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Supplementary Discussion 1: Additional experimental results

1.1 Steady-state spectroscopic ellipsometry

Comparison with previous experiments. Our spectroscopic ellipsometry (SE) measure-

ments are performed on two classes of (010)-oriented single crystals, namely pristine anatase (n

∼ 0 cm−3) and n-doped anatase (n = 2 × 1019 cm−3). The reflectivity response derived from SE

on the pristine (violet lines) and n-doped (blue lines) single crystals is plotted in Supplementary

Figs. 4a-b together with the data of Ref. 1 (red lines). The reflectivities for light polarized

along the a- and c-axis of the crystals are shown in Supplementary Figs. 4a and 4b, respectively.

In order to establish a direct comparison with the normal-incidence reflectivity data of Ref.

1, all reported traces have been measured at 100 K. We observe the overall agreement of our

results with the ones reported in literature∗, with slight shifts in the reflectivity peak energies.

However, given the sharpness of the reflectivity lineshapes, we can also deduce that the quality

of our pristine crystal is much higher than the one employed in Ref. 1. Indeed, the reflectivity

spectrum of the latter is closer to the response measured on our n-doped crystal, which has a

large percentage of oxygen vacancies.

Supplementary Figs. 4c-d display the normalized absorption spectra of our anatase TiO2 single

crystals at 300 K. The a- and c-axis responses are respectively shown in Supplementary Figs.

4c and 4d. Here, our interest is to reveal the robustness of the excitonic peaks even at room

temperature and to highlight the role played by the presence of oxygen vacancies in the doped

sample. Hence, for this purpose, the data are normalized with respect to the lowest direct

exciton peaks. We observe that in both the a- and c-axis absorption spectra the exciton peak

energies are not renormalized by the presence of oxygen vacancies, while the linewidth becomes

broader in the n-doped crystal.

Figures 5a and 5b display ε1(ω) and ε2(ω) calculated by applying the Kramers-Kronig (KK)

analysis on the reflectivity spectrum at room temperature. This technique represents a valuable

test to evaluate the consistency with our original ε1(ω) and ε2(ω) values. We observe that the
∗We note that the two different energy scales used in Ref. 1 to display the data of the dielectric function for

E ⊥ c and E ‖ c has led to an error of digitalization by early computational works, which has propagated in the
literature9−13 on anatase TiO2.
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effect of the KK transformation on both the a- and c-axis ε2(ω) is to modify the lineshape and

the intensity of the peaks and to change the spectral weight in the Urbach tail. This behaviour

shows that the KK analysis, even performed on the broadest possible spectral range, is not a

precise approach to treat the normal-incidence reflectivity data.

Many-body effects. In the case of the n-doped (n = 2 × 1019 cm−3) anatase TiO2 crystals, the

presence of an excess electron density at the Γ point of the CB may give rise to a variety of effects

having a profound impact on both the single-particle and the two-particle excitation spectra.

According to their origin, these effects can be distinguished between those involving single-

particle states (phase-space filling) and those that can be attributed to many-body interactions

among the doped carriers (long-range Coulomb screening and band gap renormalization). Phase-

space filling arises because of the Pauli exclusion principle, which applies to the electrons and

holes constituting the excitons. This produces a finite exclusion volume in phase-space for each

exciton. As a consequence, the VB to CB transition probability is reduced, which is evidenced

by a reduction of oscillator strength of the excitonic transition in the optical spectra. On the

other hand, many-body interactions alter the exciton energy and composition by affecting the

underlying electronic states. This occurs via the direct and exchange Coulomb interactions of

electrons and holes, which at high plasma density provide additional screening channels. First,

long-range free-carrier screening modifies the exciton Coulomb potential φ ∼ e
4πεr through a

multiplicative factor e−r/λ, where λ is the Debye length. Substantial screening occurs when the

Debye length and the exciton radius become comparable. Second, the excess electrons also lead

to bandgap renormalization (BGR), i.e. a density-dependent shrinkage of the quasiparticle gap

due to electron and hole self-energy corrections. As a result, the enhancement of the electronic

screening leads to the simultaneous renormalization of both the exciton EB and the electronic

gap. In this scenario, the exciton absorption energy in the SE data is determined by the

combination of the weakened Coulomb interaction and the BGR, the former inducing a blueshift

and the latter a redshift of the exciton peak. The quantitative details of this compensation

depend on both material and dimensionality but this arises as a general effect in many standard

bulk semiconductors2 and nanostructures.3,4 In the low-density limit, they have been shown to
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cancel to first order.5 Relying on this discussion, we can provide a deeper interpretation of the

changes in the low-temperature dielectric function of anatase TiO2 upon electron doping (Fig.

4). The redistribution of spectral-weight can be attributed to the combination of phase-space

filling and defect-induced in-gap absorption. The enhanced broadening of the exciton lineshapes

can be directly associated with a modification of the exciton lifetime, due to the combination of

long-range Coulomb screening and exciton-defect scattering. Finally, the insensitivity of the

exciton energies to the effective doping level suggests that the long-range Coulomb screening

and the BGR perfectly compensate each other even at high doping levels. This idea is reinforced

by our ab initio calculations (§S2.4), which reveal that doping-induced many-body effects in

anatase TiO2 play a marginal role even at high carrier densities.

1.2 Ultrafast transient-reflectivity of single crystals

Femtosecond transient-reflectivity experiments are performed on three different classes of

(001)- and (010)-oriented single crystals, with n ∼ 0 cm−3, n = 2 × 1017 cm−3 and n = 2 ×

1019 cm−3.

In a first experiment, the ∆R/R signal is monitored in a broadband UV range (3.75 - 4.35

eV) for the three classes samples along the ab planes. Both pump and probe polarizations are

set in a parallel configuration. An isotropic optical response is found when the (001)-oriented

crystals are rotated about the c-axis. The pump energy is 4.10 eV, in order to selectively perturb

the spectral region above the first excitonic peak. Figure 7a compares the transient spectrum

obtained from the three specimens at a fixed time-delay of 6 ps. The ∆R/R spectrum shows

an inversion point around 3.96 eV. The inflection that is present around 4.10 eV in the signal

obtained from the sample with n = 2 × 1017 cm−3 is an artefact produced by the scattering of

the pump beam. A similar response can be found for all the temporal delays between pump

and probe up to 1 ns. The main difference is displayed by the intensity of the signal at long

time delays, since it depends on the rate of the carrier recombination process. Figure 7b shows

three temporal traces up to 100 ps probed around 3.82 eV, in which this effect is clearly visible.

The decay of the nonequilibrium signal in the strongly n-doped crystal is faster than the other

responses, since the increased density of in-gap states facilitates charge carrier recombination
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across the bandgap. The detailed analysis of the kinetics will be subject of a future separate

publication.

A second set of experiments is performed on (001)- and (010)-oriented n-doped (n = 2 ×

1019 cm−3) single crystals of anatase TiO2, in order to access the anisotropic dynamics along

a- and c- axes. Supplementary Figs. 8a and 8c display the ∆R/R maps of the a- and c-axis

response of the (010)-oriented single crystal as a function of the probe photon energy and of

the time delay between pump and probe. Although the kinetics are measured up to 1 ns, the

two maps are displayed up to 10 ps. The a-axis response is measured upon photoexcitation

at 4.40 eV, with the broadband probe covering the range 3.70 - 4.65 eV. These results can be

also reproduced by polarizing the beams along the [100] axis of the (001)-oriented samples.

The higher-energy region of the spectrum does not evolve in time, remaining unaffected by the

photoexcitation process. The c-axis response (Supplementary Fig. 8c) is obtained through the

measurement of the (010)-oriented single crystal with a pump and probe polarizations set along

the c-axis. Also in this case the pump energy is at 4.40 eV, but the probed range is shifted

to 4.05 - 4.8 eV. The transient spectrum of Supplementary Fig. 8d strongly differs from the

in-plane one, consisting of a negative contribution set around 4.28 eV and a tail extending to

4.60 eV in the high-energy range.

In a final experiment, both the pump (at 4.40 eV) and the probe (between 3.70 and 4.60 eV)

beams are polarized along the c-axis of the n = 2 × 1019 cm−3 single crystal. The resulting

∆R/R map is displayed in Supplementary Fig. 9. This demonstrates the absence of c-axis

spectral features at low energies and confirms the finding of the pump-probe experiment along

the c-axis shown in Supplementary Figs. 8c-d. The difference in terms of intensity with respect

to those measurements has to be attributed to the reduced pump intensity (of ∼ 1/3) due to

constraints in the generation of the broadband probe beam.
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Supplementary Discussion 2: Data analysis and theory

2.1 Extracting ∆A from ∆R/R in single crystals

In our ultrafast measurements, we probe ∆R/R of anatase TiO2 single crystals and ∆A of a

colloidal solution of NPs. Thus, it is useful to analyze the time-resolved dynamics of the single

crystals in terms of their transient absorption, in order to establish a link with the data on NPs.

However, we recall that ∆R/R has a non-trivial relationship with both ∆ε1 and ∆ε2 in the

probed spectral range. Indeed, in the UV, the real and imaginary part of the dielectric constant

have rather similar absolute values. For this reason, the optical reflectivity is equally sensitive

to the reactive and the absorptive components of the dielectric function.

Hence, in order to calculate the pump-induced evolution of the ∆A from the ∆R/R data,

we proceed as follows. We model the stady-state SE data using a set of Lorentz oscillators,

we calculate the equilibrium reflectivity (R0), and we fit the measured transient reflectance

Rexp(t)/Rexp with a differential model (R(t) - R0)/R0, where R(t) is a model for the perturbed

reflectivity obtained by variation of the parameters used to fit the equilibrium data as a function

of the pump-probe delay t. We adopt this approach to treat our ∆R/R data to avoid possible

systematic errors that can be produced by the typical analysis through KK transformations.

The SE spectra were fitted using a dielectric function of the form

ε(ω) = ε∞ +
∑
i

ω2
pi

ω2
0i − ω2 − iΓiω

(1)

where ε∞ is the high-frequency dielectric constant, and ω2
pi, ω2

0i, Γi are, respectively, the plasma

frequency, the transverse frequency and the linewidth (scattering rate) of the i-th Lorentz

oscillator. The absorbance is then given by: A(ω) = ω Im
√
ε.

For the fitting of the transient data, the Lorentz oscillators in our experimental range are allowed

to change in order to reproduce the dynamical reflectivity. This procedure enables to extract the

transient dielectric function ∆ε(ω, t) = ∆ε1(ω, t) + i∆ε2(ω, t) and finally leads to the evaluation

of the ∆A for the single crystals.
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2.2 Ab initio calculations - Frozen-lattice results

The calculated GW direct band gap at the Γ point is 4.07 eV, at Z it is 4.13 eV, and

the indirect band gap (between Γ and a k-point close to X) is 3.61 eV. The band gap at the

middle point of the Γ-Z line is 3.96 eV. These values have been converged up to 5 meV, and

the two codes give the same results, despite the use of a different plasmon pole models for

the frequency integration in the GW method. The present fully converged minimum GW

quasiparticle correction amounts to 1.4 eV, which is smaller than the value of 1.69 eV from

Ref. 6 (the difference comes from the smaller number of bands and k-points used in Ref. 6),

highlighting the careful and exhaustive convergence evaluation done in the present work.

The symmetry-line along Γ-Z shows nearly parallel dispersion curves for the conduction and

valence band edges. This peculiar shape of electronic states along Γ-Z plays a fundamental

role in the optical properties of the material, as it dictates the nature and binding and nature

of the lowest excitons in anatase (see below). The nearly parallel dispersion observed in the

theoretical bandgap allows us to use the direct gap at Γ of 4.07 eV as a very good approximation

to estimate the bound direct nature of the exciton to be compared with the experimental data.

Due to the band structure shape along the Γ-Z high-symmetry direction, we also underline that

an accurate k-point sampling is especially critical for the quality of the optical spectra, since the

main excitons are built up from optical transitions with contributions from a small region of the

BZ. The CB and VB in this region display a wormlike shape aligned along the Γ-Z direction.

In Supplementary Fig. 10, we compare the results obtained with the GW implementations in

BerkeleyGW and Yambo codes obtained at the same level of accuracy †, showing the equivalence

between the two implementations. In order to get the fully converged absorption spectra shown

in the main text, a denser grid is required. Most importantly, the main effect of the stringent

convergence obtained here with respect to k-points and number of bands is given by the shape

of exciton I (see Supplementary Fig. 11). This charge excitation, split in two small peaks at

low convergence6,7 (or a main peak with a shoulder), becomes a unique, uniform peak, similar

to the one observed in the experiment (dark red curve in Supplementary Fig. 11). The fine
†Yambo calculations were performed using a 12×12×12 unshifted grid whereas a randomly shifted grid of

8×8×8 k-points was employed in the BerkeleyGW calculations. Thus, both approaches employ roughly 500
k-points.
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k-sampling is needed, since the main optical transitions contributing to exciton I comes from the

Γ-Z line, with bands almost parallel and flat. The two-dimensional exciton I for E ⊥ c (at 3.76

eV) has indeed a major contribution from the transition from the top of the VB to the bottom

of the CB at the middle point in the Γ-Z line. To a lesser extent, significant contributions come

from the k-points lying along the Γ-Z line and close to it in every direction. The contribution

increases gradually when approaching the aforementioned Γ-Z middle point. Even if the GW

direct electronic band gap of 3.96 eV, that is located at the middle point along the Γ-Z line, is

used as a reference energy to calculate the exciton binding energy (EB), the bound nature of

exciton I is still confirmed (with EB = 50 meV). A phenomenological Lorentzian broadening

of 0.12 eV was applied to reproduce the experimental spectra (see Supplementary Fig. 12 for

a comparison of the measured spectrum with the bare BSE eigenvalues, showing that mainly

one eigenvalue is contributing to the exciton peak I and that the measured lifetime is not of

electronic origin but is due to the strong electron-phonon coupling in this material as discussed

in the main text).

The energy, shape and reciprocal space contributions for peak II highlights its bulk-resonance

character, most evident as its offset coincides with the RPA-GW absorption rise. On the other

hand, we found that exciton III for E ‖ c (at 4.28 eV) is of a more complex nature, with a

mixed contribution of bound excitons and delocalized resonant transitions. The former have the

dominant character and the contributing transitions are found throughout the BZ, while the

main contribution for the latter is concentrated in few points close to the Γ-Z line in the region

around Z. The energy and shape of exciton III confirm the analysis of a mixed bulk resonance

and localized character, as the continuum onset in RPA-GW appears to undergo an intensity

enhancement. The mixed bulk-localized nature makes it less straightforward to estimate its EB.

Assuming the RPA-GW onset at 4.40 eV for E ‖ c as the reference energy for evaluating EB, we

estimate EB ∼150 meV.

The slight shift of the calculated exciton III with respect to our experimental value (0.1 eV)

is also investigated in detail. Increasing the number of k-points and bands does not allow to

obtain a match to experiment as good as for exciton I. We can also exclude possible effects

of anisotropic screening, as increasing the parameters of the local field effects and separating
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the screening along the a- and c-axis components do not lead to significant changes in the

spectrum. The peak maximum seems instead to be related, in a nonlinear manner, to the lattice

constants. The a-axis lattice constant from ab initio optimization is in excellent agreement

with experimental data (3.79 Å vs 3.78 Å), while the c-axis lattice constant is slightly (1%)

overestimated. However, when using the experimental lattice parameters, the position of peak

III is blueshifted by 0.20 eV from that obtained with the PBE parameters, thus worsening the

agreement with experiment.

Finally, the presence of dark excitons in anatase TiO2 at energies below the bright exciton I

at 3.76 eV is ruled out by our spin-resolved optical BSE calculations. Indeed, the calculated

lowest exciton in anatase TiO2 is a singlet and it is optically active. This does not apply to the

rutile phase of TiO11
2 , where the lowest exciton is an optically dark triplet state.

2.3 Ab initio calculations - Comparison with previous studies

The computational data presented in this paper are novel and conclusive in many respects,

despite being performed at the same level of theory (DFT + GW + BSE) as in some previous

reports10−13. First of all, this is the first available comparison between the theoretical and the

experimental electronic gap for pristine and doped anatase TiO2. As the experimental gap at

the Γ point of the BZ is measured here for the first time, in the past there has been a high

degree of uncertainty concerning the computational results. The reported direct electronic gaps

at Γ ranged from 4.14 eV (PBE-G0W0)7 to 3.78 eV (PBE-G0W0)8 and 4.29 eV (PBE-G0W0).6

The use of methods beyond GGA-G0W0 provided even larger values (4.05 eV, G0W0 on top of

hybrid functional HSE06 for the indirect gap,8 larger than our 3.61 eV; 5.28 eV, selfconsistent

GW different flavours9).

Moreover, the GW calculations presented here go beyond the ones reported in previous works, as

they address the combined effects of electron doping, temperature-induced lattice expansion and

electron-phonon coupling on the direct gap at the Γ point of the BZ. Such investigations rule

out the role of the BGR in the description of the quasiparticle gap and enable the identification

of electron-phonon coupling as the main source of renormalization of the quasiparticle gap.

A second important point concerns the comparison of the refined theoretical data here reported
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with SE data. Indeed, the previous zero-temperature computational calculations relied on a

comparison with the dielectric function at 100 K of Ref. 1, which was extracted via a KK analysis

from normal-incidence reflectivity data‡. Here, we correctly compare our new calculations with

the low-temperature dielectric function of the material, measured directly via SE and not

extracted through a KK analysis. In this way, we clarify the precise peak positions and shape

in the optical absorption for the material.

Besides the higher convergence achieved in comparison with previous works, our evaluation of

the optical spectra presents novel results, since we included doping and temperature effects and

discussed their role on the energy and shape of the optical peaks (see the following sections).

2.4 Ab initio calculations - Doped anatase TiO2

Within the same theoretical framework used for pristine anatase TiO2, we perform calculations

for the case of uniformly doped anatase TiO2, to verify computationally that the influence of

doping on both the electronic gap and optical response can be disregarded. Here, we show the

results for two cases of uniform excess electron density n = 1019 cm−3 and n = 1020 cm−3.

The calculated GW gap (both direct and indirect gap) are similar to the pristine anatase TiO2

case, with an increase of 1 meV for the doping of n = 1019 cm−3 and of 17 meV for n = 1020 cm−3.

These results complement the experimental ARPES data, demonstrating that the electronic

gap from doped samples is a very good value to describe also the gap of pristine anatase TiO2.

In the presence of doping, two competing effects contribute to changing the electronic gap of a

semiconductor, with either a redshift or blueshift depending on which effect dominates. The CB

filling is responsible for the blueshift, while the change in the long-range Coulomb screening

(becoming slightly metallic) is responsible for the redshift. In anatase TiO2, the dominant

effect for the considered doping ranges is the CB filling. For the doping values relevant in

our measurements, the correction is well below the computational error, therefore, there is no

detectable effect of doping in the electronic band gap. This is supported by the calculation of

the optical response, as the position and shape of peak I in ε2a (Supplementary Fig. 13) do
‡We note that the two different energy scales used in Ref. 1 to display the data of the dielectric function for

E ⊥ c and E ‖ c has led to an error of digitalization by early computational works, which has propagated in the
literature6–8, 10 on anatase TiO2.
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not change for n = 1019 cm−3. These results justify the strategy, followed in the main text, to

experimentally estimate the exciton EB from the ARPES measurements in the doped samples.

2.5 Ab initio calculations - Electron-phonon and temperature effects

Our calculations taking into account the role of the electron-phonon coupling reveal a GW

band gap increase of 60 meV (in the case of the Eu mode) and 80 meV (in the case of the

A2u mode) at 300 K, compared to the zero temperature value. We correct this value by also

considering the lattice expansion effect. By using the thermal expansion coefficient in Ref.

12, we determine that the a and c lattice parameters of anatase TiO2 increase in 0.1 % and

0.3 %, respectively, from 0 to 300 K. The inclusion of both the phonon-induced and thermal

expansion-induced effects leads to a net blueshift of the band gap of about 30 meV (in the case

of the Eu mode) and 50 meV (in the case of the A2u mode) from zero temperature to 300 K. A

similar trend was recently reported for rutile TiO2, where the electronic gap (evaluated within

the thermal lines method for electron-phonon coupling) has a non-monotonic behavior with

temperature.11 Additionally, we solve the BSE on top of the temperature-corrected GW and

find a net blueshift of roughly 80 meV (in the case of the Eu mode) 70 meV (in the case of the

A2u mode) at 300 K, which is in line with our SE measurements (blueshift of 40 meV from 20 K

to 300 K).

2.6 Ab initio calculations - Direct exciton in an indirect band gap

material

We consider a supercell composed of 3×3×2 conventional unit cells (12 atoms) which leads

to a total of 216 atoms in the supercell. This implies the inclusion of 648 phonons. Although the

employed number of phonons is still limited, it provides a first approximation of the effect of the

indirect gap in the renormalization of the excitonic peak. We perform two MD simulation runs

at temperatures of 20 K and 300 K. The MD runs were carried out using a Nosé-Hoover chain

thermostat. A total of 5 snapshots were randomly chosen in the interval between 5 ps and 10 ps

of the run for each temperature. To investigate if the position of the excitonic peak changes

when accounting for the indirect nature of the material, we perform similar calculations for the
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primitive unit cell of anatase TiO2 at the same level of theory and convergence. We obtain a

negligible blueshift of 30 meV, which indicates that the indirect band gap nature of anatase

TiO2 does not play a significant role in the exciton properties, beyond adding an Urbach tail at

the lower energy side of the peak.
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Supplementary Figure 1: Steady-state absorption spectrum of anatase TiO2 NPs.
Room temperature steady-state absorption spectrum of anatase TiO2 NPs dispersed in aqueous
solution.
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Supplementary Figure 2: Atomic Force Microscopy images of anatase TiO2 single
crystals.
(a, b) Roughness characterization of the (010)-oriented polished surface of the reduced anatase
TiO2 single crystal used for the spectroscopic ellipsometry measurement. The images are taken
using Atomic Force Microscopy and the average surface roughness is estimated around 0.9 nm.
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Supplementary Figure 3: Doping dependence of the ARPES data.
(a,b) Energy vs. momentum dispersion of the bottom of the CB for n-doped samples with
n = 5 × 1017 cm−3 and n = 5 × 1020 cm−3. (c,d) Second-derivative maps of the energy vs.
momentum dispersion obtained from panels (a,b), respectively. (e) Energy distribution curves
at the Γ point of the BZ for the two considered doping levels. The dashed vertical lines identify
the positions of the quasiparticle energies for the VB and CB in the two different samples.
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Supplementary Figure 4: Steady-state reflectance and absorption of anatase TiO2
single crystals.
(a,b) Static reflectivity spectra of (010)-oriented anatase TiO2 single crystals at 100 K. The
electric field is polarized along: a the a-axis; b the c-axis of the crystals. The data derived from
our SE measurements are depicted in violet for the pristine (n ∼ 0 cm−3) crystal and in blue for
the n-doped (n = 2 × 1019 cm−3) crystal, while the reflectivity measured in Ref. 1 is reported
in red lines. (c,d), Normalized static absorption spectra of (010)-oriented anatase TiO2 single
crystals at 300 K. The electric field is polarized along: c the a-axis; d the c-axis. The data
derived from our SE measurements are depicted in violet for the pristine (n ∼ 0 cm−3) crystal
and in blue for the n-doped (n = 2 × 1019 cm−3) crystal.
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Supplementary Figure 5: Complex dielectric function of anatase TiO2 single crys-
tals at room temperature.
The electric field is polarized along (a) the a-axis and (b) the c-axis. The real part, ε1(ω), is
plotted in red, while the imaginary part, ε2(ω), in blue. The solid-line curves depict the data
directly extracted from SE, while the dashed lines are calculated by a KK analysis of reflectivity.
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Supplementary Figure 6: Temperature dependence of exciton peak I.
Imaginary part of the dielectric function at 20 K (blue curve) and 300 K (red curve) for E ⊥
c. The exciton I is observed to undergo an anomalous blueshift of its peak energy, while the
charge excitation II displays a conventional redshift.

18



-15

-10

-5

0

5
R

/R
 (1

0-3
)

4.34.24.143.93.8

Energy (eV)

 n = 2 x 1019 cm-3

 n = 2 x 1017 cm-3

 n ~ 0 cm-3

-1

-0.5

0
R

/R

302520151050

Delay time (ps)

ba

 n = 2 x 1019 cm-3

 n = 2 x 1017 cm-3

 n ~ 0 cm-3

Supplementary Figure 7: Ultrafast broadband UV reflectivity on different classes
of anatase TiO2 single crystals at RT.
The doping levels are indicated in the labels. Both pump and probe polarizations lie along the
a-axis and the pump photon energy is set at 4.10 eV: (a), Transient spectrum at the fixed time
delay of 6 ps. (b), Normalized temporal traces at a fixed probe energy of 3.82 eV.
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Supplementary Figure 8: Ultrafast anisotropic response of anatase TiO2 single
crystals.
Ultrafast broadband UV reflectivity on a (010)-oriented anatase TiO2 single crystal (n = 2 ×
1019 cm−3) at RT. (a,b) Colour-coded maps of ∆R/R measured upon photoexcitation at 4.40
eV. (c,d) Transient spectra, obtained from a cut at 1 ps in the experimental conditions reported
for a and b respectively.
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Supplementary Figure 9: Absence of low-energy spectral features in the c-axis
ultrafast response.
Colour-coded map of ∆R/R from a (010)-oriented single crystal (n = 2 × 1019 cm−3) measured
at RT upon photoexcitation at 4.40 eV and with pump and probe beams polarized along the
c-axis. The probe photon energy covers the spectral range 3.70 - 4.60 eV, which demonstrates
the absence of emerging features at low energies.
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Supplementary Figure 10: Comparison between the experimental SE data and BSE
calculations.
Both BerkeleyGW (red curve) and Yambo (violet curve) data are evaluated using the highest
convergence parameter values described in the text. Experimental data at 20 K are shown in
blue. For BerkeleyGW, they correspond to the best converged spectra (both for peaks shape
and position). In Yambo, the spectra has been obtained with a less dense k-grid, leading
the spectrum to show a spurious shoulder above the main exciton peak, as in the previously
published works. The fully-converged spectra (red curves) show a single peak in agreement with
the experimental data. For light polarized along the a-axis, the agreement between the two
calculations is excellent.
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Supplementary Figure 11: Convergence test for the dielectric function.
Convergence test performed with respect to the size of the k-points grid using the BerkeleyGW
code, in red-color scale. For comparison, the experimental data at 20 K are also shown (blue
curve). To obtain the proper shape of the spectra, it is necessary to use a very large k-point
grid together with a very large number of bands as described in the text.
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Supplementary Figure 12: Eigenvalue analysis on exciton peak I.
Black bars represent the square of the transition matrix elements of the velocity operator along
the a-axis (|Ea · 〈0| v |S〉 |2), corresponding to exciton states S contributing to the peak I. This
quantity is related to the oscillator strength fS by fS = (2 | Ea · 〈0| v |S〉 |2)/ES, where ES is the
excitation energy corresponding to exciton state S. Comparison with the experimental ε2a (blue
curve) and the full-converged BerkeleyGW calculations with a phenomenological Lorentzian
broadening of 0.12 eV (red curve).
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Supplementary Figure 13: Doping dependence of the BSE spectrum.
Comparison between the calculated ε2a for pristine and n-doped anatase TiO2. The optical
response of the n-doped TiO2 with n = 1019 cm−3 (violet curve) overlaps almost completely
to the pristine case (blue curve), showing that this doping level does not produce a significant
effect the peak energy of feature I. Only when n is increased to 1020 cm−3 (red curve), the peak
energy of feature I is found to blueshift of ∼ 50 meV
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