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Abstract

Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening
and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions.
Here, the cross-slip transition path in solid solutions is calculated using atomistic methods for three representative systems of Ni-Al,
Cu-Ni and Al-Mg over a range of solute concentrations. Studies using both true random alloys and their corresponding average-alloy
counterparts allows for the independent assessment of the roles of (i) fluctuations in the spatial solute distribution in the true random
alloy randomness and (ii) average alloy properties such as stacking fault energy. The results show that the solute fluctuations
dominate the activation energy barrier, i.e. there are large sample-to-sample variations around the average activation barrier. The
variations in activation barrier correlate linearly with the energy difference between the initial and final states. The distribution of
this energy difference can be computed analytically in terms of the solute/dislocation interaction energies. Thus, the distribution of
cross-slip activation energies can be accurately determined from a parameter-free analytic model. The implications of the statistical

distribution of activation energies on the rate of cross-slip in real alloys are then identified.
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1. Introduction

Materials design for enhancing the performance of metals
used in load bearing structural components requires mechanis-
tic understanding of the underlying microscopic processes that
control the mechanical properties. Plastic deformation in poly-
crystalline metal alloys is controlled by the motion of, and inter-
actions between, lattice dislocations. There are many different
aspects of dislocation motion and interactions. One important
process is cross-slip, the process by which dislocations change
glide planes. Cross-slip is restricted to dislocations having screw
character, where the dislocation line direction & is parallel to the
dislocation Burgers vector b, § -b = 0, so that the dislocation
glide plane € x b is not uniquely defined. Cross-slip contributes
to dislocation multiplication, due to double-cross-slip [1], and to
dislocation annihilation, due to cross-slip of oppositely-signed
screw dislocation gliding on nearby parallel planes [2]. Cross-
slip also allows dislocations to overcome obstacles, such as
precipitates [3, 4]. These microscopic processes determine the
macroscopic stress-strain evolution of the material, and this has
driven the extensive study of cross-slip processes and mecha-
nisms in metals [5—-28]

In FCC metals, cross-slip has been invoked to explain sev-
eral meso- and macroscopic aspects of deformation, in partic-
ular specific forms and transformations of the dislocation net-
work. For example, the prevalence of edge dislocation dipoles
in stage I of FCC single crystal deformation is explained by mu-
tual annihilation of screw segments through cross-slip [29-31].
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Other structures whose formation is thought to involve cross-
slip are dislocation sheets [32] and persistent slip bands [33].
Recently, the importance of cross-slip for network formation
has been shown using dislocation dynamics simulations [23]
and dislocation-based plasticity models [34]. Cross-slip has also
been incorporated into models for macroscopic plastic behavior
of FCC metals, specifically work hardening and dynamic re-
covery [35-37], creep at intermediate homologous temperatures
[38—41]! and the copper-brass texture transition [45-48]. Cross-
slip is also postulated to be involved in the transition between
stage II and stage III deformation, see e.g. [8, 49-51] and [52],
p. 154, although there is some controversy here.

Here, we focus on the cross-slip mechanism and the as-
sociated activation energy AE,. Any higher-level modeling
effort that strives to be predictive requires this fundamental
information. Specifically, AE, for the appropriate length of
cross-slipping segment (see below) is required to calculate the
rate r of cross-slip. Since cross-slip is a thermally activated
mechanism, this rate can be described by an Arrhenius law of

the form AE
T — . act 1
() =vexn (552, m

where k is the Boltzmann constant, T is temperature, and V is
an attempt frequency.

The most prominent mechanism for cross-slip in FCC is the
Friedel-Escaig [7, 8] (F-E) mechanism. The F-E mechanism
assumes that the initial dislocation, dissociated into Shockley
partial dislocations on an initial glide plane [53], must constrict

I See also the discussion in [42, 43] as well as the review [44].
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locally to form a Stroh constriction [54] from which the dislo-
cation can cross-slip and begin dissociating on another glide
plane. The transition state of the F-E mechanism consists of a
short section of dislocation dissociated on the cross-slip plane
with the remainder of the dislocation residing on the original
glide plane, and with two constrictions joining the two regions
segments (see Fig. 1). Escaig initially calculated the activation
energy for this mechanism using a linear and isotropic elastic
dislocation line tension approach. Since then, several workers
have proposed improvements or more elaborate calculations [55]
[17, 56]. The F-E mechanism is also seen in atomistic transition
path calculations [57].

Figure 1: Typical states during dislocation cross-slip in average Ni-15 at.% Al.
The transition state was calculated with the string method [58], see Sec. 2.2.
Atoms are colored according to their common neighbor value [59] (red=HCP,
blue=BCC, white=other). Atoms in FCC coordination are not shown. Ovito
[60] was used for visualization.

The F-E mechanism generally predicts a high activation en-
ergy, making cross-slip unlikely at room temperature. Since
cross-slip is implicated in many processes at such moderate tem-
peratures, there has been effort to examine cross-slip associated
with heterogeneous mechanisms. The cross-slip energy barrier
can be reduced to roughly one half of the homogeneous nucle-
ation value if cross-slip is nucleated at a pre-existing constriction,
e.g. a jog, as first considered by Escaig [8]>. In the past two
decades, atomistic models have confirmed that heterogeneities
like jogs [22, 62], intersections with forest dislocations [63—66]
or surfaces [67] can significantly reduce the activation energy.

In most studies to date, the metal is assumed to be pure.
Extension to alloys is primarily considered by assuming that the
effects of alloying are limited to changing the relevant average
material properties entering the F-E model. In particular, alloy-
ing is considered mainly to change the stacking fault energy ¥,
with decreases in s leading to wider dissociation of the initial
partial dislocations, and thus a higher energy for forming the
constriction. A more accurate dimensionless measure for the dis-
sociation width, and hence the tendency for cross-slip, is %t/ub,
the ratio of stacking fault energy to shear modulus and Burgers
vector magnitude [68]. However, this reduction to a single pa-
rameter is a simplistic model of the alloying effect that misses
important mechanisms identified here. Surprisingly, there have
been few dedicated studies of alloying effects on FCC cross-slip
to date.

Andrews et al. [69] developed an elastic model to compute
the energy to form a Stroh constriction using a line tension

Note also that Escaig incorporated another kind of heterogeneity in his
model by assuming that the dislocation is piled up against an unspecified obstacle
on the glide plane, see [61] and the discussion therein.

model, but with the assumption of solute segregation to the dis-
sociated dislocation. The assumption of segregation leads to
strong pinning of the initial dislocation, leading to very high
energy barriers for cross-slip (e.g. in Cu-Zn, from approxi-
mately 1.64 eV at 0.0025 at.% Zn to ca. 10.8 eV at 20 at.% Zn).
This assumption is probably not valid for considering materials
being deformed steadily at normal strain rates and moderate
temperatures, where solute diffusion is too slow to cause signifi-
cant segregation near dislocations that are temporarily pinned
at obstacles. An atomistic study of cross-slip in solid solutions
without segregation was conducted by Du et al. [70], who cal-
culated the activation energy for cross-slip in Ni-2 at.% Al and
Ni-10 at.% Al, using the Nudged Elastic Band [71] method. The
activation energy increased by 0.2 eV if an Al-Al solute pair
was formed in the process, due to strong Al-Al near-neighbor
repulsion in Ni-Al; this result will echo our broader findings
below. A similar methodology was used by Wen et al. for Ni
with very ordered arrangements of interstitial H solutes [72, 73].
Overall, however, there are no systematic studies of cross-slip
in realistic fcc solid solution alloys that would reveal the clear
effects of alloying on this important process.

In the present paper, we study the effect of substitutional
solutes on the cross-slip activation energy AE,. in random FCC
solid solutions. We compute the activation energies in a set of
model alloys (Ni-Al, Cu-Ni, and Al-Mg) over a range of con-
centrations using atomistic transition path calculations. These
calculations show that the activation energy is a random variable
with large fluctuations around the mean value. The large fluc-
tuations found over the length of the critical cross-slip nucleus
indicate that cross-slip in alloys can be initiated at the statisti-
cally easiest region for cross-slip along a long dislocation line.
Therefore, average-alloy models are not useful for judging the
ease of cross-slip in alloys, and an understanding of the distri-
bution of activation energies is necessary. We show that the
activation energy for a specific random distribution of solutes
is closely correlated with the energies of the dislocation in the
initial and final states. We then develop an analytic model to
compute the standard deviation in energy between initial and
final states, and validate the model against the simulations. The
analytic model in tandem with the observed correlation then
allows for an accurate estimate of the statistical variations in
cross-slip activation barrier in terms only of the fundamental
solute/screw-dislocation interaction energies. These energies can
be obtained not only from semi-empirical interatomic potentials
(as done here) but also from first-principles studies, enabling
for prediction of cross-slip in alloys that do not yet exist or for
which there are no reliable interatomic potentials.

The rest of the paper is organized as follows. In the first two
sections, we describe the setup of the transition path calcula-
tions. The first section presents calculations using the “average
atom” interatomic potential for a desired alloy, which accurately
captures the cross-slip behavior in the absence of fluctuations in
local solute distributions, thereby providing the average refer-
ence cross-slip barrier as if the alloy was a pure element. The
second section describes the transition path calculations in the
true random alloys. The resulting transition paths and activation
energies are presented in Sec. 3, demonstrating the statistical
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variations in activation barrier. The correlation between activa-
tion barrier and energy difference between initial and final states
is also shown. An analytic model for the statistical distribution
of activation energies is then derived and validated in Sec. 4.
The important implications of our results are discussed in Sec. 5.

2. Simulations of Cross-slip in FCC Alloys: Methodology

2.1. Selected Alloys

Our purpose is to demonstrate the general role of alloying
on cross-slip across a range of FCC alloys by using model alloy
materials over a wide range of solute concentrations. Here, we
consider alloys of Al+(2, 6, 10, 14, 18, 22) at.% Mg, Ni+(2, 4, 8,
10, 12, 15) at.% Al and Cu+(10, 22, 33, 68, 79, 90) at.% Ni as
described by the EAM potentials for Al-Mg [74], Ni-Al [75], and
Cu-Ni [76]. While these model materials may exceed the solute
concentrations of the corresponding real alloy materials (e.g. Al-
Mg is limited to ~5 at.% Mg and Ni-Al is limited to ~13 at.% Al),
the chosen systems serve to cover a range of situations that
span real materials (e.g. low and high stacking fault energies;
large and small solute misfit volumes; weak and strong solute-
solute interaction energies). Furthermore, results will show that
alloying can be significant even at low concentrations (e.g. Al-
2 at.% Mg). Furthermore, the main new features of the present
study are expected to be relevant to the emerging classes of fcc
High Entropy Alloys (HEA) [77], which are essentially highly
concentrated multicomponent solid solutions.

2.2. Average Alloys

’

We first study the cross-slip transition path in “average alloys’
that are modeled using the "average-atom" (A-atom) interatomic
potentials (see below) [78, 79]. These calculations serve two
purposes: first, they provide the average activation energy in a
homogeneous material having the same elastic constants, lattice
constants, and stacking fault energies, as the true random alloy,
and so differ only due to the absence of local fluctuations in
the solute distribution. Second, the A-atom configurations serve
as templates for building the initial and final states of the true
random solutions.

In the A-atom method, the different real atom types in a true
random solid solution alloy are replaced by a single equivalent
"average atom". The derivation for the class of Embedded Atom
Method (EAM) [80] interatomic potentials is described in [78,
79]. One assumption is made: the average embedding energy
functional is linear in deviations of the electron density from the
average electron density. The random alloy also implies that the
solute distribution is uncorrelated, i.e. there is no segregation or
short-range order. Under these conditions, the EAM functions of
the A-atom are simply the concentration-weighted averages of
the pure element functions. The accuracy of the A-atom method
has been demonstrated for a wide range of properties [79] and
at finite temperatures [81].

Transition state calculations were started as follows. Using
the appropriate FCC lattice parameter a, a cylindrical geometry
as shown in Fig. 2 was constructed. An inner core of atoms
has a radius 20b, where b is the dislocation Burgers vector

magnitude of a perfect dislocation in FCC. An outer shell of
atoms has a thickness greater than two times the cutoff radius
of the potential. Periodic boundary conditions were imposed
along the cylinder axis, which is parallel to the [101] direction
and has a length of 40b. This length is motivated by studying
the dependence of the transition path and energy in pure Ni.
The length 400 is the shortest length at which the cross-slip
barrier becomes length-independent, i.e. at which there is very
limited interaction between the two constrictions formed during
cross-slip nucleation. For example, the energy at 40b is 1.72 eV
and is only 0.02 eV larger at 160b. This length is therefore
a characteristic length of cross-slip nucleation denoted by {cqy.
Different alloys may have different ., because of their different
elastic properties. For simplicity, the same length of {.s, = 40D
was also used for all other materials, which is ex-post-facto
determined to be a good assumption.

y I [111]

x|l [151]‘&: | [101]

Figure 2: Sketch of the simulation cell for transition path calculations. Atoms in
the outer shell of the cylinder are fixed during the calculation. In the initial state,
the screw dislocation is dissociated into partial dislocations 6B and C6 on the
{111} plane (red). In the final state, the screw dislocation is dissociated into Cot
and aB (blue).

A 1/2a[101] screw dislocation (CB(a) or CB(b) on the Thomp-
son tetrahedron) with line direction [101] was then inserted into
the center of the cylinder by applying the displacement field
according to Stroh’s [82] anisotropic-elastic solution. In the
initial state, the dislocation should be dissociated on the (111)

glide plane and into two Shockley partial dislocations 1/6a[211]
(6B(d)) and 1/6a[112] (C8(d)). In the final state, the dislocation
should be dissociated on the (111) cross-slip plane and into
1/6a[211] (Ca(a)) and 1/6a[112] (aB(a)). The dislocations were
inserted as initially perfect dislocations, which preserves the
physical cut plane for the initial and final states. To control
dissociation during subsequent minimization, the precise geo-

metrical center of the elastic displacement field was varied by
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fractions of an dngstrom to create dislocations dissociated on
either the initial or final glide plane.

Holding the atoms in the outer shell fixed, the system energy
was minimized using the conjugate gradient (CG) algorithm
[83] and the FIRE algorithm [84]. Convergence was assumed
when the norm of the force vector fell below 107 — 1078 eV/A.
The FIRE parameters are listed in Tab. A.1 in Appendix A. In
Al-Mg and Cu-Ni, the force norm sometimes stalled at a higher
value. The convergence criterion was then increased, to 2- 10~
eV/A in Al-Mg, and to 5 - 1070 eV/A in Cu-Ni. All calculations
were performed using LAMMPS [85].

To compute the transition path from the initial to the final
state, a custom implementation (see Appendix A) of the Simpli-
fied Improved String method [58] was used. This method was
chosen because the Nudged Elastic Band method [71], which is
implemented in LAMMPS, was found to be numerically unstable
in many cases. Briefly, the path is discretized into 32 images.
Then FIRE is used to move the atoms and linear interpolation
is used to enforce an equal arc-length parameterization of the
transition path. Linear interpolation was also used to generate
the initial guess for the path. Iterations were stopped when the
two-norm of the displacement of each intermediate state relative
to its position in the previous iteration was below 10_31&, or,
if this threshold was not reached, after a total number of 300
string iterations. However, this threshold was reached in all
average alloy calculations. Another measure of convergence
is the two-norm of the force perpendicular to the path at the
transition state, which should be zero for a perfectly converged
path. In all three average alloy systems, the mean value of this
norm was less than 2.3-10~4 eV/A, and the absolute maximum
was 3.2-107* eV/A, in Cu-79 at.% Ni.

2.3. True Random Alloys

Cross-slip transition path calculations with true random al-
loys were carried out using the A-atom initial and final states
as templates. For each alloy and concentration, the A-atoms
were replaced at random by real atoms at the desired alloy con-
centration. The atom positions of the true random alloys were
then scaled by the ratio of the lattice parameter of a true random
solution and the corresponding average material, since these are
not exactly the same. The energy of the scaled configurations
was minimized using CG and FIRE, allowing the dislocation to
relax in the random solute environment. To generate a statisti-
cally representative set of results at any given concentration, 20
different random solute distributions were studied for each alloy
and concentration.

Note that there remains a small error in the boundary condi-
tions, because the dislocation displacement field was calculated
using the elastic constants of the average alloy. However, the
effects of this error are expected to be negligible. First, the
mismatch in elastic constants is small. In Ni-Al, the maximum
mismatch is 6.1% for Cy; at 15 at.% Al, with differences less
than 1% in Cj» and Cy4 at all concentrations. In Al-Mg, the
maximum mismatch is 6.0% at 22 at.% Mg for C|; and —7.5%
for Cy44. In Cu-Ni, the relative error is less than 1% at all concen-
trations. Furthermore, it will be shown below that changes of

average alloy properties, and thus also errors in these properties,
have only a small effect on the cross-slip activation energy.

Upon inserting the real atoms in the initial state, the disloca-
tion can spontaneously glide from the center of the cell toward
a nearby region where the particular fluctuation in the solute
positions can lower the total energy of the system, even with
an increase in energy due to the image interactions with the
fixed boundary atoms. Since this additional energy change is
not relevant for the cross-slip energy barrier, such cases were
discarded. Specifically, an initial random alloy configuration
was only accepted if the fully-relaxed displacement of the dis-
location in the xy plane was less than 2A from the center of the
cell. For Cu-Ni, such a displacement criterion was also applied
to the final state. For AlI-Mg and Ni-Al, if the final state was
found to be off-center then the final state energy was taken as
a point further back along the transition path corresponding to
a point where the dislocation was centered in the cell. In these
evaluations, the displacement was calculated using the average
positions of the non-FCC atoms in the dislocation core as ob-
tained from a common neighbor analysis (CNA [59]) with cutoff
(v0.125+0.5) xa.

Finally, as with the A-atom cases, the transition path calcu-
lations were carried out using the String method as described
in Appendix A. Again, iterations were stopped when the two-
norm of the displacement of each image was below 10734, or
after 300 string iterations. In Cu-Ni, 35 out of 120 calculations
stopped at 300 iterations, in Al-Mg 36 and in Ni-Al 25. The aver-
age value of the force perpendicular to the path in the transition
state was highest in Al-Mg; however, the influence of the stop-
ping criterion was negligible. In calculations with less than 300
iterations, the average force was 7.1-1074 eV/A, and in those
which stopped at 300 iterations, it was 8.06-10~* eV/A. The
absolute maximum force was 3.4 - 1072 eV/A, in a calculation
with Ni-15 at.% Al.

As in the average alloy calculations, the initial guess for the
path was generated by linearly interpolating between the atomic
coordinates of the initial and final state. This is the standard
method, also often used in the Nudged Elastic Band method
[86]. There is no proof that the converged path obtained with
this initial guess is the path with the lowest possible activation
energy. The problem could be aggravated in the random al-
loy calculations, due to the rougher potential energy landscape.
However, the size scale of the transition process (as indicated
by the spatial scale of the transition state) suggests that it is
fluctuations on this larger scale that will be important, and these
are much smoother. In the next section, we will show that the
activation energy is correlated with energy difference between
initial and final states, which is independent of the path. This
correlation further suggests that (i) the general path is similar to
that in the average alloy, and (ii) that the transition path is indeed
governed by fluctuations over the scale of the transition state. Fi-
nally, some limited computations using various perturbed initial
guesses lead to the same transition path. All of these features
suggest that the present results are robust with respect to the
choice of the initial path.
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3. Transition paths and activation energies

3.1. Average Alloys

Our calculations yield two important pieces of information.
First, they reveal the cross-slip mechanism to be the F-E mech-
anism. Fig. 1 shows the initial, transition and final state of
cross-slip in Ni-15 at.% Al. The corresponding states in the
other average alloys are similar. Second, they reveal the energy
barrier AE,;, which is the maximum energy encountered along
the transition path of relative energies

AE;=E;—E, (i=1...Ng), 2)

where E; is the potential energy of image i and Ny is the number

of images. The path AE; is usually shown as a function of the

reaction coordinate

A Si

Si = —

SNg

where s; =||x; —xi_1]|, ()]

(i=1...Ns), A3)

and where X; is the vector of atomic coordinates of image i in
3N-dimensional space, and || - || indicates the Euclidean norm.

Fig. 3 shows representative paths for the three average alloy
systems, one particular composition for each binary alloy; results
for all other average-alloy systems are similar. The paths are
characterized by a steep increase and decrease in energy near the
start and end, respectively, and a region of small energy change
near the center. The steep increase and decrease in energy corre-
spond to constriction formation and annihilation, respectively,
while the plateau in the center corresponds to moving apart of
the constrictions. Note that the initial and final state have the
same energy, because they are symmetrically equivalent in the
homogeneous A-atom materials.

2.0 . :
Ni-15 at.% Al, y,/ub = 4.5¢-3
Cu-33 at.% Ni, y,/ub = 4.7e-3
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Figure 3: Relative energy along the cross-slip transition path in several average
alloy systems. The reaction coordinate is the normalized displacement between
the initial and final state, see Eq. 3 Note that a particular value does not cor-
respond to the same configuration (e.g. same length on cross-slip plane) for
two different paths. Thus, the shape of the paths should be compared only
qualitatively.

The maximum of each curve is the activation energy AE,;.
As expected, it correlates with the normalized stacking fault
energy %/ub, which is shown in the figure. Al-22 at.% Mg has
the highest %r/ub and the lowest AE,, whereas Ni-15 at.% Al
has the lowest %t/ub and the highest AE,. The variation of AE,
in each alloy system is comparatively small, see Fig. 6. For Cu-
Ni, the maximum change, relative to AE, of Cu, is —0.08 eV,
at 79% Ni. In Al-Mg, the maximum change is —0.15 eV, at
18% Mg and in Ni-Al, it is 0.14 eV, at 15% Al. As will be
shown below, these changes are small compared to changes of
AE, due to compositional disorder in true random alloys.

3.2. True Random Alloys

Like the average-alloy calculations, the true random alloy
calculations predict the F-E mechanism to be the operative cross-
slip mechanism. Figs. 4a) shows an example of F-E cross-slip in
Ni-15 at.% Al. Fig. 4a) and b) show the transition states from the
paths with the highest and lowest AE,. in Ni-15 at.% Al (3.09
and 0.86 eV). Note that the configurations are almost completely
dissociated on the cross-slip and glide plane, respectively.

Figure 4: Typical states determined by a transition path calculation for random
Ni-15 at.% Al: a) states from a path with AE, = 1.07 eV; b) and c) transition
states from the paths with the highest and lowest AE,; in Ni-15 at.% Al (3.09
and 0.86 eV). Atoms are colored according to their common neighbor value [59]
(red=HCP, blue=BCC, white=other). Atoms in FCC coordination are not shown.
Ovito [60] was used for visualization.

The random alloy calculations predict the same F-E mecha-
nism as found in the average alloy, but they show very different
energy profiles. As an example, the transition paths of all the
random samples of the Ni-15 at.% Al alloys are shown in Fig. 5,
with the final state points being corrected as described earlier.
The paths are colored according to their activation energy and
the transition state is marked with a circle. In contrast to the
average alloy calculations, initial and final states in true random
alloys have different energies, because the solute field around the
dislocation is different on the glide and cross-slip plane. Most
importantly, AE,. varies significantly from sample to sample.

Note that for paths with high AE,, the transition state tends
to be closer to the final state. The transition states of the paths
with the highest and lowest AE,.; have the highest and lowest
reaction coordinate, in agreement with the observation that they
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random alloy energies is much larger than the change of the ’ ¢ * H
average alloy energy relative to that of the pure metal. Even in E * .
the dilute limit, the lowest value of AE, of the random alloy is 1.0 .
typically several tenths of an electron volt lower than AE,¢ of 010 22 33 68 79 90 100
the corresponding average alloy. The significant statistical distri- Ni content in at.%
bution of AE, is the most important basic result of the random 1.4 . .
alloy calculations. In the following sections, we will discuss its *

AR s . c) s
implications and develop a model for predicting typical values .
of AEaC[~ . ° °
Finally, we note that random Al-Mg exhibits two pecularities. LOp 3 : . . .
In 25 out of 120 calculations, cross-slip nucleated at two sites, = . : : .
and these two nuclei later coalesced to form the fully-cross- " i . . o
. . . ~ s .
slipped segment. These cases are marked green in Fig. 6c¢). % o ¥ X H & 3
Furthermore, 17 samples have an intermediate minimum that < 05 ‘ [ ] H ' .
. . . T L]
corresponds to a partially cross-slipped state and has a negative i . s ! .
relative energy. S of those samples also form two nuclei. The . f ! o :
deepest minimum has a relative energy of —0.39 eV. These cases D : : .
are marked blue in Fig. 6¢). Note that the barrier for spreading of .
the cross-slipped segment is then higher and more important than . . . . . . :
ppeasee g P 003 6 10 17 s 22

the barrier taken from the initial state. However, for consistency

| Mg content in at.%
with the other results we draw the latter.

Figure 6: Cross-slip activation energies of the 20 individual samples of random
alloys for (a) Ni-Al, (b) Cu-Ni, and (c) Al-Mg; also shown are the average alloy
values at each composition; in (c) blue markers indicate samples with two nuclei;
green markers indicate samples with a partially cross-slipped state with negative
relative energy

3.3. Preliminary Discussion

The most striking feature of the random alloys is the large
scatter of AE,. around the average value. This scatter is caused
by fluctuations in the solute concentration, which are excluded
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a priori in the average alloys and in any models that consider 30l ' .|
only average material properties. As a consequence, AE, in ' a)
real random alloys may be significantly lower than the average fit: 1.615eV + 0.490AEy oy ¢
value AE,ciavg. This is important because cross-slip is a ther- 25l p-value: 2.1e-36 . ‘.l
mally activated process (see Eq. 1), so that small decreases in * :', .
AE, lead to exponentially faster cross-slip rates. Along a long % °. ’ :‘, + ‘
dislocation line, regions where the concentration fluctuations ‘é 2.0 . . :.’."' .
give low values of AE, will thus dominate the rate of cross-slip E o -‘.;7{.. *
nucleation. The fluctuations occur around the average AE,, el .' o®
so the average AE, sets an initial scale, but the large fluctua- L.5¢ . * .’,-ﬁ'z . s,
tions lead to significant lowering of AE,. in many cases, so that . e,
cross-slip nucleation is controlled by concentration fluctuations. 1ol ): ’ < ‘ .
Accordingly, cross-slip in random alloys must be treated . n/,” o° ¢
as a statistical problem and the effects of solute fluctuations ) -1 0 1 2
must be accounted for. A simple model for typical values of AEcnq (eV)
AE, in random alloys will be derived in the following section. T T T
Here, we continue with analysis of the simulation data. The 2.0t b) ¢ . K
activation energy AE,. and the difference in initial and final . . o
energies, AEqyq, are strongly correlated, as shown in Fig. 7. If 1.8l zfv;ljzlze\; ; 206"517AE°"‘1 L o
AE¢nq is low (more negative), then AE, is smaller. Across . s e e
all concentrations for a given alloy system, the correlation is — e ,'.",- & o
. . > 1.6} . LI
accurately captured by a linear function, c) e V% .
i g e
AEyct = 0AEend + AEt, (5 L<L]] 1.4r S e ./ ,:S.’ ea® .
where AE,¢ is the activation energy at AE¢p,g = 0 and o = 0.5 is . .': -,: - :: ..:'
a constant. The value of AE.s is just slightly lower than the av- 1.2 P e e .
erage AE, of the corresponding average alloys shown in Fig. 6; e 7 . .
the variations of the average alloy AE,.; with concentration are 1.0f, -~ .
small so that aggregating the data across all concentrations is 10 =3 00 G 70
acceptable. A linear correlation between AE, and AEeyq is ’ . AEenq (V) . '
sometimes observed for chemical reactions, where it is referred 1.4
to as the Bell-Evans-Polanyi [88, 89] (BEP) principle, see also ‘e
[90]. The BEP principle is usually applied for simple chemical C) . R
reactions of the type AB+C — AC + B, and the slope oo = 0.5 fit: 0.559eV + 0.486ALeng . il
emerges for simple triangular transition paths. 1.0} p-value: 1.5e-27 . o
Considering the correlation shown in Fig. 7, we can express R e ¢ Y
AE; in terms of AEgyg by taking AEet = AE,cqavg SO that @ . I ': T
AEset = AEgcravg +0.5AEeng. 6 e .
< o5} “ AT
Since the initial and final state energies are controlled by random Y R ood
solute concentration fluctuations, as in solute strengthening of . ° . :,».’. S e, oo
random alloys, particular values are random variables chosen S . '" o’
from a normal distribution [91]. The quantity AE.,q is then also e .
a random variable with standard deviation o [AE.,g]. Assum- o.q L . .
. e . =1.50 -0.75 0.00 0.75 1.50
ing that AE,q follows a normal distribution, we can write the AEens (V)

probability distribution of AE, as

2
P[AEy] = exp (— (AET‘ AE*‘“’;Vg) ) .
176 [AEend]” 20 [Aend]

@)
The statistical distribution of AE, is thus controlled by the
distribution of AE¢,4. In the next section, we show that AE,,4 can
be calculated analytically, thus leading to an analytic description
for the statistical distribution of AE,.. The statistical distribution
for AE,., which are the activation energies for initial cross-

slip nuclei, can then be used to determine overall distributions

Figure 7: Cross-slip activation energy AE,; vs end state energy difference AEqpq,
showing a linear correlation, for (a) Ni-Al, (b) Cu-Ni, and (c) Al-Mg; in (c) blue
markers indicate samples with two nuclei; green markers indicate samples with
a partially cross-slipped state with negative relative energy

of AE, and the associated rate of cross-slip as a function of
dislocation segment lengths, which can then be implemented
into higher-level discrete-dislocation simulations to capture the
effects of alloying on cross-slip.
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4. Analytic Model for the Statistical Distribution of AE ¢

4.1. General model

Due to the correlation between AE,¢; and AEeq, as shown in
Fig. 7 and discussed in the previous section, the determination
of the distribution of AE, of the random alloy can be reduced
to the problem of determining the distribution of AE.,4. Recall
that AE.q is the difference in total energies between the final
and initial states of the cross-slip. We will characterize the
distribution of AE.,q in terms of its standard deviation.

The end states differ in energy because, in a given distri-
bution of random solutes, the solute-dislocation and the solute-
solute interaction energies are different for the two dislocation
configurations (initial and final). Since the correlation shows,
AE, ¢t = AE, ¢ ave When AEgq ~ 0, we are concerned with de-
termination of the standard deviation of AE.,q in a given alloy
system at a given alloy concentration. The analysis proceeds by
considering a fixed specific random distribution of solutes, as
indicated in Fig. 8, computing the energy difference of the initial
and final states for this particular random distribution, and then
performing an analytical statistical averaging over all possible
random distributions to obtain the standard deviation of AE¢,q.
There are two separate contributions to AE.,q: (i) a contribution
from changes in the solute/dislocation interaction energy and (ii)
a contribution from changes in solute/solute interaction energy
due to the fact that the change in position of the stacking fault
alters the relative positions of solutes with respect to each other,
especially those that are immediately on either side of the initial
or final stacking fault plane. These two contributions in energy
lead to two independent contributions to the standard deviation
of AE¢nq, which we denote as 6 [AEepd,s.d] and © [AEenqss]. The
total standard deviation for AE.,q is then computed as

(o [AEend]2 =0 [AEend,s—d]2 +0o [AE(-:',nd,s—s]2 . (8)

4.2. Solute-dislocation and Solute-solute Contributions

The contribution 6 [AEepgs.q] to the standard deviation of
AE.pq due to solute-dislocation binding energies can be mod-
eled by adapting the solute strengthening model of Leyson and
Curtin [91, 92]. Consider a slice of material parallel to the dislo-
cation line and having a thickness of one period along the line
direction, as shown in Fig. 8a). We label the atomic sites by
their {x,y} positions in the plane of the figure as {x;,y;}, with
the origin at the center of the dislocation structure, and x the
direction along the glide plane. Similarly, let z be the direction
along the dislocation line and label the sites by their z position
as zx. Define an equivalent coordinate system with respect to the
cross-slipped dislocation, with positions denoted by (x},Y’,2;)-
When the dislocation cross-slips, the relative position of the
atom at (x;,y;,z) changes to (x},),z;). If we denote the so-
lute/dislocation binding energy as U (x;,;,zx), then the change
in total solute/dislocation binding energy is the sum over all sites
given by [92]

AEend,s—d = Zsijk [U(x;ayljvz;c) - U(Xi,yj,Zk)] ) (9)
ijk

a)

Cross-
slip

X stackingfault
J%JLF

Figure 8: a) Reference frames for measuring the relative solute/dislocation
positions before and after cross-slip; note that the solute distribution across sites
(i, j) does not change. b) The result of cross-slip is the same as a mirroring of
the dislocation at (101) (dashed line), leading to simplifications in the analysis.

where s;; is the occupation variable with s, = 1 if a solute
exists at site (i, j,k) and s;j; = 0 otherwise.

If the solute concentration is high, the corresponding aver-
age alloy should be used as matrix material, so that the solute-
dislocation binding energies are the binding energies in an av-
erage solute environment, and with respect to the dislocation
structure in that environment.

Eq. 9 gives the total energy change for a unit dislocation seg-
ment. We are interested in typical fluctuations for a dislocation
with finite length {sn, which corresponds to Ny = &/b slices
along z. For this line length, there are N sites with the same
in-plane coordinate (x,y), and solutes occupying any of these
sites have the same solute/dislocation interaction energy. The
typical energy change resulting from cross-slip of this length of
dislocation is the standard deviation given by

(o [AEend,s—d(gcsn)] = \/<AEend,s»d(CCsn)2> - <AEend,s—d(Ccsn)>27
(10)

where (-) denotes an average over all values of the occupation
variables. The derivation of 6 [AEends-d(Cesn)] is analogous to
the derivation of the standard deviation of the energy change
during regular slip in a random alloy, see [91]. The following
assumptions are made (i) the s;x are uncorrelated Bernoulli ran-
dom variables, (ii) U (x;,y;,zx) depends only on the atom at site
(i,J,k), and, as noted above, (iii) U (x;,y;,zx) is only a function
of x; and yj, i.e. U(xi,yj,zk)—U(xi,y;) due to periodicity along
z. We do not repeat the statistical analysis here, which involves
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standard but extensive manipulations. The final result is

2
O [AFend sa] = \/ca ~0) S Y V) Ul
ij
(1)
Note that, as shown schematically in Fig. 8, cross-slip is
geometrically equivalent to performing a mirror operation of the
random solute distribution across the (101) plane (see Fig. 8c).
This is described by the affine transformation

Due to this symmetry, the only inputs to the theory are the bind-
ing energies U (x;,y;) in the initial state since the binding energy
U(x},y;) at site (i,j) is the binding energy at the symmetry-
equivalent site in the undeformed lattice. The number of required
calculations can be further reduced by exploiting the fact that
the configuration has two-fold rotation symmetry about a line
parallel to the z axis through the center. Thus, binding energies
need only be calculated for the atoms in the upper half of the
xy-plane.

The second contribution to AE.pg comes from changes in
direct solute-solute binding energies. For example, solute pairs
(first, second,. .. neighbors) may be formed or destroyed along
the stacking fault ribbon when it is annihilated on the glide plane
and/or reformed on the cross-slip plane. Du et al. [70] have
shown that this effect is important for cross-slip in Ni-Al, and
Rodary et al. [93] have shown that it is important for the related
problem of solute strengthening, due to the strong repulsion of
Al-Al near-neighbor pairs.

Here, we restrict our attention to nearest-neighbor pairs. The
contribution of pair formation and annihilation to AE¢yq is

AEend,s-s = ES—SANS-Sa (13)

where Eg is the solute-solute binding energy and AN is the
dimensionless net change in the number of solute pairs due to
cross-slip. The contribution to ¢ [AE.,g] can then be estimated
as

o [AEend,s—s] = Es—so_ [ANS-S] 5 (14)

0 [ANg] can be approximated using a simple model of solute
pair formation and annihilation in the stacking fault of a straight
dislocation, as derived in Appendix B. For an average stacking
fault width d, we find

0 [AEendss] = Essy[8c2(1—c) f;i“/‘g (15)

4.3. Results and Comparison to Simulations

The only material parameters in the model for the standard
deviation of AE.,q are the solute/dislocation interaction ener-
gies U(x;,y;), the average stacking fault width d and the so-
lute pair interaction AE¢pqss. These quantities can be obtained
with atomistic or ab-initio methods; a number of examples of
solute/dislocation interaction energies computed by ab initio

methods [91, 92, 94, 95]. The average stacking fault width d
is determined using the Dislocation Extraction Algorithm [96]
as implemented in Ovito [60] by taking the average distance
between the extracted partial core coordinates.

For the alloys tested here, we can compute U(x;,y;), d
and AE.,q s as follows. The solute-dislocation binding ener-
gies were calculated starting with a cylindrical configuration as
shown in Fig. 2 but with a radius of 40b and a length of only
6b because only individual solutes are studied and so the cell
need only be slightly longer than the cut-off radius of the inter-
atomic potential. The screw dislocation is inserted on the initial
plane and relaxed, as described in Sec. 2.2. One row of atoms in
the core of each partial dislocation is then fixed to prevent the
dislocation from slipping towards or away from a given solute
during subsequent calculations. These two rows were symmetry-
equivalent under two-fold rotation about the z-axis through the
center of the dislocation. For each of the 5330 unique atomic
sites in this geometry, the solute-dislocation binding is com-
puted by inserting the desired solute atom into the desired site
(removing the A-atom occupying the site), followed by fully
minimizing of the energy using CG and FIRE until the norm
of the force vector fell below 1-1076 eV/A, or after 200,000
iterations, and taking the difference between the potential energy
after and before insertion of the solute minus the solute binding
energy in the perfect A-atom FCC lattice.

Solute-solute binding energies were computed using a cube
of A-atom material aligned along (100) with edge lengths 40a
and fully periodic boundary conditions. A near-neighbor pair
of A-atoms were then replaced by the desired real solute pair
and the energy was minimized with CG and FIRE, stopped if
the norm of the force vector fell below 1-10~8 eV//OX, or after
20,000 or 30,000 iterations. The solute-solute binding energy
is then the potential energy of system containing the solute pair
minus twice the energy of a single solute in the perfect A-atom
FCC lattice. Recall that our explicit cross-slip transition state
computations were performed on only 20 samples. To obtain
accurate estimates for the statistical distribution (standard devia-
tion) of the end state differences AE.,q, we have generated 100
sets of initial and final states for each alloy composition. In these
cases, we impose the constraint on off-center displacements (see
Sec. 2.3) for both initial and final states. In the case of Cu-Ni,
the 20 sets of data from the transition path calculations were
added, because there the constraint was active in both states, and
thus this data was equivalent to the newly generated data.

The predicted and measured values for ¢ [AE.,4]| are com-
pared in Fig. 9, and the two individual contributions from solute-
dislocation and solute-solute interactions are also shown. For
Ni-Al, the prediction is satisfactory, with a maximum error of
0.1 eV at 10 at.% Al. For Ni-Al, the solute-solute interaction
dominates the distribution. For Al-Mg, the prediction is also
satisfactory up to 10 at.% Mg, with the solute/dislocation in-
teraction dominating. At higher concentrations, the predicted
standard deviation saturates while the measured value contin-
ues to increase. This deviation is due to the increasing im-
portance of non-near-neighbor solute-solute interactions which,
though individually small, are very numerous and so contribute
non-negligibly to the standard deviation at higher solute con-
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1.2 . : " prediction is accurate at the lowest Cu and Ni concentrations but
g g%igﬂ‘ﬂ Eg?:gi‘:/t(:(ii)) 8 then deviates more significantly at intermediate concentrations.
1.0f A oA E::d o The reason for these deviations is that the solute/dislocation and
* ofA Eend;-s] 8 * solute/solute interaction energies in Cu-Ni are generally quite
0.8} ° small in magnitude, and hence the neglect of all of the small
% a) o * but much larger number of further-neighbor solute-solute in-
L.; 0.6l 8 * N teractions is not accurate; again this can be computed and the
o * agreement with simulations improved, but we do not present the
% 04l A details here.
' 0 A A Summarizing the analysis in this section, we have devel-
: oped an analytic prediction for the standard deviation of the
0.2¢ Q end-state energy difference AE.pq in terms only of measurable
solute/dislocation and solute/solute interaction energies. Explic-
0.05 3 7 8 o 1o 15 itly combining the above results, the analysis yields
Al content in at.% 5 Cosn . )
. G[AEend] :C(l _C)TZ[U(xhyj)_U(xivyj)]
13
04f b) ° s (o j Cend
° ° +E; <8c (I—c¢) bz\/§> . (16)
0.3} PY This result, while validated against simulations for the current
% @ set of alloys and concentrations, is completely general. It can
:E Q Q thus be applied to obtain the statistical distribution of AEpq
y 0.2¢ o relevant for the subsequent computation of cross-slip activation
% 0 A barriers for any other FCC alloys, whether existing or proposed
Q alloys.
0.1}
* * * * * * 5. Discussion
0-00 10 22 33 68 79 90 We have shown that (i) the cross-slip activation energy AE,¢
Ni content in at.% in random fcc solid solutions is a stochastic variable due to the
0.6 i . explicit variations in solute positions relative to the dislocation
™ undergoing cross-slip, with large variations around the average
0.5 C) ° cross-slip barrier; (ii) there is a linear correlation between AE,¢
’ and the difference AE,,q between the initial and final cross-slip
04l PY @ Q Q state.:s; (iii) the stancllard deviation of AEen(.j can be corpputed an-
=i 2 alytically as a function of alloy concentration, solute/dislocation
) 8 interaction energies, solute-solute interaction energies, for the
K 0.3 characteristic cross-slip nucleation length {.,; and therefore
ﬁ ° (iv) we have an analytic model for the distribution of cross-slip
TO02l @ activation energies in random fcc alloys. We now discuss various
implications of these results.
0.1 N * First, average material properties are insufficient for predict-
N * ing the rate of cross-slip in a real alloy. As noted in Sec. 3.3,
0.0+ * . . . . low values of AE,; caused by random solute fluctuations will
0 2 6 10 14 18 22 control the rate. In particular, an average parameter like the

Mg content in at.%

Figure 9: Observed (filled symbols) and predicted (open symbols) standard
deviation of the end state energy difference AE.,q in (a) Ni-Al, (b) Cu-Ni,
and (c) Al-Mg. The individual contributions to the overall standard deviation,
due to solute-dislocation (star symbols) and solute-solute interactions (triangle
symbols) are also shown.

centrations. These interactions can be included in the analysis
as a generalization of the near-neighbor pair analysis, but it is
cumbersome and so not presented here. Finally, in Cu-Ni, the

10

normalized stacking fault energy %:/ub is not a useful measure
for the ease of cross-slip in random alloys. This conclusion may
explain observations by Clement and Coulomb [97] in Ni-Cr.
They measured the activation energy and apparent activation
volume for cross-slip in Ni-Cr alloys and found that these values
decrease with increasing Cr content whereas an increase would
be expected based on average properties because both ;s and
%t/u decrease with increasing Cr content.

Another consequence of the strong influence of random
fluctuations on the activation barrier is that the probability of
cross-slip nucleation in an alloy depends more strongly on the
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length of the dislocation. Here, we must clearly distinguish be-
tween nucleation, i.e. cross-slip of a short (Iength {s,) segment,
and lateral growth of this segment. A dislocation line with a
length of { consists of N = /¢ segments of length {egn. A
long dislocation with large N will sample many different local
solute configurations and hence many local cross-slip nucleation
environments and is therefore likely to contain segments with
cross-slip energy barriers that are much lower than the average
value. Among the N segments, the segment with the lowest
activation barrier satisfies, on average,

AE o , 1
/ P(AEact)dAEact = —. 17

N

—oo

where P(AE,) is the Gaussian distribution of activation energies
Eq. 7. Thus, AE}, can be obtained from the inverse normal
cumulative distribution function. An asymptotic approximation

for large N [98] yields
N2 N2
\/log (2”) —log (log (27:)) (18)

The weak dependence of the smallest activation energy on
the number of segments N allows for reasonable estimates of the
barrier over a wide range of lengths. Typical dislocation densities
in metals range from well-annealed materials with dislocation
density p = 10''-10'> m™? to highly deformed materials with
p = 10" m2. The corresponding dislocation segment lengths
are § o 1/ /5 and thus vary from 100 nm to 3000 nm. For
Lesn =40 b and p ~ 10'?> m™2, the minimum activation barriers
for such segment lengths are AE,; = AEaciavg — 1.540 [AEcqq).
For a typical Al-2 at.% Mg alloy, this activation energy is only
0.42 eV. For a typical Ni-10 at.% Al alloy (model matrix for Ni-
Al superalloys), the operative barrier would be 0.55 eV. For a Cu-
33 at.% Ni alloy, the operative barrier would be 1.06 eV. All of
these energy barriers are significantly below the average energy
barrier of the same alloy, and correspond to very large increases
in cross-slip rate at moderate temperatures (for instance, see
Eq. 1 with kT = 0.0254¢V at T = 300K).

The barriers for cross-slip nucleation can therefore be very
low in Ni-Al and Al-Mg. However, a nucleus of length 405
must subsequently expand along the dislocation line by lateral
motion of the two constrictions in order to grow the cross-slip
region. Expansion involves sequentially overcoming smaller
energy changes of the order of o [AEnq(§ = 1b)] for the lateral
advance of the cross-slipped segment by one Burgers vector.
These energy changes can be positive or negative, depending on
whether the glide or cross-slip plane is energetically favorable
at each site. For a long dislocation line, the growing nucleus
will eventually encounter regions where there is a long sequence
of small positive energy changes, and this sequence can cre-
ate a significant barrier against further lateral expansion of the
cross-slip segment nucleation. On the other hand, if the nucle-
ated segment can expand sufficiently before encountering such
a barrier, it can still activate the myriad processes associated
with cross-slip. That is, extension of the cross-slip across the
entire screw-oriented portion of the line length is not necessary

AE; g
: 2

act ~ AEact,avg -

11

to create cross-slip processes in the alloy. The analysis of char-
acteristic cross-slip segment lengths, and barriers, is a statistical
problem that is beyond the scope of this paper. The discussion
here serves to identify the problem, and to emphasize that while
cross-slip is not driven the average barrier, neither is it driven
completely by the single lowest barrier (weak-link behavior).
We will address this statistical problem, and its important impli-
cations for experimental observation of cross-slip in alloys, in
future work.

The present analysis has identified some crucial new features
of cross-slip activation in random fcc alloys, and developed an
analytic predictive model that captures the controlling statistical
aspects of the problem. The concepts and analysis apply to
both dilute and concentrated solid solutions. The latter category
includes High Entropy Alloys, where the effects identified here
may provide insight into the origins of the strength and work
hardening behavior. However, the full implications of our results
have not yet been explored. In addition, the role of Escaig
stresses, i.e. applied stress that change the partial dislocation
separation and thus the cross-slip barrier, have not yet been
investigated. We are currently studying both of these important
aspects of cross-slip and will report on our analysis in the near
future.
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Appendix A. Implementation of the Simplified String Method

The transition path is a path on the (3N-1)-dimensional po-
tential energy landscape, where N is the number of atoms. It
connects the initial and final state of the process and its character-
istic is that a state lying on it experiences no force perpendicular
to the path.

In a numerical scheme, the path is discretized using a number
of Ng “images” of the system of interest, which includes the
initial and the final state. The images are placed along the path
according to a specific parameterization. Starting from an initial
guess, the solution is found iteratively.

LAMMPS implements the Nudged Elastic Band [71] method
for transition path calculation. However, this method diverged
frequently in preliminary calculations with Ni-Al and Al-Mg.
As an alternative, we used a custom implementation of the Sim-
plified and Improved String [58] method.

Each iteration consists two steps: an evolution step, where
the atoms are moved according to their force, and an interpola-
tion step, which is required to retain the parameterization. In
our implementation, we require the images to be equally spaced
along the path. FIRE energy minimization is used for mov-
ing the atoms, and linear interpolation for reparameterization.
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The used FIRE parameters are listed in Tab. A.1. E et al. [58]
reparameterized the path after every increment of the motion.
Considering the large (o< 10%) number of degrees of freedom in
our calculation, we reparameterize only every 100 increments of
the minimizer, which is similar to using a larger overall step size.
Iteration is stopped when the norm of the displacement of each
image relative to its position in the previous iteration is below
10_3A, or, if this threshold is not reached, after a total number
of 300 iterations.

Table A.1: FIRE parameters; see [84] for reference.

parameter value
Nmin 20
Sine 1.1
f dec 0.5
fo 0.99
Olgtart 0.25
Atmax 0.002 ps
At (initial)  0.001 ps

Note that in the original implementation of the Modified
Improved String method, the atoms would be moved according
to the following overdamped dynamics:

x; = —AV;

(i=1...Ng), (A1)

where X; is the 3N-dimensional vector of atomic velocities of
image i. The idea is that all images lying on the path represents
a stationary state of the whole scheme, since images on the path
will only slide downhill along the path and will be moved back to
their original position in the subsequent interpolation step. In our
implementation, by contrast, the atoms are moved according to
FIRE dynamics, see [84]. This is Newtonian dynamics, where,
however, the velocity and force vector are mixed to obtain a
velocity with a stronger downhill component. Furthermore,
velocities are zeroed whenever the dot product of velocity and
momentum is positive, i.e. whenever the system is moving uphill
on the energy landscape. In conjunction, this means that states
on the path will only move downhill along the path, like in the
original scheme; i.e. all states lying on the path is a stationary
state of the modified scheme, too.

Appendix B. Solute pair model

Dislocation cross-slip involves annihilation of the stacking
fault ribbon on the glide plane and formation of a new one on
the cross-slip plane. In each fault ribbon, two atomic layers are
displaced by one partial Burgers vector relative to each other.
As a consequence, solute-solute nearest-neighbor pairs may be
formed or destroyed. The net change in solute pairs AN ¢ during
cross-slip is a random variable. We want to model its standard
deviation.

We make the simplifying assumption that the dislocations
are straight and the stacking fault is an ideal stacking fault every-
where. In reality, the dislocations may be curved and the atomic
displacement close to the partial dislocation cores that delimit
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the fault is not exactly the displacement corresponding to a per-
fect fault. Furthermore, we assume that the solute distribution
is random and uncorrelated, so that we can replace occupation
numbers by the average solute concentration.

Fig. B.10 shows the two atomic layers in a section of a
stacking fault. Atoms in the lower layer are gray. A crystal-
lographic unit cell is shaded red. In a stacking fault ribbon of
length ¢ along [101], the dislocation line direction, and width d
along [121], there are ¢/b x 4/bv/3 such cells. In each cell, there
are two atoms in the upper layer. Each atom exchanges one
nearest neighbor in the lower plane when the fault is formed or
annihilated.

b3

O

z |l [1o1]

x|l [151]J

Figure B.10: Lower images: layer of atoms perpendicular to the dislocation line;
a nearest-neighbor pair of solutes (blue) in the stacking fault (red) is destroyed
as the dislocation moves from the glide to the cross-slip plane. Top: view from
top onto the stacking fault; gray atoms are in the lower layer of the fault. Per
unit cell in the fault (shaded red), there are two atoms in the upper layer of the
fault, each of which exchanges one nearest neighbor atom in the lower layer
during cross-slip.

Let N = 2¢/b and Ny = d/b/3. Label the atoms in the upper

layer by i = 1...N; along x 11 [101] and by j = 1...N, along

y11 [121]. The net change in solute-solute pairs when the fault in
Fig. B.10 is formed or destroyed is:

Ni Ng

ANgs st = Zzsij (sij2—sij1) s
ij

(B.1)

where s;;, 5;;,1 and s;; > are the occupation numbers of the atom
at site (i, j) and the two nearest neighbors in the lower plane that
are exchanged in the process. s;; is one if there is a solute at site
(i, 7), and zero otherwise. The same applies to s; ;.1 and s;; . For
convenience, let u;; = (si;2 — sij,1). Note that (ug) =c—c =
0V p,q.

Calculating the standard deviation of AN ¢f requires (ANS_S)SQ2
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and <ANS_S,Sf2>. The former is zero, because

N; Ny
Y (sij (sij2—sijn))
i
N; Ny
-2 i) (sija) = (sia)
i
Ny Ny

= ZZC(C—C)

=0.

<ANs—s,sf>

(B.2)
Furthermore,
Ni Ny

D) sijtij
J

i

2
AIvs—s,sf

Ny Ny
LY (sijuiy)?
i

Ni Ng Ng Ni N; Ng

+ZZ Z SijUijSikUik + Z Z Zsij”ijskj”kj
i J kEj i ki j
N, N} Ny Ny

+Z Z Z Z SijUijSkiUk] -

=y

(B.3)

Averaging eliminates all but the first term, therefore:

Ni Ng

_ 2 2

= ZZ (sij) (i) -
ij

sij» 8ij,1 and s;; > are Bernoulli random variables, hence:

()

(ANyss*) (B.4)

_ /2 2
= <Sij,2 —2sij28ij1 + Sij,1>

= (sti2) =2 (sij2sijn) + (i)

=c—2"4c¢
=2c(1—c¢). (B.5)
Thus
Ni Ng
<ANs—s,sf2> = 2226‘2(1 - C)
i
= 2C2(1 - C)N[Nd
=4c*(1—c) &d (B.6)

p2\/3
Assuming that pair formation and destruction on the glide

and cross-slip plane is independent, the variance of the net pair
change due to cross-slip is:
Var [ANg] = 2 ((ANss?) = (ANs0)?) (B.7)

The standard deviation is therefore:

(B.8)
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