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ABSTRACT   

A novel and simple analytical expression to describe the Brillouin gain spectral broadening as a function of the spatial 
resolution in time-domain Brillouin distributed fiber sensors is deduced. The proposed model is experimentally validated 
using a pump-probe Brillouin sensing setup and also compared with numerical and approximate results. In addition, a 
compact mathematical form is presented for the peak gain reduction resulting from incomplete acoustic-wave activation 
in Brillouin sensors with short spatial resolution. Both mathematical expressions can be used together to quantitatively 
predict the impact of the spatial resolution on the signal-to-noise ratio and frequency uncertainty of the sensor.  
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1. INTRODUCTION 

Brillouin optical time-domain analysis (BOTDA) fiber sensors are extensively employed for distributed measurements of 
temperature and strain due to their unique advantages such as long sensing range and relatively short spatial resolution. 
BOTDA sensors rely on the stimulated Brillouin scattering (SBS) interaction of two counter-propagating light signals, a 
continuous-wave (CW) probe and a pulsed-light pump with a frequency offset being scanned around the Brillouin 
frequency shift (BFS) of the fiber, i.e. ~11 GHz. On the one hand, the performance of Brillouin distributed sensors is 
strongly dependent on the spectral features of the Brillouin gain spectrum (BGS)1, such as width and the maximum gain 
value, which scales the signal-to-noise ratio (SNR) of the system1. Hence, it is essential for system performance 
prediction and optimization to provide simple but sufficiently accurate mathematical expressions for the Brillouin gain 
reduction and spectral broadening. On the other hand, the Brillouin gain spectrum of a sensing system is determined by 
the pump light characteristics, such as pulse shape and duration2. In almost all time-domain Brillouin fiber sensors, a 
rectangular pulse with very sharp rise and fall times is used to modulate the pump laser light in order to avoid the 
detrimental spectral broadening of the pump light resulting from self-phase modulation (SPM), and thus avoiding the 
undesired reduction in the Brillouin gain3.  

For rather low pump powers when the small-signal gain holds1 and the pump depletion due to modulation 
instability (MI) does not impact4, the measured gain due to the Brillouin interaction can be expressed by 

Δ exp , where  is the Brillouin gain,  is the pump intensity, Δ  is the pump pulse length,  is the fiber 
attenuation and  is the fiber length. The Brillouin gain  is frequency dependent and modified by the pump pulse 
shape. When a CW light is used as pump, the Brillouin gain shows a Lorentzian shape as follows5:  

Ω
Γ

Γ Ω
,   (1) 

where Ω 2π  is the frequency detuning around the Brillouin frequency shift Ω , 	~	3 10  m/W is the 
maximum Brillouin gain, and Γ Γ /2 is the half-width at half maximum (HWHM) of the Brillouin gain spectrum in 
which Γ 	~	2 30 Mrad/s is its full-width at half maximum (FWHM) in the 1550 nm transmission window. In this 
paper the amplitude reduction and spectral broadening of the Brillouin gain spectrum are thoroughly investigated and 
modelled as a function of the spatial resolution of the sensor. The proposed mathematical expressions, combined with the 
model presented in Ref. 1, can be reliably used to evaluate the impact that the spatial resolution has on the SNR and 
ultimately fully predict the performance of the sensor, e.g. in terms of distance range and measurand accuracy.  

25th International Conference on Optical Fiber Sensors, edited by Youngjoo Chung, Wei Jin,
Byoungho Lee, John Canning, Kentaro Nakamura, Libo Yuan, Proc. of SPIE Vol. 10323,

103239J · © 2017 SPIE · CCC code: 0277-786X/17/$18 · doi: 10.1117/12.2267639

Proc. of SPIE Vol. 10323  103239J-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148030426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

 

 

2. GAIN REDUCTION 

When the pump light is shaped as a pulse, the Brillouin gain spectrum is obtained from the convolution of the 
Lorentzian-shaped natural Brillouin gain spectrum given by Eq. (1) and the normalized power spectral density (PSD) of 
the pump pulse6. In the case of using a rectangular pulse (which is the optimal shape to avoid the SPM-induced spectral 
broadening and gain reduction), the resulting BGS shape can be calculated analytically and represented in a closed-form 
expression7. The normalized PSD of a rectangular pulse of duration  is sinc  where 1. 
Therefore, the Brillouin gain spectrum Ω  generated by a rectangular-shaped pump pulse is derived from the 
convolution between  and  as follows: 

Ω Ω 1
Γ Ω 1 cos Ω 2ΓΩ sin Ω

Γ Γ Ω
.  (2) 

Although a similar expression was proposed by A.Fellay et al.7 (inexact, but later corrected in his PhD dissertation 
doi:10.5075/epfl-thesis-2728) and F. Ravet et al.8, here we present the gain spectrum in a more tangible and compact 
form to highlight its reduction due to pump modulation. A simple analytical expression is derived for the peak Brillouin 
gain (i.e. for Ω 0), reducing from  for CW pump to the following value for a rectangular pump pulse of duration :  

1
1

Γ
.  (3) 

Based on Eq. (3), the reduction in the maximum Brillouin gain can be expressed in terms of the spatial resolution Δ
/2, where  is the group velocity of the pump pulse. This reduction factor is essential to estimate precisely the SNR 

of the sensing system1. Fig. 1(a) shows the Brillouin gain spectrum given in Eq. (2) for different values of pump pulse-
width (proportional to the spatial resolution). As an example, improving the spatial resolution from 2 m ( 20 ns) 
down to 1 m ( 10 ns) reduces the measurement SNR by ~5 dB; 3 dB are due to the pulse-width reduction, and ~2 dB 
additional penalty in the SNR are due to the Brillouin gain reduction caused by the weaker activation of the acoustic 
wave. Fig. 1(b) depicts the gain factor /  given by Eq. (3), indicating that the Brillouin gain reduces drastically for 
pulses shorter than the acoustic wave response time (~11 ns), corresponding to spatial resolutions shorter than 1 m.   

  
Figure 1. (a) Brillouin gain spectrum for different values of spatial resolution or pump pulse duration normalized to the CW 
maximum Brillouin gain . (b) Brillouin gain reduction factor versus the pump pulse width with respect to the CW 
maximum Brillouin gain . The FWHM of the Lorentzian gain spectrum is assumed to be 30 MHz.  

3. SPECTRAL BROADENING 

Note that not only the gain reduction due to a spatial resolution improvement affects the system performance but also the 
broadening of the gain spectrum increases the frequency uncertainty of the sensor1. In order to quantify the effect of 
spectral broadening on the system performance it is compulsory to find the FWHM of the BGS broadened by the pump 
pulse spectrum. This can be performed by solving the FWHM equation Ω /2 for Ω, where  is the widened 
spectrum given in Eq. (2). After a lengthy derivation it results in a quasi-polynomial equation for Ω as follows:  

Γ 1 Γ 2Γ 2 Ω Γ 1 Ω

2 Γ Γ Ω cos Ω tan
2ΓΩ

Γ Ω
. 

(4) 
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Eq. (4) gives no closed-form solution for Ω; however, it is possible to provide an approximate but still analytical solution 
for the equation by substituting the cosine function by its either maximum or minimum. The only real and positive 
solution is obtained when the cosine function is substituted by its maximum and thus, the equation reduces to:  

Γ 1 Γ 4Γ Ω Γ 1 Ω 0.  (5) 

This equation has one real and positive solution which gives the half-width at half-maximum of the broadened Brillouin 
gain spectrum. This way, the FWHM of the Brillouin gain spectrum of a pulsed pump is obtained from the CW Brillouin 
width using a broadening factor 	such that FWHM FWHM  and given by the following expression:   

2 4
,  (6) 

in which Γ 1 . This novel expression for the BGS spectral broadening is useful in any optical fiber 
system utilizing Brillouin scattering generated by a rectangular pump pulse. For instance, when the spatial resolution is 
2 m or equivalently the pulse width is 20 ns, according to Eq. (6) the broadening factor is calculated to be ~2, i.e. 
the FWHM of the Brillouin spectrum for a BOTDA with 2 m spatial resolution turns out to be ~60 MHz, which is in 
good agreement with the experimental observations reported in the literature7 and with the experimental results presented 
in the next section. This analytical formula for the Brillouin bandwidth given by Eq. (6) can also be used as a tool to 
improve the figure of merit (FoM) of Brillouin distributed sensors and compare different configurations of sensors1. It is 
also worth evaluating the inverse proportionality of the spectral width with respect to the pulse duration. Considering the 
fact that time and frequency are inversely proportional, there is a tendency to obtain the spectral width of the Brillouin 
gain simply as a factor of . It can be shown that such an approximation is valid for short pulses where ≪ Γ  or 
equivalently, for sharp spatial resolution Brillouin sensors. When Γ ≪ 1, the exponential function  can be 
approximated by the first three terms of its Taylor series so that 	 Γ /2. Substituting  in Eq. (6), the FWHM of 
the Brillouin gain spectrum expressed in Hz is obtained as follows:  

FWHM
2√2 0.9

,  (7) 

As we will see in the next section, the simple expression in Eq. (7) is only valid for sharp spatial resolution Brillouin 
distributed sensors, in which the pulse duration  is shorter than the acoustic wave time constant Γ 11 ns. Hence, 
for standard BOTDA sensors with meter-range spatial resolutions, Eq. (7) results in an unreliable value for the Brillouin 
spectral width and thus, it must be calculated from the proposed expression in Eq. (6) to secure a good accuracy.  

4. EXPERIMENTAL VALIDATION 

The experimental setup for validating the proposed mathematical model is simply a standard BOTDA system that 
utilizes a pump-probe approach for measuring the Brillouin interaction. On the pump side, the CW light generated by a 
DFB laser is modulated using an electro-optic modulator to generate rectangular pulses with sharp rising and falling 
times (limited in this case by the pulse generator to 300 ps). On the probe side, the CW light of the laser is modulated by 
an RF tone, generating a two-sideband probe that is used to scan the Brillouin gain spectrum covering a spectral range of 
300 MHz, which is 10 times more than the FWHM of the natural Lorentzian-shaped Brillouin spectrum.  

    

Figure 2. Normalized Brillouin gain spectrum for different values of spatial resolution (a) 1 m (10 ns pulse), (b) 2 m (20 ns 
pulse), and (c) 5 m (50 ns pulse). Measurements (blue lines) are compared with the analytical model in Eq. (2) (red lines), 
and, as a reference, with the natural Lorentzian-shaped Brillouin spectrum of Eq. (1) (green lines). The FWHM of the 
Lorentzian gain spectrum of the fiber under test is set in this case to 30 MHz.  
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Fig. 2 compares the measured Brillouin gain spectrum with the analytical model presented in Eq. (2), demonstrating an 
excellent agreement between the experiment and theory. For a better visibility of the spectral broadening, the Lorentzian 
spectrum corresponding to a CW pump is depicted in each plot (green dashed line). As it is clear from Fig. 2(a) and 
Fig. 2(b), a substantial increase in the Brillouin spectral width (in this case from 60 MHz up to 105 MHz) occurs when 
the pulse duration approaches the acoustic-wave response time; while for longer pump pulses, the difference between the 
resulting gain spectrum and the natural Lorentzian one turns moderate, as depicted in Fig. 2(c).     

In Fig. 3, the FWHM of the Brillouin gain spectrum 
is depicted as a function of the pump pulse width. 
The experimental measurements of the FWHM are 
shown by red squares, while the analytical model 
given in Eq. (6) is plotted by a red continuous line. 
The figure demonstrates that experimental results 
match very well the description provided by the 
proposed model. In addition, the figure also shows 
(dashed blue line) the FWHM obtained by solving 
Eq. (4) numerically. It can be observed that the 
approximate analytical solution of Eq. (4) given in 
Eq. (6) is indeed a perfect approximation for the 
FWHM of the BGS. In contrast, the figure also 
verifies that the approximate FWHM (green dashed 
line) being inversely proportional to the pulse 
duration and represented by Eq. (7) is not accurate 
enough to describe the FWHM of the BGS 
measured in standard meter-scale BOTDA sensors.  

In conclusion, a mathematical model for the Brillouin gain spectrum resulting from a BOTDA sensor has been presented, 
along with analytical close-form expressions describing the spectral broadening and gain reduction resulting from the 
shorter acoustic-wave activation when aiming at spatial resolution of a few meters. The model has been validated by 
numerical solutions and experimental results obtained from a standard BOTDA system. The spectral broadening and 
gain amplitude factors introduced in this work constitute a unique and simple tool for a full prediction of the impact of 
spatial resolution on the performance and figure-of-merit of Brillouin distributed optical fiber sensors.  

The authors acknowledge the support from the Swiss Commission for Technology and Innovation (Project 18337.2 PFNM-
NM). The work of M. Tur was supported in part by the Israel Science Foundation (grant No. 1380/12). 
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Figure 3. FWHM of the Brillouin gain spectrum versus pump pulse 
duration; comparison of the measurement, numerical exact value in 
Eq. (4), analytical model in Eq. (6), and approximate value in Eq. (7). 
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