fig. 5.2 it is visible 

that the structure tries to maintain its properties till 5 μm distance, after that the intensity is 

scattered out. In almost all cases the proximity printing zone is defined above NF > 0.5. After that, 

the line width changes with decrease in intensity. The x-y intensity images (Fig. 5.3) show the line 

width variation and the line width increase with a complete change in original line width. At 5 μm 

proximity gap, structure shows the desired line width (2 μm). Higher the proximity gap, higher 

the line width also. At proximity gaps of 15 μm and 30 μm, the line width of the structure is higher. 

Since the intensity values are normalized in the images the exact intensity drop won’t be seen. To 

better see the intensity drop, contrast and line width variation (scattering of light) a line plot is 

represented below in Fig. 5.4.    
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Figure 5. 4: HRIM line plots from(x-y) images of 2 μm line width structure at different proximity gaps. 

Figure 5.4 shows the line plots averaged over 30 micrometers. The image clearly 

represents the structure shape at different proximity gap and also the intensity drop. 1 μm 

proximity gap is just above the mask level and structure shows its features and the exact line 

width. When the distance starts getting longer, the structure also modifies its shapes and width. 

The interesting fact that can be noticed is the rounding of corners at the line ends. Even at 5 μm 

proximity gap the line ends get rounded and showing high intensity at rounded corners. At 15 μm 

proximity gap, the intensity is dropped by half and structure width also started increasing. 

Proximity gap 30 μm is the region where intensity almost dropped to 1/4th of the initial intensity 

and structure width almost reached up to 10 μm.  If we calculate the Fresnel number on those 

regions, it becomes 

Z = 15 μm, NF becomes 

 

Z = 30 μm, NF becomes 

 

The Fresnel number value above show that’s NF < 0.1 the structure fidelity is completely 

lost for independent lines and spaces. The aerial image study explains that printing an 

independent 2 μm line at large proximity gap (50 μm) is impossible without using resolution 

enhancement technologies.  Printing at lower proximity gap (2 μm – 5 μm) to get good contrast 

and structure fidelity is also not possible because of the mask and/or wafer damage. To get more 

information about the independent lines, wider line width features need to be studied. 
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Figure 5. 5: HRIM and simulation result of light evolution (x-z) from a 6 μm line width structure until 50 μm 

proximity gap. 

Figure 5.5 represents the propagation result of simulation. The diffraction pattern is 

different at different proximity gaps. The diffraction pattern formations are classified into three 

main zones. Contact printing region or the small proximity gap region is not considered here.  

Damaging of mask is having higher chances at contact zone, but printing in the contact region 

gives higher structure fidelity. The first zone for the study is where the intensity splits in to 

several units giving intensity hikes at both the edges. The split continues until the whole intensity 

split into two parts and leaves a dark region between the intensities. The Fresnel number at this 

region is two (NF = 2). This is the second zone. Final zone is where all the intensity is formed back 

to the single line propagation. The third zone is usually defined between 0.5<NF <1 for proximity 

printing. Printing beyond this region will create drop in the intensity patterns and also the 

scattering of light. Printing regions vary with each structure definition.  Process window 

optimization is needed to evaluate each line width [5.7]. Process window is considered by several 

parameters like aerial image intensity, resist parameters, vertical side wall angle etc. The above 

defined zones are represented with x-y plots in Fig. 5.5 for 6 μm line width structure. 
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Figure 5. 6: HRIM and simulation intensity images(x-y) at different proximity gaps for 6 μm line. Proximity 

gaps are written on the top of the images. 

The aerial image at different proximity gaps explain the same results that have been 

discussed in the propagation analysis. At 5 μm proximity gap, it is observed that the aerial image 

looks like the desired pattern with an intensity hike on the edges and several intensity drop 

regions in between. During the propagation further away, the intensity splits into two parts giving 

a double lobe structure. This is the second characteristic of lines at the regions near to Fresnel 

number two. The printing of lines at these regions give a double lobe structure. Proximity gaps 

large than this always shows the third characteristic nature of line called corner rounding. To 

know more about this, intensity line plots are plotted at different proximity gaps and represented 

in Fig. 5.7.  

 
Figure 5. 7: HRIM line plots from(x-y) images of 6 μm line width structure at different proximity gaps. 
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In the intensity line plots, black line shows the structure just above the mask plane 

(contact region). Structure shape is similar to the desired linewidth pattern. Blue line started 

representing the first zone where the intensity hike at edges is visible. This hike usually starts 

above the contact printing region. The intensity hike continues until the intensity fully splits in to 

two parts. This is what we call the second zone, where the double lobe formation happens. The 

side walls are also not steep in this region. The final zone where the intensity forms back in to a 

single line (Gaussian profile like) with high intensity distribution and is represented with red line 

in Fig.5.7. The corner rounding is prominent in this zone. The regions are mentioned with its 

Fresnel number on Table 1.  

Line width, w = 6 μm, Therefore, a = (w/2) = 3 μm; λ = 405 nm (0.405 μm) 
Zone Characteristics Distance, z Fresnel number NF 

1 Intensity hike in edges 2 μm – 10 μm 10 – 2.2 

2 Double lobes 11 μm – 15 μm 2.0 – 1.5 

3 Corner rounding 15 μm - < 1 

Table 5. 1: Fresnel number for 6 μm structure 

This evaluation chart helps to define the proximity gap where they can print the 

structures with its different characteristics. To study whether these characteristics of lines are 

followed by all line widths, some more lines of larger width need to be evaluated.   

 
Figure 5. 8: HRIM and simulation result of light evolution (x-z) from a 10 μm line width structure until 50 μm 

proximity gap. 
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Figure 5. 9: HRIM and simulation intensity images(x-y) at different proximity gaps for 10 μm line. Proximity 

gaps are written on the top of the images. 

For a propagation of 50 μm proximity gap, 10 μm line can also be classified with three 

zones. First zone (5 μm) usually falls on the region of lower proximity gap which shows intensity 

hike on the edges. Normally proximity printing prefers 30μm as a standard gap to print structures 

because of technical issues. But for this case, at 30 μm gap the line shows the double lobes 

structure since the Fresnel number 2 falls at that position. Final zone or the Fraunhofer regime 

starts at a proximity gap of 61 μm. The detailed analysis is explained with line plots (Fig. 5.10). 

 
Figure 5. 10: HRIM line plots from(x-y) images of 10 μm line width structure at different proximity gaps. 

The line plot gives the above discussed information in a clear form. In contact region, 

around 1 μm proximity gap, the structure fidelity will be high. After that the intensity hike at the 

edges starts to develop which is represented with a blue line and green line on the figure. The 
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intensity split in to two parts is happening around 30 μm proximity gap. Table. 5.2 below explains 

the variation of structure with proximity gap and Fresnel number.  

Line width, w = 10 Therefore, a = (w/2) = 5; λ = 405 nm (0.405 μm) 

Zone Characteristics Distance, z Fresnel number NF 

1 Intensity hike in edges 6 μm – 28 μm 10 – 2.2 

2 Double lobes 30 μm – 44 μm 2.1 – 1.5 

3 Corner rounding 61 μm – <1 

Table 5. 2: Fresnel number for 10 μm structure. 

As the line width of the structure increases, the characteristic zones of the line decreases 

in the normal printing gap (30 m). It is well known that the diffraction effects of higher line 

width structure for shorter proximity gap will be less prominent. 

 

5.3 Results and findings 

From the above calculations and figures it is clear that there are mainly three 

characteristic gestures that a line can make during the propagation with MO exposure optics in 

dark field mask. All line width form different patterns at line ends and also changes the line width. 

Line ends can modify to: edge rounding with projection in corners, double lobes formation and 

corner rounding. These features happen at different proximity gap and also depends on the line 

width of the structure.  

 
Figure 5. 11: Intensity line images of characteristic features observed for a line (6 m) at different proximity 

gaps. 

Main parameters which define printing are edge slope and the contrast. From the above 

figure one can notice that, there is high slope and contrast at proximity gap of 5 μm. The slope 

and contrast started reducing for proximity gap of 15μm and the 30 μm proximity gap gives small 

slope and high contrast. The importance of edge slope was already discussed in previous chapter. 

Lines can be printed at different proximity gaps but need to compromise on edge slopes and 

contrast. These natures are depending on the Fresnel number also. One can define the printing 
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proximity gap by calculating the Fresnel number and the line width behavior at that proximity 

gap.  

 

Conclusion 
The study of lines and its characteristics changes during the propagation of light is very 

important for printing industry. Solutions for the problem can only be figured when the nature is 

studied. Here, a thorough study on lines and its natures have been discussed.  Proximity printing 

industry prints the structures in the range of micrometers. So the structures sizes of 2 μm to 10 

μm with a proximity gap of 50 μm printing range is discussed above. Fresnel number relation 

with line width printing is also discussed in the chapter. The characteristic changes of the lines 

that we observed can be classified as three. They are as follows: Intensity hike on the edges, 

double lobe structure and corner rounding.  These characteristics happen one after another for a 

line. According to the line width of the structure, these characteristics may fall on the printing 

proximity gap and can be analyzed by calculating Fresnel number.  
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CHAPTER 6  

2D correction structure in amplitude mask – Corner 
Study of lines and characteristic natures in the dark field was interesting. The different 

structural behavior at different proximity gap was a promising study. Now, the question that 

comes up is how to solve this structural behavior change and get back the desired pattern. The 

motivation of this chapter is to find an easy solution for solving one of the earlier problem with 

line printing called corner rounding. The goal is to define a simple and universal rule based optical 

proximity correction for mask aligners which can be used to print any line width with precision 

on the same wafer at same proximity gap and in a single exposure. We proceed to a detailed 

analysis of the results using simulation, optical characterization and printing [6.1].  

 

6.1 Designing of the corner correction structure 

Rules defined by rule based optical proximity correction can be implemented easily but it 

may not work for all the features on the same way. In other words, error factors are high on rule 

based corrections. The different type of rules and their formations are explained in some patents 

[6.2, 6.3]. The major portion of the solutions are for solving either line shortening or corner 

rounding. One of the common method to solve corner rounding is serif method [6.4, 6.5, 6.6]. The 

methodology and its features are usually defined for projection printing technology compared to 

proximity printing technology [6.7, 6.8]. Here, the aim is to find a simple and unique rule based 

correction for corners specifically for mask aligners. It is similar to the pattern based correction 

methodology [6.9]. 

The previous chapter discussed about the different line width characteristics at different 

proximity gaps staring with smallest line width of 2 m. The propagation measurement has 

shown the change of structure pattern from the desired pattern and the propagation was with 

MO exposure optics. MO exposure optics has been included in all the simulation, experimental 

and printing results. The wavelength regime is 405 nm and LED is used as the source of 

illumination for HRIM measurements. 

The first step is to find out the minimum line width for which a correction can be applied 

to overcome the corner rounding. Normally, the printing industry chooses a proximity gap of 20 

m and above it (up to50 m) to reduce the mask damage. A fixed proximity gap of 30 μm has 

been chosen for all the printing experiments and simulations. In general, proximity gap plays a 



6. 2D correction structure in amplitude mask - Corner 

 

58 
 

vital role in designing the correction structures for mask aligners. Aerial images of lines with 

different line widths have simulated at 30 μm proximity gap and shown in Fig. 6.1. 

 
Figure 6. 1: Simulated aerial images of different line widths at 30 μm proximity gap. Blue shows the low 

intensity regions and red shows the high intensity regions. 

In Fig. 6.1 openings are shown, which means that blue is low intensity and red is highest 

intensity and one can also observe the self-imaging areas. Small structures at 2 μm lead to strong 

diffraction and the effective line width will be much larger than 2 μm for the desired printing gap. 

These effects have been described in the previous chapter also. Corners are rounded and cannot 

be corrected, as the whole aerial image is diffraction limited. At 6 μm, the aerial image is 

comparable with the original structure in width but the line ends are single rounded and there is 

no flat top end. For 8 μm line width also, the line ends are changing in to a single rounded shape 

with very small flat top. However, for 10 μm lines the edge or corner rounding happens at 30 μm. 

Both the corners at the line end changes to form round shape (and 45° slope), marked with orange 

line on the figure. Here, in the images we can see two types rounding at lines ends. One is the line 

end where both the corners are combined and forms a single rounded shape (eg: 6 μm, 8 μm).  

The other one is formed at 10 μm line width, where both the corners on the line end changes its 

shapes to round, two corner rounding. Having this in mind, one can state that there is a minimum 

line width for which a correction can be applied to overcome the line end corner rounding. In our 

case, at 30 μm proximity gap this seems to be a 10 μm line width. 

Keeping these factors in mind, the next step is to verify the previous rules and their effects 

at different proximity gaps. The study starts by comparing the aerial image simulations of 
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different correction features for a 10 μm line width and 30 μm proximity gap. Results are shown 

in Fig. 6.2 for different cases: no correction, a conventional serif corrected line end and our result. 

In serif method, the correction features that are added will hang outside the both ends of the line 

and it can be a small square, a small rectangle, a small circle, a small triangle or in general more 

complicated shapes. They are designed by considering the rule that additional feature is 1/4th or 

less than that of the original line width.  

 
Figure 6. 2:(a) Feature (slit) with no correction, (b) Result obtained with the serif correction methods with 

conventional feature size and (c) result with the new rule based correction method using sub-resolution 

features. Here, the images are represented as three sets, first set is the drawing of the pattern, second set is 

the aerial image and third set is the aerial image in detail with intensity levels. 
 

 In Fig. 6.2 images that visualize the different exposure levels are represented by equal 

intensity lines normalized to one. The edge rounding is appearing in the original mask structure 

(Fig. 6.2(a)) due to the sharp (or perfect) corner shape. One can modify or reduce the diffraction 

effects of the sharp corner with sub-resolution features positioned around the edges of the 

structures. Serif like structures adding openings are shown in Fig. 6.2(b) and more complex 

structures are given in Fig. 6.2(c). To design a new rule based correction method we first consider 

the effects of the well-known method used for corner rounding: the serif method. In this method, 

the addition of corner projection improves the corner rounding. The first look of the aerial image 

(2nd set) shows the improvements of corners, (the blue and green image 6.2(b)) but the detail 
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analysis with different line plots with different intensity levels does not show any convincing 

improvements with serif. The results show that working conditions (dose and development) are 

difficult to define for serif correction due to the shallow contrast of the improved aerial image. 

The serif method does not work very well at 30 μm proximity gap for mask aligners with MO 

exposure optics, which is why a new correction has been designed. The approach is based on 

modifying corner diffraction by adding much smaller shapes. The new correction method is 

designed by keeping the knowledge of previously set rules and their definitions. The serif 

technology of adding extra features on the side has also been used. Here, the aim is to correct the 

45° slope of two corners at the line ends. 

 
Figure 6. 3: Simulation aerial images of different correction structures at 30 μm proximity gap. The fine 

black line is printed to guide the eye. 

The main motto is that the feature being added should be in the size of sub microns, only 

then the superposition of the main structure and correction structure creates the effects, which 

tend to form the desired pattern. In Fig. 6. 3(b), the corners of the structure are carved in to L – 

shapes to increase the concentration of light. Adding extra lines to the feature increases the slope 

and steepness of the edge, which is an already well known in chapter 4 (correction technique for 

edges). This has been shown in Fig. 6.3(c). To reduce the light intensity at the top, some parts of 

the top is carved inside. This makes the corner and top layer more flat. Figure 6.3(d) and 6.3(e) 

defines these flat tops by cut off regions in the rectangle and the middle valleys. The target is to 

preserve the desired shape by preventing the dispersion of light. The optimal values for the 

widths of correction features are found after several numbers of rigorous simulations and 

analysis. Each feature size and position in the structure is changed separately and a best fit is 

searched. The best fit (figure or merit) is considered as the highest steepness of intensity change 

at a certain position in space or the smallest radius of curvature. At a time, only one feature size 
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is changed and the value for the best result is kept. In the next iteration the next feature is 

modified. The change can be either in feature width, length or it can be the distance between the 

features. After the optimization of all structures a second iteration of the procedure is done for 

selected structures to verify the quality of the result. An example is shown in Fig. 6.4. 

 

 

 
Figure 6. 4: Parameter variation in the OPC structure. 

As we could see in Fig. 6.4, small feature helps to increase the resolution and gives the 

best optimized results. But considering the fact of Mask Rule Constraints (MRC), the dimensions 

below 500nm are not possible to write on the mask because of the pitch restriction and 

considerably increasing fabrication costs. Additionally, mask writing errors might be higher if the 

features sizes are small. Figure 6.5 shows the new rule based design for corner correction for 

mask aligners.  

 
Figure 6. 5: The designed rule based structure for corners. 

 

6.2 Characterization of the corner correction structure 

The simulation and measurement starts with a structure of 10 μm and continue the 

characterization to printing of the structure on wafer also.  The wafer used is a polished silicon 

wafer with 750 nm AZ1518 resist coated on it. Several wafers have been used with different 

exposure doses and exposure times to find out the exact parameters. The exposure parameters 

are varied from 37.5 mJ/cm2 (1.5 sec) to 75mJ/cm2 (3.0 sec). The wafer was developed for 60 s in 

AZ 351B developer diluted at a rate of 1:6 with water. The clearing dose of the current wafer 
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setting was 37.5 mJ/cm2. The aerial images of simulation and measurements, and printing results 

for 10 μm line width structure are represented in Fig. 6.6. 

 
Figure 6. 6: The simulation, experimental intensity and SEM images on wafer of 10 μm line width: normal (a, 

b, c) and corrected structure (d, e, f). 

Figure 6.6(a) and 6.6(d) are the simulation results of the 10 μm line width normal 

structure and optical proximity corrected structure, respectively, at 30 μm proximity gap. Figure 

6.6(b) and 6.6(e) are the experimental intensity image results from HRIM of the structure at 30 

μm proximity gap.  The results show quite good similarity between simulation and experimental 

results. The SEM images (Fig 6.6(c) and 6.6(f)) of printing results on the wafer of a normal 

structure and OPC structure show the improvements on corners due to the high resolution 

features. The corner rounding at the line ends has been reduced considerably with the new 

corrected structure. The different intensity levels in simulation and experimental images can be 

interpreted in the form of exposure dose. From the images, it is clear that the color code with 

yellow (0.6) gives sharper corners and the lower intensity regions (0.2 - 0.4) changes the shape 

at the center by creating peaks and valleys on the structure. From the results in Fig 6.6, it is 

observed that the high intensity region (Fig 6.6 (d) region between 0.8- 1.0 intensity) is showing 

a change in the line width compared to the desired line width. It is therefore interesting to analyze 

such effects more and to study where exactly the intensity regions are falling for the different 
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printing doses. Figure 6.7 shows SEM images of the printing results for different exposure doses 

and its comparison with different intensity levels of the simulation. 

 
Figure 6. 7: SEM images of the 10 μm line width correction structure at different printing doses. 

 The dose at which all resist is removed from the wafer after uniform (no structure) 

exposure is named clearing dose. It depends on several factors like resist material, resist 

treatment (baking), resist thickness and development condition (developer concentration and 

time). In the current scenario (silicon wafer with 750 nm AZ1518 resist coated on), the clearing 

dose is 37.5 mJ/ cm2 (1.5 Sec). Often, the working point for the dose is set to two times the clearing 

dose. The simulation result of the corrected structure for 10 μm line width with its normalized 

intensity levels from 0.1 – 1.0 is represented too (Fig.6.7 (a)). The normalized intensity value 1 in 

the intensity scale corresponds to a clearing dose value of 37.5 mJ/ cm2 and the intensity 0.1 in 

the intensity scale corresponds to values more than two times the clearing dose (near to 80 mJ/ 

cm2). The rest of the scale is a linear change of the intensity and each intensity level corresponds 

to an exposure dose. The SEM images of the printed structure on wafer are also shown in the 

figure for different exposure dose values (Fig. 6.7(b), 6.7(c) and 6.7(d)). With simulation intensity 

results and printed dose results, a comparison table has been prepared to define a process 

window for the structures. From the table it is inferred that, for the current structure, it is better 

to use a dose between 2.2 sec - 55 mJ/ cm2 (1.5 times the clearing dose) to 2.6 sec - 65 mJ/ cm2 

(1.8 times the clearing dose). The clearing dose and just above clearing dose makes ear shapes at 

both end of the corners and also line width variation will turn up at these doses.  Higher dose 

levels change the feature pattern by other characteristics variations, as one can notice in the small 

bumps that are present in the middle of the structure with a dose of 75 mJ/cm2.  
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6.3 Results and findings of the corner correction structure 

 The findings with the above characterization can be defined with the help of process 

window. One important factor, which decides the process window, is the line width variation with 

exposure dose. The line width reduction will be different at different exposure doses.  

 
Figure 6. 8: Line width variation at different exposure doses. 

 Figure 6.8(a) shows the line width variation with doses (Bossung plot) and Fig 6.8(b) 

shows the printed line width versus exposure doses. From Fig 6.8(a), lower dose of 1.8 sec - 45 

mJ/cm2 creates the reduction of the line width around 4 μm. The dose at 3 sec - 75 mJ/cm2 (two 

times the clearing dose) gives almost the desired line width of 10 μm. The region which gives 

sharper corner reduces the line width between 1.5 μm to 0.5 μm. The process window can be 

defined at this point where the exposure dose is between 55 mJ/ cm2 (2.2 sec) and 65 mJ/ cm2 

(2.6 sec). For Bossung plot, a linear regression was fit to each of the resist line width vs. exposure 

dose curves and the slopes were extracted. All the slopes are positive and the slope values are 

between 0.092 and 0.104. 

 In order to describe the corner rounding, we use the radius of curvature as another 

characterization parameter. The inner radius of curvature at the corners is used to point out the 

improvement provided by the new rule.  Figure 6.9 shows an example of a radius of curvature 

definition for exposure of 2.2 sec and for a line width of 10 μm. All the defined curvatures are 

tabulated with the help of a circular fitting algorithm in Matlab. Circular fitting has been done by 

finding the position where curving of the line starts and making a 90° fitting with the line to get 

the radius of the circle. 
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Figure 6. 9: Inner radius of curvature definition for 10 μm line width structure. 

 

 It is noticed that, for a normal corner the radius of curvature value is 2.72 μm and for OPC 

corner the value is 1.95 μm. The corner with no correction (normal corner) is having higher 

radius of curvature compared to the proximity corrected design. The normal structure forms a 

dumbbell shape at both ends of the line at 30 μm proximity gap. These dumbbell formations are 

reduced with the new correction method and it leads also to a reduced radius of curvature. The 

radius of the curvature can be reduced further using smaller feature sizes in the correction 

structure. In current optimized structure we have used a minimum feature size of 500 nm. But 

200 nm feature will give better resolution enhancement, but because of MRC, we are not using 

that. The minimum radius of curvature that one can obtain with respect to the above optimized 

structure is 1.3 μm. To illustrate this better, simulated values of the structure and inner curvature 

are plotted in Fig. 6.10. 

 
Figure 6. 10: Minimum inner radius of curvature of optimized structure having 10 μm line width. 

 Minimum radius of curvature value has been calculated with the simulated aerial images 

using Matlab algorithm which is mentioned above. A normal corner radius of curvature has also 

been included in the image at the bottom. One can notice the radius of curvature difference for a 
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normal corner and an OPC corner at a single sight. As explained earlier, high resolution correction 

features can be used for any line width structures in their Fresnel regime.  

In order to verify that the new OPC correction rule can be applied to any larger line width, we 

show result of 40 μm line width. 

 

 
Figure 6. 11: The simulation, experimental intensity and SEM images of 40 μm line width: normal (a, b, c) 

and corrected structure (d, e ,f). 

 The designed correction structure improves the corner and can be used for printing any 

line width on the same wafer at single proximity gap and with a single exposure dose. The radius 

of curvature improvement for different line widths and at different exposure doses has been 

tabulated in Table 6.1 for further reference. 

Line width Vs inner radius of curvature 

Line width 

(μm) 

Expo 2.6sec 

normal (μm) 

Expo 2.6sec 

OPC (μm) 

Expo 2.2 sec 

normal (μm) 

Expo 2.2sec  

OPC (μm) 

10 2.85 1.85 2.725 1.75 

20 2.85 1.95 2.75 1.85 

40 2.95 1.9 2.75 1.8 

Table 6. 1: The radius of curvature of different line width structures at different exposure times. 

 The radius of curvature varies only slightly for different exposure doses. The reduction of 

radius of curvature of the corner is more than 30%. The inner radius of curvature decreased to 

2/3rd. The results with the line width change at exposure doses and the radius of curvature can 

now be used to define the operation point of the rule based corner correction design. With the 

above results, the optimal operation point is found as 1.5 times of the clearing dose (exposure 
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time of 2.2 sec, exposure dose: 55 mJ/ cm2 in current scenario) since that gives better 

improvement values as compared to others. 

 

Conclusion 
 A simple rule based correction method for corner solutions is defined to use in mask 

aligners based on free space propagation. A complete analysis cycle including designing, 

measurement, characterization and printing has been done to define the best process window. 

The universal correction structure can be applied to different line width and it is optimized for a 

printing gap of mask aligners set to 30 μm. The main advantage of the new correction structure 

is that different sizes of structures can be corrected and printed at same exposure condition 

(dose, distance and development) with high precisions at a single process step. The new OPC 

structure will be able solve the corner rounding problems in the industry up to certain level. The 

analysis so defined is purely based on the intensity evolution of light from structures and aerial 

image studies. The missing part is the phase evolution characterization and the following chapter 

will discuss the phase propagation. 
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CHAPTER 7  

Phase analysis of amplitude mask structures  

- 1D and 2D 

 Until now, the chapters discussed aerial image study or intensity distribution of light. But 

there is no concrete study about the phase propagation from mask features and its developments 

on the mask. Here, the main aim is to observe both phase and intensity propagation from 

amplitude mask features. Structures used for the study are simple edges and corners in 1D and 

2D respectively. The focus of the study is to understand the phase originating from sub resolution 

features or optical proximity correction structures and their effect on main structure parameters. 

 

7.1 Importance of phase in light propagation  

 Phase plays a vital role in light propagation. Phase measurements are equally important 

as the intensity measurements.  The imaging and visualization of optical phase and its 

modulations is always a challenge in optical industry. Interferometric technique is one of the best 

method to extract the phase information [7.1]. Sample arm (object arm) and reference arm will 

interfere and outputs can be recorded. Phase contrast imaging is one of the prominent techniques 

in microscopy to analyze the specimen. In lithography, phase transformations can be applied in 

beam shaping [7.2]. 

 It is noticed that shaping of beam is the most important factor in proximity printing. The 

beam needs to be modified in way that the desired structure can be printed on the wafer. Intensity 

variation is the best way to modify the shape of the beam. The phase of the wave is having an 

enormous effect on intensity variation. To study and verify this factor, phase evolution from 1D 

correction structure is studied in more detail below. 

 

7.2 Phase evolution from edge structure (1D) 

 Edge slope and steepness have been studied in the earlier chapter with simple edge and 

OPC edges. Slope of the edge is improved by adding sub resolution lines near to the edges (one-

line and two-line edge correction structure). Here, the analysis is to study the phase propagation 

from the corrected edge defined for 30 μm proximity gap. The sample analyzed here is the edge 

with two line corrections. Simulations are carried out by CST Studio Suite FDTD simulation 
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because of the phase analysis [7.3]. Experimental results are done with HRIM with TOPTICA laser 

(405) nm. The reference arm having a mirror and mounted on piezo actuator allows the phase 

shifting for the phase measurement. 

 
Figure 7. 1: 1D OPC structure for phase analysis 

 
Figure 7. 2: Intensity and phase behind an OPC structure similar to that one given in Fig.7. 1. (a) and (b) 

HRIM measurement intensity and phase. (c) and (d) are FDTD simulation results. 

 The measurement technique used to calculate phase is the differential phase [7.4]. When 

a wave is propagated through a sample region, it gets perturbed. The waves outside the sample 

region won’t be perturbed and it will continue to propagate as normal plane wave. The normal 

wave propagation is the reference zone and the phase in that region is considered as a constant 

phase. The difference between reference zone phase (constant phase) and the perturbed wave 

phase is called as differential phase. This is represented in Fig. 7.2(b) and (d). Both the simulation 

and measurement results behave in the same pattern. One can notice that, adding small features 

near to the edge has shown change in the phase distribution. A closer look at the figure shows that, 

the phase on the left side of the figure (no correction feature) is having a continuous phase and on 
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the right side (with correction feature), the phase varies.  The intensity is also behaving in the 

same way. The side with the correction feature got higher intensity values as compared to the 

other side with no correction feature, after 10 μm propagation distance. The interesting region 

here is the 30 μm proximity gap zone since the correction structure was defined for 30 μm gap. A 

strong fluctuation of phase is visible around this region. The phase has almost changed from 0 to 

π. It shows that the phase variation from the samples is having a greater effect on intensity 

fluctuation. This understanding helps us to think about creation of phase singularities. 
 Phase singularities are zero intensity regions. If the phase difference between two 

neighboring points in the space is close to π, then the intensity distribution between these points 

will be near to zero. This is named as phase singularity or optical vortex [7.5]. Micro and nano 

structures that can create phase singularities were theoretically and experimentally studied some 

years ago [7.6, 7.7]. Creation of optical vortex with different phase level mask was introduced by 

M. D. Levenson in 2002 to create 80 nm contact nodes in lithography [7.8]. The vortex was 

composed of four regions with phase of 0 , 90 , 180  and 270  to print sub resolution structures. 

Meeting point of all four phases creates a phase singularity and the end result was vertical steep 

walls [7.9]. As we know, the Phase Shifting Masks (PSM) are costly for defining four phase shifts. 

The question here is whether the creation of vortex is possible in amplitude mask by designing 

the OPC features wisely. If the technique is successful, then it will be more economic when 

compared to the PSM technique. To understand the phase propagation from amplitude features, 

2D correction features designed for a corner correction in amplitude mask is studied below.  

Results of 2D correction feature is partially published in SPIE proceedings [7.10]. 

 

7.3 Phase evolution from corner structure (2D) 

 The goal here is to study the light evolution from OPC structures defined for corner 

correction at 30 m proximity gap. The aim is to study the interplay between phase and intensity. 

Whether phase singularity creation can define the structure or not is also studied.  

 
Figure 7. 3: 2D OPC structure for phase analysis. 

The correction features in Fig.7.3 consist of squares and rectangles that are less than 2 m in size. 

The structure on the Fig.7.3 (a) consist of 3 squares near to the corner to increase the resolution 

and the other one (Fig.7.3 (b)) consist of rectangles and one negative square inside the open area 
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near to the corner. The small amplitude features creating sharp phase changes is not yet discussed 

in many literatures and here the study is to get a full potential about such an approach. 

The blue dashed line in Fig. 7.3 represents the x-z plane for propagation analysis (line cut 

for propagation) and the dashed line crosses on the correction structures. The phase and intensity 

propagation analysis has been done for a proximity gap of 40 μm. 

 
Figure 7. 4: Intensity and phase behind an OPC structure similar to that one given in Fig.7. 3(a). 

The phase image clearly shows the propagation difference when compared to a corner 

without any correction (right side of phase image) and corrected corner (left side of the phase 

image). As described earlier, the correction structure was designed for printing at 30μm proximity 

gap. After 25 μm of propagation, there is an abrupt change in the phase visualized by blue dashed 

line rectangle. One difficulty to interpret phase images is that many features are usually found in 

the zones where there is no light. For normal corners, the high intensity zones and contrast 

variations are coming at x = 30 μm but the phase stays almost constant during the propagation.   

This is different for the corrected structure where the phase change (x = 10 μm) is close to 

intensity edge and seems to be created at this position. The small squares as correction structures 

shapes the phase to get higher contrast and sharper corner. The problem is of course more 

complicated because of its three dimensional nature. Therefore, to understand more about the 

shaping, closer look at the x-y planes of different proximity gap settings is needed. Fig. 7.5 gives 

an idea about the intensity and phase images at different proximity gaps. 

Figure 7.5(a) shows the intensity and phase image just above the plane, in the so called 

contact region. In the contact region, the diffraction effects are not prominent. The intensity shows 

the same features as the mask pattern and the phase is constant for all openings (blue and dark 

red). As discussed above, the phase change happens approximately after 25 μm. In order to gather 

more details, the intensity and phase x-y images at 20 μm and 30 μm are plotted for the 

comparison.  
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Figure 7. 5: The measured intensity and phase image of the corner structure at different proximity gaps 

between the mask and observation plane. (a) Image at 0.1 μm proximity gap, (b) image at 20 μm proximity 

gap and (c) image at 30 μm proximity gap. 

Figure 5 (b) is the intensity and phase image at 20 μm proximity gap. A closer look at the 

intensity images of Fig.5 (b) and 5(c) (dashed line rectangle), reveals that the corners with 

correction structures are becoming sharper without much spreading due to a hotspot creation. 

The contrast of the structure with correction features is much better at 30 μm proximity gap. In 

the intensity image of the corner without correction, the diffraction from the corner is the 

dominant mechanism that changes the intensity field. The phase images of Fig. 5(b) and Fig. 5(c) 

show the phase changes that are involved to modify the light pattern. The blue dashed squares in 

the phase images represent the phase formation. At 20 μm proximity gap, phase changes due to 

corner correction is not sharp. The color code in the phase images represent the phase changes 

that is happening in the corners.  At 30 μm, the correction structure makes a sharp phase change 

of π (green- 0 to red-3) around the high intensity spot considered as the corners tip. The phase 

changes help to shape the light to make sharp corners by surrounding it with abrupt phase 

changes. To understand more about such phenomenon, one more corner correction structure and 
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its intensity and phase evolution will be analyzed. This time an inversed amplitude element is also 

involved as a correction feature. The corner having two rectangles near the corner and having a 

negative square is represented in Fig.7.3 (b) and, the evolution measurement along the blue line, 

intensity and phase evolution is plotted in Fig.7.6. 

 
Figure 7. 6: Intensity and phase behind an OPC structure similar to that one given in Fig.7. 3(b). 

In Fig.7.6, from the inverted square region a phase fluctuation and an intensity hot spot 

are visible around 10 μm distance behind the mask (represented by blue dashed rectangles on the 

images). At 10 μm, the obstacle (negative square) creates the concentrating point with sharp 

intensity.  What we also see is that nothing particular happens anymore after this for the 

propagation, neither in amplitude nor in phase. Figure 7.7 gives the corresponding x-y plane 

images at proximity gaps just above the mask plane and proximity gaps of 10 μm and 30 μm.  At 

mask plane, the intensity image shows the correction structures of two rectangles and the small 

negative square. The phase image in the mask plane clearly shows the uniform phase in the open 

regions of the mask and undefined values shown as color speckles of the opaque zones. The 

obstacle seems to have an initial phase shift, the value is close to π phase difference (light blue 

represents 0 for negative square and dark blue represents the –π for open areas from the color 

codes of phase image). The intensity images at proximity gaps of 10 μm and 30 μm show how 

diffraction from small features changes the pattern configuration. High contrast and bright spot 

(blue dashed line square) created at the corners of 10 μm proximity gap have higher probability 

to build the desired pattern than at higher gaps. The phase image at 10 μm is modulated by the 

bright spot and sharp phase change of  occurs (the red bright spot inside the blue dashed line 

square). The consequence of such a focusing regime is a higher sensitivity to proximity gap 

distances compared to the situation with positive correction structures only (compare to Fig. 7.4). 

At 30 μm proximity gap, there is not much change of phase compared to the intensity changes. 

This correction structure may work better at lower proximity gaps than at a higher gap. 
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Figure 7. 7: The measured intensity and phase image of the corner structure at different proximity gaps 

between the mask and observation plane. (a) Image at 0.1 μm proximity gap, (b) image at 20 μm proximity 

gap and (c) image at 30 μm proximity gap. 

This is the first set of measurement that analyses how submicron optical proximity 

correction structures play their role in the propagation of phase and shaping the light to desired 

pattern. The above images and results show that steep phase variations can be induced with 

amplitude structures at a large distance behind the mask. It seems that more OPC elements are 

needed to find a reliable design scheme with sufficient parameters to move the phase singularities 

to the desired position.  

Conclusion 
The importance of aerial images or the intensity distributions for getting the desired 

pattern at printing level has been known to the lithography industry for some time. The coherence 

management with microlenses, Illumination Filter Plates (IFP) also play a major role in aerial 

image formations. However, the significant role played by phase for shaping the light to get the 
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desired pattern for amplitude structures was not recognized. The above studies reveal the phase 

distributions and phase evolution of different optical proximity corrected structures at different 

proximity gaps. A first situation is with 1D correction structure for edges where the phase made 

a sudden phase shift to get the desired pattern. This result paved the idea of creation of phase 

singularities by OPC features. A Second case was discussed with 2D correction features – OPC 

correction features for corner at 30 m proximity gap - and explains where the phase evolution 

limits the spreading of light. Third situation is explained with negative square and it shows that, 

focusing of light can be achieved by small obstacle. Phase analysis reveals that more studies are 

needed to define exact OPC feature for the creation of phase singularities. But this phase definition 

will help the printing industry to reach higher resolution limits. 
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CCHAPTER 8  

Phase and intensity analysis of phase mask structure 
Phase shifting mask (PSM) technology is one of the most prominent resolution 

enhancement technology in the field of lithography.  The previous chapter gives a hint about the 

propagation in amplitude mask, but the question still exists about the phase and intensity 

propagation in phase masks. This chapter characterizes a phase shifting mask structure which is 

designed for corner corrections. The Intensity and phase propagation analysis and also the 

importance of Lohmann images will be discussed. Of particular interest are tolerance against 

proximity gap variation and the theoretical explanation of the resolution in printed structures. 

The chapter is based on the results published in Journal of Micro/Nano Lithography, MEMS, and 

MOEMS [8.1]. 
8.1 Phase mask and structure definition 
 

The success of phase mask technology is in the creation of high contrast difference by 

proper structuring of the mask levels [8.2]. The test structure is a group of corners or elbow 

structures from a phase shifting mask [8.3]. Tina Weichelt (Friedrich-Schiller-Universität Jena) 

has developed the mask. The structure and details of the selected structure are described in Fig. 

8.1.  

 
Figure 8. 1: Structure considered for our experiments, (a) is the geometry of the structure, (b) amplitude 

structure [yellow lines are the open areas] and (c) shows the structure with phase shifts [yellow lines are the 

open areas and violet areas are the etched quartz] of π or half wavelength. 

The structure has a pitch of 4 μm and field size of 75 μm*75 μm.  The substrate material 

is fused silica (quartz) and the structure is etched in such a way to get a phase shift of π or half 
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wavelength for the design wavelength, which was 365 nm. The smallest feature size is a 2 μm line 

and the objective is to print the structure at a distance of 30 μm.  

A stabilized monomode laser with coherence control from TOPTICA (TopMode CHARM) 

having a wavelength of 405 nm and 50 mW power is used to achieve a fully coherent illumination 

regime. For the current measurements, we are using a high resolution 20X/ NA 0.75 dry objective 

(NIKON CFI Apochromat VC) corrected for 405 nm with the corresponding tube lens. The 

reference arm has a mirror and is mounted on piezo actuator to allow the phase shifting and a 

proper reconstruction of the measured phase.  Differential phase is used to visualize the phase 

field [8.4]. 

 

8.2 Measurements and recordings from structures 

First step is to visualize and observe the intensity and phase behavior of amplitude mask 

and phase mask structures respectively. The study is just above the mask plane and results are 

represented in Fig. 8.2. 

 
Figure 8. 2: The measured intensity and phase image at 0.1 μm proximity gap between the mask and 

observation plane. (a) Amplitude mask and (b) Phase shift mask. The intensities are normalized from 0 to 1, 

and phase values are from –π (-3.14) radian to π (3.14) radian. 

The intensity images of both amplitude structure and phase structure in Fig. 8.2(a) and 

Fig. 8.2(b) clearly shows the structure definition and its features. As reference zones, we are using 

the wide open areas in the field of view which are far away from the measurement area to ensure 

that the reference line does not influence the measurement. In Fig. 8. 2(a), the phase image shows 

constant phase at openings indicated by uniform color. In zones without intensity beside the high 
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intensity zones, the phase could not be evaluated which causes an undefined phase pattern. In 

Fig. 8. 2(b) within the opening of the mask, one can clearly see the phase difference (4/5π) 

between the open chromium and etched quartz in the corner structures with the color code: one 

part is red and the other part is blue respectively. The blue color refers to a certain phase level 

that is the same as the non-etched openings of the functional structure. Images in the above 

figures clearly show the phase measurements and differences between a normal amplitude 

structure and phase structure.  

 

8.2.1 Propagation Measurement: x-z 

The main focus in the experiment is the propagation measurement from a phase mask 

(propagation axis is z). The measurement evaluation will be easy if the simulation results are 

available. The first step for that is to create the structure and verify the simulation results. The 

selected two structures, one amplitude and the other with phase structure are plotted with same 

parameter conditions including reference line.  The line cut region of mask structure will look like 

the structures in Fig. 8.3. This makes the simulation easy and one-dimensional. The wavelength 

used for the simulation is 405 nm. A perfectly collimated (parallel) illumination is chosen in order 

to make sure that simulation and measurement conditions are as close as possible. 

 
Figure 8. 3: The simulation structure. (a) Amplitude structure with 2 μm openings and 4 μm period (b) 

represents the PSM Structure of 2 μm openings and 8 μm period with phase changes similar to the 

measurement structure. 

Figure 8.3 shows the structures used for simulation in one-dimension (line profile shape). 

The amplitude structure (Fig. 8.3(a)) is of lines with a width of 2 μm and a pitch of 4 μm. The 

phase structure (Fig.8.3 (b)) has phase difference between consecutive openings of half a design 

wavelength (π). The opening at the left is used as a reference. The width of the phase structure 

feature is 2 μm and the period is 8 μm because the phase structure alternates which leads to a 

doubling. To retrieve propagation data in z direction, line cuts of the desired areas are used (white 

dashed line on the intensity images of Fig. 8.2(a) and Fig. 8.2(b)).  
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Figure 8. 4: The simulated light field propagation through (a) Amplitude structure and (b) PSM structure for 

a proximity gap of 50 μm. Intensities are normalized to the maximum intensity. 

Figure 8.4 reveals that the diffraction of light leads to varying intensity profiles at different 

proximity gap as expected. One can observe that, regions of highly confined light fields and 

diffraction effects are different for a normal amplitude mask and the phase mask. The diffraction 

effects depend on Talbot length also. For lithographic printing, several parameters are important: 

the contrast of the structure, the definition of the structure and its position. To get the complete 

picture, the mask structure is analyzed with HRIM propagation measurement. 

Figure 8.5 describes the evolution of light through the measured region of the structure at a 

position indicated by the white line in Fig. 8.2(a). The aerial images are recorded at different 

distances between mask and wafer with increasing distance of z from the mask. 
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Figure 8. 5: The measured intensity and phase image of the light evolution for a proximity gap of 50 μm in 

amplitude structure. 

In the above figure, it is observed that particular light bundles are visible in the intensity 

images that have a well-defined phase value. At zones with low intensity, for instance between 

30 m and 110 m lateral positions (x-axis), the phase cannot be evaluated. Different interesting 

regions for printing can be defined and verified by the intensity measurement for different zones 

of proximity gap. The regions till 20 m of the proximity gap, all the lines are visible and good for 

the printing. However, just after that one can see the diffraction effects are prominent and lines 

are not any more differentiable. The regions just above diffraction regions, the contrast is coming 

back for the lines. One counts only four intensity highs and sees a change of position shift. To 

guide the eye, white dashed lines are added in the intensity image of Fig. 8.5. Simulations of the 

amplitude structure in Fig. 8.4 (a) also verify this change in features and positions. The position 

shift is explained by the Talbot effect and further explanation is in the discussion section below. 

To avoid the lateral shift and to print the correct structure on the exact positions of the mask, 

phase shifting mask can be used. Figure 8.6 shows the propagation of light through the phase 

shifting mask structure through the white dashed line region defined in Fig.8.2 (b). 

 

 

 

 



8. Phase and intensity analysis of phase mask structure 

 

83 
 

 
Figure 8. 6: The measured intensity and phase image of the light evolution for a proximity gap of 50 μm in a 

phase structure. 

In intensity image (Fig. 8.6), the high contrast region after the diffraction effect appears 

at the same position and has the same high intensity distribution exactly at the opening. Phase 

image clearly shows the phase difference between open chromium and etched quartz during the 

propagation of light and how it carries the information all along the propagation distance. To 

discuss the particularities of propagation, a closer look at the propagation measurement of 

intensity is needed. There are three zones which are distinguished along the propagation 

direction (z-axis). The first zone is just above the mask or the so-called contact region and extends 

from mask level to approximately 10 μm proximity gap. Here the structures have high contrast 

and all openings lead to intensity peaks. Printing in this region gives good results, but a small 

proximity gap carries the risk of touching the masks and damaging it - a known problem for 

contact printing. A second zone defined between 10 μm and 32 μm, where one can clearly observe 

the washing out of the well-defined intensity profile by diffraction effects. The contrast and shape 

of the structures are almost lost in this region and printing would lead to unsatisfactory results. 

The third zone extends just after this diffraction zone and ranges from 32 μm to 50 μm. In this 

zone, at some regions, the profile regains its properties but usually with less contrast.  Especially 

the high intensity lobes at the outer area are altered. To understand better what causes such 

behavior, all the three regions are evaluated more carefully with x-y plane intensity and phase 

images.  
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8.2.2 Image plots: x-y 

To make a better judgment on resolution and process window, image plots and line plots 

are studied in detail at different proximity gaps. Figure 8.7 represents the intensity and phase 

images of the x-y plane at 5 m proximity gap and also the line intensity plots which have been 

averaged over several lines along the y-axis (35 μm to 55 μm) to increase the quality of the plot. 

 
Figure 8. 7: The measured intensity, phase and line image of the phase shifting mask structure at 5 μm 

proximity gap. 

The intensity image at 5 μm proximity gap represents an ideal situation and shows all 

desired features of the structure, the five intensity maxima with good contrast. The phase image 

represents a phase shift of π or half wavelength between the etched quartz and open chromium 

at the designed position. The peaks in the line plots of Fig. 8.7 show very good agreement with 

the set phase shift of π within the precision of this measurement. The second zone of interest is 

between 10 μm and 32 μm, where diffraction plays a major role. This zone is the typical working 

distance where standard mask aligners would deliver sufficient precision for positioning of the 

mask and wafer. Therefore, it is very interesting for technical applications. Figure 8.8 represents 

the second zone line image at 22 μm proximity gap. From the intensity x-y image, it is clearly 

observed that the intensity image does not show the designed features anymore. 
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Figure 8. 8: The measured intensity, phase and line image of the phase shifting mask structure at 22 μm 

proximity gap. 

From Fig. 8.8, the specific intensity profile of five peaks is lost as well as the good contrast. 

The low intensity regions between the multiple structures that are important for printing are 

washed out. Contrary to the intensity images, the phase images are still showing pronounced 

phase separation between zones. At some positions, zero intensity is found which is visible when 

comparing the intensities and phases in Fig. 8.8. Main observation here is that, intensity zero 

regions are becoming very fine features and cannot be used for proper structure definition in 

printing. Because printing is based on intensity profiles, the region between 10 and 32 μm should 

be avoided for the geometry considered here (feature size and period). The reason for this will 

be clear by considering the Talbot effect, which is discussed later. It shall be noted that the 

creation of phase singularities with phase masks still keeps the information on the structure. 

Information with its zero intensities are at right position, but the contrast and intensity profiles 

cannot be used for printing anymore.  

Surprisingly the situation changes when light propagates further. The measurement in 

the third zone is of interest. The evaluation is at a larger distance behind the mask from 40 μm to 

50 μm. The result of the measurement is shown in Fig. 8.9. Intensity profile shows very good 

similarity with the desired one (compared to Fig. 8.2(b)). The contrast is high and the intensity is 

low at the low light zones. To see the effect of the alternating phase mask on a series of lines 

compared to a single structure, one can just examine the structure definition of a single line at the 

end of the corner structures in Fig. 8.9.  
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Figure 8. 9: The measured intensity, phase and line image of the phase shifting mask structure at 40 μm 

proximity gap. 

At 40 m proximity gap, the single line loses its definition completely while the multiple 

corner structures can still be successfully printed and appear in good contrast. The x-y intensity 

images show that the structure re-establishes the profile again, but lacks some of the original 

properties. The only difference is that the outward intensity peaks will have less intensity 

compared to the inner ones. This might lead to different line width of outer and inner structures, 

but can be partially corrected using a particular dose setting or process window when printing.  

 

8.3 Results and discussion 

The experiments show propagation effects of light through an amplitude and a phase 

shifting mask with repetitive features. Although the structure we selected has only very few 

repetitions, interpretation can be made by assuming a periodic structure. When light falls on 

periodic structures such as gratings, Talbot images appear behind the structure. Talbot effect is 

also valid for small grating periods [8.5]. The Talbot effect leads to varying light distribution and 

phase anomalies behind the grating [8.6].  

This concept can be applied here also. The wavelength used for the measurement is 405 

nm. For the amplitude only mask structure with a period of d = 4 μm, one finds a Talbot distance 

ZT = (2d2/ λ) = 79.01 μm and half Talbot distance will be around 40 μm. It is known that at half 

Talbot distances, self-imaging occurs. These images are phase-shifted by half a period, which 

means that the image position will be laterally shifting by half the width of the grating period. 
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This corresponds to simulation and experimental findings of the high contrast region at 40 μm 

distance behind the amplitude mask illustrated in Fig. 8.4 (a) and Fig. 8.5. 

For a phase shifting mask with base period d = 8 μm (the combination of amplitude and 

phase structures, compare with Fig. 8.1) will result in a Talbot distance ZT = (2d2/ λ) = 316 μm. 

This   length is much longer than the distance range we are using for printing, which ranges only 

up to 50 μm usually. In one of the early papers, Lohmann pointed out that phase grating would 

form amplitude image copies at fractional Talbot distances [8.7, 8.8]. This kind of imaging is only 

possible for certain phase grating configurations and the image formed is called fractional Talbot 

image or Fresnel image. The Talbot distance depends not only on the period of the structure but 

also on the phase step.  

In this case, the phase structure on the mask is neither a standard binary phase nor 

amplitude only grating. It is a complex structure having openings and phase shifts with a phase 

difference of π. According to Lohmann’s interpretation, the new Talbot distance z can be linked 

to the original Talbot distance (ZT) and numbers P and Q (where P < Q, and are positive integers 

that depend on the width of the structure w and period d). The fractional Talbot distance z 

becomes z = (P/Q) ZT.  

Self-imaging formed at different distances are explained according to the proper 

structuring of mask. As discussed by Thomas J. Suleski [8.9], phase structure of π phase difference 

and a width to period ratio 1:4 will lead to fractional Talbot image length (z) and Talbot length 

(ZT) ratio of 1:8. Applying this to the case, the width to period ratio is 1:4 (2/8) and the phase 

difference is π between etched quartz and open chromium. Then, the fractional Talbot image falls 

at a distance of z =1/8th of ZT = 316 μm /8 = 40 μm (approx.).  This finding corresponds very well 

to the simulation and experimental findings of the high contrast region at 40 μm distance behind 

the phase mask in Fig. 8.4(b) and Fig. 8.6. For distances below 40 μm, complex light patterns 

appear that cannot be optically resolved anymore with our measurement system. In printing, 

these zones will lead to non-useful operation zones. An additional aspect is the limited number 

of periods. In such cases, the established pattern is washed out and contrast is reduced which 

leads to an additional worsening of the pattern definition below the 40 μm distance limit.  

The other option to print at this zone is to design an OPC structure. The light evolution from OPC 

structure designed for printing 30 m proximity gap is discussed below. The OPC structure is 

designed using Wave Propagation Method (WPM) and Iterative Fourier Transfer Algorithm 

(IFTA) [8.3].  



8. Phase and intensity analysis of phase mask structure 

 

88 
 

 
Figure 8. 10: OPC structure designed in PSM for printing at 30 m proximity gap. Left side image is the full 

image figure and right side image represents the zoom in version of the edge position to see the details. 

The OPC structure designed above is a solution to print the defined structure (Fig. 8.1) at 

30 m proximity gap. The amplitude and phase x-y images of the structure are plotted below at 

different proximity gaps. 

 
Figure 8. 11: The measured intensity and phase images of the OPC phase shifting mask structure at different 

proximity gaps. (a) and (b) represents the images at 0.1 m proximity gap. (c) and (d) represents images at 

30 m proximity gap. 

The above images expound how the structure pattern is changed by OPC designs. The 

intensity image at starting point of the light evolution (Fig.8.11(a)) shows all the sub resolution 



8. Phase and intensity analysis of phase mask structure 

 

89 
 

features in its designed way and the phase image (Fig.8.11(b)) clearly shows the phase difference 

between different layers and also between the sub resolution features. After 30 m distance of 

light propagation, the intensity image reproduced the desired pattern (Fig.8.11(c)). But the phase 

image (Fig.8.11 (d)) at 30 m proximity gap does not show any change. This shows that phase 

variations can propagate larger distance like the creation of phase singularities. 

 

Conclusion 
The study presents the phase and intensity profiles behind a phase mask structure in the 

proximity region up to 50 μm. The results show how the phase encoding preserves the 

information when correctly applied. The experimental evaluation of the structure at different 

proximity gaps allows us to understand the different effects. It became clear that the proximity 

gap for printing a structure can be decided only after studying different parameters and 

conditions that are triggered by diffraction effects and influenced by the resist properties. The 

above structure was evaluated at proximity gaps of 5 μm, 22 μm and 40 μm.  The above studies 

changed some ideas that existed till now in printing industry, namely that shorter proximity gaps 

(but not contact) might give better results. To improve printing on those proximity gaps where 

diffraction effects are prominent, an OPC structure can be used. An OPC structure designed with 

PSM is also evaluated. The study shows that the phase shift and singularities will propagate larger 

distances once it is designed. 
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CHAPTER 9 

Conclusions 

 

The thesis is mainly concentrated on finding the limitation of proximity printing and to 

increase the resolution of the technology using different techniques. It is for the first time that a 

complete study including simulation, observation of aerial images and printing for proximity 

technology has been carried out.  The study is intended to highlight the current possibilities and 

shortcomings of proximity printing over projection printing and to provide resolution 

enhancement techniques to overcome such. A complete loop of optimization has been performed, 

starting from simulating the aerial images, to the measurement of intensity plots and finally the 

printing of structure pattern with mask aligner. 

The main novelty that is included in the optimization was that the special illumination 

technique called MO exposure optics (or MOEO) from Süss MicroOptics that was implemented in 

both simulation and experimental setup. MO exposure optics gives a uniform and homogeneous 

illumination regime controlling field uniformity and illumination angle on the mask plane using 

micro lens arrays, illumination filter plates and Fourier lenses. The simulation tool from GenISys 

Layout LAB allows to accurately calculate the aerial images and resist profiles. The diffraction 

pattern was calculated using Rayleigh-Sommerfeld diffraction theory and transfer matrix method 

which was briefly discussed. The experimental analysis using a measurement setup for different 

mask structures having MO exposure optics has never been done before. The study was performed 

with the measurement system called high resolution interference microscopy. It is an instrument 

working on the principle of Mach-Zehnder interferometer. The instrument consists of mainly two 

arms: object arm having a sample stage and reference arm consisting of a moving mirror. The 

instrument efficiently measures the intensity and phase fields that evolve from the mask designs. 

This helped to accurately define the new aspects of diffraction effects and aerial image intensities 

at different proximity gap. 

The study started with designing corrections for a one dimensional structure. The 

structure selected was a simple edge. A complete edge study with different correction features at 

different proximities has never been done before in proximity printing. The study was carried out 

by defining different parameters at different edge intensity positions which revealed the aspects, 

such as edge falling position, resist exposure points, for defining edge slope. It also explained the 
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similarity between simulation and experimental results. The results were subsequently published 

in SPIE conference proceeding. This gave a good platform to take the research to a higher 

dimension.  

A unified correction structure has been designed for solving the corner rounding problem 

in proximity printing for a proximity gap 30 μm for all line widths. The complete study from 

designing the correction structure using simulations, verification by measurement system and 

printing using mask aligner was carried out using MO exposure optics. The novelty is that the 

correction structure can be used to print any line width at single proximity gap with single 

exposure on the same wafer. All the correction structures were usually defined by characterizing 

intensity or amplitude changes. The aerial image importance is already known but the change in 

the phase had not really been studied.   

It is for the first time, that the phase evolution from different amplitude structures is 

studied to understand the role played by phase for shaping the light carpet behind 

microstructures. The study started with 1D correction structure edges. The phase evolution from 

1D amplitude structure was never studied before. The phase evolution in the structure made a 

phase shift at the desired proximity gap which seems to be mediated by phase singularities. Phase 

singularities or optical vortices have a phase shift of π for neighboring regions and are 

characterized by zero intensity at the phase jump position. The concept of phase singularity and 

phase shift gave more insight to study the 2D structures. 2D structures having small amplitude 

corrections are analyzed with phase evolution. Furthermore, the diffraction effects from different 

correction features which shape the light were also studied. The phase study shows that more 

analysis needs to be done for defining the OPC features to get sharp phase shifts and the 

interpretation will not be easy with amplitude only structures. The phase evolution from 

amplitude mask structures is a new study and the results were published in SPIE conference 

proceedings. 

Phase and intensity evolution from phase shifting mask were also analyzed. It is a first 

attempt to study propagations of phase and amplitude of up to 50 μm proximity gap. The study 

was carried out using a group of corner structures and proved that the ideas like shorter proximity 

gap gives better results can be misleading. Theoretical concepts like fractional Talbot imaging and 

Lohmann images are applied to study the effects from phase structures. Optical proximity 

corrected structures designed in phase shifting mask are also studied and evaluated. The studies 

showed that phase shifts and phase singularities can propagate longer once the phase shift is 

designed. The results from phase shifting mask study were published in the journal of Journal of 

Micro/Nano Lithography MEMS and MEOMS.  
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A complete propagation study about intensity and phase using different design and 

verification tools is carried out. The study was performed for different amplitude mask structures 

and phase mask structures. The intensity evolutional study helped to define different optical 

proximity correction structures at different proximity gaps. The study shows that, there exists an 

open field to continue the research in different micro/nano structures in different masks. 

Fundamentals principles can also be analyzed with this frame of propagation analysis.
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