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Abstract
Portability and efficiency are usually antagonists in multi-
core computing. In order to develop efficient code, one needs
to take into account the topology of the target multi-cores
(e.g., for locality). This clearly hampers code portability. In
this paper, we show that you can have the cake and eat it too.

We introduce MCTOP, an abstraction of multi-core
topologies augmented with important low-level hardware in-
formation, such as memory bandwidths and communication
latencies. We show how to automatically generate MCTOP
using libmctop, our library that leverages the determin-
ism of cache-coherence protocols to infer the topology of
multi-cores using only latency measurements.

MCTOP enables developers to accurately and portably
define high-level performance optimization policies. We
illustrate several such policies through four examples:
(i-ii) thread placement in OpenMP and in a MapReduce li-
brary, (iii) a topology-aware mergesort algorithm, as well as
(iv) automatic backoff schemes for locks. We illustrate the
portability of these optimizations on five processors from In-
tel, AMD, and Oracle, with low effort.

1. Introduction
Since 2000, computing systems are becoming more diverse
in terms of the numbers of threads per core, cores per socket,
as well as the on-chip and off-chip interconnects. This ten-
dency makes the task of developers very challenging, for
they need to fine-tune software to the underlying hardware
in order to achieve performance (e.g., [12, 18, 19, 30, 37]).
Furthermore, optimizing for specific multi-core topologies
hinders software portability. In fact, the need for such opti-
mizations raises two main questions: (i) how to harvest and
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(a) Topology of a single socket, augmented with the intra-socket
communication latencies, and memory latencies and bandwidths.
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cies and bandwidths. Level 4 represents non-direct links.

Figure 1: Visualization of the MCTOP topology of an
8-socket AMD processor. Both the topology and the graphs
are automatically generated by libmctop.

expose multi-core details in software, and (ii) how to fine-
tune according to these details, while ensuring portability.

Traditionally, developers have been relying on the topol-
ogy information of operating systems, through libraries,
for abstracting the topology of multi-cores (e.g., using
libnuma [47] on Linux, liblgrp [6] on Solaris, or
hwloc [19]). These libraries offer a topology representation
of multi-cores, as well as a companion interface for placing
threads (and data). However, the provided representations
are low-level and offer only the limited topology view of the
operating system. As such, developers do not have access
to the performance characteristics of the underlying multi-
core processor. Moreover, developers still need to optimize
their software for each platform. For example, they need to
manually identify the hardware contexts that belong to the
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same cores (usually for avoiding them), calculate the best-
connected sockets, and consult processor manuals for dis-
covering the actual topology of their multi-core. The result
is ad-hoc implementations, tied to the underlying platform.

We present in this paper an easier, more portable ap-
proach to optimizing software for multi-cores. We intro-
duce MCTOP, a multi-core topology abstraction of impor-
tant low-level information, such as communication latencies
and memory bandwidths. MCTOP is automatically generated
and exposed to software developers by our libmctop user-
level library. Figure 1 depicts the visual representation of the
MCTOP of an AMD Opteron. Of course, a developer could
directly use this low-level information to fine-tune her soft-
ware for this Opteron. For instance, she could decide to use
sockets 0 and 1 as they are connected with minimum latency.
However, such optimizations—that rely on the specifics of a
processor—are not portable. Instead, she could write a policy
that uses any two sockets (if available) that minimize latency.

MCTOP enables the design of easy, portable, and efficient
optimizations using such high-level policies. In turn, these
policies make use of the actual numbers included in MCTOP.
Essentially, MCTOP allows developers to express high-level
semantics that utilize the low-level performance details of
multi-cores, thus delivering portable optimizations. For in-
stance, using MCTOP, we can easily define policies such as
“use one hardware context per core,” “use two sockets with
maximum bandwidth,” or even “use the maximum number
of threads, in the two most remote sockets, so that each
thread has access to at least 3 MB of LLC.”

libmctop is based on MCTOP-ALG, our novel algo-
rithm for inferring the topology of multi-cores. MCTOP-ALG
relies on two fundamental observations: (i) cache-coherence
protocols are deterministic in the absence of contention,
and (ii) communication latencies characterize the topol-
ogy. These observations are in accordance with the net-
work view of multi-cores that has been proposed for OS de-
sign [12, 13, 70]. MCTOP-ALG leverages these two obser-
vations by collecting accurate core-to-core communication
latencies, which are used to infer the topology of the proces-
sor. On top of this topology, libmctop collects additional
low-level measurements, such as cache latencies and mem-
ory latencies/bandwidths. The end result is an automatically-
generated MCTOP representation of the multi-core.

We argue that MCTOP-ALG’s measurement-based ap-
proach is superior to loading multi-core topologies from the
underlying OS or hardware (e.g., using CPUID) for various
reasons: (i) portability—collecting measurements is almost
identical on any architecture or OS, unlike reading topol-
ogy info from the OS or the hardware; (ii) forward/back-
wards compatibility—measurements do not depend on the
OS version; (iii) correctness—numbers do not lie, while the
OS can be misconfigured1; (iv) extensibility—independence

1 On the multi-core of Figure 1, the OS has an incorrect mapping of cores
to memory nodes, while MCTOP-ALG infers the correct mapping.

from the information that vendors do or do not expose; and
(v) accuracy—a measurement-based approach collects ac-
curate low-level measurements that we need in MCTOP.

We illustrate portable optimizations with MCTOP through
four examples on five processors from Intel, AMD, and
Oracle. First, we automate backing off in locking using the
latencies of MCTOP. Our optimized spinlocks deliver up to
39% average throughput improvements. Second, we design
a topology-aware mergesort algorithm that builds a cross-
socket merge tree on top of MCTOP. Our algorithm is 17%
faster on average than the parallel sort algorithm of the C++
standard library which is topology agnostic.

Furthermore, we design a thread placement library, called
MCTOP-PLACE, on top of MCTOP (libmctop) and use
it in optimizing the Metis MapReduce library [53] and
OpenMP [7]. MCTOP-PLACE includes 12 high-level per-
formance policies that optimize for locality, bandwidth, or
energy efficiency. We plug MCTOP-PLACE in Metis and
achieve 17% better average performance, while consuming
14% less energy in four of the workloads. Similarly, we ex-
tend OpenMP with runtime support for configuring place-
ment policies, enabling portable, high-level, and dynamic
thread placement. We evaluate Green-Marl’s [42] OpenMP-
based graph workloads and improve the performance of var-
ious graph analytics, such as PageRank, by 22% on average.

To summarize, our main contributions are as follows:
1. MCTOP, a rich multi-core topology abstraction that en-

ables policy-based portable software optimizations;
2. MCTOP-ALG, a portable algorithm for inferring the

topology of multi-cores without relying on the topology
information of the OS or the hardware;

3. libmctop and the software we build using
libmctop, both available at:

http://lpd.epfl.ch/site/mctop

Of course, libmctop has certain limitations. We have
ported libmctop on x86 and SPARC architectures, and
cannot yet guarantee the effectiveness of MCTOP-ALG on
other architectures (e.g., ARM, POWER). Additionally, in or-
der to collect accurate measurements, libmctop requires a
solo execution on the target processor for the one run that in-
fers the topology (this means stopping all other applications
for the duration of libmctop’s first execution).

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the programming interface of MCTOP.
In Section 3, we introduce a generic algorithm for harvest-
ing MCTOP topologies of multi-cores, while in Section 4, we
present how to extend MCTOP topologies. We then describe
examples of high-level performance optimization policies in
Section 5 and use these ideas in designing a thread place-
ment library in Section 6. Finally, we present practical ex-
amples, our related work, and conclude the paper in Sec-
tions 7, 8, and 9, respectively.

http://lpd.epfl.ch/site/mctop


2. The MCTOP Topology Abstraction
The first step for achieving portable optimizations is to pro-
vide a programming abstraction of multi-core topologies.
Software can build on this abstraction and avoid using the
limited, non-extensible, specific view of multi-cores that
is exposed by operating systems. To this end, we design
MCTOP (multi-core topology), a portable topology abstrac-
tion. We opt for MCTOP, and for a user-level implemen-
tation of libmctop, instead of changing the existing OS
interfaces and enriching them with extra information. This
way, MCTOP and libmctop are (i) portable across OSs,
and (ii) readily available to software developers, without the
need to install new OS kernels. Additionally, MCTOP has two
important characteristics. First, MCTOP is generic: It can be
used to describe many modern multi-cores. Second, MCTOP
is extensible: It can be extended to support any low-level
details of multi-cores, which are necessary to achieve fine-
tuning of software and portability at the same time.

In the remainder of this section, we first highlight cer-
tain characteristics of modern multi-cores that affect the de-
sign of MCTOP, we then describe the programming inter-
face of MCTOP, and, finally, we illustrate several examples
of MCTOP topologies.

State of Affairs of Modern Multi-Cores. Multi-core
servers are typically multi-socket processors with non-
uniform memory accesses (NUMA—i.e., the latency to ac-
cess data depends on the placement of both the thread and
the data). Non-uniformity is mainly a result of the multiple
sockets of the processor. Traditionally, every socket is di-
rectly connected to one local memory node.2

Furthermore, modern multi-cores include several CPU
cores in order to offer thread-level parallelism. Many proces-
sors also employ simultaneous multi-threading (SMT) for
even higher thread-level parallelism. In short, with SMT,
every core contains more than one hardware context (i.e.,
the scheduling granularity for software threads is hardware
contexts, not cores). Each hardware context shares most of
the core’s resources with the other hardware context(s) (e.g.,
the caches and the pipeline). Both Linux and Solaris expose
hardware contexts as individual cores to the user.

libmctop Programming Interface. MCTOP topologies
are stored in description files, which are created by
libmctop once and are then used to load the topology.
Once a topology is loaded, the developer can either use
libmctop’s programming interface to access MCTOP, or
visualize the topology as textual output or as a graph.
libmctop represents MCTOP topologies as a set of struc-
tures that are linked together to describe the processor. The
most important structures of MCTOP are shown in Table 1.

These structures are interconnected (i) vertically, in or-
der to represent the actual topology, and (ii) horizontally,

2 On very large NUMA machines, it is possible to have fewer memory nodes
than sockets (e.g., two sockets can share one memory node).

hw context The lowest scheduling unit of the processor. If SMT
exists, hw context represents a hardware context,
otherwise it represents an actual core.

hwc group A group of hw contexts or hwc groups, such as a
core that contains two hardware contexts, or a group of
cores that share the L2 cache. There might be multiple
levels of hwc group within a socket.

socket A hwc group with additional information about the
NUMA memory nodes and the interconnection with
other sockets.

node A memory node with information such as capacity.
interconnect The interconnection between two sockets. Contains

information such as the communication latencies.
mctop The structure that represents a processor and links

everything together. Contains info about the latency
levels, SMT, the number of sockets and cores, etc.

Table 1: The main structures of MCTOP.

for simplifying the traversal of all objects at each level.
For instance, a hw context holds pointers to its parent
hwc group, its parent socket, as well as its successor
(in terms of proximity) hw context. Additionally, every
structure holds pointers to additional low-level information,
such as memory latencies and bandwidths.

We opt for a representation that uses terms that match
any modern processor and are extensible for future designs.
As such, the interface of libmctop uses terms which are
familiar to system designers, such as:
• mctop get local node(hw ctx) to get the local

node of a hw context;
• mctop socket get cores(socket) to get the

cores of a socket; and
• mctop get latency(id0, id1) to get the latency

between any two components.

2.1 Examples of MCTOP Topologies
libmctop can generate a simplified visual representation
of MCTOP (using Graphviz [1]) in order to make the topol-
ogy more accessible to developers. We illustrate MCTOP us-
ing libmctop on various x86 and SPARC processors. We
present below the automatically generated graphs and pro-
vide details of each platform. In Section 7, we use these plat-
forms in our experiments.

Reading MCTOP Graphs. MCTOP’s visual representation
includes two main graphs, depicting the intra- and the cross-
socket topologies respectively—e.g., Figure 2. The intra-
socket graph (Figure 2a) includes the communication laten-
cies inside a socket—28 cycles between SMT contexts of the
same core and 116 cycles between difference cores. It also
includes the latency and bandwidth from this socket to all the
available memory nodes. The local node (Node 4—shown
as a gray box) has a latency of 369 cycles and a maximum
throughput of 13.1 GB/s.

The cross-socket graph (Figure 2b) shows the commu-
nication latencies between hardware contexts on different
sockets of the machine (e.g., two threads on sockets 0 and



5 have a latency of 341 cycles), as well as the memory band-
widths when accessing the memory of another socket (cross-
socket bandwidth is limited by the interconnect). Finally, the
two-hops latency between hardware contexts that belong to
sockets that are not directly connected is depicted as “lvl 4.”

Intel Xeon Ivy Bridge (Ivy). The 20-core Intel Xeon (used
as an example for explaining MCTOP-ALG—Figure 6) con-
sists of two E5-2680 v2 10-core sockets (40 hardware con-
texts). Ivy runs at 1.2-2.8 GHz and includes 32 KB, 256 KB,
and 25 MB (per die) L1, L2, and LLC, respectively.

Intel Xeon Westmere (Westmere). The 80-core Intel Xeon
(Figure 2) consists of eight E7-8867L 10-core sockets (160
hardware contexts). Westmere operates at 1.1-2.1 GHz and
has 32 KB, 256 KB, and 30 MB (per die) L1, L2, and LLC
data caches, respectively.

Intel Xeon Haswell (Haswell). The 48-core Intel Xeon
(graph not shown due to space limitations) consists of four
E7-4830 v3 12-core sockets (96 hardware contexts). Haswell
operates at 1.2-2.7 GHz and has 32 KB, 256 KB, and 30 MB
(per die) L1, L2, and LLC data caches, respectively.

AMD Opteron (Opteron). The 48-core AMD Opteron
(Figure 1) contains four AMD Opteron 6172 multi-chip
modules (MCMs) [27]. Each MCM has two 6-core dies, for
a total of eight sockets. Opteron operates at 2.1 GHz and has
64 KB, 512 KB, and 5 MB (per die) L1, L2, and LLC data
caches, respectively.
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Figure 2: MCTOP of an 8-socket Intel processor.
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Figure 3: MCTOP of a socket of an Oracle processor.

Oracle SPARC T4-4 (SPARC). The Oracle SPARC T4-4
(Figure 3) consists of four T4 sockets with eight cores per
socket and a total of 256 hardware contexts. SPARC operates
at 3 GHz and has 16 KB, 256 KB, and 4 MB (per die) L1,
L2, and LLC data caches, respectively.

3. MCTOP-ALG: Inferring Topologies
We introduce MCTOP-ALG, our algorithm that infers the
basic topology of cache-coherent shared memory proces-
sors using only latency measurements. MCTOP-ALG relies
on two simple, yet important observations regarding cache-
coherence protocols of modern multi-core processors.

OBSERVATION 1
(Cache-coherence protocols are deterministic in the ab-
sence of contention)

Cache-coherence protocols are responsible for keeping
data consistent in the various caches of multi-cores. Most
modern processors implement the MESI coherence proto-
col [60], or variants of MESI.

Hardware cache-coherence protocols are deterministic by
design. Still, non-deterministic schedules can appear, but
only under contention (e.g., if multiple threads contend for a
cache line, then the schedule of coherence messages is nat-
urally not deterministic). In the absence of contention, hard-
ware coherence protocols deliver deterministic schedules. In
simple words, a given request type (e.g., requesting for writ-
ing), on a given multi-core, for a block of data in a specific
MESI state and the same placement, always takes the same
steps. Consider the simplified example of Figure 4, where a
cache line cl is in the modified state3 in the caches of core o
and another core r is requesting the data for writing—a re-
quest known as request for ownership (RFO). The RFO re-
quest for cl misses in the private caches of r. The request
finds that o holds the only copy of cl through the last-level
cache (LLC) (or using a directory, depending on the specific
implementation of MESI4). Once the copy is found, an inval-
idation request is sent to o’s private caches to discard their

3 Recall that the modified state means that this cache line is the only fresh
copy of the data and this data is stale in memory.
4 For example, modern Intel server processors use the LLC, while AMD
servers use a directory (known as the probe filter [27]).
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Figure 4: Coherence traffic for an RFO request.

copy of cl, after which the RFO request is granted to r. If r
is not in the same socket as o, the RFO request is propagated
to the corresponding socket.

Overall, the coherence request takes deterministic steps.
Hence, we can devise thread schedules that accurately mea-
sure the communication latency between any two contexts.

OBSERVATION 2
(Communication latencies characterize the topology)
Multi-cores include several cache levels for minimizing la-
tency to data. The latency of a request defines at large the
distance between the source of the request and the placement
of data. For instance, on the 2-socket Intel Xeon Ivy Bridge
(see Section 2.1), 4, 12, and 42 cycles are (approximately)
the latencies to access the three levels of caches, while 112
and 308 cycles represent the latencies to access data that are
in the private caches of another core within the same socket
and across sockets, respectively.

Two threads can potentially detect their relative place-
ment based on their communication latency. For example, on
Ivy, if two threads communicate in approximately 4 cycles,
they have to reside on the same core as the L1 cache deliv-
ers this latency. In contrast, communication latency of 300+
cycles reveals that the two threads are on different sockets.

MCTOP-ALG Algorithm. MCTOP-ALG takes advantage
of the aforementioned observations by collecting accu-
rate hardware-context-to-hardware-context communication
latency measurements and using them in inferring the topol-
ogy of the machine. The implementation of MCTOP-ALG in
libmctop requires only three functionalities from the un-
derlying OS: A way to read the number of available hard-
ware contexts and the number of memory nodes, and a way
to pin threads to specific contexts.

MCTOP-ALG takes the following four steps:
1. Collects context-to-context latency measurements→ la-

tency table;
2. Clusters close values into groups and normalizes the la-

tencies accordingly→ normalized latency table;
3. For each latency value l, categorizes hardware contexts

into groups of contexts that communicate with latency
l with each other and with the same latency with other
groups→ per latency level components;

4. Creates the multi-core representation by assigning roles
to components→ topology;

Thread x Thread y
thread barrier()

CAS(shared line)
thread barrier()

s = rdtsc()
CAS(shared line)

lat[x][y] = rdtsc() - s - rdtsc latency

Figure 5: Lock-step execution of MCTOP-ALG’s threads.

We detail below these four steps using Ivy as an
example—Figure 6. We then discuss several practical con-
siderations regarding MCTOP-ALG and how the correctness
of the inferred MCTOPs can be validated.

3.1 Context-to-Context Latencies
MCTOP-ALG uses two threads that move from hardware con-
text to hardware context and fill up an N × N latency ta-
ble, where N is the number of hardware contexts of the pro-
cessor. For each data point, the two threads execute in lock
step as shown in Figure 5 (similar measurements have been
used in existing systems research [18, 30, 40, 73]). Thread y
brings the data in a modified state in its local caches and then
thread x measures the latency of its own access to the shared
data using the timestamp counter of the core [4]. Reading
the timestamp counter has a non-negligible latency which
must be deducted from the latency measurements. Accord-
ingly, the execution in Figure 5 subtracts the estimated cost
of reading rdtsc (see Section 3.5 for more details).

The use of an atomic operation, such as compare-and-
swap (CAS), is crucial for two reasons. First, CAS includes
a memory fence, hence it precludes the effects of memory
consistency models [67]. Second, CAS brings the data in
the modified MESI state. The modified state is necessary
for avoiding potential whole-machine communication when
broadcasting invalidations for a shared cache line (e.g., in
AMD Magny Cours [27, 30]). As we describe in Section 3.5,
libmctop performs the measurements several times to
produce stable results.

The outcome of this step is a latency table (Figure 6 1 ).
Note that in practice we only need to take measurements for
either the upper or the lower triangular of the table because
the topology is symmetric.

3.2 Latency Normalization
As the heatmap of Figure 6 1 shows, the relations between
hardware contexts are rather clear. The white diagonal rep-
resents the individual contexts, the two light gray diagonals
represent the hardware contexts of the same core, and the
gray and dark-gray rectangles are the intra- and cross-socket
latencies, respectively. To extract these relations, MCTOP-
ALG calculates the cumulative distribution function (CDF)
of the latency values—Figure 6 2a . The value clusters of
CDF represent these aforementioned relations. MCTOP-ALG
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11 320 324 328 328 324 316 312 308 312 312 124 0 128 124 120 112 108 108 128 128 328 328 328 324 320 308 308 308 332 332 128 28 128 124 120 112 108 108 128 128

12 320 324 328 328 324 312 312 308 312 312 124 128 0 124 124 112 108 108 128 128 332 332 332 328 324 312 312 308 332 332 128 128 28 124 124 112 108 108 128 128

13 320 320 328 328 320 308 308 304 308 308 120 124 124 0 124 108 108 104 128 128 328 328 328 324 324 312 308 308 332 332 128 128 128 28 124 108 108 104 128 128

14 316 320 324 324 320 308 308 304 308 304 120 120 124 124 0 108 108 104 128 128 324 324 324 320 320 308 304 304 328 328 124 124 124 120 28 108 104 104 128 128

15 304 308 316 312 308 296 292 292 296 292 108 112 112 108 108 0 96 92 116 116 312 312 312 308 308 296 292 292 316 316 116 116 116 112 108 28 96 92 116 116

16 304 304 312 312 304 292 292 288 292 292 104 108 108 108 108 96 0 92 116 116 312 312 312 308 308 296 292 292 316 316 112 112 112 108 108 96 28 92 116 116

17 300 304 308 312 304 292 288 288 292 288 104 108 108 104 104 92 92 0 108 112 308 312 308 304 304 292 288 288 312 312 108 108 108 108 104 92 88 28 108 108

18 324 324 328 328 324 316 312 308 316 312 128 128 128 128 128 116 116 108 0 116 316 316 316 312 312 296 296 292 316 320 112 112 112 108 104 92 92 88 28 116

19 324 328 328 328 324 316 312 308 316 312 128 128 128 128 128 116 116 112 116 0 316 316 316 308 308 296 296 292 316 316 112 112 112 108 108 96 92 92 116 28

20 28 128 128 128 124 116 112 108 112 112 324 328 332 328 324 312 312 308 316 316 0 124 124 140 140 128 108 104 128 128 320 320 320 320 316 304 304 300 324 324

21 124 28 128 128 124 116 112 108 112 112 328 328 332 328 324 312 312 312 316 316 124 0 128 124 120 112 108 104 128 128 324 324 324 320 320 308 304 304 324 324

22 124 128 28 128 124 116 112 108 112 112 328 328 332 328 324 312 312 308 316 316 124 128 0 124 124 112 108 108 128 128 328 328 328 328 324 316 312 308 332 328

23 120 124 124 28 120 112 108 104 108 108 324 324 328 324 320 308 308 304 312 308 140 124 124 0 124 108 108 104 128 128 328 328 328 328 324 312 312 312 332 328

24 120 120 124 124 28 108 108 104 104 108 320 320 324 324 320 308 308 304 312 308 140 120 124 124 0 108 108 104 124 124 324 324 324 320 320 308 304 304 324 328

25 108 112 112 108 108 28 96 92 92 96 308 308 312 312 308 296 296 292 296 296 128 112 112 108 108 0 96 92 116 116 316 316 316 312 308 296 296 296 316 316

26 104 108 108 108 108 96 28 92 92 92 308 308 312 308 304 292 292 288 296 296 108 108 108 108 108 96 0 92 116 116 312 316 316 312 312 296 296 292 316 316

27 104 108 108 104 104 92 92 28 88 92 304 308 308 308 304 292 292 288 292 292 104 104 108 104 104 92 92 0 108 112 312 312 312 308 304 292 292 288 312 312

28 128 128 132 128 124 116 116 108 28 116 328 332 332 332 328 316 316 312 316 316 128 128 128 128 124 116 116 108 0 116 316 316 316 312 312 296 296 296 316 316

29 128 128 128 128 124 116 116 108 116 28 328 332 332 332 328 316 316 312 320 316 128 128 128 128 124 116 116 112 116 0 312 316 316 312 308 296 296 292 316 316

30 320 324 328 328 324 312 308 308 312 312 28 128 128 128 124 116 112 108 112 112 320 324 328 328 324 316 312 312 316 312 0 124 124 120 120 108 104 104 128 128

31 320 324 328 328 324 316 312 308 316 312 124 28 128 128 124 116 112 108 112 112 320 324 328 328 324 316 316 312 316 316 124 0 124 124 120 112 108 108 128 128

32 320 324 328 328 324 312 312 308 312 312 124 128 28 128 124 116 112 108 112 112 320 324 328 328 324 316 316 312 316 316 124 124 0 124 124 112 108 108 128 128

33 320 320 328 328 320 308 308 304 308 308 120 124 124 28 120 112 108 108 108 108 320 320 328 328 320 312 312 308 312 312 120 124 124 0 124 108 108 104 128 128

34 316 320 324 324 320 308 308 304 308 304 120 120 124 124 28 108 108 104 104 108 316 320 324 324 320 308 312 304 312 308 120 120 124 124 0 108 108 104 128 128

35 304 308 316 312 308 296 296 292 296 292 108 112 112 108 108 28 96 92 92 96 304 308 316 312 308 296 296 292 296 296 108 112 112 108 108 0 96 92 116 116

36 304 304 312 312 304 292 292 288 292 292 104 108 108 108 104 96 28 88 92 92 304 304 312 312 304 296 296 292 296 296 104 108 108 108 108 96 0 92 116 116

37 300 304 308 312 304 292 288 288 292 288 104 108 108 104 104 92 92 28 88 92 300 304 308 312 304 296 292 288 296 292 104 108 108 104 104 92 92 0 108 112

38 324 324 328 332 324 316 312 308 316 312 128 128 128 128 128 116 116 108 28 116 324 324 332 332 324 316 316 312 316 316 128 128 128 128 128 116 116 108 0 116

39 324 328 328 332 324 316 312 308 316 312 128 128 128 128 128 116 116 108 116 28 324 324 328 328 328 316 316 312 316 316 128 128 128 128 128 116 116 112 116 0
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1 112 0 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 28 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308

2 112 112 0 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 28 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308

3 112 112 112 0 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 28 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308

4 112 112 112 112 0 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 28 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308

5 112 112 112 112 112 0 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 28 112 112 112 112 308 308 308 308 308 308 308 308 308 308 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

6 112 112 112 112 112 112 0 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 28 112 112 112 308 308 308 308 308 308 308 308 308 308 0 28 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308

7 112 112 112 112 112 112 112 0 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 28 112 112 308 308 308 308 308 308 308 308 308 308 1 112 28 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308

8 112 112 112 112 112 112 112 112 0 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 28 112 308 308 308 308 308 308 308 308 308 308 2 112 112 28 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308

9 112 112 112 112 112 112 112 112 112 0 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 28 308 308 308 308 308 308 308 308 308 308 3 112 112 112 28 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308

10 308 308 308 308 308 308 308 308 308 308 0 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 28 112 112 112 112 112 112 112 112 112 4 112 112 112 112 28 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308

11 308 308 308 308 308 308 308 308 308 308 112 0 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 28 112 112 112 112 112 112 112 112 5 112 112 112 112 112 28 112 112 112 112 308 308 308 308 308 308 308 308 308 308

12 308 308 308 308 308 308 308 308 308 308 112 112 0 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 28 112 112 112 112 112 112 112 6 112 112 112 112 112 112 28 112 112 112 308 308 308 308 308 308 308 308 308 308

13 308 308 308 308 308 308 308 308 308 308 112 112 112 0 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 28 112 112 112 112 112 112 7 112 112 112 112 112 112 112 28 112 112 308 308 308 308 308 308 308 308 308 308

14 308 308 308 308 308 308 308 308 308 308 112 112 112 112 0 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 28 112 112 112 112 112 8 112 112 112 112 112 112 112 112 28 112 308 308 308 308 308 308 308 308 308 308

15 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 0 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 28 112 112 112 112 9 112 112 112 112 112 112 112 112 112 28 308 308 308 308 308 308 308 308 308 308

16 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 0 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 28 112 112 112 10 308 308 308 308 308 308 308 308 308 308 28 112 112 112 112 112 112 112 112 112

17 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 0 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 28 112 112 11 308 308 308 308 308 308 308 308 308 308 112 28 112 112 112 112 112 112 112 112

18 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 0 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 28 112 12 308 308 308 308 308 308 308 308 308 308 112 112 28 112 112 112 112 112 112 112

19 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 0 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 28 13 308 308 308 308 308 308 308 308 308 308 112 112 112 28 112 112 112 112 112 112

20 28 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 0 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 14 308 308 308 308 308 308 308 308 308 308 112 112 112 112 28 112 112 112 112 112

21 112 28 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 0 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 15 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 28 112 112 112 112

22 112 112 28 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 0 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 16 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 28 112 112 112

23 112 112 112 28 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 0 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 17 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 28 112 112

24 112 112 112 112 28 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 0 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 18 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 28 112

25 112 112 112 112 112 28 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 0 112 112 112 112 308 308 308 308 308 308 308 308 308 308 19 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 28

26 112 112 112 112 112 112 28 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 0 112 112 112 308 308 308 308 308 308 308 308 308 308

27 112 112 112 112 112 112 112 28 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 0 112 112 308 308 308 308 308 308 308 308 308 308

28 112 112 112 112 112 112 112 112 28 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 0 112 308 308 308 308 308 308 308 308 308 308

29 112 112 112 112 112 112 112 112 112 28 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 0 308 308 308 308 308 308 308 308 308 308

30 308 308 308 308 308 308 308 308 308 308 28 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 0 112 112 112 112 112 112 112 112 112

31 308 308 308 308 308 308 308 308 308 308 112 28 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 0 112 112 112 112 112 112 112 112

32 308 308 308 308 308 308 308 308 308 308 112 112 28 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 0 112 112 112 112 112 112 112

33 308 308 308 308 308 308 308 308 308 308 112 112 112 28 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 0 112 112 112 112 112 112

34 308 308 308 308 308 308 308 308 308 308 112 112 112 112 28 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 0 112 112 112 112 112

35 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 28 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 0 112 112 112 112

36 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 28 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 0 112 112 112

37 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 28 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 0 112 112

38 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 28 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 0 112

39 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 28 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 0
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Figure 6: The four steps of MCTOP-ALG: From latency measurements to the automatic creation of MCTOP multi-core topology.

detects these latency clusters and for each cluster generates a
triplet with the minimum, median, and maximum latencies.

MCTOP-ALG uses the latency clusters for normalizing
the latency table (Figure 6 2b ). Each value of the table is
replaced with the median value of the corresponding cluster.

3.3 Component Creation
MCTOP-ALG uses the normalized latency table to extract the
relations among hardware contexts for each latency level
within the socket and assigns them to components. We re-

cursively define a component Cl of level l > 0 as a set of
components of level l − 1 such that any two components in
Cl communicate with the latency of level l and have the ex-
act same normalized communication latencies with all the
other components of level l − 1. At level 0, with latency 0,
every hardware context belongs to its own C0 component.

Using this definition of components, MCTOP-ALG re-
cursively groups hardware contexts together by performing
classification and reduction of the latency table. For exam-
ple, in Figure 6 3 , the first step is to group the contexts



(components C0) of each core with each other and reduce the
table by only keeping the components C1 (i.e., the cores).5

Then, the cores of each socket are reduced to C2 components
and we end up with only the cross-socket latencies table.

The outcome is a set of components for each latency
level. This assignment of hardware contexts to components
describes the relations between contexts.

3.4 Topology Creation
In this last step, MCTOP-ALG assigns “roles” to the compo-
nents of different levels according to the MCTOP represen-
tation. The result is an abstraction of the actual topology of
the processor as shown in Figure 6 4 (the memory measure-
ments are described in Section 4). MCTOP-ALG first detects
whether the target multi-core includes SMT. If the multi-
core has SMT, the components of the first non-zero latency
group represent the physical cores of the processor. Simi-
larly, MCTOP-ALG classifies as socket level the level with as
many hardware contexts as total #contexts

#nodes . Every relation
higher than sockets represents cross-socket connectivity.

3.5 Practical Considerations
Using the Timestamp Counter. Using the timestamp
counter for the fine-grained measurements required by
MCTOP-ALG produces various complications [59]. As
we mention earlier in this section, reading the times-
tamp counter has a non-negligible latency that has to
be accounted for in the measurements. To achieve this,
libmctop explicitly estimates the cost of reading the
counter (rtdsc latency in Figure 5) and subtracts this
cost from every measurement. Of course, even the estima-
tion of rtdsc latency is susceptible to various sources
of variability, such as DVFS and interrupts. One potential ap-
proach to reducing these effects is to execute in kernel space
(so that threads exclusively use the target core), to disable
interrupts, and to modify the BIOS settings of the machine
to remove “problematic” technologies such as DVFS [59].

However, we want libmctop to be readily available to
developers in user space; thus, we do not employ these ap-
proaches. Instead, libmctop ensures the stability of mea-
surements in user space, by taking into account technologies
such as DVFS and by discarding spurious measurements—
as described below. That being said, an implementation of
MCTOP-ALG in kernel space would yield even higher accu-
racy of measurements than the one in libmctop.

Reducing the Effects of DVFS. Dynamic Voltage and Fre-
quency Scaling (DVFS) is a common hardware technique for
reducing power consumption, where underutilized cores can
execute at various voltage/frequency settings. libmctop
explicitly waits for the frequency of both cores to reach its
maximum before proceeding to the lock-step execution. To

5 Note that the 28 cycles latency that we get for hardware contexts is higher
that the L1 latency, because both threads execute on the same core while
taking the measurements, thus increasing the latency.

detect DVFS, a thread executes a spin loop on a core and
measures the time of this execution. If a subsequent exe-
cution of the same loop is faster, the core must be transi-
tioning between DVFS states. Once a core reaches the maxi-
mum voltage/frequency setting, the core remains in this state
as libmctop keeps the core fully occupied (e.g., even the
thread barriers of libmctop are spin-based).

Stability of Measurements. MCTOP-ALG is designed to
work solo on the target processor, as it relies on the accuracy
of latency measurements. In order to improve this accuracy,
each latency measurement is repeated n times (n = 2000
by default) and the median and standard deviation (stdev)
are calculated. If stdev is higher than a threshold (7% of the
median by default), the execution is repeated for that con-
figuration and the stdev threshold is increased (up to 14%
by default). The aforementioned default values are empiri-
cally selected and do not significantly affect the behavior of
libmctop. Of course, the user of libmctop has to con-
figure the tool in a reasonable manner. For example, if stdev
is allowed to be 100% of the median value, libmctop
might not get accurate measurements.

Still, libmctop might collect a few spurious measure-
ments, mainly due to the effects of DVFS and of background
OS processes executing on the same core of SMT-enabled
processors. In these cases, if MCTOP-ALG is not able to infer
the topology, an error message is printed and the user must
retry the execution, possibly with different settings (see Sec-
tion 3.6 for more details).

Detecting SMT. libmctop detects if the processor has
symmetric multi-threading (SMT) using the same idea with
“removing the effects of DVFS.” A thread first executes
a spin loop solo on a core and measures the time of this
execution. Then, two threads execute the same loop on two
contexts with minimum latency. If these are the hardware
contexts of the same core, then due to SMT sharing, the
duration of the spin loop will increase.

Performance. MCTOP-ALG in libmctop takes ∼3 sec-
onds to infer the topology of our smallest platform (Ivy), and
it takes 96 seconds to infer the topology of Westmere (160
contexts with DVFS). MCTOP-ALG is more stable and faster
when DVFS is disabled. MCTOP-ALG is single-threaded, be-
cause (i) using more threads increases variability, and (ii)
when threads of parallel pairs execute on contexts of the
same core, measurements are severely impacted.

Dynamic Changes of Multi-Cores. libmctop does not
currently support the detection of dynamic changes of the
topology of a multi-core. If, after the execution of MCTOP-
ALG, SMT is disabled through BIOS, or a hardware context
is disabled via the OS, MCTOP-ALG must be re-executed in
order to detect the new configuration.



3.6 MCTOP-ALG Output Validation
Validating that MCTOP-ALG inferred the correct topology for
a multi-core is important. Currently, libmctop includes
two methods for pointing out potential misbehaviors. Addi-
tionally, developers can consult processor manuals, or use
manufacturer tools to validate MCTOP. In our experience,
libmctop is able to infer the correct topology of multi-
cores, except from the uncommon cases where libmctop
is unable to perform clustering of values, as described be-
low. Additionally, the measurements of libmctop match
the expected (i.e., processor datasheet) values.

Unsuccessful Clustering of Latency Values. As we men-
tion earlier, spurious measurements cannot be completely
avoided in MCTOP-ALG. Our current implementation of
MCTOP-ALG in libmctop relies on the symmetry and the
hierarchical structure of modern multi-cores to detect such
values. Specifically, libmctop expects that at every la-
tency level, each component Cli of level l > 0, contains the
same number of Cl−1 components as any other Clj com-
ponent. Additionally, every Cl−1, with l > 0, component
exists in precisely one Cl component. Accordingly, if a spu-
rious latency measurement is clustered in an incorrect group,
libmctop can detect the problem and report an error.

Comparing MCTOP to the OS Topology. One basic sanity
check is to compare the inferred MCTOP to the topology
of the OS. If the two topologies match, we can be certain
that the MCTOP topology is correct. Otherwise, if the two
topologies differ, libmctop suggests which experiments
to rerun, in order to understand whether MCTOP or the OS
has the correct view of the hardware.

Comparing MCTOP to Other Tools and Manuals. Finally,
if a developer is still in doubt regarding a MCTOP topology,
she can refer to the official processor manuals for her multi-
core. Some manufacturers also offer tools for measuring
memory characteristics of their processors (e.g., [3, 72]).

4. Enriching MCTOP Topologies
The basic topology representation created with MCTOP-ALG
includes the communication latencies of the processor by
design. These latencies are sufficient for defining locality-
oriented performance policies, such as “find the socket that
is the closest to socket x.” Although locality optimizations
are very important on NUMA multi-cores, we argue that
with access to further low-level information in the MCTOP
abstraction, we can implement a broader set of performance
policies (see Section 5 for examples). Therefore, MCTOP in-
cludes a set of additional multi-core measurements. We have
implemented four essential plugins that measure memory
latencies and bandwidths, cache information, and power-
related measurements (only available on modern Intel pro-
cessors). Essentially, libmctop gives the best-case band-
width and latency of a multi-core—i.e., these characteristics

in the absence of contention. Of course, developers can write
their own plugins to further enrich MCTOP.

Memory Latency and Bandwidth. The two memory plu-
gins use standard microbenchmark techniques (inspired by
the ones used in Corey [18, 73]) to estimate memory laten-
cies and bandwidths. In brief, the memory latency plugin
creates a randomly connected linked list of cache lines out
of a large allocated memory area. Due to the size and the
randomness of the list, traversing it results in cache misses
(memory accesses) for almost every iteration. The memory
bandwidth plugin also allocates a large chunk of memory.
performing sequential accesses instead. This way, it maxi-
mizes the memory accessed by each thread.

Cache Latency and Size. The cache plugin estimates both
the size and the latency of the various levels in the cache hi-
erarchy. To estimate latency, the plugin uses the same tech-
nique as the memory latency measurements. The cache size
estimation is based on those latency measurements (i.e., it
estimates the size of each level by detecting the data size that
causes latency to increase). Additionally, the plugin loads
and includes the cache sizes from the operating system.

Power Consumption. The latest Intel processors include
Intel’s running average power limit (RAPL) [4] interface for
accurately measuring the power consumption of the cores,
the package, and the DRAM. We design a libmctop plu-
gin that uses RAPL to gather power measurements which
indicate the breakdown of power to hardware contexts. In or-
der to estimate the maximum power consumption, we use a
memory intensive workload (the same that we use for band-
width measurements). We measure and include in MCTOP
measurements such as: Idle processor power, full power (all
hardware contexts are active), power of the first hardware
context, and power of the second context of one core.

5. Portable Optimizations with MCTOP

Optimizing a concurrent system for the underlying hardware
hinders the portability to other processors. In certain cases,
this lack of portability is inevitable. For example, using
Intel’s restricted transactional memory [4] results in software
that can only execute on specific processor models.

However, for more traditional topology-oriented opti-
mizations, such as for locality or bandwidth, we can achieve
portable optimizations on top of MCTOP. We can do so
because these traditional notions are accurately defined on
MCTOP. For instance, “use n cores that are the closest to core
x,” is a policy that can be easily, accurately, and portably de-
fined in MCTOP. Consequently, we can define high-level per-
formance policies that leverage, but at the same time abstract
the low-level details of multi-core topologies.

Essentially, MCTOP provides a topology query engine for
multi-cores (similar to the system knowledge base of Bar-
relfish [65]). Of course, software should not rely on any as-
sumptions regarding the underlying multi-core, but rather



build on top of libmctop’s programming interface to ac-
cess information in a portable manner. For instance, an al-
gorithm that explicitly allocates memory on nodes 0 and 1
will not work on a single-node processor. Instead, the devel-
oper can use mctop get num nodes to provision for the
available resources of any multi-core.

In what follows, we highlight several examples of
portable optimizations with policies on top of MCTOP. Sec-
tion 6 contains a detailed description of thread placement
policies. In Section 7, we evaluate several of these examples.

Topology-Aware Work Stealing. Work stealing [16] is a
commonly used technique in parallel runtimes that aims to
minimize the imbalance of work across worker threads. In
brief, worker threads have access to work queues from which
they dequeue and execute chunks of work. In order to avoid
imbalance, workers with no work must steal work from other
worker threads. Ideally, work stealing must be performed in
a way that (i) reduces the overhead of accessing the non-
local queue, and (ii) optimizes the locality/bandwidth of the
stealer to the work chunk.
7→ MCTOP Policies. On top of MCTOP, we can easily imple-
ment the following work-stealing policy: If the local work
queue is empty, steal from the queue of worker threads that
are the closest in terms of latency. If unsuccessful, continue
with the contexts that are the next closest. Continue this pro-
cess until work is found, or there is no work to steal. This
policy defines work stealing with optimized locality.

Topology-Aware Reduction Trees. Many parallel algo-
rithms and frameworks rely on the fork-join model. The
most notable example is the MapReduce paradigm [31]. In
the fork-join model, computation is split in chunks that are
processed in parallel by multiple processes. The local results
of each process are then reduced (joined) to get the final re-
sult. Intuitively, on a NUMA processor, when these local re-
sults represent a sizable amount of data, the thread and data
placement of the reduction process can have a large effect on
the performance of the computation.
7→ MCTOP Policies. We describe policies for cross-socket
reduction trees that we believe are broadly applicable. The
following steps assume that multiple threads can concur-
rently reduce the same data. Within sockets, all threads of a
socket cooperate on reducing the same chunks. Across sock-
ets, we build a binary reduction tree such that (i) the final
destination socket/node is the one that requires the final data,
and (ii) at each level of the tree, we choose the sockets to co-
operate so that we maximize the bandwidth to data. We use
these policies in a sorting algorithm in Section 7.

Power Consumption Estimation. Power consumption and
energy efficiency have gained increased attention in the past
few years [17, 21]. MCTOP’s power-related measurements on
modern Intel processors can be used to estimate the power
consumption of a specific execution (i.e., a fixed thread
placement) before the actual execution.

7→ MCTOP Policies. Being able to estimate the power con-
sumption of an execution gives us the opportunity to trade
performance for lower power. For example, a low-power pol-
icy (e.g., Section 6) prioritizes the use of hardware contexts
that minimize power consumption.

Educated Backoffs. Waiting for a short period of time be-
fore retrying an operation, namely backing off, is an es-
sential technique for alleviating congestion in software. For
example, backoffs are used in lock implementations [10].
Estimating the correct amount of time to back off is dif-
ficult. Small backoffs miss a window for further optimiza-
tion, while large backoffs could hurt performance by induc-
ing idle periods of no work.
7→ MCTOP Policies. We define the granularity of backing
off on top of MCTOP based on the intuition that “messages”
on multi-cores travel as fast as coherence protocols. Accord-
ingly, we set the backoff quantum to be the maximum la-
tency between any two threads that are involved in the exe-
cution. We use this policy in lock algorithms in Section 7.

6. Thread Placement with MCTOP

A prominent way of using MCTOP is developing higher-
level libraries that rely on performance policies. A natural
construction on top of MCTOP is a library that abstracts the
placement of threads to hardware contexts given some place-
ment policy. For instance, we might need to place threads
close to a specific node where some data resides.

We develop MCTOP-PLACE, a portable thread placement
library. MCTOP-PLACE comprises two main components:

Name Short description
NONE Threads are not pinned to hardware contexts.
SEQUENTIAL Use the sequential OS numbering.
CON HWC Starting from the socket with the maximum local

memory bandwidth, place threads as compactly as
possible on all hardware contexts of this socket and then
continue to the next best connected neighboring socket.

CON CORE HWC Same goal as CON HWC. Instead of using all hardware
contexts, use all unique cores of the socket before using
the second hardware context. Still, fill up the first socket
before using the next one.

CON CORE Same goal as CON HWC. Instead of using all hardware
contexts, use all unique cores of all used sockets. Once
all cores are used, use the second+ context of each core.

BALANCE Balanced CON * placements. Instead of filling up a
socket before using the next, balance threads to sockets.

RR Place threads round robin to sockets. Prioritizes the
sockets with maximum bandwidth to their local
memory. Uses unique cores first (RR CORE) or all
hardware contexts of the core (RR HWC).

POWER Place threads so that the estimated maximum power
consumption is minimized. (Intel processors only.)

RR SCALE Same as RR CORE, but also re-adjusts the number of
threads per socket to use as many as necessary to
saturate the memory bandwidth to their local node.

Table 2: The set of policies offered by MCTOP-PLACE.



## MCTOP Placement : MCTOP_PLACE_CON_HWC
# # Cores : 15
# HW contexts (30 ) : 0 20 1 21 2 22 3 ...
# Sockets (2 ) : 20000 20001
# # HW ctx / socket : 20 10
# # Cores / socket : 10 5
# BW proportions : 0.655 0.345
# Max pow no DRAM : 66.7 43.4 = 110.1 Watt
# Max pow with DRAM : 111.9 88.7 = 200.6 Watt
# Max latency : 308 cycles
# Min bandwidth : 24.28 GB/s

Figure 7: Example output of MCTOP-PLACE.

(i) individual thread placements, and (ii) a pool of place-
ments that supports runtime modification of configurations.

MCTOP-PLACE. libmctop thread placement (MCTOP-
PLACE) creates a mapping of threads to hardware contexts
given a placement policy. Optionally, the user can provide
the number of threads and the number of sockets to be used.
The basic interface of MCTOP-PLACE includes functions for:
(i) initializing a new MCTOP-PLACE object with a given
policy, (ii) pinning a thread to the next available context of
a MCTOP-PLACE object (if any), and (iii) unpinning a thread
from the context and returning it to MCTOP-PLACE.

We implement 12 placement policies (Table 2). In
non-SMT multi-cores, CON HWC, CON CORE HWC, and
CON CORE policies are equivalent. We believe that the poli-
cies of MCTOP-PLACE cover the most prominent placement
choices a developer can make, such as compacting or spread-
ing threads as much as possible. Still, if none of these poli-
cies covers a required thread placement, implementing a new
policy is straightforward since the basic data structures for
doing so are already in place.

Apart from the mapping of threads to hardware contexts,
MCTOP-PLACE provides a plethora of additional information
and function calls to leverage MCTOP. Figure 7 shows an
example output of mctop place print on Ivy (see Sec-
tion 2.1). For a given allocation policy, MCTOP-PLACE cal-
culates and exports details such as the number of cores used,
the bandwidth proportions of each socket, and an estima-
tion of the maximum power consumption with and without
DRAM (assuming that the application will execute solo on
the processor). Additionally, once a thread has been pinned,
it has access to information such as its local node and its
hardware context and core IDs within the socket. In Sec-
tion 7 we use MCTOP-PLACE in various examples.

MCTOP-PLACE Pool. MCTOP-PLACE places threads ac-
cording to a single policy. However, software systems might
require different placement policies in different execution
phases. To support this functionality, we build a MCTOP-
PLACE pool object that offers runtime selection of placement
policies. In Section 7 we show how we use MCTOP-PLACE’s
pool to extend the thread placement capabilities of OpenMP.

MCTOP-PLACE vs. Thread Scheduling. With MCTOP-
PLACE, we enable developers to assign static thread place-

ment policies to their workloads, optimizing them across
platforms with no additional effort. Obviously, the developer
still needs to select the right policy for optimizing a work-
load. Additionally, factors like contention and workload
skews can affect the behavior of an application and change
the optimal policy for a specific workload/platform combi-
nation. Furthermore, these static placements with MCTOP-
PLACE might result in two similar applications utilizing the
same hardware contexts of a processor, resulting in poor per-
formance for both applications. These placement problems
are present in existing multi-core libraries (e.g. libnuma,
hwloc) and can be solved by OS-level thread scheduling—
an orthogonal, very elaborate problem. We leave centralized
scheduling with MCTOP in the OS for future work.

7. Examples of Portable Optimizations
We experimentally show how the performance policies on
top of MCTOP achieve portable optimizations in software.
Our goals for this section are to illustrate (i) the usefulness
of the low-level measurements of MCTOP, (ii) the ability to
optimize existing software using libmctop, and (iii) the
portable efficiency of the resulting software.

Experimental Setup. We execute our experiments on all
five platforms described in Section 2.1. We perform 11 runs
of each experiment and present the median performance. We
do not to show error bars for readability as our experiments
have small variance. Whenever there is variability across
runs, we discuss it in text. The duration of each of our lock
experiments is 5 seconds.

7.1 Using Latencies to Optimize Locking
Traditional spinlock algorithms, such as ticket locks, resort
to busy waiting when the lock is not free [11, 54]. While
busy waiting, it can be beneficial to back off before re-
accessing the shared memory location of the lock [10, 33].
As discussed in Section 5, with MCTOP it is straightforward
to make educated backoff decisions for such algorithms. We
use MCTOP to optimize three lock algorithms: test-and-set
(TAS), test-and-test-and-set (TTAS) and ticket (TICKET)
locks. We use as backoff quantum the maximum commu-
nication latency between any two threads involved in the ex-
ecution. Different lock algorithms employ the backoff quan-
tum in different ways. With ticket locks we set the back-
off to be proportional to the position of the thread in the
“queue” [30, 46, 54]. With TAS and TTAS, threads simply
back off for one quantum before accessing the lock again.

Evaluation. Figure 8 includes the relative throughput of
the three lock algorithms with and without our MCTOP-based
backoff schemes. The experiment involves multiple threads
competing for the same lock, performing 1000 cycles of
work in the critical section, and then releasing the lock.
Threads pause after each iteration to avoid long runs [56]. On
both the x86 and the SPARC processors, we use the pause
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Figure 8: Throughput of different lock algorithms using educated backoffs from MCTOP.

instruction for pausing [4, 8] as the baseline. On x86, we
invoke pause in a loop to implement our backoff quantum.

Backing off with the “correct” backoff granularity signif-
icantly improves performance: On average, we improve the
performance of TAS, TTAS, and TICKET by 12%, 11%, and
39%, respectively. These performance gains are consistent
across platforms, without requiring reconfiguration or re-
compilation of the applications. With TTAS, as contention
increases, backing off does not make a difference, since most
threads are still bashing the cache line with spinning.

Conclusion. MCTOP’s low-level information can be used
to optimize the performance of locking algorithms. The op-
timization is portable across platforms, as libmctop’s in-
terface provides the necessary latencies on each platform.

7.2 Using libmctop in Parallel Mergesort
We use libmctop to devise a very fast, portable
mergesort algorithm. Our novelty lies in the way we
perform NUMA-aware merging. The starting point for
our algorithm is the parallel sort algorithm of the
C++ standard library (gnu parallel::sort) [66].
gnu parallel::sort involves two main steps: (i) it
breaks the target array into n chunks and lets n threads
sort these chunks with the standard sequential quicksort al-
gorithm (n is the number of available threads), and (ii) it
iteratively performs parallel merging on the sorted chunks
until the result is a single sorted array. Our mergesort al-
gorithm, namely mctop sort, takes the same first step as

gnu parallel::sort. However, mctop sort merges
the sorted arrays using the topology-aware reduction tree
policies presented in Section 5.

Using SMT Cleverly. Merging two sorted arrays using tra-
ditional comparison instructions is sub-optimal: The aggres-
sive out-of-order cores are not able to predict the direc-
tion of the merge branch (i.e., which of the two arrays will
give the next element). Recent projects [26, 43] show how
to use SIMD instructions for efficient merging. Using 128-
bit instructions, we can create a bitonic merge network that
merges 8 elements at a time. We implement a variant of
mctop sort, namely mctop sort sse, that uses SIMD
instructions. Once the sequential sorting is over, we let the
first hardware context of each core use SIMD, while the
remaining perform traditional merging. To compensate for
the faster merging with SIMD, SIMD threads are allocated
three-time more data than the non-SIMD threads.

Evaluation. Figure 9 presents a performance com-
parison between mctop sort, mctop sort sse
(only on platforms that support SIMD instructions) and
gnu parallel::sort (gnu). Both algorithms assume
an unsorted array on socket 0 and produce the sorted
array on the same socket. We present execution times for
runs with 16 threads on every machine, as well as with
the total number of hardware contexts available. With
mctop sort, threads are spread across sockets, in order to
benefit from the large LLCs of each socket (using RR policy
from MCTOP-PLACE), while the merging tree is designed
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better. All workloads are optimized for performance. (*On SPRC we use the CON CORE placement for Word Count.)

to take advantage of the bandwidth of the machine. The
performance of our algorithm is stable across runs, since the
placement of threads and data is deterministic. In contrast,
we notice big variance for gnu parallel::sort, based
on the thread placement of the OS.

mctop sort is consistently faster than
gnu parallel::sort (we observe the same behavior
for other data sizes), because it deterministically chooses
a good placement of threads. On average, mctop sort
is 17% faster than gnu parallel::sort, with merg-
ing being 25% faster (if we exclude the sequential part
of the sorting that is the same on both algorithms).
mctop sort sse delivers 18% higher performance
than gnu parallel::sort on average, and it can be
up to 9% faster than mctop sort (on Haswell). The
performance benefits of mctop sort are larger with 16
threads, as the OS scheduling for gnu parallel::sort
has more opportunities for bad thread placements.

Conclusion. Building topology-aware merging is straight-
forward on MCTOP. We leverage low-level details (e.g.,
bandwidth and latency for locality) of multi-cores without
the need for any platform-specific optimizations.

7.3 Using libmctop to Improve Metis
We use libmctop to optimize the Metis MapReduce li-
brary for multi-cores [19, 53]. Metis pins worker threads to
hardware contexts sequentially. We build a new version of
Metis that uses the high-level placement policies of MCTOP-
PLACE in libmctop at runtime (see Section 6).

Evaluation. We evaluate Metis in terms of performance
and energy efficiency (where energy measurements are
available). Due to space considerations, we present four of

Relative to performance oriented
Workload Time Energy Energy Efficiency
K-Means 1.186 0.774 1.089

Mean 1.045 0.915 1.046

Figure 11: Comparison of energy-oriented thread placement
of Metis to performance-oriented placement (i.e., as in Fig-
ure 10) on Ivy. For energy efficiency, higher is better.

the applications shipped with the source code of Metis, for
which placement has a significant effect on performance—
Figure 10. We execute representative placement policies for
each workload on Ivy, and choose the one that gives the best
performance. We then use that policy for all the platforms.
We also select the best-performance number of threads for
both versions of Metis. Our MCTOP-enabled Metis always
uses fewer or as many threads as the default Metis.

As Figure 10 reveals, different workloads have different
placement needs. Thus, using the default sequential policy of
Metis delivers sub-optimal performance in all workloads for
different platforms. Our version of Metis delivers 17% better
performance on average, across all platforms, with 14% less
energy on the two Intel processors. Performance benefits are
higher on bigger machines, as the communication latencies
between two arbitrary cores vary significantly. It is worth
noting that in one workload (Word Count), SPARC has dif-
ferent placement requirements than the x86 platforms, de-
livering the best performance with cores of a single socket.
Our performance analysis shows that Word Count has heavy
memory allocation and synchronization that benefit from
intra-socket locality. Finally, note that in this example we
aim at performance, although we do achieve energy gains
in some cases. In several Metis workloads, we can trade
performance for energy (efficiency) (e.g., using the POWER
policy)—shown in Figure 11. For instance, with K-Means on
Ivy, we can trade 19% of performance to achieve 9% better
energy efficiency by using fewer physical cores.

Conclusion. By modifying the Metis library, we show how
a complex software system can easily take advantage of
MCTOP, in order to achieve portable optimizations. General-
purpose frameworks, such as Metis, can get out-of-the-box
benefits from using MCTOP through libmctop.

7.4 Using libmctop to Enrich OpenMP
The GNU libgomp OpenMP runtime [5, 7] does not pin
threads to cores by default. Still, libgomp allows users to
set the available places of parallel threads on hardware con-
texts, as well as high-level strategies for assigning parallel
threads to places. libgomp thread placement capabilities
are: (i) offline—they are set through environmental variables
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Figure 12: Relative execution time of MCTOP MP compared to default OpenMP for various workloads.

before the execution, (ii) inflexible—placements cannot be
modified at runtime and are dependent on the number of
threads used during initialization, (iii) not fully portable—
in many cases placements must be defined differently across
platforms to achieve the same effects, (iv) not optimized—
placements do not rely on latency or bandwidth numbers.

We extend the thread placement capabilities of libgomp
(in gcc v4.9.3) using libmctop (MCTOP-PLACE) in or-
der to offer richer and higher-level placement policies. In
detail, we add the omp set binding policy function
to the OpenMP interface. Doing so, we enable developers
to (i) choose placement policies during runtime, (ii) change
placement policies between parallel regions, and (iii) lever-
age the high-level semantics of the MCTOP-PLACE place-
ment policies that generate portable thread bindings.

Evaluation. We evaluate our extended OpenMP runtime
(MCTOP MP) against the vanilla libgomp OpenMP library
on various graph algorithm workloads produced by Green-
Marl [42] (due to space limitations, we only present work-
loads for which thread placement affects performance)—
Figure 12.6 We use large datasets (e.g., 100 million nodes
with 800 million edges).

We use MCTOP MP to enable a proof-of-concept auto-
matic thread-placement policy-selection mechanism, by run-
ning small parts of the workload using different policies and
identifying a good policy for each parallel section. In con-
trast, such online decisions are not possible with OpenMP,
as it does not offer the same high-level semantics and also
cannot adjust the thread placement at runtime. Even if the
configuration was manually selected for OpenMP, the de-
veloper would still need to find which placement policy
matches the characteristic of each algorithm and implement
this policy across platforms. Still, there are a few cases
where MCTOP MP results in up to 9% lower performance
than OpenMP due to the “pre-processing” stage. Overall,
our MCTOP MP version of the algorithms is on average 22%
faster across platforms and workloads.

We further port MCTOP MP’s automatically-selected
thread placements to the OpenMP runtime, in order to es-
timate the amount of work for reproducing these placements
using the default OpenMP capabilities. We observe that in

6 The available implementation of Green-Marl [2] does not support SPARC.

order to reproduce the exact same configurations (with pos-
sibly different number of threads per platform) we had to de-
sign one policy per-platform per-workload with OpenMP. In
terms of performance—not shown in the graphs—our auto-
matic MCTOP MP solution delivers very similar performance
to OpenMP with fixed placements.

Finally, we combine two kernels (PageRank and Poten-
tial Friends) into a single application, namely Combina-
tion. With OpenMP, it is impossible to recreate MCTOP MP’s
placement: We have to choose the correct placement pol-
icy for either of the kernels, while the performance of the
other suffers. This results in MCTOP MP being 22% faster
than OpenMP for this workload on average.

Conclusion. MCTOP MP enables portable optimizations
through libmctop in software libraries such as OpenMP.
MCTOP MP offers high-level placement policies and runtime
support for policy selection and adaptation—characteristics
that we believe are useful to OpenMP developers.

8. Related Work
Optimizing Software for Multi-Cores. As corroborated by
a large amount of work in operating systems [12, 14, 18, 19,
35, 61, 70, 74], databases [36, 44, 62, 63, 75], programming
languages [37, 58], parallel runtimes [7, 9, 41, 52], key-value
stores [15, 51], and synchronization [22–24, 32, 45], system
developers need to optimize software for the target platform
to achieve good performance. We discuss below selected
examples of multi-core optimizations.

Baumann et al. [12, 13] design the Barrelfish OS that
views modern multi-cores as a network of processors and
relies on message passing in order to avoid the intractable
task of optimizing for every single platform. Our MCTOP-
ALG algorithm essentially builds on top of this network view
in order to automatically infer the topology of multi-cores.
Moreover, MCTOP bears similarity to the system knowledge
base [65] of Barrelfish that also exposes hardware informa-
tion to software developers.

Giceva et al. [36] explore the efficient deployment of
database query plans on multi-core hardware with the aim
of improving database performance. Psaroudakis et al. [63]
describe how data placement and access patterns can affect
the performance of database workloads on modern NUMA



machines. In the same vein, Gidra et al. [37, 38] improve
the performance of the JVM garbage collector by mainly
optimizing memory placement.

In our previous work [30], we showed that synchro-
nization is mainly a property of the underlying hardware.
Guiroux et al. [39] corroborate that different lock algo-
rithms perform the best with different configurations. Sim-
ilarly, various lock algorithms and techniques [23, 24, 32]
are NUMA (i.e., topology) aware. Kaestle et al. [45] develop
a library for generating efficient inter-core broadcast trees
tuned to modern NUMA machines.

MCTOP is built based on the realization that multi-core
optimizations are necessary for good system performance.
With MCTOP, such optimizations can be made portable.

OS Scheduling. A significant amount of work has dealt
with OS scheduling and memory/thread placement, with
a focus on NUMA architectures [25, 29, 48–50, 55, 64,
68, 76]. We provide libmctop (MCTOP) in user-space, so
that it is readily available for any application and exemplify
thread placement with libmctop to illustrate portability.
We acknowledge that thread scheduling is an orthogonal,
very elaborate problem. We believe MCTOP to be a suitable
substrate for designing schedulers.

Autotuning. There is a large number of systems and
frameworks for offline and online autotuning [28, 34, 57,
71]. These typically focus on portability and application tun-
ing to optimize for specific goals (e.g., performance, energy
efficiency). Using MCTOP to feed configuration parameters
to algorithms could be seen as a form of autotuning. How-
ever, typical autotuning solutions use experiments to select
among a set of candidate implementations/configurations
per platform. In contrast, MCTOP offers a query engine for
hardware characteristics, deterministically defining notions
such as locality (without parameter exploration).

Tools for Multi-Cores. Libraries with similar functional-
ity to MCTOP already exist. The most prominent ones are
libnuma [47], liblgrp [6], and hwloc [20]. Similarly
to libmctop, all three provide some form of topology ab-
straction, as well as APIs for thread and memory placement.
In contrast to libmctop, all three libraries rely on the OS
for the topology of the machine (which as we have discussed
can lead to inaccuracies). They also lack the low-level mea-
surements that the enriched MCTOP abstraction offers.

Additionally, libnuma and liblgrp offer relative
“distances” between resources. These depend on the OS
and can be very inaccurate. Both libnuma and liblgrp
are also OS-specific (libnuma works on Linux, while
liblgrp on Solaris). hwloc is portable across platforms
(i.e., it can load the topology from various operating sys-
tems), but is also missing the detailed latency and band-
width measurements of MCTOP, which, as we have shown,
are crucial for optimizing software. hwloc also offers an
API that can be used across platforms. Unfortunately, it fo-

cuses mainly on locality and the available cache hierarchies
of the platforms. In contrast, with MCTOP, we have both the
portable abstraction of the topology, as well as the enriched
measurements which can be used either directly or indirectly
to optimize software across platforms.
LIKWID [69] is a set of command-line tools that visual-

ize the thread and cache topology of a multi-core, as well
as control the thread affinities of an application. LIKWID
relies on the operating system for its topology (currently it
supports only Linux) and focuses mainly on performance
counter measurements.
libmctop uses latency and bandwidth measurements

to augment MCTOP. Similar measurements have been pre-
sented in previous operating system and synchronization
work [18, 30, 40, 73]. Intel’s latency checker [3] and per-
formance counter monitor [72] can be used to measure the
memory latencies and bandwidths on Intel platforms.

As we show in this paper, libmctop and MCTOP con-
tain all the necessary components to achieve portable opti-
mizations on multi-cores.

9. Conclusions and Future Work
We introduced MCTOP, a topology abstraction that enables
developers to optimize their software on multi-cores in a
portable manner. MCTOP abstracts both the topology and im-
portant low-level performance information of the processor.
MCTOP is automatically generated by our MCTOP-ALG algo-
rithm and is exposed to developers through our libmctop
library. We showed how developers can define high-level
policies on top of MCTOP in order to achieve portable opti-
mizations. We illustrated these high-level policies on various
examples, including a topology-aware MapReduce library
and an extended OpenMP runtime with dynamic support for
thread placement based on libmctop.

Future Work. In future work, we intend to build thread
scheduling on top of MCTOP inside the OS. Such a sched-
uler requires solving various interesting research questions.
First, it asks for an approach of dynamically determining the
optimal policy for an application, removing from the user the
need to statically choose a thread policy for an application/-
workload combination. Additionally, it requires the ability
to schedule applications that co-execute on the same ma-
chine and (possibly) interfere in their execution. In order to
perform scheduling of multiple applications, the scheduler
needs to keep track of the effective topology characteristics.
For example, if an application is already executing, the effec-
tive memory bandwidth for another application is less than
the total bandwidth reported by MCTOP.
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[49] B. Lepers, V. Quéma, and A. Fedorova. Thread and Mem-
ory Placement on NUMA Systems: Asymmetry Matters.
USENIX ATC ’15.

[50] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient
Operating System Scheduling for Performance-Asymmetric
Multi-Core Architectures. SC ’07.

[51] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA:
A Holistic Approach to Fast In-Memory Key-Value Storage.
NSDI ’14.

[52] Z. Majo and T. R. Gross. A Library for Portable and Compos-
able Data Locality Optimizations for NUMA Systems. PPoPP
’15.

[53] Y. Mao, R. Morris, and M. F. Kaashoek. Optimizing MapRe-
duce for Multicore Architectures. In Computer Science and
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Tech. Rep. Citeseer, 2010.

[54] J. Mellor-Crummey and M. Scott. Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors. TOCS
’91.

[55] A. Merkel, J. Stoess, and F. Bellosa. Resource-Conscious
Scheduling for Energy Efficiency on Multicore Processors.
EuroSys ’10.

[56] M. Michael and M. Scott. Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms. PODC
’96.

[57] S. Muralidharan, A. Roy, M. Hall, M. Garland, and P. Rai.
Architecture-Adaptive Code Variant Tuning. ASPLOS ’16.

[58] T. Ogasawara. NUMA-Aware Memory Manager with
Dominant-Thread-Based Copying GC. OOPSLA ’09.

[59] G. Paoloni. How to Benchmark Code Execution Times on
Intel IA-32 and IA-64 Instruction Set Architectures. Intel
Corporation white paper, 2010.

[60] M. S. Papamarcos and J. H. Patel. A Low-Overhead Coher-
ence Solution for Multiprocessors with Private Cache Memo-
ries. ISCA ’84.

[61] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishna-
murthy, T. Anderson, and T. Roscoe. Arrakis: The Operating
System is the Control Plane. OSDI ’14.

[62] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki.
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