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Abstract
Although this thesis contributes to the theory of random processes, it is motivated by signal

processing applications, mainly the stochastic modeling of sparse signals. Specifically, we

provide an in depth investigation of the innovation model, under which a signal is described

as a random process s that can be linearly and deterministically transformed into a white

noise. The noise represents the unpredictable part of the signal—called its innovation—and

is a member of the family of Lévy white noises, which includes both Gaussian and Poisson

noises. In mathematical terms, s satisfies the equation

Ls = w, (1)

where L is a differential operator and w a Lévy noise. The problem is therefore to study the

solutions of stochastic differential equations driven by Lévy noises. Gaussian models usually

fail to reproduce the empirical sparsity observed in real-world signals. By contrast, Lévy

models offer a wide range of random processes going from typically non-sparse (Gaussian)

to very sparse ones (Poisson), and with many sparse signals standing between these two

extremes.

Our contributions can be divided in four parts. First, the cornerstone of our work is the theory

of generalized random processes. Within this framework, all the considered random processes

are seen as random tempered generalized functions and can be observed through smooth

and rapidly decaying windows. This allows us to define the solutions of (1), called generalized

Lévy processes, in the most general setting. Then, we identify two limit phenomenons:

the approximation of generalized Lévy processes by their Poisson counterparts, and the

asymptotic behavior of generalized Lévy processes at coarse and fine scales. In the third part,

we study the localization of Lévy noise in notorious function spaces (Hölder, Sobolev, Besov).

As an application, we characterize the local smoothness and the asymptotic growth rate of the

Lévy noise. Finally, we quantify the local compressibility of the generalized Lévy processes,

understood as a measure of the decreasing rate of their approximation error in an appropriate

basis. From this last result, we provide a theoretical justification of the ability of the innovation

model (1) to represent sparse signals.

The guiding principle of our research is the duality between the local and asymptotic proper-

ties of generalized Lévy processes. In particular, we highlight the relevant quantities, called

the local and asymptotic indices, that allow quantifying the local regularity, the asymptotic

growth rate, the limit behavior at coarse and fine scales, and the level of compressibility of the

solutions of generalized Lévy processes.
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Résumé
Si notre travail prend place dans le domaine des processus stochastiques, cette thèse a été

motivée par des problématiques issues du traitement du signal, en particulier pour la modéli-

sation stochastique des signaux parcimonieux. Il s’est agit d’étudier mathématiquement le

modèle d’innovation. Celui-ci fait l’hypothèse qu’un signal, décrit par un processus stochas-

tique s, peut être transformé en un bruit blanc par une opération linéaire et déterministe. Le

bruit blanc représente la partie imprédictible—ou innovation—du signal et appartient à la

famille des bruits de Lévy, contenant notamment le bruit gaussien et les bruits de Poisson. En

quatre symboles :

Ls = w, (1)

avec L un opérateur différentiel et w un bruit blanc de Lévy. Pour un mathématicien, il s’agit

donc d’étudier les solutions d’équations différentielles stochastiques dirigées par un bruit

blanc de Lévy. Si les modèles gaussiens échouent d’ordinaire à rendre compte de la forte

compressibilité empirique observée chez les signaux réels, les modèles de Lévy offrent une

gamme de processus allant du non parcimonieux (Gauss) au très parcimonieux (Poisson), de

nombreux signaux réels se situant entre ces deux extrêmes.

Nous détaillons nos contributions, organisées en quatre parties. Tout d’abord, nous situons

notre travail dans le cadre de la théorie des processus généralisés. Ainsi, nous voyons les

processus en jeu comme des fonctions généralisées tempérées, qui s’observent donc a priori

via des fonctions test infiniment régulières et à décroissance rapide. Ceci nous permet de

définir les solutions de (1), appelées des processus de Lévy généralisés, dans le sens le plus

large possible. Nous étudions ensuite deux phénomènes limites, que sont l’approximation

des processus de Lévy généralisés par leurs contreparties poissonniennes et le comportement

asymptotique des processus de Lévy généralisés observés à fines et larges échelles. Dans

la troisième partie, nous étudions la localisation des bruits de Lévy dans des espaces de

fonctions (Hölder, Sobolev, Besov). Cela nous permet de caractériser leur régularité locale et

leur croissance asymptotique. Enfin, nous quantifions la compressibilité locale d’un processus

de Lévy généralisé, comprise comme une mesure de la vitesse de décroissance de son erreur

d’approximation dans une base adaptée. Fort de ce résultat, nous sommes à même d’expliquer

théoriquement la pertinence de l’utilisation du modèle d’innovation (1) pour la modélisation

de signaux parcimonieux.

Le fil conducteur de nos travaux se situe dans l’étude duale des propriétés locales et asymp-

totiques des processus stochastiques considérés. Nous nous sommes efforcés de mettre en
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évidence les quantités pertinentes, appelées respectivement les indices locaux et asympto-

tiques du processus, qui permettent de quantifier la régularité locale, le taux de croissance

asymptotique, les comportements limites à fines et larges échelles, ainsi que le niveau de

compressibilité des processsus stochastiques.

Mots clefs : Bruit blanc de Lévy, processus stochastiques parcimonieux, équations différentielle

stochastiques, processus stochastiques généralisés, infinie divisibilité, convergence en loi,

régularité de Besov, approximation N -term, bases ondelettes.
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Notation
Sets

N Non-negative integers, including 0

Z Integers

R Real numbers

C Complex numbers

Rd d-dimensional Euclidian space

Td = [0,1]d d-dimensional torus

Miscellaneous

i Imaginary unit such that i2 =−1

e
∑

k≥0 1/k !

π τ/2

ℜ{z} Real part of z ∈C

ℑ{z} Imaginary part of z ∈C

z∗ Complex conjugate of z ∈C

f ∨ Function f ∨(x) = f (−x)

Leb Lebesgue measure

Supp f Support of the (generalized) function f

CardA Cardinal of the set A

Function spaces

0 < p <∞ Integratibility rate

τ ∈R Smoothness parameter

ρ ∈R Decay parameter

X Generic topological vector space

D(Rd ) Compactly supported smooth functions

D ′(Rd ) Generalized functions

S (Rd ) Rapidly decaying smooth functions

S ′(Rd ) Tempered generalized functions

R(Rd ) Rapidly decaying measurable functions

Lp (Rd ) Functions such that
∫
Rd

∣∣ f (x)
∣∣p dx <∞

1



2 CONTENTS

L∞(Rd ) Functions such that esssupx∈Rd

∣∣ f (x)
∣∣<∞

Lp0,p∞(Rd ) Functions such that f �| f |>1 ∈ Lp0 (Rd ) and f �| f |≤1 ∈ Lp∞(Rd )

Lρ(Rd ) Functions such that
∫
Rd ρ( f (x))dx with ρ : R→R+

LΘ(Rd ) Domain of definition of the Lévy noise

LΘp (Rd ) Domain of finite pth-moments of the Lévy noise

W τ
2 (Rd ) Sobolev spaces

W τ
2 (Rd ;ρ) Weighted Sobolev spaces

Bτ
p (Rd ;ρ) Weighted Besov spaces

S (Td ) Periodic smooth functions

S ′(Td ) Periodic generalized functions

W τ
2 (Td ) Periodic Sobolev spaces

Bτ
p (Td ) Periodic Besov spaces

Ṡ (Td ) Periodic smooth functions with 0-mean

Ẋ Periodic functions in X ⊆S ′(Td ) with 0-mean

Functions and generalized functions

ϕ,ψ Generic test functions in S (Rd )

u Generic tempered generalized function in S ′(Rd )

〈u,ϕ〉 Duality product between u ∈S ′(Rd ) and ϕ ∈S (Rd )

f Generic measurable function from Rd to R

�B Indicator function of the set B ⊂Rd

δ Dirac impulse

ρL Green’s function of the operator L

j Scale parameter

G Gender

k Shift parameter

ψF ,ψM Father and mother Daubechies wavelets

ψ j ,G .k Daubechies wavelets

ψ
per
j ,G .k Periodic Daubechies wavelets

ΣN ,p,τ( f ) Best N -term approximation of f

σN ,p,τ( f ) N -term approximation error

Operators

L Generic operator from S (Rd ) to S ′(Rd )

L∗ Adjoint operator of L

T Generic left-inverse of the adjoint L∗

Id Identity operator

Tx0 Translation operator with shift x0 ∈Rd

Sa Scaling operator with scale a > 0

Rθ0 Rotation operator with rotation θ0 ∈ SO(d)

F Fourier transform
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D Derivative

Di Partial derivative along direction xi

Dm Partial derivative of order m ∈Nd

Δ Laplacian operator

Λ Partial derivative D(1,...,1)

Dγ Fractional derivative of order γ≥ 0

(−Δ)γ/2 Fractional Laplacian of order γ≥ 0

Jγ Bessel operator of order γ ∈R

Probability

(Ω,F ,P) Probability space

B(X ) Borelian σ-field on the topological vector space X

X ,Y Generic real random variables

L0(Ω) Space of real random variables

Lp (Ω) Space of real random variables with finite pth-moment

PX Probability law of X

P̂X : ξ �→ E[eiξX ] Characteristic function of X

X = (X1, . . . , XN ) Generic random vector

Ψ : ξ �→ logP̂X (ξ) Lévy exponent of the infinitely divisible random variable X

ν(dt ) Lévy measure

(μ,σ2,ν) Lévy triplet

Θ : ξ �→Θ(ξ) Rajput-Rosinski exponent

s Generic generalized random process in S ′(Rd )

Ps Probability law of s (probability measure in S ′(Rd ))

P̂s : ϕ �→ E[ei〈s,ϕ〉] Characteristic functional of s

〈s,ϕ〉 Observation of the process s through the test function ϕ

w Lévy white noise

Indices, exponents, parameters: local vs. asymptotic toolbox

α Parameter of SαS random variables and noises

αloc Local index of an infinitely divisible law

αasymp Asymptotic index of an infinitely divisible law

H Hurst exponent of a self-similar process

Hloc Local Hurst exponent of a locally self-similar process

Hasymp Asymptotic Hurst exponent of an asymptotic self-similar process

τp ( f ) Local smoothness of f for the rate p

ρp ( f ) Asymptotic decay rate of f for the rate p

κp0,τ0 ( f ) Local compressibility of f for the rate p0 and the smoothness τ0

κ( f ) =κ2,0( f ) Local compressibility of f in L2





1 From Sparse Signals to Sparse Pro-
cesses
The topic of this thesis is the mathematical study of stochastic differential and pseudo-

differential equations driven by multivariate Lévy white noise. Three main aspects are devel-

oped: the construction of the solutions, the study of their regularity, and the quantification of

their compressibility.

The original motivation of our work was the development of the theory of sparse stochastic

processes, which represents the first systematic attempt for a stochastic and continuous-

domain modeling of real world signals in line with the sparsity paradigm of signal processing

[UTS14, UTAK14, UT14]. This work should therefore be seen as a mathematical continua-

tion of the monograph of M. Unser and P.D. Tafti [UT14], in the sense that it deepens some

mathematical questions (construction of sparse processes), and investigates new directions of

research (scaling limits, Besov regularity, compressibility, etc.).

This introduction provides the opportunity to connect our work with signal processing, in

particular with the framework of sparse stochastic processes. In Section 1.1, we introduce

the innovation model, which is the signal processing formulation of the stochastic model we

study. In Section 1.2, we review the current state of the theory of sparse stochastic processes.

Then, we propose an overview of our own mathematical contributions in Section 1.3.

5



6 From Sparse Signals to Sparse Processes

1.1 The Innovation Model
A signal is modeled as a continuous-domain random process that can be deterministically and

linearly transformed into its innovation, understood as the unpredictable part of the signal,

and itself captured by the concept of white noise. This is the spirit of the innovation model, of

which we detail the assumptions.

A continuous-domain model. A signal is defined over the d-dimensional continuum. We

only consider scalar-valued signals, seen as functions from Rd to R. Most of the concepts

are readily extended to vector-valued signals1. Nowadays, many popular signal processing

formulations are inherently discrete, starting with the compressed sensing [Don06, CRT06]

and the deep learning framework [GBC16]. This is driven by the constraint that practical

algorithms are applied to discrete data and should produce discrete outputs. Nevertheless,

we like to define the complete signal model in the continuous-domain as many physical

phenomenon are inherently continuous and result in analog signals (such as images, sounds,

etc.). The continuous framework also lends itself naturally to the specification of mathematical

operations, such as geometric transformations (scaling, rotation) and differentiation, that are

not well-defined in the discrete setting. It is then required to discretize the model—which

corresponds to an approximation of the continuous-domain model—for the design of signal

processing algorithms, which was largely investigated in [UT14].

The integer d ≥ 1 specifies the dimension of the definition domain of the signal s. For instance,

an acoustic signal—for which d = 1—is a function of time that measures the acoustic pressure

s(t ) at each time t . A greyscale image is seen as a function that specifies the grey level s(x, y) at

each location (x, y) ∈R2. More generally, one can consider e.g. 3D spatial signals s(x, y, z), or

(2+1)D time-evolving two-dimensional signals s(x, y ; t ).

A stochastic model. Real-world signals can be described deterministically using our knowl-

edge of physical laws. Nevertheless, there are good reasons to introduce a stochastic approach

in the modeling. First, physical phenomena are always affected with random fluctuations,

that are studied by statistical physics. In signal processing, this leads to noisy observations.

Moreover, the patterns observed in real-world signals appear to strongly depend on many

variables which are often impossible to observe directly and possibly irrelevant to the question

of interest [MD10]. This results in an irreducible uncertainty on real-world signals that has

to be both diminished (by reducing the impact of the noise) and resolved (by inferring the

hidden variables). Probability theory offers a powerful modeling of this uncertainty [VKG14,

Section 3.8]. A signal is thus described as a continuous-domain random function, or stochastic

process.

The innovation of a signal. The innovation approach can be traced back to H.W. Bode and C.E.

Shannon [BS50], with important contributions by T. Kailath [Kai68, KF68, Kai70]. Following

the definition of P. Tafti, “innovation is that which cannot be predicted" [Taf11], and is itself

1When they are not, there is a good chance that the question has been addressed in the doctoral dissertation of
P.D. Tafti [Taf11].



1.1 The Innovation Model 7

modeled as a random process, the properties of which we now specify. We assume that the

source of randomness of the signal is restricted to its innovation, as depicted in Figure 1.1, and

that the signal is the deterministic recombination, or mixing, of its innovation. This implies

that the signal is deterministic, conditionally on its innovation.

Figure 1.1 – Generative model.

In our model, the innovation is captured by the concept of white noise. This implies two

assumptions. The innovation is a collection of independent atoms of randomness that have

identical statistics. In a discrete setting, an innovation is therefore a collection of indepen-

dent and identically distributed random variables. The adaptation of this concept in the

continuous-domain requires more advanced mathematics that will be further introduced:

It yields to the definition of a random process that is stationary and independent at every point.

The whitening operator. We assume that the signal is linearly linked to its innovation. More-

over, a small variation in the innovation should only produce a small variation in the signal.

Mathematically, we ask that the deterministic mixing transformation that generate the signal

from the innovation is linear and continuous. The inverse operation, which corresponds to ex-

tracting its innovation from the signal, is called the whitening, and shares the same properties.

We summarize this in Figure 1.2.

Figure 1.2 – Innovation model.

Differential and pseudo-differential operators are used as whitening operators because of

their ability to reproduce both interesting dependency structures and statistical invariances

(mainly stationarity and self-similarity). At that stage, we specify the innovation model as

follows. A signal is modeled as a random process s such that

Ls = w (1.1)

where L is a (pseudo-)differential operator, and w is a d-dimensional continuous-domain

white noise.

Remarks. The innovation model as presented above is an idealisation. It goes beyond the
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Gaussian paradigm, and is the richest possible framework under the linearity and stationarity

assumptions. This simplified vision has a virtue. It allows to investigate in depth the sparsity

of the random signals generated according to (1.1). Nevertheless, the statistical properties of

real-world signals are rarely perfectly captured by linear and stationary models.

The choice of a stationary innovation leads us to the construction of random processes that

are stationary or have stationary increments. For instance, Lévy processes, that correspond to

(1.1) with w a 1-dimensional white noise and L = D the derivative operator, have stationary

and independent increments. One promising way to relax the stationarity is to replace Lévy

processes by their generalization as Lévy-type processes [BSW14]. Essentially, one preserves

the independence of the increments but allows them to vary with time. In the same spirit,

one can define Lévy-type noises that are independent at every point but not stationary. One

can also consider non-linear stochastic differential equations, which are a very active domain

of research in probability theory. These two possible generalizations will not be discussed

further.



1.2 Sparse Stochastic Processes 9

1.2 Sparse Stochastic Processes
1.2.1 What is sparsity?
In the following, we do not provide a formal definition of the sparsity of a function, but

outline what is required to understand the concepts of sparse signals and sparse processes.

Roughly speaking, a signal is considered as sparse when most its energy is concentrated in

a few coefficients in some transformation domain. Formally, given a basis ψ = (ψn)n∈N of

L2(Rd ), the sparsity of a function f ∈ L2(Rd ) in ψ is measured by the speed of decay of the

approximation error for the best N -term approximation of f , as N increases. We say that g is

sparser than f in the basis ψ if

‖g − gN‖2

‖g‖2
� ‖ f − fN‖2

‖ f ‖2

as N goes to infinity, where fN (gN , respectively) is the best N -term approximation of f (g ,

respectively) in the basis ψ. The relation “being sparser in the basis ψ" is a strict partial order

on signals of L2(Rd ). Moreover, sparsity depends on the basis one selects. For instance, for

any signal that is a finite linear combination of the ψn , the approximation error is zero for big

enough N . This implies that the concept of sparsity is not absolute. We now specify how one

usually proceeds to quantify the sparsity concretely.

• One considers only bases ψ with pleasing properties for signal processing purposes. Any

function in L2(Rd ) should have a stable representation in the basis ψ. This is typically

the case for orthonormal bases or, more generally, for Riesz bases [UT14, Section 6.2.3].

Moreover, the coefficients of the basis decomposition should be computable using fast

algorithms. This is typically the case for Fourier-based transforms or wavelet transforms

[Mal99].

• One studies the sparsity of classes of functions rather than of isolated functions. Classes

of functions, usually called function spaces, are characterized e.g. by their regularity or

their decay rate. The analysis of the approximation properties of function spaces into

interesting bases belongs to the field of approximation theory [Dev98].

• One analyses the properties of the signals of interest via their inclusions in appropriate

function spaces (such as Besov spaces), for which we have quantified the sparsity level.

Gaussian models and sparsity. If we generate a Gaussian process sGauss that fits the second-

order statistics of a real-world signal sreal, we will frequently observe that the sreal is sparser

than sGauss; that is, for N big,

‖sreal − sreal,N‖2

‖sreal‖2
� ‖sGauss − sGauss,N‖2

‖sGauss‖2
,

with sreal,N and sGauss,N the corresponding best N -term approximations. Gaussian models are

known to be unable to capture the kind of sparsity behaviors concretely observed for many

signals. This limitation is well-documented [SLSZ03, HM99, MD10] and needs to be overcome.
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Gaussian distributions are characterized by rare deviations from the average behavior. This

lack of extreme values is inherited in any reasonable transform domain for a Gaussian process.

The fact that real signals are much more compressible than Gaussian signals is actually very

positive. It implies in particular that images, music, or movies are very efficiently compressed,

allowing for the storage and the exchange of information to extents that would be unachievable

in a Gaussian world.

In line with the sparsity paradigm in signal processing, this calls for stochastic models that

should at the very least produce random processes sparser than their Gaussian counterparts.

The theory of sparse stochastic processes provides such models.

1.2.2 Innovation Model and Sparsity
We have seen that Gaussian models fail to share an essential property of many real-world

signals: the sparsity. This is true as well with the innovation model (1.1) when the innovation

is Gaussian. It is possible, however to select non-Gaussian innovations to completely reverse

this trend and to induce a behavior that is compatible with what is observed in real-world

signals. The mathematics of the innovation model stands on two pillars: generalized random

processes [GV64] and infinitely divisible laws [Sat13], the latter being required to understand

why non-Gaussian innovations are sparse.

Generalized random processes. A continuous-domain white noise is too erratic to be de-

fined as a pointwise random function. In (deterministic) functional analysis, one way to

deal with “functions" that do not have a pointwise representation is to define them as gen-

eralized functions, or distributions2, in the sense of L. Schwartz [Sch66]. For instance, the

Dirac impulse is a generalized function such that 〈δ,ϕ〉 =ϕ(0) for any smooth and compactly

supported function. One defines the derivatives of any order of the Dirac impulse in the same

way, by their effects on test functions. The theory of generalized random processes is the

probabilistic counterpart of Schwartz theory of generalized functions, and is systematically

exposed in [GV64]. This is the point of view that we are adopting in this thesis.

Infinite divisibility. A random variable is infinitely divisible if it can be decomposed as

the sum of N i.i.d. random variables for all N . Consider a 1-dimensional white noise w ,

observed through the indicator function �[0,1) and set X = 〈w,�[0,1)〉. If we define Xn,N =
〈w,�[(n−1)/N ,n/N )〉, we have the decomposition, valid for every N ,

X = X1,N +·· ·+Xn,N .

For N fixed, the random variables Xn,N are independent (as observations of the noise through

windows with disjoint supports) and identically distributed (because the windows are shifted

versions of each other). Thus, the observation of a white noise through an indicator function is

infinitely divisible. This simple example highlights the connection between infinitely divisible

2We will not use the more usual term “distribution" thereafter, to avoid confusion with the probability distribu-
tions arising in probability theory.
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random variables and continuous-domain white noise. More generally, the observation of any

random process s solution of (1.1) through a test function ϕ produces an infinitely divisible

random variable 〈s,ϕ〉. The infinitely divisibility of the observations of the processes satisfying

the innovation model has several crucial consequences.

• The infinitely divisible random variable 〈w,�[0,1)〉 fully characterizes the law of the white

noise w . There is actually a one-to-one correspondence between infinitely divisible

laws and white noises. A noise is called a Lévy white noise, or simply a Lévy noise,

in honour of P. Lévy for his role in the study of infinitely divisible random variables

and their connection with continuous-domain random processes with stationarity and

independence properties.

• The law of a random variable X is fully specified by its characteristic function P̂X (ξ) =
E[eiξX ]. The characteristic function of an infinitely divisible random variable X admits a

Lévy-Khintchine representation. In the symmetric case, this means that we can write, for

ξ ∈R, that

logP̂X (ξ) =−σ2ξ2

2
+
∫
R

(1−cos(ξt ))ν(dt ), (1.2)

where σ2 ≥ 0, and ν is a Lévy measure on R, satisfying
∫
R min(1, t 2)ν(dt) < ∞ and

ν{0} = 0. The log-characteristic function is denoted by Ψ= logP̂X , and called the Lévy

exponent. When ν= 0, X is a Gaussian random variable. We say that X has no Gaussian

part if σ2 = 0. The Lévy-Khintchine representation is at the heart of the proofs of the

fundamental results on Lévy noise and sparse stochastic processes.

• Many important properties (scaling limit, regularity, compressibility) of the Lévy noise

are captured by its indices, that are related to the moments of the Lévy measure. They

are defined as

αloc = inf

{
p ≥ 0

∣∣∣∣ ∫|t |≤1
|t |p ν(dt ) <∞

}
,

αasymp = sup

{
p ≥ 0

∣∣∣∣ ∫|t |>1
|t |p ν(dt ) <∞

}
.

Gaussian versus sparse stochastic processes. A Lévy noise with no Gaussian part is said to

be sparse. We therefore reinterpret (1.2) as

Ψ=ΨGauss +Ψsparse,

with ΨGauss(ξ) =−σ2ξ2

2 and Ψsparse(ξ) =∫R(1−cos(ξt ))ν(dt ). Equivalently, a Lévy noise is the

sum of two independent white noises, one being sparse and the other Gaussian. Here, in

accordance with the discussion of Section 1.2.1, sparse means sparser than Gaussian. We give

several justifications for this terminology.

• In the discrete setting, random variables with heavy-tailed laws are known to produce
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i.i.d. sequences (or discrete white noise) that are more compressible than Gaussian

ones [Cev09, AUM11, SP12, GCD12]. More generally, the asymptotic decay of the prob-

ability density appears to be critical for the compressibility of i.i.d. sequences. For

infinitely divisible random variables, it is known that the Gaussian has the fastest decay.

Moreover, the other non-Gaussian members of the theory cannot decay faster that

exp
(−O (|x| log |x|)) [AU14, Theorem 7]. This gap in the decay makes non-Gaussian

infinitely divisible random variables good candidates for sparse discrete models.

• The compound Poisson processes, which correspond to the innovation model with an

impulsive Poisson noise and the derivative operator, are piecewise constant, and are

therefore easily shown to be sparser than the Brownian motion, in a suitable wavelet

bases. This remark can be extended to the other innovation models for multivariate

Poisson noise and general whitening operator [UT11].

• The symmetric-α-stable (SαS) noise are also part of the Lévy family [ST94]. They are

parameterized by 0 < α≤ 2, where α= 2 corresponds to the Gaussian case. The non-

Gaussian SαS have infinite variance and are hence known to produce compressible

sequences [AU14]. The sparsity is due to the presence of extreme values. The param-

eter α is a measure of the sparsity of the process: the smaller the α, the sparser the

corresponding sparse process.

• More generally, there is empirical evidence that non-Gaussian processes are sparser

than Gaussian ones in terms of approximation error. This is particularly visible in

wavelet bases [Uns15, PU15, UT14]. In spite of this, a mathematical justification that

a sparse stochastic process is locally sparser than its Gaussian counterpart is missing.

This question will be addressed in this thesis.

Sparse processes in signal processing. Sparse stochastic processes and fields have been

used to design algorithms for different signal processing tasks. The reconstruction of continuous-

domain signals from their samples under the innovation model is analyzed in [AKBU13,

ATWU13]. Different classes of sparse processes were used for the denoising of signals [KPAU13,

KKBU13, BFKU13] and for inverse problems [BKNU13, Hos16]. In these works, the proposed

algorithms are shown to outperform traditional Gaussian-based algorithms in many imaging

science modalities. Some of them are state-of-the-art for the underlying class of stochastic

models.
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1.3 Contributions
In the following, we give an overview of the results presented in this thesis. All the math-

ematical concepts are introduced in more details in Chapter 2. The exposition is paral-

lel to the thesis outline. For simplicity, we only consider symmetric random processes

when presenting our contributions. Most of the results are taken from our published works

[FAU14, FBU15, FUW17b], works in press [FFU], submitted works [FUU17, FU16, FUW17a],

and works in preparation [AFU, DFHU].

We call a solution of (1.1) a generalized Lévy process. As we explained in Section 1.2.2, it

includes both Gaussian processes (driven by the Gaussian white noise) and sparse stochastic

processes (when the Lévy noise has no Gaussian part). Throughout the thesis, a special effort

was done to particularise our results for interesting classes of noise, including Gaussian, SαS,

compound Poisson, and Laplace noises.

1.3.1 Construction
All the random processes we shall encounter are defined as random elements of the space

S ′(Rd ) of tempered generalized functions. They are called tempered generalized random

processes. Given a tempered generalized random process s, its characteristic functional is

defined over S (Rd ) as

P̂s(ϕ) = E[ei〈s,ϕ〉].

It is the infinite dimensional generalization of the characteristic function. The construction of

tempered generalized random processes is achieved through their characteristic functional. It

is based on the Bochner-Minlos theorem: A functional from S (Rd ) to C that is continuous,

positive-definite, and which takes value 1 at ϕ= 0, is the characteristic functional of a gen-

eralized random process in S ′(Rd ). Identifying valid characteristic functionals is therefore

a powerful way to construct generalized random processes. We apply this principle for two

classes of random processes: Lévy noise in S ′(Rd ) and generalized Lévy processes.

Tempered Lévy noise. Gelfand and Vilenkin have introduced the complete family of Lévy

white noise in the space D ′(Rd ) of (not necessarily tempered) generalized functions [GV64].

There is actually a one-to-one correspondence between d-dimensional Lévy noises and

infinitely divisible random variables, via the relation

w �→ X := 〈w,�[0,1]d 〉.

The random variable X is defined here as the limit in probability of random variables 〈w,ϕk〉
where the ϕk are smooth, compactly supported, and converge to �[0,1]d in an appropriate

sense.

The adaptation of the theory to S ′(Rd ) is motivated by mathematical purposes. In particular,

we consider pseudo-differential operators and consider Besov spaces that are embedded in

S ′(Rd ). Thus, we have to identify the Lévy noise that are valid tempered generalized random

processes. We show the following result (see Section 3.1.1 and [FAU14]).
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If E[|〈w,�[0,1]d 〉|ε] <∞ for some ε> 0 arbitrarily small, then the Lévy noise w is tempered.

By following up of our investigation, R. Dalang and T. Humeau have recently proved that the

converse result is true [DH15]. This provides a one-to-one correspondence between tempered

Lévy noise and infinitely divisible random variables having a finite absolute moment. We also

remark that the requirement for being tempered is extremely mild, and satisfied by the Lévy

noises encountered in practice.

The domain of definition of the Lévy noise. As a preparatory result for the construction

of generalized Lévy processes, we identify the broadest set of test functions such that the

random variable 〈w, f 〉 is well-defined, with w a tempered Lévy noise. We define this new

random variable as the limit in probability of random variables 〈w,ϕk〉, where the compactly

supported and smooth functions ϕk converge to f in an adequate sense. Our contribution

is to connect the construction of Lévy noise as random elements in S ′(Rd ) with the theory

of independent scattered random measures of Rajput and Rosinski [RR89]. By doing so, we

deduce the following result (see Section 3.2.2 and [DFHU]).

For f a measurable function, the random variable 〈w, f 〉 is well-defined if and only if

Θ( f ) =
∫
Rd

Θ( f (x))dx <∞,

with Θ(ξ) = (σξ)2 +∫R min((tξ)2,1)ν(dt) and (σ2,ν) the variance and Lévy measure of the

symmetric Lévy noise w (see (1.2)).

We call Θ the Rajput-Rosinski exponent of w . One easily remarks that Θ( f ) is finite if f is

compactly supported and bounded. In particular, Θ(�[0,1]d ) =σ2+∫R min(t 2,1)ν(dt ) <∞, and

the random variable 〈w,�[0,1]d 〉 is well-defined for any Lévy noise, as already announced.

We denote by L0(Ω) the space of real random variables and by LΘ(Rd ) = { f
∣∣Θ( f ) <∞} the do-

main of definition of w . These spaces are both endowed with a topology of generalized Orlicz

spaces. Then, we have two fundamental consequences that extend respectively the domain of

definition of the noise, and the domain of continuity of its characteristic functional. While

the two results below are a priori valid for test functions in S (Rd ) by definition, our contribu-

tion here is to delineate the maximal domain of definition of w (see Section 3.2.2 and [DFHU]).

The mapping that associates 〈w, f 〉 to f is linear and continuous from LΘ(Rd ) to L0(Ω). More-

over, the characteristic functional P̂w is continuous and positive-definite over LΘ(Rd ).

In addition to these results, we provide simple criteria on Θ and ν to ensure a proper definition

over Lp -type spaces. We give here our two main results (see Section 3.2.4 and [DFHU]). For

p0, p∞ ≥ 0, we set

Lp0,p∞(Rd ) :=
{

f

∣∣∣∣ ∫
Rd

(∣∣ f (x)
∣∣p0

�| f (x)|>1 +
∣∣ f (x)

∣∣p∞
�| f (x)|≤1

)
dx <∞

}
.
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If Θ(ξ) ∼
0

A |ξ|p∞ and Θ(ξ) ∼∞ B |ξ|p0 , then

LΘ(Rd ) = Lp0,p∞(Rd ). (1.3)

If
∫
|t |≤1 |t |p0 ν(dt )+∫|t |>1 |t |p∞ ν(dt ) <∞, then

Lp0,p∞(Rd ) ⊆ LΘ(Rd ). (1.4)

The criterion (1.3) allows identifying the domain of definition of Gaussian, SαS, Laplace, and

compound Poisson noises. The embedding (1.4) that connects the moments of the Lévy

measure to the domain of definition is used to specify general existence criteria for generalized

Lévy processes.

Existence criterion for generalized Lévy processes. A (possibly fractional) differential op-

erator L and a tempered Lévy noise w being given, can we construct a generalized random

process s such that Ls and w have the same law? If yes, we say that L and w are compatible

and we call s a generalized Lévy process. This question was addressed in [UT14]. Subfamilies

for specific operators and/or noise are studied in [HL07, Taf11, SU12, UTS14].

The general principle is as follows. We want to specify s from its characteristic functional.

To do so, assume that there exists a linear and continuous operator T, left-inverse3 of the

adjoint L∗ of L, such that the functional ϕ �→ P̂w (Tϕ) is the valid characteristic functional of a

generalized random process s; that is,

P̂s(ϕ) = P̂w (Tϕ). (1.5)

We then have, by duality and using the left-inverse property, that

P̂Ls(ϕ) = E[ei〈Ls,ϕ〉] = E[ei〈s,L∗ϕ〉] = P̂s(L∗ϕ) = P̂w (TL∗ϕ) = P̂w (ϕ). (1.6)

In other terms, Ls and w have the same law and s is a generalized Lévy process. Our contribu-

tion is to identify the most general conditions (the key ingredient being the identification of

the domain of definition of the Lévy noise) such that (1.5) is a valid characteristic functional

(see Section 3.3.1 and [DFHU]).

Assume that there exists a linear operator T such that

• TL∗{ϕ} =ϕ for every ϕ ∈S (Rd ); and

• T maps continuously S (Rd ) into LΘ(Rd ).

Then, there exists a generalized random process s with characteristic functional P̂s(ϕ) =
P̂w (T{ϕ}), and s satisfies Ls = w in law.

3It is sufficient to know that T is a left-inverse, as seen in (1.6). This is important because it allows for a correction
of the usual and unstable inverses related to differential or pseudo-differential operators.
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A sufficient condition for the well-definiteness of s is the existence of T and 0 < p0, p∞ ≤ 2

such that T maps continuously S (Rd ) to Lp0,p∞(Rd ) and∫
|t |≤1

|t |p0 ν(dt )+
∫
|t |>1

|t |p∞ ν(dt ) <∞.

This last criterion allows us to improve the known existence results, which involve Lp -stable

operators T : S (Rd ) → Lp (Rd ).

1.3.2 Convergence Theorems
In the framework of tempered generalized random processes, the convergence in law of

random processes is characterized by the pointwise convergence of their characteristic func-

tionals. We exploit this characterization to deduce two convergence theorems for generalized

Lévy processes.

Generalized Lévy processes as limits of generalized Poisson processes. It is known that

any infinitely divisible random variable is the limit in law of compound Poisson random

variables. We extend this result in the infinite-dimensional setting of generalized random

processes (see Section 4.2 and [FUU17]).

Any generalized Lévy process s is the limit in law of a family of generalized Poisson processes

with the same whitening operator.

The key idea is to consider compound Poisson noise with an increasing average number of

impulses per unit of volume and a decreasing intensity of jumps. By combining these two

effects adequately, one reconstructs the generalized Lévy process s at the limit.

A Generalized Poisson process is piecewise-smooth. Applying the whitening operator trans-

forms it into a sum of weighted Dirac impulses with random weights and jumps locations. This

allows us to interpret a generalized Poisson process as a random L-spline. This connection

with splines gives a new interpretation of generalized Lévy processes. They are limits in law of

random splines with more and more jumps per unit of volume, and whose weights of jumps

are more and more concentrated towards the origin.

Scaling limits of generalized Lévy processes. We address the questions of the limit in law of

a generalized Lévy process when we zoom into it (local behavior) and when we zoom out of it

(asymptotic behavior). These questions are understood up to possible renormalization. More

precisely, we aim at identifying Hloc (Hasymp, respectively) such that aHloc s(·/a) (aHasymp s(·/a),

respectively) has a limit in law as a →∞ (as a → 0, respectively).

For self-similar Lévy processes, the answer is straightforward since aH s(·/a) = s in law, for

any a > 0, where the exponent H is the self-similarity index of s. With the adequate renor-

malization, a reascaling of the process does not affect its law and Hloc = Hasymp = H . The

only self-similar Lévy processes are driven by SαS white noise and whitened by homogeneous

operators. For other members of the family, the previous argument is no longer valid. However,

it is easy to see that if the limit of the rescaling exists (as a → 0 or ∞), then the limiting process
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is self-similar. We therefore introduce the class of locally and asymptotically self-similar pro-

cesses. We also give sufficient conditions on the generalized Lévy process such that it admits a

local or asymptotic self-similar limits. We summarize our main results as follows (see Section

4.3 and [FU16]).

Let L be a γ-homogeneous operator (L{ϕ(·/a)} = a−γL{ϕ}(·/a)) and w be a Lévy noise with

indices αloc,αasymp > 0. Under reinforced compatibility conditions between the whitening

operator and the Lévy noise, we have the following convergences in law.

• Coarse scale behavior: The rescaled processes aγ+d/min(αasymp,2)−d s(·/a) converge in law

to a SαS process with α= min(αasymp,2) as a → 0.

• Fine scale behavior: The rescaled processes aγ+d/αloc−d s(·/a) converge in law to a SαS

process with α=αloc as a →∞.

1.3.3 Regularity

We first focus on the Lévy noise, which is a priori a random element in S ′(Rd ). We want to

understand the smoothness and the growth rate of the noise. To do so, we consider the family

of weighted Besov spaces4 Bτ
p (Rd ;ρ), with p ∈ (0,∞] the integrability rate, τ ∈R the smoothness

parameter, and ρ ∈ R the decay rate. The parameters τ and ρ are possibly fractional and

possibly negative.

Our goal is to identify in which Besov spaces the Lévy noise is located, but also in which Besov

spaces it is not. Assuming that we have a full answer to these questions, we are able, for any

integrability rate p > 0, to identify the local smoothness τp (w) and the asymptotic decay rate

ρp (w) such that

• w ∈ Bτ
p (Rd ;ρ) almost surely as soon as τ< τp (w) and ρ < ρp (w), and

• w ∉ Bτ
p (Rd ;ρ) almost surely as soon as τ> τp (w) or ρ > ρp (w).

Our contribution is to identify the quantities τp (w) and ρp (w) for any p > 0 when w is

Gaussian or compound Poisson, and for any 0 < p ≤ 2 or p = 2k ≥ 2 an even integer for non-

Gaussian and non-Poisson noise (see Section 5.2 and [FUW17b, FFU, AFU]).

4The Besov spaces are usually defined with an additional tuning parameter q . We consider here that q = p.
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Consider a nontrivial Lévy noise w with indices αloc ∈ [0,2] and αasymp ∈ (0,∞].

• If w is Gaussian, then, for 0 < p ≤∞,

τp (w) =−d/2 and ρp (w) =−d/p.

• If w is compound Poisson, then for every 0 < p ≤∞,

τp (w) = d/p −d and ρp (w) =−d/min(αasymp, p).

• If w is non-Gaussian and αloc = 0 or αloc �= 0 and the Lévy exponent of w behaves like

−|ξ|αloc at infinity, then, for 0 < p ≤ 2 or p = 2k ≥ 2 an even integer,

τp (w) = d/max(αloc, p)−d and ρp (w) =−d/min(αasymp, p).

From our results, we deduce in particular the Sobolev regularity (p = 2) and the Hölder regu-

larity (p =∞) of a Lévy noise.

Consider a nontrivial Lévy noise w with indices αloc ∈ [0,2] and αasymp ∈ (0,∞].

The Sobolev smoothness and decay rate of a Lévy noise are

τ2(w) =−d/2 and ρ2(w) =−d/min(αasymp,2).

If w and wGauss are respectively a non-Gaussian and a Gaussian noise, their Hölder smooth-

ness is

τ∞(w) =−d < τ∞(wGauss) =−d/2

and their the Hölder decay rate is

ρ∞(w) =−d/αasymp ≤ ρ∞(wGauss) = 0.

We then extend our result to generalized Lévy processes s driven by the Lévy noise w by

considering the smoothness only. More precisely, we identify conditions on the whitening

operator L such that the local smoothnesses of s and w satisfy τp (s) = τp (w)+γ for any p > 0

and a fixed γ ≥ 0. Under these conditions, we directly deduce the local smoothness of a

generalized Lévy process from the one of its innovation.

1.3.4 Compressibility

We have seen in Section 1.2.2 that non-Gaussian generalized Lévy processes are good can-

didates for the modeling of sparse signals. We have referred both to empirical evidence and

theoretical arguments, the latter being focused on discrete results. We provide a mathematical

justification—the first one, to the best of our knowledge—that innovations with no Gaussian
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parts are actually sparse, in the sense that they are locally more compressible than their Gaus-

sian counterpart in wavelet bases. We also propose a way to quantify the compressibility, and

therefore to sort generalized Lévy processes by their level of compressibility. We are interested

in the local behavior, hence we consider the random processes over Td = [0,1]d .

We approximate a generalized Lévy process s into a Daubechies wavelet basis. We denote

by sN its best N -term approximation. The speed of convergence of ‖s − sN‖2 measures the

sparsity of s. For generalized Lévy processes, this quantity has a polynomial, or faster-than-

polynomial, decay. Roughly speaking, we can therefore define the compressibility of s as the

quantity κ(s) such that

‖s − sN‖2 ≈C N−κ(s)

for some (random) constant C > 0, with the convention that κ(s) =∞ if Nκ‖s − sN‖2 vanishes

for any κ.

It is well-known that the speed of decay of ‖s − sN‖2—which essentially measures the speed

of decay of the wavelet coefficients of s—is strongly related to the smoothness of s: the more

regular the process s, the faster the decay of its approximation error. More generally, the

compressibility of a function is fully characterized by its Besov smoothness: knowing the local

smoothness τp ( f ) for p ≤ 2 completely determines the compressibility κ( f ). We apply the

tools of approximation theory and our results on the Besov regularity of generalized Lévy

processes to deduce the following results (see Section 6.2 and [FUW17a]).

Let s (sGauss, respectively) be a generalized Lévy process with whitening operator L and Lévy

noise w (and Gaussian noise wGauss, respectively). We assume that L reduces the smoothness

of any generalized function of an order γ> d/2 and denote by αloc ∈ [0,2] the local index of w .

Then, we have that

κ(sGauss) = γ

d
− 1

2
≤ γ

d
+ 1

αloc
−1 ≤ κ(s).

Moreover, for the cases when τp (w) is completely determined (αloc = 0 or αloc > 0 and the

Lévy exponent of w behaves like −|ξ|αloc at infinity), we have κ(s) = γ
d + 1

αloc
−1.

As soon as αloc < 2, a generalized Lévy process is strictly more compressible than its Gaussian

counterpart. Moreover, the compressibility of the process increases when αloc diminishes. In

the extreme case of αloc = 0 (for instance for compound Poisson noise), the compressibility is

infinite: the approximation error decays faster than polynomial, which corresponds to the

sparsest scenario.

Most of the results discussed above can be revisited from the duality between the local and

asymptotic behavior of the Lévy noise or the generalized Lévy process. This will be further

discussed in the conclusion (Chapter 7).





2 When Probability Meets Generalized
Functions
A random process is a random function; that is, a random variable taking value in a function

space. The probability law of the process is a probability measure on this function space.

For instance, Brownian motion is the random process whose probability law is the Wiener

measure on the space of continuous functions [KS12, Section 2.4]. This approach is admittedly

quite abstract: The theory of random processes is built upon measure theory on infinite-

dimensional Banach spaces [VTC87, LT13], nuclear spaces [GV64, Itô84], or more generally on

topological vector spaces [Bog07, Mus96, Sch73b]. This is not the most standard construction,

but it has the advantage of being very general.

We focus our attention on the theory of generalized random processes, initially introduced

independently by K. Itō [Itô54] and I.M. Gelfand [Gel55] in the 50’s, and brought to light by the

latter, together with N.Y. Vilenkin, in [GV64, Chapter III]. A generalized random process is a

random element in the space of generalized functions (or distribution, but we shall not use

this terminology to avoid confusion with the concept of probability distribution). Generalized

random processes are therefore the stochastic counterpart of the deterministic theory of

generalized functions of Schwartz [Sch66].

The chapter is organized as follows. The mathematical backgrounds of probability theory

and functional analysis are respectively covered in Sections 2.1 and 2.2, which are also useful

to fix some notations and conventions. In Section 2.3, we introduce generalized random

processes. A special emphasis is laid on the characteristic functional—the Fourier transform

of the probability law of a generalized random process—as it will be one of our main tool for

both the construction and the study of generalized Lévy processes.

Our personal contributions in Section 2.3 are twofolds. First, we present a systematic expo-

sition of the framework in the space of tempered generalized functions S ′(Rd ) that appears

to be more convenient for signal processing applications, while the historical approach of

Gelfand and Vilenkin was developed on D ′(Rd ). Second, we extend some results on the mea-

surability of function spaces into S ′(Rd ) in order to include the complete family of Besov

spaces.

21
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2.1 Probability Theory in Finite Dimension
We review the basic notions of probability theory in finite dimension. The results of Section

2.1.1 are very classical; see for instance [Kal06]. Sections 2.1.2 and 2.1.3 focus on infinitely

divisible random variables, which will play a crucial role when considering continuous-domain

random processes [Sat13].

Once and for all, we fix a complete probability space (Ω,F ,P), where Ω is the sample space

of all possible outcomes ω ∈ Ω, F is a set of events, assumed to be a σ-algebra on Ω, and

P : F → [0,1] is a probability measure on Ω. The space Ω is the source of randomness that

allows us to define the concepts of real random variables, random vectors, and (generalized)

random processes. We assume that our probability space is rich enough so that all the

stochastic objects encountered in our work are well-defined1.

2.1.1 Real Random Variables and Vectors

The Borel σ-field B(RN ) on RN is the σ-field generated by the open balls of RN .

Definition 2.1. A real random variable X is a measurable function from (Ω,F ) to (R,B(R)).

The probability law (or simply the law) of X is then the probability measure on R defined for

B ∈B(R) by

PX (B) =P(X ∈ B) =P {ω ∈Ω | X (ω) ∈ B} .

Let L0(Ω) be the space of real random variables. For p > 0, we also introduce Lp (Ω) as the

space of real random variables X ∈ L0(Ω) such that E[|X |p ] <∞.

Proposition 2.1. The space L0(Ω) is a complete linear metric space for the translation invariant

metric

‖X ‖0 := E[min(|X | ,1)].

The space Lp (Ω) is a quasi-Banach space for 0 < p < 1, and a Banach space for 1 ≤ p, for the

following (quasi-)norm

‖X ‖p := (E[|X |p ]
)1/p .

For the spaces Lp (Ω) with p ≥ 1, the result is well-known. The case 0 < p < 1 is less classical;

see for instance [Gra04, Section 1.1] for more details. The convergence in L0(Ω) is equivalent

to the convergence in probability.

Definition 2.2. The characteristic function of a real random variable X is the function P̂X :

1Even if it is at the heart of the axiomatisation of probability theory [Kol50], the construction of such a probability
space will not be discussed here. It is sufficient to know that we can consider Ω=D ′(Rd ), the space of generalized
functions (see Section 2.2.1), with the adequate σ-field, for the definition of a generalized random process (or
Ω=S ′(Rd ) when this process is tempered).
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R→C such that

P̂X (ξ) = E
[

eiξX
]
=
∫
R

eiξx dPX (x)

for every ξ ∈R.

The characteristic function is nothing more than the Fourier transform of the probability law

of X (up to sign convention). Any characteristic function is continuous, normalized such that

P̂X (0) = 1, and positive-definite over R, meaning that

N∑
m=1

N∑
n=1

an a∗
mP̂X (ξn −ξm) ≥ 0

for any N ≥ 1, an ∈C, ξn ∈R. The converse of this result is true and is a characterization of the

Fourier transforms of probability measures on R: This is the Bochner theorem [Kat04, Section

VI.2.8].

Proposition 2.2. A function P̂ that is continuous and positive-definite from R to C and such

that P̂(0) = 1 is the characteristic function of a real random variable X ∈ L0(Ω).

It is easy to check that ξ �→ e−ξ
2/2 satisfies the conditions of Proposition 2.2 (see for in-

stance [UT14, Appendix B.1]), and is therefore the characteristic function of a random variable.

Of course, one recognizes the Gaussian law, more traditionally introduced via its probability

density function pGauss(x) = 1�
2π

e−x2/2 = F−1{e−·
2/2}(x). The Bochner theorem is an alter-

native to construct the Gaussian random variable without specifying its probability density

function. Therefore, it does not require the existence of the Lebesgue measure. This will

become crucial in infinite dimensional spaces, where the Lebesgue measure does not exist in

general [Eld16, Theorem 1.1].

Definition 2.3. We say that a sequence of random variables (Xk )k≥0 converges in law to the

random variable X if

E
[

f (Xk )
] −→

k→∞
E
[

f (X )
]

for any continuous and bounded function f : R→R. We denote this situation by Xk
(L )−→

k→∞
X .

Theorem 2.1. The sequence of random variables (Xk )k≥0 converges in law to the random

variable X if and only if

P̂Xk (ξ) −→
k→∞

P̂X (ξ)

for any ξ ∈R.

This is the Lévy continuity theorem [Kal06, Theorem 5.3]. In other terms, the convergence

in law of real random variables is equivalent to the pointwise convergence of the underlying

characteristic functions to a characteristic function.
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Definition 2.4. Two random variables X1 and X2 are independent if the events {X1 ∈ B1} and

{X2 ∈ B2} are independent for any B1,B2 ∈B(R); that is, if

P((X1, X2) ∈ B1 ×B2) =P(X1 ∈ B1)P(X2 ∈ B2).

The independence of X1 and X2 is equivalent to the relation P̂X1+X2 (ξ) = P̂X1 (ξ)P̂X2 (ξ) for

any ξ ∈R. Then, the law of X1 +X2 is the convolution of the laws of X1 and X2.

We now consider random variables with values in RN for N ≥ 1. Vectors will be denoted by

x = (x1, . . . , xN ) ∈RN .

Definition 2.5. A random vector X = (X1, . . . , XN ) of dimension N is a measurable function

from (Ω,F ) to (RN ,B(RN )).

We define the law of a random vector as we did for real random variables. The characteristic

function of X is the function P̂X : RN →C such that

P̂X (ξ) = E
[

ei〈ξ,X 〉
]

for any ξ ∈RN , where 〈·, ·〉 is the usual scalar product on RN . Bochner’s theorem, the conver-

gence in law, Lévy’s continuity theorem, and the notion of independence are easily extended to

random vectors. We observe that the mutual independence of the random variables X1, . . . , XN

is equivalent to

P̂(X1,...,XN )(ξ1, . . . ,ξN ) = P̂X1 (ξ1) · · ·P̂XN (ξN ).

2.1.2 Infinitely Divisible Random Variables and their Indices

We briefly introduce the family of infinitely divisible random variables. They will play a crucial

role when defining continuous-domain random processes in Section 3. We refer the reader

to [Sat13] for an in-depth exposition on the subject and to [MR08] for a discussion on the

origin of the concept.

Definition 2.6. A random variable X is infinitely divisible if, for any N ≥ 1, it can be decom-

posed as

X = X1,N +·· ·+XN ,N

where X1,N , . . . , XN ,N are i.i.d. random variables.

The characteristic function P̂X of the infinitely divisible random variable X can therefore

be written as P̂X (ξ) = P̂X N
1

(ξ)×·· ·×P̂X N
N

(ξ) = (P̂X N
1

(ξ))N for every N . An infinitely divisible

random variable is therefore a random variable such that its characteristic function admits an

N th root that is itself a characteristic function for every N ≥ 1.
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Lévy exponent. If X is infinitely divisible, then P̂X (ξ) �= 0 for every ξ ∈R [Sat13, Lemma 7.5].

Then, one can show that there exists a continuous function Ψ such that

P̂X (ξ) = exp(Ψ(ξ)).

We would like to emphasis that the existence of a continuous Ψ is not obvious, as explained

in [Sat13, Lemma 7.6].

In general, the function ξ �→ exp(Ψ(ξ)) is the characteristic function of an infinitely divisible

law if and only if ξ �→ exp(τΨ(ξ)) is a characteristic function for any τ ∈R.

Definition 2.7. The continuous log-characteristic function of an infinitely divisible random

variable is its Lévy exponent.

In the literature, Ψ is often called the characteristic exponent of X .

Theorem 2.2. Let Ψ be a continuous function with Ψ(0) = 0. The following statements are

equivalent

1. The function Ψ is a Lévy exponent.

2. For every λ≥ 0, the function ξ �→ eλΨ(ξ) is positive-definite.

3. The function Ψ is conditionally positive-definite on R, meaning that

N∑
m,n=1

am a∗
nΨ(ξm −ξn) ≥ 0

for any N ≥ 1, an ∈C, and ξn ∈R such that
∑N

n=1 ξn = 0.

4. The function Ψ can be decomposed as

Ψ(ξ) = iμξ− σ2ξ2

2
+
∫
R

(eiξt −1− iξt�|t |≤1)ν(dt ), (2.1)

where μ ∈R, σ2 ≥ 0, and ν a Lévy measure; that is, a measure on R such that∫
R

min(1, t 2)ν(dt ) <∞ (2.2)

and ν{0} = 0.

Note that
∣∣eiξt −1− iξt�|t |≤1

∣∣≤ 2min(1,ξ2t 2) so that the integral in (2.1) is well-defined under

the condition (2.2). These equivalences are proved in [GV64, Section III.4]. See also [UT14,

Appendix B] for a discussion on positive-definite and conditionally positive-definite func-

tions. The decomposition (2.1) is the famous Lévy-Khintchine representation of the Lévy

exponent. The triplet (μ,σ2,ν) is unique [Sat13, Theorem 8.1] and called the Lévy triplet of Ψ

(or, equivalently, of the underlying infinitely divisible random variable).
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Moments of infinitely divisible laws. The absolute moments of an infinitely divisible ran-

dom variable are related to the absolute moments of the Lévy measure.

Proposition 2.3. For the infinitely divisible law X with Lévy measureν, we have the equivalence,

for any p > 0,

E[|X |p ] <∞⇐⇒
∫
|t |>1

|t |p ν(dt ) <∞.

This is a particular case of [Sat13, Theorem 25.3]. In general, the Lévy exponent Ψ of the

infinitely divisible law X can be bounded as

|Ψ(ξ)| ≤C (1+|ξ|2)

for some C > 0 and every ξ ∈R. When X has some finite moments, we have a better bound.

Proposition 2.4. If the Lévy measure ν of the Lévy exponent Ψ satisfies the condition∫
|t |>1

|t |p ν(dt ) <∞

for some 0 < p ≤ 1, then there exists a constant C > 0 such that, for every ξ ∈R,

|Ψ(ξ)| ≤C
(|ξ|p +|ξ|2) . (2.3)

The crucial point in (2.3) is that Ψ is dominated at the origin by a power law.

Proof. We recall the Lévy-Khintchine representation (2.1) of Ψ as

Ψ(ξ) = iμξ− σ2ξ2

2
+
∫
R

(eiξt −1− iξt�|t |≤1)ν(dt ).

Since ξ �→ iμξ− σ2ξ2

2 is clearly dominated by ξ �→ |ξ|p +|ξ|2 (since p ≤ 1), we assume without

lost of generality that μ=σ2 = 0. Then, we split the integral in two terms. First, we have that∣∣eix −1− ix
∣∣≤ x2 for any x ∈R. Applying this inequality to x = ξt , we deduce that∫

|t |≤1

∣∣∣eiξt −1− iξt
∣∣∣ν(dt ) ≤

(∫
|t |≤1

|t |2ν(dt )

)
|ξ|2 . (2.4)

Moreover, we have that
∣∣eix −1

∣∣2 = 2−2cos x ≤ 2min(2, x2) ≤ 4 |x|2p (since 2p ≤ 2), from which

we deduce that∫
|t |>1

∣∣∣eiξt −1
∣∣∣ν(dt ) ≤ 2

(∫
|t |>1

|t |p ν(dt )

)
|ξ|p . (2.5)

Combining (2.4) and (2.5), we easily obtain (2.3).

The Lévy exponent is the cumulant generating function, in the sense that its Taylor expansion

at the origin gives access to the cumulants [UT14, Section 9.6].
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Proposition 2.5. Let X be an infinitely divisible random variable with Lévy exponent Ψ. The

Lévy exponent Ψ is N times continuously differentiable for N ≥ 1 if and only if the N th moment

of X is finite. In that case, the N th-cumulant κN (X ) of X is well-defined and is given by

κN (X ) = (−i)NΨ(N )(0).

Indices of Infinitely divisible random variables. In this thesis, we assume that all the in-

finitely divisible laws satisfy the so-called sector condition: The imaginary part of the associated

Lévy exponent is controlled by the real part in the sense that

|ℑ{Ψ(ξ)}| ≤C |ℜ{Ψ(ξ)}| (2.6)

for some C > 0 and every ξ ∈ R. Essentially, this conditions implies that the underlying

infinitely divisible random variable is not dominated by a drift. For instance, the pure drift

X = μ, where μ �= 0 is a deterministic constant, is such that Ψ(ξ) = iμξ. It is therefore purely

imaginary and does not satisfy the sector condition. The sector condition is automatically

satisfied when X is symmetric, since Ψ is purely real in that case.

Definition 2.8. Let X be a infinitely divisible random variable satisfying the sector condition

and ν its Lévy measure. Then, we set

αloc := inf

{
p ≥ 0

∣∣∣∣ ∫|t |≤1
|t |p ν(dt ) <∞

}
, (2.7)

αasymp := sup

{
p ≥ 0

∣∣∣∣ ∫|t |>1
|t |p ν(dt ) <∞

}
, (2.8)

We call αloc and αasymp the local index and the asymptotic index respectively.

Remarks.

• Necessarily, 0 ≤αloc ≤ 2, since
∫
|t |≤1 t 2ν(dt ) <∞ for any Lévy measure. The asymptotic

index, on the other hand, can take any value including 0 and ∞. Proposition 2.3 has

two implications: The case αasymp = 0 implies that X has no absolute positive moments,

while αasymp = ∞ when all the moments of X are finite. In particular, the latter is

satisfied when ν= 0, corresponding to the Gaussian law.

• The index αloc is often referred to as the Blumenthal-Getoor index in the literature. It

was introduced in [BG61], in order to measure the intensity of the small jumps of Lévy

processes. This index is related to the asymptotic behavior of the Lévy exponent by the

relation [BSW14, Chapter 5]

αloc := inf

{
p ≥ 0

∣∣∣∣∣ limsup
|ξ|→∞

|Ψ(ξ)|
|ξ|p <∞

}
.

• In [Pru81], Pruitt measured the intensity of the large jumps of Lévy processes, by apply-

ing his results on the asymptotic behavior of series of i.i.d. random variables. To do so,
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he introduced several indices related to infinitely divisible laws. We should focus on the

following one, that we call the Pruitt index, defined as

β0 := sup

{
p ≥ 0

∣∣∣∣∣ limsup
|ξ|→0

|Ψ(ξ)|
|ξ|p <∞

}
.

It is actually known that β0 = sup
{
0 ≤ p ≤ 2

∣∣ ∫|t |>1 |t |p ν(dt ) <∞} [Sat13, Proposition

48.10]. By comparing with (2.8), we deduce that the Pruitt index and the asymptotic

index are linked by the relation

β0 = inf(αasymp,2). (2.9)

Importantly, the Pruitt index can be deduced from the asymptotic index, while the

converse is false.

• The Blumenthal-Getoor and Pruitt indices are respectively denoted by β∞ and β0 in

the literature. This reminds us that they are respectively linked with the asymptotic

behavior and the behavior at the origin of the Lévy exponent. We prefer to rename the

Blumenthal-Getoor αloc, and to introduce the new index αasymp from which we can

easily recover β0 due to (2.9). We have several motivations for these new notations. First,

for symmetric-α-stable random variables (see Section 2.1.3), one has αloc =αasymp =α,

so that the indices generalize the parameter α for non-stable infinitely divisible laws.

Second, the local index characterizes the local smoothness of the Lévy noise, while the

asymptotic index is linked to its asymptotic decay rate (see Theorem 5.3 in Section 5.2).

The Pruitt index will be shown to play a crucial role on the behavior of Lévy noise and

generalized Lévy processes at coarse scale (see Section 4.3). We prefer to use notations

inspired by these fundamental properties.

2.1.3 Examples of Infinitely Divisible Laws

We present some classical families of infinitely divisible random variables: Gaussian, SαS,

compound Poisson, and generalized Laplace. They will be our running examples, illustrating

our results throughout the thesis. For each case, when closed forms are known, we provide the

probability law, the characteristic function, the Lévy exponent, the Lévy triplet, as well as the

local and asymptotic indices.

Gaussian random variables. A random variable X is called a Gaussian random variable of

variance σ2, which is denoted by X ∼N (0,σ2), if its probability density is given by

pX (x) = 1�
2πσ

e−
x2

2σ2 .

The characteristic function of X is

P̂X (ξ) = e−
σ2ξ2

2 .
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The random variable X is infinitely divisible, since it can be written as N independent Gaussian

random variables with variance σ2/N . Its Lévy exponent is Ψ(ξ) = −σ2ξ2

2 and Lévy triplet

(0,σ2,0). We easily see that αloc = 2 and αasymp =∞.

Symmetric-α-stable random variables. We refer the reader to [ST94] for a complete expo-

sition on stable laws, including the proofs of the results stated thereafter. A random variable

X is stable if the sum X1 +X2 of two independent copies of X has the same law as aX +b for

some real numbers a and b. It is of course the case for Gaussian random variables. The other

members of the family have an infinite variance. Stable laws are infinitely divisible.

We restrict our descriptions to symmetric stable random variables. In that case, we have

necessarily X1+X2
(L )= 2αX1 for some parameter α ∈ (0,2]. Symmetric stable random variables

are therefore called SαS (for symmetric-α-stable). The characteristic function of X is of the

form

ΦX (ξ) = e−cα|ξ|α ,

with c > 0 the scaling parameter and α ∈ (0,2]. We write in this case that X ∼S (α,c). Observe

that X ∼S (α,1) if and only if c X ∼S (α,c) and that S (2,c) =N (0,2c). The Lévy exponent of

X is Ψ(ξ) =−cα|ξ|α, and the Lévy triplet (0,0,cανα), where the Lévy measure να is given by

να(dt ) = Cα

|t |α+1 dt ,

with Cα = (
∫
R(1−cosu) du

|u|α+1 )−1. The indices, which are easily computed from the Lévy mea-

sure, are αloc =αasymp =α.

Compound-Poisson random variables. We say that X is a compound-Poisson random vari-

able X if it can be written as

X =
N∑

n=1
Xn ,

with N a Poisson random variable of parameterλ> 0—meaning that P(N = n0) = e−λλn0 /n0!—

, and the Xn are i.i.d. with common probability law P such that P {0} = 0. The parameters

of the compound Poisson random variables are therefore λ and P , respectively called the

sparsity parameter and the law of jumps due to their role on compound Poisson noise (see

Section 3.1.2). We denote this situation by X ∼P (λ,P ). By conditioning the value of N , we see

that the probability law of X is

PX = e−λ
∑

n≥0

λn

n!
P∗n ,
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where P∗0 = δ and P∗(n+1) = (P ∗P∗n). In Fourier domain, one has P̂∗n(ξ) = P̂ n(ξ). We deduce

the characteristic function of X , given for every ξ ∈R by

P̂X (ξ) = exp
(
λ(P̂ (ξ)−1)

)
,

with P̂ the characteristic function associated to P . The Lévy exponent is Ψ(ξ) =λ(P̂ (ξ)−1) and

the Lévy triplet of X is (λμP ,0,λP ), where μP :=∫|t |≤1 tP (dt). We have |P̂ (ξ)| ≤ 1; hence, Ψ is

bounded and αloc = 0. While the other index can take any value a priori, we remark that

αasymp = sup
{

p > 0
∣∣ E[|Y |p ] <∞} ,

with Y a random variable with probability law P . Indeed, E[|Y |p ] =∫R |t |p P (dt ) =∫|t |≤1 |t |p P (dt )+∫
|t |>1 |t |p P (dt), the first term being always finite since P is a probability measure, and the

second being finite for p <αasymp and infinite for p >αasymp (Proposition 2.3 applied to the

Lévy measure λP ).

Generalized Laplace random variables. Another interesting infinitely divisible family is

given by the generalized-Laplace laws. We follow here the notations of [KKP01]. A generalized-

Laplace random variable X has a characteristic function of the form

P̂X (ξ) = 1

(1+ 1
2σ

2ξ2)τ
= exp

(
−τ log(1+ 1

2
σ2ξ2)

)
,

with τ > 0 the shape parameter and σ2 the scaling parameter. We denote this situation by

X ∼GL (τ,σ2). Generalized Laplace laws are infinitely divisible [KKP01, Section 2.4.1] with

Lévy triplet (0,0,ντ,σ2 ) where [KKP01, Proposition 2.4.2]

ντ,σ2 (dt ) = τ

|t |e
−2|t |/σ2

dt .

The Lévy exponent is Ψ(ξ) =−τ log(1+ 1
2σ

2ξ2). The variance of X is then τσ2. We easily see

that αloc = 0, since Ψ growths logarithmically at infinity. Moreover, all the moments of X are

finite so that αasymp =∞.
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2.2 Elements of Functional Analysis
A signal is modeled as a function from Rd to R, with d ≥ 1. A function space is a topological

vector space whose elements are functions. Most of the spaces encountered in this section

are included in the space D ′(Rd ) of generalized functions, with a special emphasis on the

space of tempered generalized functions S ′(Rd ), introduced in Section 2.2.1. We recall

important results on operators in Section 2.2.2, including the whitening operators that are

considered in stochastic differential equations. The family of weighted Besov spaces, which

allows to quantify the regularity of smoothness and the rate of decay of generalized functions,

is presented in Section 2.2.3.

2.2.1 The Spaces D ′(Rd ), S ′(Rd ), and S ′(Td )
Most of the function spaces we will encounter are complete, Hausdorff, and locally convex.

This means that their topology is associated to a separate family of semi-norms [Rud91],

possibly infinite, possibly uncountable, for which they are complete. Among these spaces,

Hilbert and Banach spaces have the simplest structure, since their topology is associated to a

unique norm. As such, they will be our building blocks for the specification non-normable

spaces.

We say that a semi-norm p on a topological vector space X is separable if the semi-normed

space (X , N ) has a countable dense subset. We also say that N is Hilbertian if it satisfies the

parallelogram law. When N is a norm, this means that N is associated to a scalar product. A

family of semi-norms (Ni )i∈I on X is said to be separating if Ni (x) = 0 for all i ∈ I if and only

if x = 0.

Definition 2.9. A topological vector space X is a multi-Hilbertian space if there exists a sepa-

rating family of Hilbertian semi-norms (Ni )i∈I such that the collection of sets

VJ ,ε,x0 := {x ∈X
∣∣ ∀ j ∈ J , N j (x −x0) ≤ ε j

}
form a complete system of neighbourhoods for the topology of X , for J finite, J ⊂ I , ε j > 0, and

x0 ∈X . If the family (Ni )i∈I can be chosen countable, then X is a countably multi-Hilbertian

space.

Notations. We consider functions fromRd toR. A multi-index is written as m = (m1, . . . ,md ) ∈
Nd . The partial derivative with respect to the i th-coordinate is denoted by Di . For m ∈Nd , we

set Dm = Dm1
1 · · ·Dmd

d and |m| = m1 +·· ·+md .

For 0 < p ≤∞, the Lebesgue space Lp (Rd ) of measurable functions with finite p-(quasi-)norm

given by

‖ f ‖p :=
(∫

Rd

∣∣ f (x)
∣∣p dx

)1/p

(if p <∞),

‖ f ‖∞ := ess sup
x∈Rd

∣∣ f (x)
∣∣

is a Banach space for 1 ≤ p ≤∞, and a quasi-Banach space for 0 < p < 1 [Gra04, Section 1.1]. It
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is a Hilbert space if and only if p = 2.

The space D(Rd ) and its dual. The space of compactly supported and smooth functions

is denoted by D(Rd ). It is the union of the spaces D(K ) of smooth functions whose support

is included in K , where K is some compact subset of Rd . For K fixed, the space D(K ) is

a countable multi-Hilbertian space for the Hilbertian semi-norms (‖Dm{·}‖2)m∈Nd [Itô84,

Section 1.4]. Then, the space D(Rd ) is a complete topological vector space as the inductive

limit of the spaces D([−n,n]d ), for n ∈N. A sequence (ϕk )k∈N converges to 0 in D(Rd ) if the

ϕk are in a common D(K ) with K compact and converge to 0 in D(K ). One can show that

D(Rd ) is a multi-Hilbertian space, but not a countably multi-Hilbertian space [Itô84, Section

1.5].

The space of generalized functions D ′(Rd ) is the topological dual of D(Rd ); that is, the space

of continuous and linear function on D(Rd ) . For u ∈D ′(Rd ), ϕ,ψ ∈D(Rd ), and λ ∈R, we have

u(ϕ+λψ) = u(ϕ)+λu(ψ). We denote u(ϕ) = 〈u,ϕ〉. Moreover, the continuity of the linear

functional u is equivalent to the following condition: For every compact K , there exists M ∈N

and C > 0 such that for every ϕ ∈D(K ),∣∣〈u,ϕ〉∣∣≤C
∑

|m|≤M
‖Dm{ϕ}‖2.

We endow the space D ′(Rd ) with the weak topology. In particular, a sequence (uk ) converges

to 0 in D ′(Rd ) if and only if 〈uk ,ϕ〉 converges to 0 for every ϕ ∈D(Rd ). A measurable function

f that is locally integrable is identified with the generalized function ϕ �→ ∫Rd f (x)ϕ(x)dx .

With this identification, all the spaces Lp (Rd ) are included in D ′(Rd ) for p ≥ 1.

The space S (Rd ) and its dual. We denote by S (Rd ) the space of smooth and rapidly de-

caying functions. Its topology is the one associated with the separable family of semi-norms,

‖ϕ‖2,m,n := ∥∥ ·n Dm{ϕ}
∥∥

2 (2.10)

where m,n ∈Nd , where ·n is the function x ∈Rd �→ xn = xn1
1 · · ·xnd

d . A sequence of functions

(ϕk ) converges to 0 in S (Rd ) if ‖ϕk‖2,m,n→0 for every m,n ∈Nd as k →∞. The semi-norms

(2.10) are Hilbertian, so that S (Rd ) is a countably multi-Hilbertian space.

The topological dual of S (Rd ) is the space S ′(Rd ) of tempered generalized functions. It

is the space of continuous and linear functionals on S (Rd ). The duality product between

a tempered generalized function u ∈ S ′(Rd ) and a test function ϕ ∈ S (Rd ) is still denoted

by 〈u,ϕ〉. For u a linear functional on S (Rd ), the continuity is equivalent to the following

condition: There exists M ∈N and C > 0 such that, for every ϕ ∈S (Rd ),∣∣〈u,ϕ〉∣∣≤C
∑

|m|≤M

∑
|n|≤M

‖ϕ‖2,m,n . (2.11)

As for D ′(Rd ), we endow S ′(Rd ) with the weak topology: a sequence (uk ) converges to 0 in
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S ′(Rd ) if and only if 〈uk ,ϕ〉 converge to 0 for every ϕ ∈S (Rd ). The space S ′(Rd ) is embedded

in D ′(Rd ), and consist of the generalized functions u ∈D ′(Rd ) such that (2.11) is valid for some

M ,C > 0 and any ϕ ∈D(Rd ).

We define the space R(Rd ) of rapidly decaying measurable functions ϕ such that ‖ϕ‖2,n,0 <∞
for every n ∈Nd . Again, R(Rd ) is a countably multi-Hilbertian space.

The space S (Td ) and its dual. The d-dimensional torus is denoted by Td = [−1/2,1/2)d .

Let S (Td ) be the space of smooth functions on Td . It is isomorphic to the space of 1-periodic

smooth functions from Rd to R. Its topological dual S ′(Td ) is isomorphic to the space of

periodic generalized functions; that is, generalized functions u such that 〈u,ϕ(·−1)〉 = 〈u,ϕ〉
for every ϕ ∈D(Rd ).

When u ∈S ′(Td ), we define its Fourier coefficients as cn(u) := 〈u,e2iπ〈n,·〉〉, where the duality

product is defined over S ′(Td )×S (Td ). This quantity is always well-defined since en :=
e2iπ〈n,·〉 is in S (Td ). In general, the sequence c(u) := (cn(u))n∈Zd is of slow growth (bounded

by a polynomial). A periodic generalized function is in S (Td ) if and only if c(u) is rapidly

decaying.
For τ ∈R, we define the periodic Sobolev space as

W τ
2 (Td ) :=

{
u ∈S ′(Td )

∣∣∣∣∣ ‖u‖W τ
2 (Td ) :=

( ∑
n∈Zd

〈n〉2τ ∣∣〈u,e2iπ〈n,·〉〉∣∣2)1/2

<∞
}

.

Then, the dual of W τ
2 (Td ) is isomorphic to W −τ

2 (Td ) for all τ. Moreover, we have that

S (Td ) =∩k∈ZW k
2 (Td ) and S ′(Td ) =∪k∈ZW k

2 (Td ).

Remarks. The spaces D(Rd ), D ′(Rd ), S (Rd ), S ′(Rd ), S (Td ), and S ′(Td ) are not normable.

They can be classified depending on the complexity of their topology.

• The space S (Rd ) is a countably Hilbertian space and is therefore metrizable. But it is

not normable. The same remark holds for R(Rd ), S (Td ), and D(K ) for K ⊂Rd compact.

They are Fréchet spaces, which are systematically studied for instance in [MV97, Part

IV].

• The space S ′(Rd ) is the dual of a non-normable countably multi-Hilbertian space. It is

therefore a non-metrizable (DF) space (for dual of Fréchet) [MV97, Part IV]. The same

holds for D ′(K ) and S ′(Td ).

• The space D(Rd ) is a multi-Hilbertian space, but not a countable multi-Hilbertian

space. It is therefore not metrizable. As the inductive limit of a family of countable

multi-Hibertian (Fréchet) spaces, it is sometimes referred to as (LF)-spaces (for “limit of

Fréchet") [Trè67, Section 13].

• The space D ′(Rd ) is not metrizable. As the dual of a countable inductive limit of (non-

Banach) countably multi-Hilbertian spaces, it is the more evolved structure based on
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Hilbert spaces that we shall encounter.

Embeddings. We say that the topological vector space X is embedded in the topological

vector space Y , what we denote by X ⊆Y , if it is included (as a set), and if the canonical

injection is continuous. We have the following classical embeddings, valid for any p ∈ [1,∞]:

D(Rd ) ⊆S (Rd ) ⊆R(Rd ) ⊆ Lp (Rd ) ⊆S ′(Rd ) ⊆D ′(Rd ),

S (Rd ) ⊆S (Td ) ⊆ Lp (Td ) ⊆S ′(Td ) ⊆S (′Rd ).

Nuclear Spaces In functional analysis, the nuclear structure was introduced by A. Grothendieck [Gro95]

to remedy the absence of normed topologies for many fundamental function spaces in the

theory of generalized functions. To quote A. Pietsch in [Pie72]: “The locally convex spaces

encountered in analysis can be divided into two classes. First, there are the normed spaces (...).

The second class consists of the so-called nuclear locally convex spaces." When considering

measure theory on multi-Hilbertian spaces in Section 2.3, the nuclearity of the considered

topologies will appear to be crucial. The reason is that, contrary to Banach spaces, many finite

dimensional results of probability theory have direct generalizations on nuclear spaces while

this is typically not feasible for Banach spaces. Note that normed spaces and nuclear spaces

are mutually exclusive in infinite dimension: The only complete topological vector spaces that

are nuclear and normable are finite-dimensional [Trè67, Corollary 2, pp. 520].

Definition 2.10. A linear operator L between two separable Hilbert spaces H1 and H2 is

Hilbert-Schmidt if for any orthonormal basis (en)n∈N of H1, one has∑
n≥0

‖L{en}‖2
H2

<∞,

with ‖·‖H2 the Hilbertian norm of H2.

For instance, the identity is not Hilbert-Schmidt on an infinite dimensional separable Hilbert

space.

Definition 2.11. Consider a multi-Hilbertian space X whose topology is associated to the

family of Hilbertian semi-norms N . We denote by XN the Hilbert space obtained as the

completion of X for the semi-norm N ∈N . We say that X is nuclear if for any M ∈N , there

exists N ∈N such that XM ⊆XN and the identity is Hilbert-Schmidt from XM to XN .

There exists more general definitions of the nuclearity (not only for multi-Hilbertian spaces);

see for instance [Trè67]. One can show that S (Rd ), D(K ) for K compact, S (Td ), and D(Rd ),

together with their duals, are nuclear spaces [Itô84, Chapter 1].

2.2.2 Linear Operators
We chose to work with tempered generalized functions rather than with generalized functions.

Among our motivations, we aim at considering whitening operators associated with Fourier
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multipliers in S ′(Rd ) in our stochastic model developed in Section 3. With this constraint in

mind, we focus on linear and continuous operators L from S (Rd ) to S ′(Rd ). This is the most

general form of operators we shall consider.

Definition 2.12. Let L be a linear and continuous operator from S (Rd ) to S ′(Rd ). The adjoint

of L is the unique operator L∗ linear and continuous from S (Rd ) to S ′(Rd ) such that

〈L{ϕ},ψ〉 = 〈L∗{ψ},ϕ〉 (2.12)

for every ϕ,ψ ∈S (Rd ).

In (2.12), the two duality products are between a tempered generalized function and a rapidly

decaying smooth function, so that all the quantities are well-defined.

The Schwartz kernel theorem.

Theorem 2.3. For any linear and continuous operator L from S (Rd ) to S ′(Rd ), there exists a

unique generalized function h ∈S ′(Rd ×Rd ) such that

〈L{ϕ},ψ〉 = 〈h,ϕ⊗ψ〉 (2.13)

for any ϕ,ψ ∈S (Rd ), where (ϕ⊗ψ)(x , y) =ϕ(x)ψ(y) is the tensor product between ϕ and ψ.

The generalized function h is called the kernel of L. With a slight abuse of notation (valid when

both h and L{ϕ} are locally integrable functions), we rewrite (2.13) as

L{ϕ}(x) =
∫
Rd

h(x , y)ϕ(y)dy .

Theorem 2.3 is known as the Schwartz kernel theorem. It tells us that a linear and continuous

operator can be represented by a kernel. It is intimately linked to the nuclearity of S (Rd )

[Trè67, Sections 50, 51]. The corresponding result is also valid for linear and continuous

operators from D(Rd ) to D ′(Rd ), with kernels in D ′(Rd ×Rd ) [Trè67, Theorem 51.7], and more

generally on locally convex nuclear spaces [Gro95]. The general result requires advanced

functional analysis material. For the case of S (Rd ), an equivalent result on continuous

bilinear forms on S (Rd )×S (Rd ) is demonstrated with relatively elementary tools in [Sim03,

Theorem 5].

Extension by duality. Assume that the adjoint L∗ of L is continuous from S (Rd ) to itself.

In that case, we can extend L as a linear and continuous operator from S ′(Rd ) to itself. For

u ∈S ′(Rd ), we define L{u} as the tempered generalized function such that

〈L{u},ϕ〉 = 〈u,L∗{ϕ}〉

for ϕ ∈S (Rd ). For instance, the derivative operator D is continuous from S (R) to itself, so is

its adjoint (−D). Therefore, the derivative is extended to any generalized function in S ′(Rd )
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More generally, if L∗ is continuous from S (Rd ) to X where X is a locally convex topological

vector space such that S (Rd ) ⊆X ⊆S ′(Rd ), then L can be extended to the dual X ′ of X

following the same principle.

Geometric transformation and invariances. For x0 ∈ Rd , the translation operator Tr0 is

Tx0 {ϕ} = ϕ(· − x0) with ϕ ∈ S (Rd ). For a > 0, the scaling operator Sa is Sa{ϕ} = a−d/2ϕ(·/a)

with ϕ ∈ S (Rd ). For θ0 ∈ SO(d), the special orthogonal group (or group of d-dimensional

rotations), the rotation operator Rθ0 is Rθ0 {ϕ} =ϕ(θT
0 .). We have the relations T∗

x0
= T−1

x0
= T−x0

and S∗
a = S−1

a = Sa−1 , and R∗
θ0

= R−1
θ0

= RT
θ0

. Translation, scaling, and rotation operators are

extended to S ′(Rd ) by duality.

Definition 2.13. A linear operator L continuous from S (Rd ) to S ′(Rd ) is said to be

• shift-invariant if LTx0 = Tx0 L for all x0 ∈Rd ,

• homogeneous of order γ (or γ-homogeneous) with γ ∈R if LSa = a−γSaL for all a > 0,

and

• rotation-invariant if LRθ0 = Rθ0 L for all θ0 ∈ SO(d).

When the operator L is shift-invariant, its kernel h satisfies h(x , y) = h(x − y). Then, L is a

convolution operator of the form L{ϕ} = h ∗ϕ with h ∈ S ′(Rd ). The adjoint of L is itself a

convolution and we have L∗{ϕ} = h∨ ∗ϕ with h∨(x) = h(−x). In that case, for any ϕ ∈S (Rd ),

L∗{ϕ} is a smooth function. It means in particular that L∗ is a continuous and linear operator

from S (Rd ) to E (Rd ), the space of smooth functions (on which a nuclear topology can be

defined as for D ′(Rd ); see [Trè67, Corollary p.530]). Therefore, we can extend L by duality to any

generalized function in the dual E ′(Rd ) of E (Rd ), which is the space of compactly supported

generalized functions [Bon01]. In particular, L{u} is well-defined as soon as u ∈ S ′(Rd ) is

compactly supported. This is the case for the Dirac impulse δ and all its (partial) derivatives.

Then, we remark that L{δ} = h∗δ= h: the generalized function h is called the impulse response

of L.

Differential and pseudo-differential operators. In view of studying stochastic differential

equations, we specify here the class of operators that we will consider. For L : S (Rd ) →S ′(Rd )

linear, continuous, and shift-invariant, the Fourier transform of the impulse response h is

called the Fourier multiplier of L, denoted by L̂. We have then

�L{ϕ} = L̂ϕ̂.

Examples of whitening operators. We introduce some classical families of differential or

pseudo-differential operators that we shall use as whitening operators. For all of them, we

specify their adjoint, their Fourier multiplier, and recap their invariance properties.

• Differential operators: In the 1-D setting, a differential operator has the form L = P (D)

with N ≥ 1, P (X ) = a0 +a1X +·· ·+aN X N a polynomial, and aN �= 0. We call N the order
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of L. It is shift-invariant with Fourier multiplier

L̂(ω) = P (iω) = a0 +a1(iω)+·· ·+aN (iω)N .

for any ω ∈ R. The adjoint of P (D) is P (−D). When P (X ) = X N , the operator L = DN is

N -homogeneous.

• Fractional derivatives: The fractional derivative of order γ ≥ 0 is the shift-invariant

operator with Fourier multiplier given for ω ∈R by

L̂(ω) = (iω)γ,

denoted by Dγ. The fractional derivative and its adjoint are shift-invariant and γ-

homogeneous. For γ ∈N, it is consistent with the usual derivative.

More generally, M. Unser and T. Blu have identified the complete class of one-dimensional

shift-invariant and homogeneous operators. They shown that this family is parame-

terized by γ and τ with γ the order of homogeneity and τ a phase parameter [UB07,

Proposition 2]. The adjoint of Dγ, with Fourier multiplier (−iω)γ, lies in this family.

• Separable operators: If L is a 1-dimensional whitening operator, one defines its separable

extension, denoted by Ld , with Fourier multiplier

L̂d (ω) =
d∏

i=1
L̂(ωi )

for any ω= (ω1, . . . ,ωd ) ∈Rd .

When L = D, we denote by Λ its separable extension, given by Λ=∏d
i=1 Di . The operator

Λ is shift-invariant, d-homogeneous, and not rotation-invariant. Its adjoint is Λ∗ =
(−1)dΛ.

When L = Dγ is the fractional derivative of order γ> 0, we denote by Λγ its separable

version. This operator is shift-invariant, (dγ)-homogeneous, and not rotation-invariant.

• Laplacian: The Laplacian operator in dimension d is defined as L =Δ= D2
1+·· ·+D2

d . It is

continuous from S (Rd ) to itself and self-adjoint. As such, we extend Δ as a continuous

operator from S ′(Rd ) to S ′(Rd ). The Laplacian is shift-invariant, 2-homogeneous,

rotation-invariant, and its Fourier multiplier is Δ̂(ω) =−‖ω‖2.

• Fractional Laplacian: The fractional Laplacian of order γ≥ 0 is associated to the Fourier

multiplier L̂(ω) = ‖ω‖γ. It is self-adjoint, γ-homogeneous, and rotation-invariant. When

γ= 2, we recognize the opposite of the Laplacian operator, and we denote the fractional

Laplacian by (−Δ)γ/2. See [Gra04, Section 6.1] for more details.

• Bessel operator: We recall that 〈x〉 :=
√

1+‖x‖2. For γ ∈R, the Bessel operator of order γ

is the operator Jγ = (Id−Δ)γ/2 with Fourier multiplier Ĵγ(ω) = 〈ω〉γ. It is a self-adjoint

operator, with inverse J−γ. Since Ĵγ and ( Ĵγ)−1 = Ĵ−γ are infinitely differentiable functions
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of slow growth, the Bessel operator is a continuous bijection from S (Rd ) to itself, and

by extension a continuous bijection from S ′(Rd ) to itself. See [Gra04, Section 6.1.2] for

more details.

Operators on periodic function spaces. We recall that en is the trigonometric function

en(x) = e2iπ〈x ,n〉, with n ∈Zd . We assume that L is now a continuous, linear, and shift-invariant

operator from S (Td ) to S (Td ). Then, L can be extended by duality from S ′(Td ) to S ′(Td ).

The en are the eigenfunctions of L, and we write L{en} =λnen .

The sequence (λn)n∈Zd is slowly growing (bounded by a polynomial). Reciprocally, any slowly

growing sequence specify a linear, continuous, and shift-invariant operator L from S (Td ) to

S (Td ) by the relation

Lϕ := ∑
n∈Zd

λncn(ϕ)en ,

where the convergence holds in S (Td ).

If L is also a linear, continuous, and shift-invariant operator from S (Rd ) to S ′(Rd ) and

its Fourier multiplier L̂ is a continuous function, then we have that λn = L̂(2πn). All the

differential and pseudo-differential operators defined above satisfy this property, and can

therefore be seen as operators from S (Td ) to S (Td ).

2.2.3 Weighted Besov Spaces
Besov spaces are parameterized by three values: the regularity parameter τ, the integrability

order p, and an additional tuning parameter q . Concretely, the parameter q plays only a

secondary role. Moreover, it appears to be unnecessary for our results on the compressibility of

generalized Lévy processes (Chapter 6). We therefore restrict the presentation to the subfamily

of the so-called Sobolev-Slobodeckij spaces, that corresponds to the case p = q . However,

we prefer to keep the denomination of Besov spaces for two reasons. First, all the definitions

and results presented in this section are developed for the complete family of Besov spaces in

[Tri06, Tri08]. Second, interesting considerations on the parameter q can be done once the

results are known for the case p = q . This calls for some possible refinements of our results

that we shall discuss later.

Random processes do not decay at infinity in general, so that there is no hope to characterize

their Besov regularity over the complete space Rd with classical Besov spaces. We will therefore

consider weighted Besov spaces related to polynomial weights to overcome this issue. The

parameter for the decay rate is ρ.

In what follows, we first consider the weighted Sobolev spaces, that corresponds to p = q = 2,

based on the Fourier transform and the Bessel operators. Then, we consider the weighted

Besov spaces (with p = q). We chose to use the wavelet characterization of Triebel as our

definition. This section is essentially based on our publications [FFU, AFU].

Weighted Sobolev spaces. We recall that Jτ is the Bessel operator of order τ (see Section

2.2.2).
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Definition 2.14. Let τ,ρ ∈R. The Sobolev space of smoothness τ is defined by

W τ
2 (Rd ) :=

{
f ∈S ′(Rd )

∣∣∣ Jτ{ f } ∈ L2(Rd )
}

and the Sobolev space of smoothness τ and decay ρ is

W τ
2 (Rd ;ρ) :=

{
f ∈S ′(Rd )

∣∣∣ 〈·〉ρ f ∈W τ
2 (Rd )

}
.

We also set L2(Rd ;ρ) :=W 0
2 (Rd ;ρ).

We summarize now the basic properties on weighted Sobolev spaces that are useful for our

work, with short proofs for the sake of completeness. More details can be found in [Tri06]; in

particular, in Chapter 6, a broader class of weighted spaces with their embedding relations is

considered.

Proposition 2.6. The following properties hold for weighted Sobolev spaces.

• For ρ,τ ∈R, W τ
2 (Rd ;ρ) is a Hilbert space for the scalar product

〈 f , g 〉W τ
2 (Rd ;ρ) := 〈Jτ{〈·〉ρ f }, Jτ{〈·〉ρg }

〉
L2(Rd ) .

We denote by ‖ f ‖W τ
2 (Rd ;ρ) = 〈 f , f 〉1/2

W τ
2 (Rd ;ρ)

the corresponding Hilbertian norm.

• For ρ ∈R fixed and for every τ1 ≤ τ2, we have the continuous embedding

W τ2
2 (Rd ;ρ) ⊆W τ1

2 (Rd ;ρ). (2.14)

• For τ ∈R fixed and for every ρ1 ≤ ρ2, we have the continuous embedding

W τ
2 (Rd ;ρ2) ⊆W τ

2 (Rd ;ρ1). (2.15)

• For ρ,τ ∈R, the operator Jτ,ρ : f �→ 〈·〉ρJτ{ f } is an isometry from L2(Rd ) to W −τ
2 (Rd ;−ρ).

• The dual space of W τ
2 (Rd ;ρ) is W −τ

2 (Rd ;−ρ) for every τ,ρ ∈R.

• We have the countable projective limit

S (Rd ) = ⋂
τ,ρ∈R

W τ
2 (Rd ;ρ) = ⋂

n∈N
W n

2 (Rd ;n). (2.16)

• We have the countable inductive limit

S ′(Rd ) = ⋃
τ,ρ∈R

W τ
2 (Rd ;ρ) = ⋃

n∈N
W −n

2 (Rd ;−n). (2.17)

Proof. The space W τ
2 (Rd ;ρ) inherits the Hilbertian structure of L2(Rd ). For τ1 ≤ τ2 and ρ1 ≤ ρ2,
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we have moreover the inequalities,

‖ f ‖W
τ1

2 (Rd ;ρ) ≤ ‖ f ‖W
τ2

2 (Rd ;ρ),

‖ f ‖W τ
2 (Rd ;ρ1) ≤ ‖ f ‖W τ

2 (Rd ;ρ2),

from which we deduce (2.14) and (2.15). The relation

‖Jτ,ρ f ‖W −τ
2 (Rd ;−ρ) = ‖J−τ{〈·〉−ρJτ,ρ f }‖L2(Rd ) = ‖ f ‖L2(Rd )

proves that Jτ,ρ is an isometry. For every f , g ∈ L2(Rd ), we have that

〈Jτ{〈·〉ρ f }, J−τ{〈·〉−ρg }〉L2(Rd ) = 〈 f , g 〉L2(Rd ). (2.18)

Since W τ
2 (Rd ;ρ) = {Jτ{〈·〉ρ f }, f ∈ L2(Rd )}, we easily deduce the dual of W τ

2 (Rd ;ρ) from (2.18).

Finally, we can reformulate the topology on S (Rd ) as (2.16). This implies directly (2.17).

Weighted Sobolev-Slobodeckij (Besov) spaces. We use a wavelet-based approach, as ex-

posed in [Tri08]. Essentially, Besov spaces are subspaces of S ′(Rd ) that are characterized by

weighted sequence norms of the wavelet coefficients.

The scale and shift parameters of the wavelets are respectively denoted by j ≥ 0 and k ∈Zd . The

letters M and F refer to the gender of the wavelet (F for the father wavelets and G for the mother

wavelet). Consider two functions ψM and ψF ∈ L2(R). We set G0 = {M ,F }d and, for j ≥ 1,

G j = G0\{F d }. For G = (G1, . . . ,Gd ) ∈ G0, called a gender, we set, for every x = (x1, . . . , xd ) ∈Rd ,

ψG (x) =∏d
i=1ψGi (xi ). For j ≥ 0, G ∈ G j , and k ∈Zd , we define

ψ j ,G ,k (x) := 2 j d/2ψG (2 j x −k)

for any x ∈Rd .

For any regularity parameter r0 ≥ 1, there exists two functions ψM ,ψF ∈ L2(R) that are com-

pactly supported, with at least r0 continuous derivatives such that the family

{ψ j ,G ,k }( j ,G ,k)∈N×G j×Zd

is an orthonormal basis of L2(Rd ) [Tri08]. Concretely, one consider the family of Daubechies

wavelets [Dau88].

The following definition of weighted Besov spaces is equivalent to the more usual Fourier-

based definitions. This equivalence is proved in [Tri08].

Definition 2.15. Let τ,ρ ∈ R and 0 < p ≤ ∞. Fix r0 > max(τ,d(1/p − 1)+ −τ) and consider

a family of compactly supported wavelets {ψ j ,G ,k }( j ,G ,k)∈N×G j×Zd with at least r0 continuous

derivatives.

The weighted Besov space Bτ
p (Rd ;ρ) is the collection of tempered generalized functions f ∈
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S ′(Rd ) that can be written as

f = ∑
( j ,G ,k)∈N×G j×Zd

c j ,G ,kψ j ,G ,k , (2.19)

where the c j ,G ,k satisfy

∑
j≥0

2 j (τp−d+ d p
2 )
∑

G∈G j

∑
k∈Zd

〈2− j k〉ρp |c j ,G ,k |p <∞,

where we recall that 〈x〉 = (1+‖x‖)1/2 and and where the convergence (2.19) holds uncondition-

ally on S ′(Rd ). The usual modification should be done when p =∞.

The parameter r0 in Definition 2.15 is chosen such that the wavelet is regular enough to be

applied to a function of Bτ
p (Rd ;ρ). When the convergence (2.19) occurs, the duality product

〈 f ,ψ j ,G ,k〉 is well defined and we have c j ,G ,k = 〈 f ,ψ j ,G ,k〉. Moreover, the quantity

‖ f ‖Bτ
p (Rd ;ρ) :=

(∑
j≥0

2 j (τp−d+ d p
2 )
∑

G∈G j

∑
k∈Zd

〈2− j k〉ρp |〈 f ,ψ j ,G ,k〉|p
)1/p

(2.20)

is finite for f ∈ Bτ
p (Rd ;ρ) and specifies a norm (a quasi-norm, respectively) on Bτ

p (Rd ;ρ) for

p ≥ 1 (p < 1, respectively). The space Bτ
p (Rd ;ρ) is a Banach (a quasi-Banach, respectively)

for this norm (quasi-norm, respectively). When p = 2, weighted Sobolev spaces and Besov

spaces coincide; that is, W τ
2 (Rd ;ρ) = Bτ

2 (Rd ;ρ), the two norms—the one of Proposition 2.6 and

(2.20)—being equivalent.

As a simple example, we obtain the Besov localization of the Dirac impulse. Of course, this

result is known, and an alternative proof can be found for instance in [ST87]. We believe

that it is interesting to give our own proof here. First, it illustrates how to use the wavelet-

based characterization of Besov spaces, and second, it will be used to obtain sharp results for

compound Poisson processes.

Proposition 2.7. The Dirac impulse δ is in Bτ
p (Rd ;ρ) if and only if τ< d

p −d.

Proof. The definition of the Besov (quasi-)norm readily gives

‖δ‖p
Bτ

p (Rd ;ρ)
=∑

j≥0
2 j (τp−d+d p)

∑
G∈G j

∑
k∈Zd

〈2− j k〉ρp |ψG (k)|p .

The common support K of the ψG is compact. Therefore, only finitely many ψG (k) are non

zero, and for such k and every j we have

0 < min
x∈K

〈x〉ρp = 〈2− j k〉ρp ≤ max
x∈K

〈x〉ρp <∞.

Since 2d −1 ≤ Card(G j ) ≤ 2d and all the ψG are bounded, it is then easy to find 0 < A ≤ B <∞
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such that

A
∑
j≥0

2 j (τ−d+d p) ≤ ‖δ‖p
Bτ

p (Rd ;ρ)
≤ B
∑
j≥0

2 j (τ−d+d p).

The sum converges for τ−d +d p < 0 and diverges otherwise, implying the result.

Embeddings between weighted Besov spaces.

Proposition 2.8. Let 0 < p0 ≤ p1 ≤∞ and τ0,τ1,ρ0,ρ1 ∈R.

• We have the embedding Bτ0
p0

(Rd ;ρ0) ⊆ Bτ1
p1

(Rd ;ρ1) as soon as

τ0 −τ1 > d

p0
− d

p1
and ρ0 > ρ1. (2.21)

• We have the embedding Bτ1
p1

(Rd ;ρ1) ⊆ Bτ0
p0

(Rd ;ρ0) as soon as

ρ1 −ρ0 > d

p0
− d

p1
and τ1 > τ0. (2.22)

A proof of the sufficiency of (2.21) can be found in [ET08, Section 4.2.3] for unweighted Besov

spaces. The extension to the weighted case is obvious. For the embedding (2.22), see [FFU,

Proposition 3]. Proposition 2.8 is summarized in the two diagrams of Figure 2.1.

(a) (1/p,τ)-diagram for fixed ρ0 (b) (1/p,ρ)-diagram for fixed τ0

Figure 2.1 – Representation of the embeddings between Besov spaces: If f ∈ Bτ0
p0

(Rd ;ρ0), then

f is in any Besov space that is in the shaded green regions. Conversely, if f ∉ Bτ0
p0

(Rd ;ρ0), then
f is not in any of the Besov spaces of the shaded red regions.

If the only knowledge provided to us is that the generalized function f is in S ′(Rd ), then this

is not enough to set the regularity r0 of the wavelet used to characterize the Besov smoothness

of f . However, if we have additional information on f , for instance its inclusion in a weighted

Sobolev space, then the situation is different. Proposition 2.9 gives a wavelet-domain criterion

to determine if a generalized function f , known to be in W τ0
2 (Rd ;ρ0), is actually in Bτ

p (Rd ;ρ).
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Note that f ∈ S ′(Rd ) is in some Sobolev space W τ0
2 (Rd ;ρ0) because of (2.17). This result is

taken from our work [FFU], where it is proved for general Besov spaces.

Proposition 2.9. Let τ,τ0,ρ,ρ0 ∈R and 0 < p ≤∞. We set

r0 > max(|τ0| ,
∣∣τ−d(1/p −1/2)+

∣∣). (2.23)

Then, the generalized function f ∈W τ0
2 (R;ρ0) is in Bτ

p (Rd ;ρ) if and only if∑
j≥0

2 j (τp−d+d p/2)
∑

G∈G j

∑
k∈Zd

〈2− j k〉ρp |〈 f ,ψ j ,G ,k〉|p <∞,

with (ψ j ,G ,k ) a Daubechies wavelet basis of L2(Rd ) of regularity at least r0, with the usual

modifications when p =∞.

Proof. Let τ1 < min(τ0,τ−d(1/p−1/2)+) and ρ1 ≤ min(ρ0,ρ−d(1/p−1/2)+). Then, according

to Proposition 2.8, we have the embeddings

Bτ
p,q (Rd ;ρ) ⊆W τ1

2 (Rd ;ρ1) and W τ0
2 (Rd ;ρ0) ⊆W τ1

2 (Rd ;ρ1).

Condition (2.23) implies that we can apply Definition 2.15 to the Besov space W τ1
2 (Rd ;ρ1). In

particular, if (ψ j ,G ,k ) is a Dabauchies wavelet basis with regularity at least r0, and for every

function f ∈W τ1
2 (Rd ;ρ1), then the wavelet coefficients 〈 f ,ψ j ,G ,k〉 are well-defined. Moreover,

we have the characterization

f ∈ Bτ
p (Rd ;ρ) ⇔‖ f ‖Bτ

p (Rd ;ρ) <∞

for f ∈W τ1
2 (Rd ;ρ1) and, therefore, for f ∈W τ0

2 (Rd ;ρ0).
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2.3 Generalized Random Processes and Fields
Generalized random processes are random elements in a space of generalized functions.

In their seminal works [Gel55, GV64], Gelfand and Vilenkin examine generalized random

processes in D ′(Rd ). We prefer to develop the theory over the space S ′(Rd ) of tempered

generalized functions. This amounts to a slightly restriction on the class of processes, since

S ′(Rd ) is a strict subset of D ′(Rd ). We are motivated by the fact that tempered generalized

random processes are more adapted to the construction of solutions of stochastic differential

equations. This is in line with the specification of whitening operators from S (Rd ) to S ′(Rd )

via their Fourier multiplier (see Section 2.2.2). Moreover, adopting S ′(Rd ) allows us to extend

the space of test functions to the case of non-compactly supported functions, which are crucial

in signal-processing applications.

2.3.1 Definition and Main Concepts
We fix a probability space (Ω,F ,P). We recall that the space S ′(Rd ) is endowed with the

weak*-topology. The associated Borel σ-field is denoted by B(S ′(Rd )). It is the σ-field

generated by the open sets of S ′(Rd ). Equivalently, B(S ′(Rd )) is generated by the cylinders

of the form{
u ∈S ′(Rd )

∣∣∣ 〈u,ϕ〉 ∈ B
}

(2.24)

with N ≥ 1, ϕ ∈ (S (Rd ))N , and B ∈B(RN ) Borel set2.

Definition 2.16. A tempered generalized random process is a measurable mapping from

(Ω,F ) to (S ′(Rd ),B(S ′(Rd )); that is, a (S ′(Rd ))-valued random variable.

When the context is clear, we will omit to specify that a generalized random process is tem-

pered.

Definition 2.17. The law of a generalized random process s is the probability measure on

S ′(Rd ) defined by

Ps(B) :=P(s ∈ B) =P {ω ∈Ω | s(ω) ∈ B}

for any B ∈B(S ′(Rd )). Two generalized random processes s1 and s2 are equal in law if Ps1 =
Ps2 . This is denoted by s1

(L )= s2.

For every tempered generalized random process s and ϕ ∈ S (Rd ), the mapping 〈s,ϕ〉 :

(Ω,F ) → (R,B(R)) defined by 〈s,ϕ〉(ω) = 〈s(ω),ϕ〉 is measurable; that is, 〈s,ϕ〉 ∈ L0(Ω). More-

over, the map

s : S (Rd ) → L0(Ω)

ϕ �→ 〈s,ϕ〉
2The cylinders (2.24) defines the cylindrical σ-field of S ′(Rd ), that coincides with the Borel σ-field for the

weak*-topology, as for any countably multi-Hilbertian spaces [Itô84].
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is linear and continuous. The converse is also valid: Any linear and continuous map from

S (Rd ) to L0(Ω) specifies a tempered generalized random process. This is intimately related

to the structure of nuclear and countable multi-Hilbertian space of S ′(Rd ) [Itô84, Wal86]. See

the introduction of [Sel07] for additional references on these questions.

More generally, for ϕ = (ϕ1, . . . ,ϕN ) ∈ (S (Rd ))N , we consider the N -dimensional random

vector 〈s,ϕ〉 := (〈s,ϕ1〉, . . . ,〈s,ϕN 〉). The random vectors(〈s,ϕ〉)N≥1,ϕ∈(S (Rd ))N

are the finite-dimensional marginals of s. Two generalized random processes are equal in law

if and only if their finite-dimensional marginals are equal in law.

If L is a continuous operator from S (Rd ) to S (Rd ), then L∗, when restricted to S (Rd ), shares

this property and L can be extended by duality to S ′(Rd ). Exploiting this principle, if s is a

generalized random process, then we can define the process L{s} as

〈L{s},ϕ〉 = 〈s,L∗{ϕ}〉

for ϕ ∈S (Rd ). In particular, for any multi-integer m ∈Nd , the process Dm{s} is defined as

〈Dm{s},ϕ〉 = (−1)|m|〈s,Dm{ϕ}〉.

We remark that, contrary to classical random processes, the (partial) derivative of a generalized

random process is always well-defined and is itself a generalized random process.

Definition 2.18. We say that the two generalized random processes s1 and s2 are independent

if for any B1,B2 in the Borel σ-field B(S ′(Rd )) of S ′(Rd ), the events {s1 ∈ B1} and {s1 ∈ B2} are

independent.

Equivalently, two generalized random processes s1 and s2 are independent if their finite

dimensional marginals are independent; that is, if the random vectors 〈s1,ϕ〉 and 〈s2,ϕ〉 are

independent for every N ≥ 1 and ϕ ∈ (S ′(Rd ))N .

Random processes are often classified by two characteristics: their statistical invariance

properties and their dependency structure. We recall that the geometric transformations are

introduced in Section 2.2.2.

Definition 2.19. A generalized random process s is said to be

• stationary if for all x0 ∈Rd , Tx0 s
(L )= s;

• symmetric if s∨ (L )= s, where s∨(x) = s(−x);

• self-similar of order H ∈R if for all a > 0, aH s(·/a)
(L )= s;

• isotropic if for all θ0 ∈ SO(d), Rθ0 s
(L )= s.

Definition 2.20. A generalized random process is independent at every point if 〈s,ϕ〉 and 〈s,Ψ〉
are independent whenever ϕ and Ψ ∈S (Rd ) have disjoint supports.
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We say that the generalized random process has finite pth moments for p > 0 if for any

ϕ ∈S (Rd ), E[
∣∣〈s,ϕ〉∣∣p ] <∞.

As we did for S ′(Rd ), we define the Borel σ-field B(D ′(Rd )) of D ′(Rd ) for the weak*-topology.

A generalized random process is then a (D ′(Rd ))-valued random variable. All the concepts

introduced above can be extended to random processes in D ′(Rd ).

2.3.2 The Characteristic Functional
The characteristic functional of a random process was defined for the first time by A. Kol-

mogorov in the short paper [Kol35]. We shall see that most of the concepts introduced in

Section 2.3.1 can be reformulated in terms of the characteristic functional. This is in line

with the finite-dimensional case exposed in Section 2.1: The characteristic functional is the

infinite-dimensional generalization of the characteristic function.

Definition 2.21. The characteristic functional of the tempered generalized random process s is

the functional from S (Rd ) to C defined by

P̂s(ϕ) =
∫
S ′(Rd )

ei〈u,ϕ〉dPs(u) = E[ei〈s,ϕ〉].

As for the characteristic function for random variables, the characteristic functional character-

izes the law of the generalized random process: Two generalized random processes are equal

in law if and only if P̂s1 = P̂s2 . The characteristic functional shares the defining properties of

the characteristic function.

Proposition 2.10. A characteristic functional P̂s is

• positive-definite on S (Rd ), in the sense that

N∑
n,m=1

an a∗
mP̂s(ϕn −ϕm) ≥ 0

for every N ≥ 1, ϕn ∈S (Rd ), and an ∈C.

• continuous on S (Rd );

• normalized as P̂s(0) = 1.

The conditions of Proposition 2.10 are not only necessary, but also sufficient: This is the well-

known generalization of Proposition 2.2 in S (Rd ), known as the Bochner-Minlos theorem.

Theorem 2.4. A functional P̂ from S (Rd ) to C is the characteristic functional of a generalized

random process if and only if it is positive-definite, continuous, and satisfies P̂(0) = 1.

The Bochner-Minlos theorem was conjectured by Gelfand and demonstrated by Minlos

in [Min59]. This theorem is also valid for processes in D ′(Rd ) [GV64, Section III.2.6, Theorem

3]. As we did for the Gaussian random variable in Section 2.1, we can use the Bochner-Minlos

theorem to construct generalized random processes. As a first example, consider the functional
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P̂ : ϕ �→ e−‖ϕ‖
2
2/2. It is easy to check that it is continuous and positive-definite over S (Rd ) (for

the latter, the proof is identical to the finite-dimensional case) and that P̂(0) = 1. Therefore,

P̂ is the characteristic functional of a generalized random process, called the Gaussian white

noise.

Proposition 2.11. A characteristic functional P̂s satisfies the relations∣∣∣P̂s(ϕ)
∣∣∣≤ 1,∣∣∣P̂s(ϕ2)−P̂s(ϕ1)
∣∣∣≤ 2

(
1−ℜ{P̂s(ϕ2 −ϕ1)}

)
(2.25)

for every ϕ,ϕ1,ϕ2 ∈S (Rd ).

This result is actually valid for any positive-definite functional on a topological vector space.

The relation (2.25) shows in particular that a positive-definite functional that is continuous

around 0 is uniformly continuous; see for instance [Fer67, Section II.5.1] or [VTC87, Section

IV.1.2, Proposition 1.1] for a proof.

We give now a collection of results on the characteristic functional on the finite-dimensional

marginals, statistical invariances, independence properties, and moments. We sketch the

simple proofs and give adequate references for the more evolved ones.

Proposition 2.12. Let s be a generalized random process on S ′(Rd ) and ϕ ∈ (S (Rd ))N . Then,

the characteristic function of the real random vector 〈s,ϕ〉 is given by

P̂〈s,ϕ〉(ξ) = P̂s(ξ1ϕ1 +·· ·+ξNϕN ) = P̂s(〈ξ,ϕ〉) (2.26)

for every ξ= (ξ1, . . . ,ξN ) ∈RN .

Note that the notation 〈·, ·〉 is a duality product in the left term of (2.26), and the scalar product

over RN in the right term.

Proof. This is easily deduced from the computation

〈〈s,ϕ〉,ξ〉 =
N∑

n=1
〈s,ϕn〉ξn = 〈s,

N∑
n=1

ξnϕn〉 = 〈s,〈ξ,ϕ〉〉.

Proposition 2.13. Two random processes s1 and s2 are independent if and only if

P̂s1+s2 (ϕ) = P̂s1 (ϕ)P̂s2 (ϕ) (2.27)

for every ϕ ∈S (Rd ).

Proof. The processes s1 and s2 are independent if and only if 〈s1,ϕ〉 and 〈s1,ϕ〉 are indepen-

dent for every ϕ ∈ (S ′(Rd ))N , N ≥ 1. This is equivalent to P̂〈s1+s2,ϕ〉(ξ) = P̂〈s1,ϕ〉(ξ)P̂〈s1,ϕ〉(ξ)

for any ξ,ϕ, that we can rewrite thanks to Proposition 2.12 as

P̂s1+s2 (〈ξ,ϕ〉) = P̂s1 (〈ξ,ϕ〉)P̂s1 (〈ξ,ϕ〉). (2.28)
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If s1 and s2 are independent, then we deduce (2.27) from (2.28) with N = 1 and ξ= 1. If now

(2.27) is valid for any test function, we apply it with 〈ϕ,ξ〉, proving the equivalence.

It is possible to read the independence at every point of a generalized random process on

its characteristic functional. The following result on processes that are independent at every

point is taken from [GV64, Section III.4.1, Theorem 1].

Proposition 2.14. The generalized random process s is independent at every point if and only if

P̂s(ϕ+ψ) = P̂s(ϕ)P̂s(ψ)

for every ϕ,ψ with disjoint supports.

The statistical invariances of s are related to the impact of the geometric transformations on

the characteristic functional.

Proposition 2.15. A generalized random process s is

• stationary if and only if for every ϕ ∈S (Rd ) and x0 ∈Rd

P̂s(ϕ) = P̂s(Tx0ϕ).

• symmetric if and only if for any ϕ ∈S (Rd ), P̂s(ϕ) = P̂s(ϕ∨).

• self-similar of order H if and only if for every ϕ ∈S (Rd ) and a > 0.

P̂s(ϕ) = P̂s(aH+dϕ(a·)). (2.29)

• isotropic if and only if for every ϕ ∈S (Rd ) and Ω ∈ SO(d)

P̂s(ϕ) = P̂s(RΩϕ).

Proof. We prove the result for (2.29), the other proofs being very similar. We focus on the

generalized random process aH s(·/a). We readily see that

P̂aH s(·/a)(ϕ) = E[ei〈aH s(·/a),ϕ〉] = E[ei〈s,aH+dϕ(a·)〉] = P̂s(aH+dϕ(a·)).

Then, s
(L )= aH s(·/a) if and only if P̂s(aH+dϕ(a·)) = P̂s(ϕ), as expected.

2.3.3 Stochastic Functional Analysis
As we have seen, the theory of generalized random processes allows one to consider very

general random processes, including the ones that do not admit a pointwise representation. It

has another advantage: The Borel σ-field of S ′(Rd ) appears to be very rich, and we will see,

in particular, that the usual function spaces are measurable. This proves us with a strategy

to probe the smoothness, the integrability, the decay rate, etc., of a generalized random

process. In [Car63], P. Cartier compares the approach of Gelfand with more traditional ones in

probability theory, in particular the theory developed by J.L. Doob [Doo90].
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General principle. Consider a topological vector space X included in S ′(Rd ), and en-

dowed with the Borel σ-field B(X ). Two questions arise:

1. Is the space X measurable in S ′(Rd ); that is, X ∈B(S ′(Rd ))?

2. Are the Borel σ-fields compatible in the sense that

B(X ) =X ∩B(S ′(Rd )) :=
{
X ∩B

∣∣∣ B ∈B(S ′(Rd ))
}

?

If these two assumptions hold, we know in particular that the probability P(s ∈X ) is well-

defined for any tempered generalized random process s. The compatibility of the σ-field has

also two consequences. First, an X -valued random variable can be seen as an S ′(Rd )-valued

random variable such that P(s ∈ X ) = 1. Second, an S ′(Rd )-valued random variable for

which P(s ∈ X ) = 1 admits a version (identical up to a space of measure 0) that is an X -

valued random variable. In other terms, under 1. and 2., X -valued random variables form a

subspace of S ′(Rd )-valued random variables, characterized by the relation P(s ∈X ) = 1 (up

to modification on a space of measure 0 in S ′(Rd )).

These questions were studied by X. Fernique [Fer67] and K. Itō [Itô84]. Fernique considers

a very large class of function spaces, called standard spaces, for which the measurability

structure is essentially compatible with the topological structure. This means in particular

that the two questions above receive positive answers in this case. In [Fer67, Section III.3],

Fernique applies his general principle, that we shall not detail here, to identify measurable

spaces of D ′(Rd ). The same ideas apply to S ′(Rd ) and can be summarized as follows.

Proposition 2.16. Fix p ∈ [1,∞) and τ ∈ R. Assume that X is one of the following function

spaces: D(Rd ),S (Rd ),W τ
2 (Rd ),Lp (Rd ),E ′(Rd ). Then,

X ∈B(S ′(Rd )) and B(X ) =X ∩B(S ′(Rd )).

Measurability of Besov Spaces in S ′(Rd ). In this thesis, we shall investigate in which Besov

space (local or weighted) is a given Lévy noise. Here, we first show that this question is

meaningful in the sense that any Besov space Bτ
p,q (Rd ;ρ) is measurable in S ′(Rd ). The

principle developed by Fernique can be easily applied to Besov spaces that are Banach spaces

(that is, when p ≥ 1). In general, however, Besov spaces are quasi-Banach spaces and the

results of Fernique cannot be directly applied.

Here, we give our own proof of the measurability of Besov spaces, taken from our works

[FUW17b, FFU]. Our approach is different from the one of Fernique and does not rely on any

topological argument. We essentially show that Besov spaces are included in the cylindrical

σ-field of S ′(Rd ). We say that C is a cylinder of S ′(Rd ) if it can be written as

C = {u ∈S ′(Rd ), 〈u,ϕ〉 ∈ B}

where N ≥ 1, ϕ = (ϕ1, . . . ,ϕN ) ∈ (S (Rd ))N , and B ∈ B(RN ). The cylindrical σ-field is the σ-

field generated by the cylinders. In the case of S ′(Rd ), it coincides with the topological σ-field

[Itô84].
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Proposition 2.17. For every 0 < p ≤∞ and τ,ρ ∈R, we have that

Bτ
p (Rd ;ρ) ∈B

(
S ′(Rd )

)
. (2.30)

The proof of a similar measurability result is detailed for periodic generalized functions in

[FUW17b, Theorem 4]. The difference here is that we deal with functions over Rd and with

weighting functions. The adaptation to this case was exposed in [FUW17b, Lemma 1] for the

complete family of Besov spaces (with, possibly, q �= p). We reproduce here the proof for p = q .

The proof uses Lemma 2.1.

Lemma 2.1. Let X be a topological vector space, X ′ its topological dual and Bc (X ′) the

cylindrical σ-field on X ′, generated by the cylinders of the form

C := { f ∈X ′ ∣∣ 〈 f ,ϕ〉 ∈ B
}

,

where N ≥ 1, ϕ = (ϕ1, · · · ,ϕN ) ∈ X N , and B ∈ B(RN ). Then, for every countable set S, every

ϕn ∈X , and every p > 0, we have{
f ∈X ′

∣∣∣∣∣ ∑n∈S

∣∣〈 f ,ϕn
〉∣∣p <∞

}
∈Bc (X ′).

Proof. We first remark that{
f ∈X ′

∣∣∣∣∣ ∑n∈S

∣∣〈 f ,ϕn
〉∣∣p <∞

}
= ⋃

N≥0

{
f ∈X ′

∣∣∣∣∣ ∑n∈S

∣∣〈 f ,ϕn
〉∣∣p ≤ N

}
. (2.31)

It therefore suffices to show that
{

f ∈X ′ ∣∣ ∑
n∈S

∣∣〈 f ,ϕn
〉∣∣p ≤ N

}
is measurable. We denote by

RS the space of real sequences indexed by S, endowed with the product σ-field. By definition

of the cylindrical σ-field, for fixed ϕ= (ϕn)n∈S , the projection

πϕ( f ) := (〈 f ,ϕn
〉)

n∈S

is measurable from X ′ to RS . Moreover, the function Fp from RS to R+ that associates to a

sequence (an)n∈S the quantity
∑

n∈S |an |p is measurable. Finally, since [0, N ] is measurable in

R+, {
f ∈X ′

∣∣∣∣∣ ∑n∈S

∣∣〈 f ,ϕn
〉∣∣p ≤ N

}
=π−1

ϕ

(
F−1

p ([0, N ])
)

is measurable in X ′, as expected.

Proof of Proposition 2.17. We obtain the desired result in three steps. We treat the case p <∞
and let the reader adapt the proof for p =∞.

• First, we show that W τ
2 (Rd ;ρ) ∈B

(
S ′(Rd )

)
for every τ,ρ ∈R. This corresponds to the

case p = 2. Let (hn)n∈N be an orthonormal basis of L2(Rd ), with hn ∈S (Rd ) for all n ≥ 0.
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(We can for instance consider the Hermite functions, based on Hermite polynomials,

see [Sim03, Section 2] or [Itô84, Section 1.3] for the definitions.) The interest of having

basis functions in S (Rd ) is that we have the characterization

L2(Rd ) =
{

f ∈S ′(Rd )

∣∣∣∣∣ ∑n∈N|〈 f ,hn〉|2 <∞
}

.

More generally, with the notations of Section 2.2.3, f ∈W τ
2 (Rd ;ρ) if and only if Jτ{〈·〉ρ f } ∈

L2(Rd ), from which we deduce that

W τ
2 (Rd ;ρ) =

{
f ∈S ′(Rd )

∣∣∣∣∣ ∑n∈N|〈 f ,〈·〉ρJτ{hn}〉|2 <∞
}

.

We can therefore apply Lemma 2.1 with p = 2, S =N, and ϕn = 〈·〉ρJτ{hn}, to deduce that

W τ
2 (Rd ;ρ) ∈B(S ′(Rd )).

• For any τ,ρ ∈R, the cylindrical σ-field of W τ
2 (Rd ;ρ) is the σ-field Bc (W τ

2 (Rd ;ρ)) gener-

ated by the sets{
u ∈W τ

2 (Rd ;ρ), 〈u,ϕ〉 ∈ B
}

,

where N ≥ 1, ϕ= (ϕ1, . . . ,ϕN ) ∈ (W −τ
2 (Rd ;−ρ))N , and B ∈B(RN ). Then, knowing already

that W τ
2 (Rd ;ρ) ∈B(S ′(Rd )) implies readily that

Bc (W τ
2 (Rd ;ρ)) ⊂B(S ′(Rd )). (2.32)

• Finally, we show that Bτ
p (Rd ;ρ) ∈Bc (W τ1

2 (Rd ;ρ1)) for some adequately chosen τ1,ρ1 ∈R.

Coupled with (2.32), this suffices to show (2.30).

Fix τ1 ≤ τ+d
(
1/2−1/p

)
and ρ1 < ρ+d

(
1/p −1/2

)
. According to Proposition 2.8, we

have the embedding Bτ
p,q (Rd ;ρ) ⊆ W τ1

2 (Rd ;ρ1). Now, thanks to Proposition 2.9, we

identify Bτ
p (Rd ;ρ) as the space of generalized functions f ∈W τ1

2 (Rd ;ρ1) such that∑
j ,G ,m

|〈 f ,2 j (τ−d/p+d/2)〈2− j m〉ρψ j ,G ,m〉|p <∞.

Again, we apply Lemma 2.1 with S = {( j ,G ,m)
∣∣ j ∈Z,G ∈ G j ,m ∈Zd

}
, p, and ϕ j ,G ,m =

2 j (τ−d/p+d/2)〈2− j m〉ρψ j ,G ,m to deduce that Bτ
p (Rd ;ρ) ∈Bc (W τ1

2 (Rd ;ρ1)). The inclusion

(2.32) allows to conclude.





3 Construction of Generalized Lévy
Processes
We aim at constructing generalized random processes solution of a stochastic differential

equation of the form

Ls = w, (3.1)

with L a linear (pseudo-)differential operator and w a Lévy white noise in S ′(Rd ). Our main

tool is the Bochner-Minlos theorem presented in Section 2.3.2. Two questions need to be

addressed in order to define the broadest possible class of random processes: (i) the specifica-

tion of the class of Lévy white noises on S ′(Rd ), and (ii) the identification of compatibility

conditions between a Lévy noise and a pseudo-differential operator. This is done respectively

in Sections 3.1 and 3.3. In order to prepare the construction of general Lévy processes, we

extend the domain of definition of the Lévy noise to test functions not necessarily smooth nor

rapidly decaying in Section 3.2.

53
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3.1 Lévy White Noise
The class of Lévy white noise on D ′(Rd ) was introduced in [GV64, Chapter III]. Those processes

are specified via their characteristic functional. Here, we will essentially follow the same line,

except that we will consider Lévy noise on S ′(Rd ). The question of whether or not a Lévy

white noise is tempered has been recently resolved. In [FAU14], we gave a sufficient condition

ensuring that a Lévy noise is actually located in S ′(Rd ) in terms of moment conditions on

the Lévy measure. This is the main contribution presented in Section 3.1.1. More recently, R.

Dalang and T. Humeau have shown that our condition is actually sufficient [DH15]. This gives

a complete characterization of tempered Lévy noises.

3.1.1 Construction: From D ′(Rd ) to S ′(Rd )
The construction of continuous-domain white noises and processes, including Lévy processes,

is intimately linked with the infinite divisibility of the finite-dimensional marginals of those

processes. The main idea is the following. If (s(t ))t≥0 is a valid pointwise process with station-

ary and independent increments and s(0) = 0 (in other terms, if s is a Lévy process), then we

set, for all N ≥ 1,

s(t ) =
N∑

n=1
s

(
nt

N

)
− s

(
(n −1)t

N

)
:=

N∑
n=1

Xn,N .

The Xn,N , n = 1 · · ·N , are independent (since the increments are independent) and identically

distributed (since the increments are stationary). This is precisely the definition of an infinitely

divisible random variable (Section 2.1.2).

Consider a vector of N i.i.d. infinitely divisible random variables X with common Lévy

exponent Ψ. Then, the characteristic function of X is, for every ξ= (ξ1, . . . ,ξN ),

P̂X (ξ) = exp

(
N∑

n=1
Ψ(ξn)

)
. (3.2)

Inspired by (3.2) and following Gelfand and Vilenkin, we consider infinite-dimensional func-

tionals of the form

P̂(ϕ) = exp

(∫
Rd

Ψ(ϕ(x))dx
)

. (3.3)

The functional is, for instance, well-defined when Ψ : R→ C is a continuous function that

vanishes at 0 and ϕ is smooth and compactly supported. The idea is to replace the sum in (3.2)

by an integral, and to use test functions as the running variable.

Lévy noise in D ′(Rd ). The functional (3.3) is a valid characteristic functional over DRd )

if and only if the function ξ �→ eΨ(ξ) is the characteristic function of an infinitely divisible

law [GV64, Section 4.4, Theorem 6]; that is, if and only if Ψ is a Lévy exponent (according

to Theorem 2.2). The Bochner-Minlos theorem then ensures that there exists a generalized

random process whose characteristic functional is given by (3.3).
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Definition 3.1. Let Ψ be a Lévy exponent. Then, the generalized random process w with

characteristic functional (3.3) is called a Lévy white noise, or simply a Lévy noise. By extension,

we say that Ψ is the Lévy exponent of w.

Lévy noise in S ′(Rd ).

Definition 3.2. We say that the Lévy exponent Ψ with Lévy triplet (μ,σ2,ν) satisfies the ε-

condition if there exists ε> 0 such that∫
t≥1

|t |ε ν(dt ) <∞

Since the moments of ν are related to the moment of the underlying infinitely divisible random

variable X (Proposition 2.3), the ε-condition is equivalent to the existence of ε> 0 such that

E[|X |ε] < ∞. It is also equivalent to αasymp > 0, where αasymp is the asymptotic index of

Definition 2.8.

Here is a pedagogical example of an infinitely divisible law that does not satisfy the ε-condition.

Consider the measure ν defined as

ν(dt ) = dt

|t | log2(1+|t |) .

Then, it is easy to see that
∫
R inf(1, t 2)ν(dt ) <∞ since (|t | log2(1+|t |))−1 is integrable at infinity

(Bertrand integral), while
∫
|t |≥1 |t |ε ν(dt ) =∞ for any ε> 0. Therefore, the Lévy exponent with

Lévy triplet (0,0,ν) does not satisfy the ε-condition. However, all the examples of Lévy noise

that we will encountered (Gaussian, SαS, Laplace, compound Poisson with Gaussian jumps,

etc.) easily satisfies the ε-condition. We characterize the tempered Lévy noise in Theorem 3.1.

Theorem 3.1. A Lévy white noise on D ′(Rd ) is almost surely tempered if and only if its Lévy

exponent satisfies the ε-condition. This is equivalent to having finite εth-moment for some

ε> 0.

We prove that the ε-condition is sufficient. For the necessity, see [DH15, Theorem 3.13]. The

sufficiency was first proved in [FAU14, Theorem 3]. The proof that we propose here differs

from the original one. We base our argument on the following proposition.

Proposition 3.1. If Ψ is a continuous function from R to C such that

• the function ξ �→ exp(λΨ(ξ)) is positive-definite for any λ≥ 0, and

• there exist ε> 0 and C > 0 such that |Ψ(ξ)| ≤C
(|ξ|ε+|ξ|2) for any ξ ∈R,

then the functional P̂ : ϕ �→ exp(
∫
Rd Ψ(ϕ(x))dx) is well-defined and positive-definite over

S (Rd ).

Proof. In [GV64, Section 4.2.2, Theorem 2], Gelfand and Vilenkin prove that P̂ is positive-

definite over D(Rd ) if and only if ξ �→ exp(λΨ(ξ)) is positive-definite for any λ> 0. We essen-

tially adapt their proof from D(Rd ) to S (Rd ). The positive-definiteness of P̂ is equivalent to
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the following condition: For any ϕ1, . . . ,ϕN ∈S (Rd ), the matrix A of size N ×N , defined as

A[m,n] = P̂(ϕn −ϕm),

is positive-definite. For k ≥ 1 an integer, we set

Ak [m,n] = 1

k

∑
u∈Zd

Ψ
(
ϕn

(u

k

)
−ϕm

(u

k

))
.

For any ϕ ∈S (Rd ), our bound on Ψ(ξ) easily implies that∫
Rd

∣∣Ψ(ϕ(x))
∣∣dx ≤C

(‖ϕ‖εε+‖ϕ‖2
2

)<∞. (3.4)

It means in particular that x �→Ψ(ϕ(x)) is integrable, and that P̂ is well-defined over S (Rd ).

Hence, x �→Ψ
(
ϕn(x)−ϕm(x)

)
is integrable, and we recognize a Riemann sum in (??), from

which we deduce that Ak → A as k →∞. We also set, and for k ≥ 1, u ∈ Zd , and M ≥ 1, the

matrices with entries given by

Au
k [m,n] = 1

k
Ψ(ϕn(u/k)−ϕm(u/k)) and Ak,M [m,n] = ∏

|u|≤M
Au

k [m,n].

Then, Ak,M → Ak when M →∞.

To conclude the proof, we remark that the matrix Au
k is positive-definite, using the positive-

definiteness of ξ �→ exp( 1
k Ψ(ξ)) (chose ξn =ϕn(u/k) in the definition of the positive-definiteness

of the function). The Schur product theorem ensures that the Hadamard product of positive-

definite matrices is positive-definite. Therefore, Ak,M is positive-definite, a property that the

Ak , and then A, inherit as M ,k →∞.

Proof of Theorem 3.1: The sufficiency. Let Ψ be the Lévy exponent of w . We need to prove that

P̂ is a valid characteristic functional on S (Rd ), knowing that it is a characteristic functional

on D(Rd ). Of course, the functional vanishes at 0. We show that it is well-defined, positive-

definite, and continuous over S (Rd ).

Positive-definiteness: The mapping ξ �→ exp(λΨ(ξ)) is posititive-definite for any λ according

to Theorem 2.2. Since we already know that Ψ satisfies (2.3) for some p = ε ∈ (0,1], we apply

Proposition 3.1 to deduce that P̂ : ϕ �→ exp(
∫
Rd Ψ(ϕ(x))dx) is well-defined and positive-

definite.

Continuity: The functional being positive-definite, it is enough to show its continuity at the

origin (Proposition 2.11). For this, we simply remark that we have, using (3.4),∣∣∣logP̂w (ϕ)
∣∣∣≤C

(‖ϕ‖εε+‖ϕ‖2
2

)
.

Hence, logP̂w (ϕ) → 0 = logP̂w (0) when ϕ→ 0 in S (Rd ).

Remark. In order to apply the Bochner-Minlos theorem on S ′(Rd ), it is required to prove

the continuity and the positive-definiteness of the functional (3.3) over S (Rd ). In [FAU14],
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we proved the sufficiency in Theorem 3.1 using a different approach. We first showed the

continuity of the characteristic functional over S (Rd ), and deduce the positive-definiteness

by density (knowing a priori that the characteristic functional is positive-definite over the

space D(Rd ), dense in S (Rd )). By contrast, we gave here a proof of the positive-definiteness

before investigating the continuity. It is then sufficient to establish the continuity at the origin,

which happens to be much less technical. Based on Theorem 3.1, we define the class of

tempered Lévy noises.

Definition 3.3. Let Ψ be a Lévy exponent satisfying the ε-condition. Then, the generalized

random process w with characteristic functional (3.3) is called a tempered Lévy white noise.

When the context is clear, we omit to specify that the noise is tempered.

Tempered Lévy noise in D ′(Rd ). This discussion is highly linked with the results of Section

2.3.3. If Ψ is a Lévy exponent satisfying the ε-condition, we apply the Bochner-Minlos theorem

to specify two probability measures as follows.

• We denote by PD ′ the probability measure on D ′(Rd ) with characteristic functional

P̂D ′(ϕ) = exp(
∫
Rd Ψ(ϕ(x))dx) for any ϕ ∈D(Rd ).

• We denote by PS ′ the probability measure on S ′(Rd ) with characteristic functional

P̂S ′(ϕ) = exp(
∫
Rd Ψ(ϕ(x))dx) for any ϕ ∈S (Rd ).

We recall that the spaces D ′(Rd ) and S ′(Rd ) are endowed with the Borel σ-fields B(D ′(Rd ))

and B(S ′(Rd )) associated to their respective weak*-topology. The connection between the

two probability measure is deduced from the work of X. Fernique, and summarized here. The

following result is included in [Fer67, Section III.3].

Proposition 3.2. The space S ′(Rd ) is measurable in D ′(Rd ), i.e., S ′(Rd ) ∈B(D ′(Rd )). More-

over, we have that

B(S ′(Rd )) =B(D ′(Rd ))∩S ′(Rd ).

Proposition 3.2 implies that, for any B ∈B(S ′(Rd )) ⊂B(D ′(Rd )), we have PD ′(B) =PS ′(B).

In particular PD ′(S ′(Rd )) = 1. This has two direct consequences. First, the generalized

random process sD ′ in D ′(Rd ) with law PD ′ is almost surely tempered, so it admits a version

in S ′(Rd ). Second, the tempered generalized random process sS ′ in S ′(Rd ) with law PS ′ can

be extended into a generalized random process in D ′(Rd ) with law PD ′(B) =PS ′(B∩S ′(Rd ))

for any B ∈B(D ′(Rd )). This new process is almost surely in S ′(Rd ).

Finally, the Lévy noises on D ′(Rd ) whose Lévy exponent satisfy the ε-conditions admit a

tempered version that is the associated tempered Lévy noise. In the next chapters, we will

only consider tempered Lévy white noises with this connection with the original construction

of Gelfand and Vilenkin in mind.
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3.1.2 Independence, Invariance, and Examples of Lévy noises
We recall the independence and invariances properties of the Lévy noise, as studied in [GV64,

Chapter III] The proofs are simple when relying on the characteristic functional.

Proposition 3.3. A tempered Lévy noise is independent at every point.

This is deduced from the form of the characteristic functional of the Lévy noise and Proposition

2.14.

Proposition 3.4. A tempered Lévy noise is stationary and isotropic. It is symmetric if and only

if the underlying infinitely divisible random variable is.

Again, the form of the characteristic functional coupled with Proposition 2.15 directly gives

the result. Propositions 3.3 and 3.4 are really reasonable in the sense that a white noise should

clearly satisfy them. We note however that they do not characterize the class of Lévy noises.

For instance, in dimension 1, the derivative of a Lévy noise is also independent at every point,

stationary, and isotropic. This remark is extended in dimension d when considering partial

derivatives of the Lévy noise.

Nomenclature of Lévy noise. Consider a Lévy exponent Ψ satisfying the ε-condition. Let X

and w be the underlying infinitely divisible random variable and Lévy noise, respectively. The

law of w is fully characterized by the one of X . By convention, the terminology for the random

variable X is inherited by the Lévy noise w . It means in particular that we define Gaussian,

SαS, compound Poisson, and generalized Laplace noise from their corresponding Gaussian,

SαS, compound Poisson, and generalized Laplace random variables introduced in Section

2.1.3.

The compound Poisson case. Consider a compound Poisson random variable with param-

eter λ> 0 and law of jump P and w the corresponding compound Poisson noise. Then, we

have that

w
(L )= ∑

k≥0
akδ(·− xk ) (3.5)

where the ak are i.i.d with common law P , and the xk , independent of the ak , are such that

Card{k, xk ∈ B} is a Poisson random variable with parameter λLeb(B) for any bounded Borel

set B ⊂Rd . This is a standard result in the theory of scattered random measure [RR89]: Poisson

random measures are characterized by their jump locations (the xk ) and the intensity of the

jumps (the ak ). In fact, (3.5) can be shown almost surely; that is, the random variables ak and

the random vectors xk can be specified from w , but this will not be exploited in the sequel.

For a proof of (3.5) based on the computation of the characteristic functional of the right term

of the relation, see [UT11, Appendix II]. The representation (3.5) of a compound Poisson noise

will be exploited many times in the sequel.
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3.2 The Domain of Definition of Lévy Noise
This section is based on our work done in collaboration with T. Humeau [DFHU]. In Sec-

tion 3.1.1, a tempered Lévy white noise is a random element in S ′(Rd ). This means that we

can a priori apply the noise against a smooth and rapidly decaying test function. As shall be

illustrated throughout this thesis, this very conservative restriction can to be relaxed. We give

here some motivations in that direction.

• From Lévy noises to Lévy processes: A Lévy process s is solution of the stochastic differen-

tial equation Ds = w with boundary condition s(0) = 0. It is well known that, contrary to

the Lévy noise, the Lévy process is a pointwise process, with càdlàg1 trajectories [Ber98].

Formally, a Lévy process satisfies the relation s(t) = 〈w,�[0,t ]〉, where �A denotes the

indicator function of the set A. In particular, we aim to define rigorously 〈w, f 〉 for test

functions of the form f = �[0,t ]. This question was already addressed, for instance in

[LS06]. Our construction will also provide a full answer.

• Expansion of the Lévy noise into orthonormal bases: Consider an orthonormal basis ( fn)

of L2(Rd ). We want to know when it is reasonable to consider the family of the coeffi-

cients 〈w, fn〉 of the Lévy noise w . This will for instance be exploited in Section 5.2 where

we use the Daubechies wavelets coefficients of a Lévy noise to estimate its regularity.

Daubechies wavelets are compactly supported but have a limited smoothness [Dau88].

We will see that the expansion on any Daubechies wavelet basis is possible for every Lévy

noise. More generally, we may be interested in bases whose elements are not compactly

supported and/or not smooth.

• Support localization of the Lévy white noise: The domain of definition of Lévy noise

is also the domain of continuity of its characteristic functional. There are strong con-

nections between the continuity properties of the characteristic functional and the

localization of the process, for instance in Sobolev spaces. The more we can extend the

domain of definition, the more we learn about the regularity of the Lévy noise. This idea

has been exploited in [FFU, Section 5].

• Construction of solutions of SDEs driven by Lévy noise: By extending the domain of

definition of the Lévy noise, one weakens the conditions on the compatibility between

whitening operator L and the noise w . Indeed, we have formally that

〈s,ϕ〉 = 〈L−1w,ϕ〉 = 〈w, (L−1)∗{ϕ}〉, (3.6)

where (L−1)∗ is the adjoint of L−1. We therefore see that we essentially need that

(L−1)∗{ϕ} belongs to the domain of definition of w for any ϕ ∈S (Rd ) to give a meaning

to (3.6). This principle will be used extensively in Section 3.3 to construct generalized

Lévy processes and in Chapters 4 and 5 when studying generalized Lévy processes.

The previous examples show the interest of extending the domain of definition of the Lévy

noise. We also want to go further, and to identify the broadest possible set of test functions

1Càdlàg is the French acronym for right continuous functions with left limit at each point.
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such that the random variable 〈w, f 〉 is well-defined. To do so, we connect the concept of

Lévy noise as generalized random process with the independently scattered random measures

studied by B. Rajput and J. Rosinski in [RR89].

3.2.1 Lévy Noises As Independently Scattered Random Measures

A random measure is as a random process whose test functions are indicator functions: To each

measurable set, we associate a random variable. It is very popular for stochastic integration,

the integral being defined for simple functions (i.e., linear combinations of indicator functions),

and extended by a limit argument. Essentially, a random measure is independently scattered

when two indicator functions with disjoint supports define independent random variables.

For a proper definition, see [RR89, Section 1].

We show in this section that a Lévy noise is an example of an independently scattered random

measure. In [DFHU], we treat the general case of a Lévy noise in D ′(Rd ). In accordance with

the rest of the thesis, we restrict ourselves to tempered Lévy noise. A consequence is that the

Lévy exponent is easier to control, which simplifies the proofs. We first extend the domain

of definition of the noise to test functions of the form �B where B ∈ B(R)d a Borel set with

finite Lebesgue measure. A mollifier is a function θ ∈ D(Rd ) that is positive and such that∫
Rd θ(x)dx = 1. We set θk (x) = kdθ(kx).

Proposition 3.5. We consider a Lévy noise w in S ′(Rd ). Let B ∈B(Rd ) be a Borel set and θ be

a mollifier.

• If ϕ ∈D(Rd ), then the random variables 〈w,ϕ · (θk ∗�B )〉 converge in L0(Ω). The limit

does not depend on θ and is denoted by 〈w,ϕ ·�B 〉.

• In particular, if B is bounded, then the random variables 〈w,ϕ ·�B 〉 do not depend on ϕ

as soon as ϕ equals 1 on B. We denote by 〈w,�B 〉 the common random variable.

• If LebB <∞, then the random variables 〈w,�B∩[−k,k]d 〉 converge in L0(Ω) to a random

variable denoted by 〈w,�B 〉.

Proof. The function θk ∗�B is smooth, therefore ϕ ·(θk ∗�B ) ∈D(Rd ) and the random variable

Xk := 〈w,ϕ · (θk ∗�B )〉 is well-defined in L0(Ω). The space L0(Ω) being complete, we need to

show that the Xk are Cauchy in probability. Because the convergence in law to 0 implies the

convergence in probability, it suffices to show that Xk is Cauchy in law. We have, for k,�≥ 0,

that

E[eiξ(Xk−X�)] = exp

(∫
Rd

Ψ(ϕ(x)((θk −θ�)∗�B )(x))dx
)

.

According to Proposition 2.4, there exists 0 < ε≤ 1 and C > 0 such that |Ψ(ξ)| ≤C (|ξ|ε+|ξ|2).
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Let K be the support of ϕ. We readily see that∣∣∣∣∫
Rd

Ψ(ϕ(x)((θk −θ�)∗�B )(x))dx

∣∣∣∣≤C
(∫

K

∣∣ϕ(x)
∣∣ε |((θk −θ�)∗�B )(x)|ε dx

+
∫

K

∣∣ϕ(x)
∣∣2 |((θk −θ�)∗�B )(x)|2 dx

)
≤C
(‖ϕ‖ε∞∫

K
|((θk −θ�)∗�B )(x)|ε dx

+‖ϕ‖2
∞
∫

K
|((θk −θ�)∗�B )(x)|2 dx

)
. (3.7)

The two terms in (3.7) go to 0. This is well-known for the second term, because the regulariza-
tion of a function in L2(K ) converges to the function in L2(K ). It is still valid for the first term
since the integral is over the compact set K . Indeed, the Hölder inequality implies that

(∫
K
|((θk −θ�)∗�B )(x)|ε dx

) 1
ε ≤ Leb(K )

1
ε− 1

2

(∫
K
|((θk −θ�)∗�B )(x)|2 dx

) 1
2

,

and we are back to the L2 case. Thus, E[eiξ(Xk−X�)] vanishes as k,�→∞ and (Xk ) is a Cauchy

sequence converging to a limit X in the complete space L0(Ω).

If θ̃ is another mollifier and Y is the limit of the Cauchy sequence Yk := 〈w,ϕ(θ̃k∗�B )〉, then we

readily see that Xk −Yk = 〈w,ϕ · (θk − θ̃k )∗�B 〉 vanishes. This implies that X = Y in probability

and the limit does not depend on the choice of the mollifier θ.

For the second point, we simply remark that ϕ�B = ϕ̃�B if ϕ and ϕ̃ are equal to 1 over B ,

therefore 〈w,ϕ�B 〉 = 〈w,ϕ̃�B 〉. For the last point, we show as we did for the first point that

(〈w,�B∩[−k,k]d 〉) is a Cauchy sequence in L0(Ω).

Proposition 3.6. Let w be a Lévy noise and B a Borel set of Rd with finite Lebesgue measure.

The characteristic function of the random variable 〈w,�B 〉 is given for ξ ∈R by

P̂〈w,�B 〉(ξ) = exp(Leb(B)Ψ(ξ)) (3.8)

where Ψ is the Lévy exponent of w.

For any disjoint sets A,B ∈B(Rd ) with finite Lebesgue measure, the random variables 〈w,�A〉
and 〈w,�B 〉 are independent and

〈w,�A∪B 〉 = 〈w,�A〉+〈w,�B 〉 (3.9)

almost surely.

Proof. We have the convergence Ψ(ϕ(x)(θk ∗�B )(x)) → Ψ(ϕ(x)�B (x)) for every x as k in-

creases. Moreover, with Proposition 2.4, we have that∣∣Ψ(ϕ(x)(θk ∗�B )(x))
∣∣≤C (|ϕ(x)|ε |(θk ∗�B )(x)|ε+|ϕ(x)|2 |(θk ∗�B )(x)|2)

≤C (
∣∣ϕ(x)

∣∣ε+ ∣∣ϕ(x)
∣∣2), (3.10)

that is an integrable function. In the second inequality of (3.10), we used that 0 ≤ θk ∗�B (x) =
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∫
B θk (x − y)dy ≤ ∫Rd θk (x − y)dy = 1. The Lebesgue dominated convergence theorem then

implies that, for any ξ ∈R,

P̂〈w,ϕ(θk∗�B )〉(ξ) −→
k→∞

exp

(∫
B
Ψ(ξϕ(x))dx

)
.

If B is included in a compact set, we deduce, by selecting ϕ ∈D(Rd ) such that ϕ= 1 on B , that

P̂〈w,�B 〉(ξ) = exp

(∫
B
Ψ(ξ)dx

)
= exp(Leb(B)Ψ(ξ)) .

The third point of Proposition 3.5 ensures that this property is extended to B with finite

Lebesgue measure, but not necessarily bounded.

If A and B are disjoint, we directly deduce from the form of the characteristic function (3.8)

that P̂〈w,�A∪B 〉(ξ) = P̂〈w,�A〉+〈w,�B 〉(ξ) = P̂〈w,�A〉(ξ) ·P̂〈w,�B 〉(ξ), implying the independence

property. The almost sure equality (3.9) is due to the linearity of w , easily extended to indicator

functions, and to the fact that �A∪B =�A +�B .

We denote by A (Rd ) the δ-ring2 of Borel subsets of Rd with finite Lebesgue measure.

Theorem 3.2. Let w be a Lévy noise on S ′(Rd ). We consider the extension of w to indicator

functions on Borel sets with finite Lebesgue measure. The mapping B �→ 〈w,�B 〉 from A (Rd ) to

L0(Ω) defines an independently scattered random measure in the sense of [RR89, Section 1].

Proof. Consider a sequence (Bk )k∈N of disjoint elements of A (Rd ). We have to show that: (i)

the Bk are independent, and (ii) the series
∑

k∈N〈w,�Bk 〉 converges to 〈w,�∩k Bk 〉 as soon as

∩k Bk ∈A (Rd ). For the first point, we simply adapt the proof given in Proposition 3.6 for two

random variables to the case of any finite collection of Bk . For the second point, we know that∑K
k=0〈w,�Bk 〉 = 〈w,�∪K

k=0Bk
〉 almost surely for any K ∈ N. If, in addition,

∑
k∈N Leb(Bk ) <∞,

then ∩k∈NBk ∈A (Rd ). With the expression of the characteristic function (3.8), we easily show

that

P̂∑K
k=0〈w,�Bk

〉(ξ) = P̂〈w,�∪K
k=0

Bk
〉(ξ) −→

K→∞
P̂〈w,�∪k∈NBk

〉(ξ)

for any ξ ∈R. Therefore, the series of the independent random variables 〈w,�Bk 〉 converges

in probability to 〈w,�∪k∈NBk 〉. By [Chu01, Theorem 5.3.4], the sum converges almost surely,

which concludes the proof.

3.2.2 Extension of the Domain of Definition
Having connected Lévy white noises with independently scattered random measures, it is

then possible to extend the domain to other test functions. This was done by Rajput and

Rosinski in [RR89]. We restate here the main definitions and theorems of their work.

2A δ-ring is a collection of sets that is closed under finite union, countable intersection, and relative comple-
mentation [Bog07, Definition 1.2.13]. It appears in measure theory, especially when one want to avoid sets with
infinite measure.
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We say that f is a simple function if it can be written as f =∑N
n=1 an�Bn , where an ∈R and the

Bn ∈ A (Rd ) are Borel subsets of Rd with finite Lebesgue measure. For any Borel set B and

simple function f , we use Proposition 3.5 to define the random variable

〈
w, f ·�B

〉
:=

N∑
n=1

an
〈

w,�Bn∩B
〉

.

Definition 3.4. Consider a Lévy noise w. We say that a measurable function f : Rd → R is

w-integrable if there exists a sequence of simple functions ( fk )k∈N such that

• the fk converge almost everywhere (for the Lebesgue measure) to f , and

• for any Borel set B in Rd , the random variables
〈

w, fk ·�B
〉

converge in probability.

Then, we define the random variable〈
w, f ·�B

〉
:= lim

k→∞
〈

w, fk ·�B
〉

.

Definition 3.4 identifies the class of measurable test functions such that
〈

w, f
〉

is well-defined.

We have the following characterization of w-integrable functions, proved in [RR89, Theorem

2.7].

Theorem 3.3. Let w be a Lévy noise with characteristic triplet (μ,σ2,ν), and f : Rd → R be

a measurable function. Then, the measurable function f is w-integrable if and only if the

following conditions are satisfied:

1.
∫
Rd

∣∣∣μ f (x)+∫R t f (x)
(
�|t f (x)|≤1 −�|t |≤1

)
ν(dt )

∣∣∣dx <∞,

2.
∫
Rd σ2

∣∣ f (x)
∣∣2 dx <∞,

3.
∫
Rd×R min(1, |t f (x)|2)ν(dt )dx <∞.

Then, if we set

Θ(ξ) =
∣∣∣μξ+∫

R
tξ
(
�|tξ|≤1 −�|t |≤1

)
ν(dt )

∣∣∣+σ2ξ2 +
∫
R

min(1, |tξ|2)ν(dt ), (3.11)

the measurable function f is w-integrable if and only if
∫
Rd Θ( f (x))dx <∞.

We propose to call the function Θ the Rajput-Rosinski exponent of the Lévy noise w . We

denote by LΘ(Rd ) the space of w-integrable functions of the d-dimensional Lévy noise w with

Rajput-Rosinski exponent Θ. The space LΘ(Rd ) is called the domain of definition of w .

Moments of 〈w, f 〉. When we restrict ourselves to ϕ ∈S (Rd ), the random variables 〈w,ϕ〉
have finite pth moments if and only if the underlying infinitely divisible random variable has a

finite pth moment itself [UT14]. The situation is different once we have extended the domain.

The following characterization arises [RR89, Theorem 3.3].
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Proposition 3.7. Consider a Lévy noise w with finite pth-moments for p > 0. For f ∈ LΘ(Rd ),
we have the equivalence

E[|〈w, f 〉|p ] <∞⇐⇒
∫
Rd

∫
R

(
|t f (x)|p�|t f (x)|>1 +|t f (x)|2�|t f (x)|≤1

)
ν(dt )dx <∞.

Therefore, if we set

Θp (ξ) :=
∣∣∣μξ+∫

R
tξ
(
�|tξ|≤1 −�|t |≤1

)
ν(dt )

∣∣∣+σ2ξ2

+
∫
R

(|tξ|p�|tξ|>1 +|tξ|2�|tξ|≤1
)
ν(dt ), (3.12)

then, E[|〈w, f 〉|p ] <∞ if and only if
∫
Rd Θp ( f (x))dx <∞.

The function Θp is called the pth-order Rajput-Rosinski exponent and the domain of finite pth-

moments is denoted by LΘp (Rd ). From now on, we also denote Θ0 =Θ and LΘ0 (Rd ) = LΘ(Rd ).

If the pth moments of w are infinite (that is, if the underlying infinite divisible random

variable X satisfies E[|X |p ] =∞), then the exponent Θp defined in (3.12) is infinite for every

ξ �= 0. Therefore, we can extend the definition of the domain of finite pth-moments by setting

LΘp (Rd ) = {0}.

Structure of LΘp (Rd ).

Definition 3.5. We say that ρ : R→R+ is a ϕ-function if ρ(0) = 0 and ρ is symmetric, continu-

ous, and nondecreasing on R+. The ϕ-function ρ is Δ2-regular if

ρ(2ξ) ≤ Mρ(ξ)

for some M ,ξ0 > 0, and every ξ≥ ξ0.

Let ρ be a ϕ-function. For f : Rd → R, we set ρ( f ) := ∫Rd ρ( f (x))dx . The generalized Orlicz

space associated to ρ is

Lρ(Rd ) := { f measurable
∣∣ ∃λ> 0, ρ( f /λ) <∞} .

Remark. Orlicz spaces were introduced in [BO31] as natural generalizations of Lp -spaces for

p ≥ 1. A systematic study with important extensions was done by J. Musielak [Mus83]. The

initial theory deals with Banach spaces, excluding for instance the Lp -spaces with 0 < p < 1.

Definition 3.5 generalizes the Orlicz spaces in two ways: One does not require that ρ is convex,

neither that ρ(ξ) →∞ as ξ→∞. The need for a non-locally convex framework (related to

non-convex ϕ-function) is notable in stochastic integration. It was initiated by K. Urbanik

and W.A. Woyczyns [UW67]. It is at the heart of the study of the structure developed by Rajput

and Rosinski. We follow here the exposition of M.M. Rao and Z.D. Ren in [RR91, Chapter X].

Proposition 3.8 summarizes the results on generalized Orlicz spaces.
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Proposition 3.8. If ρ is a Δ2-regular ϕ-function, then we have

Lρ(Rd ) = { f measurable
∣∣ ∀λ> 0, ρ( f /λ) <∞}

= { f measurable
∣∣ ρ( f ) <∞} .

The space Lρ(Rd ) is a complete linear metric space for the F-norm

‖ f ‖ρ := inf
{
λ> 0

∣∣ ρ( f /λ) ≤λ
}

on which simple functions are dense. Moreover, we have the equivalence, for any sequence of

elements fk ∈ Lρ(Rd ),

‖ fk‖ρ −→
k→∞

0 ⇔ ρ( fk ) −→
k→∞

0.

For p > 0, the exponent Θp of a white noise with finite pth moment is a Δ2-regular ϕ-function

[RR89, Lemma 3.1]. We set Θp ( f ) =∫Rd Θp ( f (x))dx . Proposition 3.8 then directly implies the

following result.

Proposition 3.9. Fix p > 0 and w a Lévy noise with pth-order Rajput-Rosinski exponent Θp .

Then, LΘp (Rd ) is a generalized Orlicz space. In particular, it is a complete linear metric space. A

sequence ( fk )k∈N converges to 0 in LΘp (Rd ) if and only if

Θp ( fk ) =
∫
Rd

Θp ( fk (x))dx −→
k→∞

0.

Lévy noise as a random linear function on its domain. We are now ready to extend the

domain of definition of w , according to [RR89, Theorem 3.3].

Theorem 3.4. Let w be a Lévy white noise with finite pth-moments for p ≥ 0. Then, the

functional

w : LΘp (Rd ) → Lp (Ω)

f �→ 〈w, f 〉

is linear and continuous.

Theorem 3.4 with p = 0 identifies the domain of definition of w ; that is, the broadest class of

test functions on which w is a random linear functional. Once the random variable 〈w, f 〉 is

well-defined, it is important to identify its characteristic function. The following result is the

last part of [RR89, Theorem 2.7].

Proposition 3.10. For f ∈ LΘ(Rd ), the characteristic function of 〈w, f 〉 is given by

P̂〈w, f 〉(ξ) = exp

(∫
Rd

Ψ(ξ f (x))dx
)

.
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3.2.3 The spaces Lp0,p∞(Rd )
We introduce the family of function spaces that generalize the Lp -spaces for 0 < p <∞. They

will be identified in the sequel as the domains of definition of important classes of Lévy white

noises. We first give some notations. For 0 ≤ p0, p∞ <∞, we set

ρp0,p∞(ξ) := |ξ|p0�|ξ|>1 +|ξ|p∞�|ξ|≤1,

ρlog,p∞(ξ) := (1+ log|ξ|)�|ξ|>1 +|ξ|p∞�|ξ|≤1,

with the convention that 00 = 1.

Definition 3.6. For 0 ≤ p0, p∞ <∞, we set

Lp0,p∞(Rd ) =
{

f measurable

∣∣∣∣ ρp0,p∞( f ) :=
∫
Rd

ρp0,p∞( f (x))dx <∞
}

,

Llog,p∞(Rd ) =
{

f measurable

∣∣∣∣ ρp0,p∞( f ) :=
∫
Rd

ρlog,p∞( f (x))dx <∞
}

.

For p > 0, we have Lp,p (Rd ) = Lp (Rd ). Roughly speaking, p0 measures the local integrability of

a function, while p∞ indicates the asymptotic one. This is illustrated by the following example.

For α,β> 0, the function f (x) = ‖x‖−α�‖x‖<1 +‖x‖−β�‖x‖≥1 is such that

ρp0,p∞( f ) =
∫
Rd

(| f (x)|p0�| f (x)|>1 +| f (x)|p∞�| f (x)|≤1
)

dx

=
∫
‖x‖<1

‖x‖−p0αdx +
∫
‖x‖≥1

‖x‖−p∞βdx .

Therefore, f is in Lp0,p∞(Rd ) if and only if

α< d

p0
and β> d

p∞
.

The first inequality effectively refers to the integrability of f at the origin (or local integrability),

while the second covers its asymptotic integrability.

Structure of Lp0,p∞(Rd ). As we did in Section 3.2.2 with the spaces LΘp (Rd ), we rely on

generalized Orlicz spaces [RR91, Chapter X] to identify the structure of the spaces Lp0,p∞(Rd ).

Proposition 3.11. We fix p0 ≥ 0 and p∞ > 0. The function ρp0,p∞ : R→ R is a Δ2-regular ϕ-

function. Therefore, Lp0,p∞(Rd ) is a complete linear metric space on which the convergence of

fk to 0 is equivalent to

ρp0,p∞( fk ) −→
k→∞

0.

The same conclusions occur for the function ρlog,p∞ and the space Llog,p∞(Rd ).

Proof. To simplify the notation, we write ρ = ρp0,p∞ in this proof. The function ρ is continuous,

non-decreasing, symmetric, and vanishes at the origin (since p∞ �= 0). It is therefore a ϕ-
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function. Moreover, we have that, for any ξ ∈R and λ> 0,

mρ(ξ) ≤ ρ(ξ/λ) ≤ Mρ(ξ), (3.13)

where we set I = [min(1,λ),max(1,λ)] and

m = min
I

xp0−p∞

λp0
= min(λ−p0 ,λ−p∞),

M = max
I

xp0−p∞

λp0
= max(λ−p0 ,λ−p∞).

To show these inequalities, we first remark that, for any min(1,λ) ≤ |ξ| ≤ max(1,λ),

m |ξ|p∞ ≤λ−p0 |ξ|p0 ≤ M |ξ|p∞ . (3.14)

Then, we have the following decomposition

ρ(ξ/λ) =λ−p0 |ξ|−p0 �|ξ|>1 +λ−p0 |ξ|p0 �λ<|ξ|≤1 +λ−p∞ |ξ|p∞ �|ξ|≤λ. (3.15)

Using (3.14) to bound λ−p0 |ξ|p0 �λ<|ξ|≤1 in (3.15), we easily obtain (3.13). Taking λ= 1/2, this

shows that ρ is Δ2-regular. The structure of Lp0,p∞(Rd ) then follows from Proposition 3.8. The

proof for ρlog,p∞ and Llog,p∞(Rd ) is very similar.

Remark. In Proposition 3.11, we restricted ourselves to the case when p∞ �= 0. The reason is

that ρp0,0(0) �= 0, so that ρp0,0 is not a ϕ-function. Therefore, we do not define a generalized

Orlicz space in the sense of Rao and Ren [RR91]. The space Lp0,0(Rd ) can be described as

follows. It is the space of functions in Lp0 (Rd ) whose support has a finite Lebesgue measure.

We do not specify any topological structure on those vector spaces, since they will not appear

as the domain of definition of any Lévy noise. However, the space L2,0(Rd ) will play a role as a

common subspace to all the domains of definition of the Lévy noises (see Proposition 3.17).

3.2.4 Practical Determination of the Domain
We provide here several criteria for the practical identification of the domain of definition

of a Lévy noise. We apply our result to Gaussian, SαS, compound Poisson, and generalized

Laplace noises. To the best of our knowledge, the results presented here are new for the two

latter classes of noise. Similar considerations are given for the domain of finite pth moments

for 0 < p ≤ 2.

Proposition 3.12. Let w be a Lévy noise with finite pth-moments for p ≥ 0.

• Linearity: for f , g ∈ LΘp (Rd ) and λ ∈R, f +λg ∈ LΘp (Rd ).

• Invariances: for f ∈ LΘp (Rd ) and H : Rd →Rd a C1-diffeomorphism, we have

x �→ f (H(x)) ∈ LΘp (Rd ).

In particular, the translations Tx0 f , rescalings Sa f , and rotations Rθ0 f of f are in LΘp (Rd ).
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Proof. We already know that LΘp (Rd ) is a linear space (Proposition 3.9). For the invariance,

we simply remark that, by the substitution y = H(x), we have∫
Rd

Θp ( f (H(x)))dx = 1

|det JH|
∫
Rd

Θp ( f (y))dy

with JH the invertible Jacobian matrix of H .

If w is a Lévy noise, so are aw and the rescaling w(·/a) for a �= 0. If w1 and w2 are two

independent Lévy noises, then w1 +w2 is also a Lévy noise. In Proposition 3.13, we denote by

Θp (w) the pth-order Rajput-Rosinski exponent of w , in order to distinguish the exponents of

the different noises.

Proposition 3.13. Let w be a Lévy noise with finite pth-moments for p ≥ 0. Then we have, for

a �= 0,

LΘp (w)(R
d ) = LΘp (aw)(R

d ) = LΘp (w(·/a))(R
d ).

If w1 and w2 are two independent Lévy noises, then

LΘp (w1)(R
d )∩LΘp (w2)(R

d ) ⊆ LΘp (w1+w2)(R
d ), (3.16)

with equality when at least one of the two Lévy noises is symmetric.

Proof. We have 〈w(·/a), f 〉 = 〈w, ad f (a·)〉. Thus, f ∈ LΘp (w(·/a))(Rd ) if and only if ad f (a·) ∈
LΘp (Rd ). Since LΘp (Rd ) is a linear space invariant by rescaling (Proposition 3.12), the latter

condition is equivalent to f ∈ LΘp (Rd ). This shows that LΘp (w(·/a))(Rd ) = LΘp (Rd ). We proceed

similarly for LΘp (aw)(Rd ).

For i = 1,2, the Lévy triplet of wi (w , respectively) is denoted by (μi ,σ2
i ,νi ) ((μ,σ2,ν), respec-

tively), and the corresponding Rajput-Rosinski exponent is Θp,i (Θp , respectively). If w1 and

w2 are independent, we have the relations

μ=μ1 +μ2, σ2 =σ2
1 +σ2

2, ν= ν1 +ν2.

Therefore, we have, by the triangular inequality,

Θp (ξ) =
∣∣∣(μ1 +μ2)ξ+

∫
R

tξ
(
�|tξ|≤1 −�|t |≤1

)
(ν1 +ν2)(dt )

∣∣∣
+ (σ2

1 +σ2
2)ξ2 +

∫
R

min(|ξt |p , |ξt |2)(ν1 +ν2)(dt )

≤Θp,1(ξ)+Θp,2(ξ),

which proves (3.16). If for instance w1 is symmetric, the latter inequality is an equality since

μ1ξ+
∫
R tξ
(
�|tξ|≤1 −�|t |≤1

)
ν1(dt ) = 0 and (3.16) is an equality.

In general, (3.16) is only an inclusion. Consider for instance the case where w1 and w2

have Lévy triplet (1,1,0) and (−1,0,0) respectively, meaning that w1 is a Gaussian noise with
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drift μ = 1 and w2 a pure drift μ = −1. Then, w1 and w2 are clearly independent, and w1 +
w2 is a Gaussian noise without drift. Therefore, LΘp (w1+w2)(Rd ) = L2(Rd ) but LΘp (w1)(Rd )∩
LΘp (w2)(Rd ) = L1(Rd )∩L2(Rd ).

Reduction to the symmetric case without Gaussian part. For μ ∈R and ν a Lévy measure,

we set

mμ,ν(ξ) =
∣∣∣∣μξ+∫

R
tξ(�|tξ|≤1 −�|t |≤1)ν(dt )

∣∣∣∣ .
Proposition 3.14. Let (μ,σ2,μ) be a Lévy triplet and Θ the corresponding Rajput-Rosinski

exponent. We also denote by νsym the symmetrization of ν. We consider the following Lévy

noises:

• w with Lévy triplet (μ,σ2,ν),

• w2 with Lévy triplet (μ,0,ν) and Rajput-Rosinski exponent Θp,2,

• wsym with Lévy triplet (0,σ2,νsym) and Rajput-Rosinski exponent Θp,sym.

Then, we have the following relations for p ≥ 0:

• If σ2 �= 0, then

LΘp (Rd ) = L2(Rd )∩LΘp,2 (Rd ). (3.17)

• In any case,

LΘp (Rd ) = LΘp,sym (Rd )∩
{

f ∈ LΘ(Rd )

∣∣∣∣ ∫
Rd

mμ,ν( f (x))dx <∞
}

. (3.18)

Proof. We can decompose w = w2 +wG, where w2 and wG are independent with respective

Lévy triplets (μ,0,ν) and (0,σ2,0). Then, wG is a Gaussian noise, for which LΘp,G (Rd ) = L2(Rd ).

We apply (3.16) with equality (wG being symmetric) to obtain (3.17). Finally, (3.18) is a refor-

mulation of [RR89, Proposition 2.9].

Based on Proposition 3.14, we restrict our attention to symmetric Lévy noises without Gaussian

parts. We first reduce to the case when σ2 = 0, thanks to (3.17). The only remaining part to

deduce the general case from the symmetric one is the identification of functions f satisfying∫
Rd

mμ,ν( f (x))dx <∞.

Primarily, for non-symmetric noise, this usually relies on L1-type conditions, but we shall not

investigate this question in details here.
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Practical criteria. We consider a symmetric Lévy noise w without Gaussian part and with

symmetric Lévy measure ν. The function Θp defined in (3.12) simply becomes, for p ≥ 0,

Θp (ξ) =
∫
R

min(|tξ|p , |tξ|2)ν(dt )

= |ξ|2
∫
|t |≤1/|ξ|

|t |2ν(dt )+|ξ|p
∫
|t |>1/|ξ|

|t |pν(dt ) (3.19)

=
∫
R
ρp,2(tξ)ν(dt ).

We recall that Θp is finite as soon as
∫
|t |>1 |t |p ν(dt ) =∞. Otherwise, we have that LΘp (Rd ) = {0}

and no nontrivial test function has a finite pth moment.

We provide powerful results that will be used in practice to determine the domain of definition

of specific Lévy noise (SαS, compound Poisson, generalized Laplace). The first criterion is

useful as soon as we are able to estimate the behavior of the Rajput-Rosinski exponent at the

origin or at infinity.

Proposition 3.15. Let w be a symmetric Lévy noise without Gaussian part and p ≥ 0. The

pth-order Rajput-Rosinski exponent of w is denoted by Θp .

1. Assume that Θp (ξ) ≤Cρp0,p∞(ξ) for some constant C > 0 and every ξ, then we have the

embedding

Lp0,p∞(Rd ) ⊆ LΘp (Rd ). (3.20)

2. Assume that ρp0,p∞(ξ) ≤CΘp (ξ) for some constant C > 0 and every ξ, then we have the

embedding

LΘp (Rd ) ⊆ Lp0,p∞(Rd ). (3.21)

3. Assume that Θp (ξ) ∼
0

A|ξ|p∞ and Θp (ξ) ∼∞ B |ξ|p0 , then

LΘp (Rd ) = Lp0,p∞(Rd ). (3.22)

4. The same holds with Llog,p∞(Rd ) instead of Lp0,p∞(Rd ) if we replace |ξ|p0 by log|ξ|.

Proof. The condition Θp (ξ) ≤ Cρp0,p∞(ξ) implies that, for any function f ∈ Lp0,p∞(Rd ), we

have

Θp ( f ) =
∫
Rd

Θp ( f (x))dx ≤C
∫
Rd

ρp0,p∞( f (x))dx =C‖ f ‖p0,p∞ .

Therefore, the identity is continuous from Lp0,p∞(Rd ) to LΘp (Rd ) proving (3.20). The proof of

(3.21) is similar. For the last point, we remark that the two functions Θp and ρp0,p∞ do not

vanish for ξ �= 0. Moreover, they are continuous (for Θp , this comes from [RR89, Lemma 3.1])
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and are equivalent at 0 and ∞. Thus, there exists two constants such that

C1ρp0,p∞(ξ) ≤Θp (ξ) ≤C2ρp0,p∞(ξ).

We then apply (3.20) and (3.21) to obtain (3.22).

Note that the local integrability of test functions (parameter p0) is linked with the asymptotic

behavior of Θp , while the asymptotic integrability (parameter p∞) is linked to the behavior of

Θp at 0.

If we know that the Lévy measure has some finite moments, then we obtain new information

on the domain of definition of the Lévy noise. For p, q ≥ 0, we set

mp,q (ν) :=
∫
R
ρp,q (t )ν(dt ),

called the generalized moments of ν. Then, ν being a Lévy measure, we have that m0,2(ν) <∞.

If in addition the underlying infinitely divisible random variable has a finite pth moment, we

can reformulate Proposition 2.3 as mp,2(ν) <∞.

Proposition 3.16. Let w be a symmetric Lévy noise without Gaussian part and with Lévy

measure ν.

• We assume that mp,2(ν) <∞ for some 0 ≤ p ≤ 2. Then, we have, for any ξ ∈R, that

mp,2(ν)ρp,2(ξ) ≤Θp (ξ) ≤ mp,2(ν)ρ2,p (ξ). (3.23)

• We assume that mp,2(ν) <∞ for some p ≥ 2. Then, we have, for any ξ ∈R, that

mp,2(ν)ρ2,p (ξ) ≤Θp (ξ) ≤ mp,2(ν)ρp,2(ξ). (3.24)

• For p > 0, we condense (3.23) and (3.24) as

mp,2(ν)ρmin(p,2),max(p,2)(ξ) ≤Θp (ξ) ≤ mp,2(ν)ρmax(p,2),min(p,2)(ξ).

• If mp∞,p0 (ν) <∞ for some 0 ≤ p0 ≤ 2, 0 < p∞ <∞ and if p ≤ p0, p∞, then

Θp (ξ) ≤ mmin(p∞,2),p0 (ν)ρp0,min(p∞,2)(ξ). (3.25)

Proof. All the inequalities will be obtained by exploiting the position of |t |, |ξ|, or |tξ| with

respect to 1. We first show (3.23), the proof for (3.24) being very similar. We start proving the

upper bound of (3.23). We first assume that |ξ| ≤ 1. Then, using (3.19), we decompose Θp as

Θp (ξ) =
∫
|t |≤1

|tξ|2ν(dt )+
∫

1<|t |≤ 1
|ξ|
|tξ|2ν(dt )+

∫
|t |> 1

|ξ|
|tξ|pν(dt ). (3.26)
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Since p ≤ 2, we have that

Θp (ξ) ≤
∫
|t |≤1

|t |2|ξ|pν(dt )+
∫

1<|t |≤ 1
|ξ|
|tξ|pν(dt )+

∫
|t |> 1

|ξ|
|tξ|pν(dt )

=
(∫

|t |≤1
|t |2ν(dt )+

∫
1<|t |

|t |p ν(dt )

)
|ξ|p

= mp,2(ν) |ξ|p . (3.27)

Assume now that |ξ| > 1. Then, we use the decomposition

Θp (ξ) =
∫
|t |≤ 1

|ξ|
|tξ|2ν(dt )+

∫
1
|ξ| <|t |≤1

|tξ|pν(dt )+
∫
|t |>1

|tξ|pν(dt ). (3.28)

Again, due to p ≤ 2, we have that

Θp (ξ) ≤
∫
|t |≤ 1

|ξ|
|tξ|2ν(dt )+

∫
1
|ξ| <|t |≤1

|tξ|2ν(dt )+
∫
|t |>1

|t |p |ξ|2ν(dt )

=
(∫

|t |≤1
|t |2ν(dt )+

∫
1<|t |

|t |p ν(dt )

)
|ξ|2

= mp,2(ν) |ξ|2 . (3.29)

Combining (3.27) and (3.29), we deduce that Θp (ξ) ≤ mp,2(ν)ρ2,p (ξ).

For the lower bound in (3.23), we first assume that |ξ| ≤ 1. Then, starting from (3.26), we have

that

Θp (ξ) ≥
∫
|t |≤1

|t |2|ξ|2ν(dt )+
∫

1<|t |≤ 1
|ξ|
|t |p |ξ|2ν(dt )+

∫
|t |> 1

|ξ|
|t |p |ξ|2ν(dt )

= mp,2(ν) |ξ|2 . (3.30)

And finally, when |ξ| > 1, we have, using (3.28), that

Θp (ξ) ≥
∫
|t |≤ 1

|ξ|
|t |2 |ξ|p ν(dt )+

∫
1
|ξ| <|t |≤1

|t |2 |ξ|p ν(dt )+
∫
|t |>1

|tξ|p ν(dt )

= mp,2(ν) |ξ|p . (3.31)

With (3.30) and (3.32), we deduce that Θp (ξ) ≥ mp,2(ν)ρp,2(ξ) and (3.23) is proved.

Finally, (3.25) is proved on the same principle. Assume that |ξ| ≤ 1 and p ≤ p∞ ≤ 2. Then,

using (3.26), we deduce that

Θp (ξ) ≤
∫
|t |≤1

|t |2|ξ|p∞ν(dt )+
∫

1<|t |≤ 1
|ξ|
|tξ|p∞ν(dt )+

∫
|t |> 1

|ξ|
|tξ|p∞ν(dt )

= mp∞,2(ν) |ξ|p .
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If now p∞ > 2, we have, still for |ξ| ≤ 1, that

Θp (ξ) ≤
∫
|t |≤1

|t |2|ξ|2ν(dt )+
∫

1<|t |≤ 1
|ξ|
|t |p∞ |ξ|2ν(dt )+

∫
|t |> 1

|ξ|
|ξ|2ν(dt )

= m2,2(ν) |ξ|2 .

We deduce that Θp (ξ) ≤ mmin(p∞,2),2(ν) |ξ|min(p∞,2).

When |ξ| > 1, p ≤ p0 ≤ 2, and p < p∞, we have using (3.28) that

Θp (ξ) ≥
∫
|t |≤ 1

|ξ|
|tξ|p0 ν(dt )+

∫
1
|ξ| <|t |≤1

|tξ|p0 ν(dt )+
∫
|t |>1

|t |min(p∞,2) |ξ|p0 ν(dt )

= mmin(p∞,2),p0 (ν) |ξ|p0 . (3.32)

Remarking that mmin(p∞,2),2(ν) ≤ mmin(p∞,2),p0 (ν) and combining the bounds for |ξ| ≤ 1 and

|ξ| > 1, we deduce (3.25).

Proposition 3.17. For any Lévy noise, we have

L2,0(Rd ) ⊆ LΘ(Rd ) ⊆ L0,2(Rd ), (3.33)

Let 0 < p ≤ 2. For any symmetric Lévy noise such that mp,2(ν) <∞, we have

L2,p (Rd ) ⊆ LΘp (Rd ) ⊆ Lp,2(Rd ). (3.34)

Let p ≥ 2. For any symmetric Lévy noise such that mp,2(ν) <∞, we have

Lp,2(Rd ) ⊆ LΘp (Rd ) ⊆ L2,p (Rd ). (3.35)

For p > 0, assuming that mp,2(ν) <∞, we condense (3.34) and (3.35) as

Lmax(p,2),min(p,2)(R
d ) ⊆ LΘp (Rd ) ⊆ Lmin(p,2),max(p,2)(R

d ). (3.36)

In particular, for any symmetric finite-variance Lévy noise

LΘ2 (Rd ) = L2(Rd ). (3.37)

For any symmetric Lévy noise without Gaussian part such that mp∞,p0 (ν) <∞, with 0 ≤ p ≤
p0, p∞ ≤ 2, we have

Lp0,p∞(Rd ) ⊆ LΘp (Rd ). (3.38)

Proof. When w is symmetric without Gaussian part, (3.33), (3.34), and (3.37) are directly

deduced from (3.23) by taking p = 0, p general, and p = 2, respectively. Adding a Gaussian

part with Rajput-Rosinski exponent ΘG does not change the conclusions since L2,p (Rd ) ⊆
LΘp,G (Rd ) = L2(Rd ) ⊆ Lp,2(Rd ) for all 0 ≤ p ≤ 2 and thanks to (3.17).

We now consider a general Lévy noise w with Lévy triplet (μ,σ2,ν) and wsym its symmetric ver-
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sion with triplet (0,σ2,νsym). We already now that L2,0(Rd ) ⊆ LΘsym (Rd ) ⊆ L0,2(Rd ). Moreover,

from (3.18), we know that

LΘ(Rd ) = LΘsym (Rd )∩
{

f ∈ LΘ(Rd )

∣∣∣∣ ∫
Rd

mμ,ν( f (x))dx <∞
}

. (3.39)

First, we have that LΘ(Rd ) ⊆ LΘsym (Rd ) ⊆ L0,2(Rd ). Second, due to (3.39), it is sufficient to prove

that

L2,0(Rd ) ⊆
{

f ∈ LΘ(Rd )

∣∣∣∣ ∫
Rd

mμ,ν( f (x))dx <∞
}

to deduce that L2,0(Rd ) ⊆ LΘ(Rd ). We remark that, for |ξ| ≤ 1,

mμ,ν(ξ) =
∣∣∣∣∣μξ+

∫
1≤|t |≤ 1

|ξ|
ξtν(dt )

∣∣∣∣∣≤ ∣∣μξ∣∣+
∫

1≤|t |≤ 1
|ξ|
ν(dt )

≤|μ|+
∫

1≤|t |
ν(dt ),

and that, for |ξ| > 1,

mμ,ν(ξ) =
∣∣∣∣∣μξ+

∫
1
|ξ| ≤|t |≤1

ξtν(dt )

∣∣∣∣∣≤ ∣∣μξ∣∣+
∫

1
|ξ| ≤|t |≤1

|ξt |2ν(dt )

≤
(
|μ|+

∫
|t |≤1

t 2ν(dt )

)
ξ2.

Therefore, we have mμ,ν(ξ) ≤ Cρ2,0(ξ) for some constant C , which implies that L2,0(Rd ) is

included into
{

f ∈ LΘ(Rd )
∣∣ ∫

Rd mμ,ν( f (x))dx <∞}, as expected.

Finally, (3.38) is a direct consequence of (3.25).

Remarks.

• The embeddings (3.33) inform on the extreme cases. In particular, a function in L2,0(Rd )—

the space of functions in L2(Rd ) whose support has a finite Lebesgue measure—can

be applied to any Lévy noise. This includes in particular all the indicator functions �B

with B a Borel set with finite Lebesgue measure, or the Daubechies wavelets that are

compactly supported and in L2(Rd ). Finite-variance compound Poisson noises reach

the largest possible domain of definition L0,2(Rd ) (see Proposition 3.19 below).

• Moreover, (3.38) is particularly important as it gives the implication of having finite

moments of the form
∫
|t |>1 |t |p∞ ν(dt ) <∞ and

∫
|t |≤1 |t |p0 ν(dt ) <∞. This result will play

a crucial role when identifying compatibility conditions between a whitening operator

and a Lévy noise in Section 3.3.1.

• The embeddings (3.36) are useful to understand the finiteness of the moments of 〈w, f 〉
for a Lévy noise with finite pth-moments. In particular, a test function f that is bounded
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with compact support is in the domain of definition of any noise and 〈w, f 〉 has a finite

pth-moment as soon as w has.

• Finally, we point out that the behavior of the Rajput-Rosinski exponent Θ at the origin

(at the infinity, respectively) is related to the moments of ν at the infinity (at the origin,

respectively): The local and asymptotic behaviors of ν and Θ are inverted. This reminds

us of the Fourier transform. The local regularity of a function is directly connected to

the decay properties of its Fourier transform, and vice versa. This is not surprising. For

instance, for compound Poisson processes, the Lévy exponent is the Fourier transform

of the Lévy measure up to the addition of a constant term, and the Rajput-Rosinski

exponent is highly related to the Lévy exponent.

We see how the indices αloc and αasymp influence the domain of definition and the domain of

pth-moments of the Lévy noise.

Proposition 3.18. Assume that w is a symmetric Lévy noise with local and asymptotic indices

αloc ∈ [0,2], αasymp ∈ (0,∞]. For p ≤αloc,2 and p <αasymp, if ε> 0 is small enough, we have the

embedding

Lαloc+ε,αasymp−ε(Rd ) ⊆ LΘp (Rd )

if αasymp ≤ 2, and

Lαloc+ε,2(Rd ) ⊆ LΘp (Rd )

if αasymp > 2, with Θp the pth-order Rajput-Rosinski exponent of w.

Proof. Let ε be small enough such that p ≤αasymp −ε. Then, we have that∫
R
ρmin(αasymp−ε,2),αloc (t )ν(dt ) <∞,

by definition of the indices (see Definition 2.8). We can therefore apply (3.38) with the adequate

conditions on p to deduce Proposition 3.18. The distinction betweenαasymp ≤ 2 andαasymp > 2

comes from the fact that p∞ ≤ 2 in (3.38).

Examples. We shall see how our results apply to specific Lévy noises. For these different

classes, introduced in Section 2.1.3, we specify the domain of definition LΘ(Rd ) and the

domains of finite pth moments LΘp (Rd ).

The Gaussian noise of variance σ2 is characterized by the Lévy triplet (0,σ2,0). With Theorem

3.3, we obtain that, for every 0 ≤ p ≤ 2,

LΘp,Gauss (Rd ) = L2(Rd ).

Note that Theorem 3.3 is on Θ0, but Θp = Θ0 in the Gaussian case. Based on these con-

siderations and on Proposition 3.14, we shall consider Lévy triplets with σ2 = 0 from now

on.
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Proposition 3.19. The domains of definition of the following Lévy noises are completely char-

acterized.

• If wα is a SαS noise with 0 <α< 2, then, for every 0 ≤ p <α, we have

LΘp,α(Rd ) = Lα(Rd ).

For p ≥α, we have LΘp,α(Rd ) = {0}.

• If wPoisson is a symmetric compound Poisson noise with finite variance, then

LΘp,Poisson (Rd ) = Lp,2(Rd ).

for every 0 ≤ p ≤ 2.

• If wLaplace is a generalized Laplace noise, then we have

LΘLaplace (Rd ) = Llog,2(Rd ). (3.40)

Moreover, for 0 < p ≤ 2, we have

LΘp,Laplace (Rd ) = Lp,2(Rd ). (3.41)

Proof. We study each case separately.

• SαS: Without loss of generality, one can assume that γ= 1. The Lévy measure of wα is

ν(dt ) = Cα

|t |α+1 dt with Cα a constant (see Section 2.1.3). A non-trivial SαS random variable

has an infinite pth-moment for p ≥α, and for every f ∈ L(wα), 〈w, f 〉 is a SαS random

variable. Hence Lp (w) = {0} for p ≥α. The case of interest is therefore 0 ≤ p <α. Then,

from (3.19),

Θp (ξ) = 2Cα

∫1/|ξ|

0

ξ2

tα+1 dt +2Cα

∫
1/|ξ|

|ξ|p
xα+1−p dt

= 2Cα|ξ|α
(∫1

0

dy

yα−1 +
∫∞

1

dy

yα+1−p

)
=
(

2(2−p)Cα

(2−α)(α−p)

)
|ξ|α.

where we perfomed the change of variable y = ξx. The result eventually follows from

Proposition 3.15.

• Compound Poisson: We denote by λ and P the sparsity parameter and the law of jumps

of wPoisson, respectively. The Lévy measure is then λP . First, LΘp,Poisson (Rd ) ⊆ Lp,2(Rd ) as

for any symmetric Lévy noise, according to (3.34). Moreover, for a compound Poisson

noise with finite variance, we have for every q ∈ [0,2] that
∫
R|t |q P (dt) <∞. Therefore,
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we have

Θp (ξ) =λ

∫
R

min(|tξ|p , |tξ|2)P (dt )

≤λmin

(
|ξ|p
∫
R
|t |p P (dt ), |ξ|2

∫
R
|t |2P (dt )

)
≤C min(|ξ|p , |ξ|2) = ρp,2(ξ),

so that ‖ f ‖Θ ≤C‖ f ‖p,2. This means that Lp,2(Rd ) ⊆ LΘp,Poisson (Rd ), concluding the proof.

• Laplace: Let 0 ≤ p ≤ 2. Without loss of generality, we fix the parameters of the generalized

Laplace noise as σ2 = 2 and τ= 1. Then, the Lévy measure is ν(dt) = e−|t |
|t | dt . We start

from (3.19) and write

Θp (ξ) = ξ2
∫
|t |≤1/|ξ|

x2ν(dt )+|ξ|p
∫
|x|>1/|ξ|

|t |pν(dt ) :=Θp,1(ξ)+Θp,2(ξ).

Then, by integration by parts, we have

Θp,1(ξ) = 2|ξ|2
∫1/|ξ|

0
te−t dt

= 2|ξ|2
(
1−e−1/|ξ|

(
1+ 1

|ξ|
))

Hence, we have Θp,1(ξ) −→
ξ→∞

2 and Θp,1(ξ) ∼
ξ→0

2|ξ|2.

For Θp,2(ξ) = |ξ|p ∫|t |>1/|ξ||t |pν(dt), we shall distinguish between p = 0 and p > 0. For

p > 0, the function t p−1e−t is integrable over R, so that Θp,2(ξ) ∼
ξ→∞

(∫
R t p−1e−t dt

) |ξ|p .

For p = 0, the function t−1e−t is not anymore integrable around 0. Using the equivalence

t−1e−t ∼
t→0

t−1, we deduce that

Θ0,2(ξ) = 2
∫∞

1
|ξ|

t−1e−t dt ∼
ξ→∞

2
∫1

1
|ξ|

t−1e−t dt ∼
ξ→∞

2
∫1

1
|ξ|

t−1dt = 2log |ξ| .

Moreover, since p ≤ 2, we have by integration by parts,

Θp,2(ξ) = 2
∫

t |ξ|>1
(t |ξ|)p e−t dt

t
≤ 2
∫

t |ξ|>1
(t |ξ|)2e−t dt

t
= 2|ξ|(1+|ξ|)e−1/|ξ|,

implying that Θp,2(ξ) =
ξ→0

o(|ξ|2). By combining the results on Θp,1 and Θp,2, we obtain

that

– for 0 ≤ p ≤ 2, Θp (ξ) ∼
ξ→0

2|ξ|2;

– for 0 < p ≤ 2, Θp (ξ) ∼
ξ→∞

(∫
R xp−1e−x dt

) |ξ|p ;

– for p = 0, Θ0(ξ) =Θ(ξ) ∼
ξ→∞

2log|ξ|.
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Table 3.1 – Domain of Definition of Lévy Noise

Lévy noise Ψ(ξ) LΘ(Rd ) LΘp (Rd )
0 < p ≤ 2

Gaussian −1
2σ

2ξ2 L2(Rd ) L2(Rd )

SαS −cα|ξ|α Lα(Rd )

{
Lα(Rd ) if p <α

{0} if p ≥α

symmetric finite-variance λ(P̂ (ξ)−1) L0,2(Rd ) Lp,2(Rd )
compound Poisson

generalized −τ log(1+σ2ξ/2) Llog,2(Rd ) Lp,2(Rd )
Laplace

We finally apply Proposition 3.15 to deduce (3.40) and (3.41).

We summarize the results of this section in Table 3.1. The Lévy noises are characterized by

their Lévy exponent. We refer to Section 2.1.3 for the complete definition of the corresponding

infinite divisible laws.
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3.3 Generalized Lévy Processes
We constructed and studied the Lévy noise on S ′(Rd ) in Sections 3.1 and 3.2. We now investi-

gate the existence of generalized Lévy processes that are solutions of a stochastic differential

equations driven by tempered Lévy noise. Section 3.3.1 is dedicated to the specification

of a general criterion for the construction of generalized Lévy processes. It is based on

[DFHU, Section 6] and extends previous results of [FAU14, UT14, UTS14, FU16]. Section

3.3.2 presents classes of generalized Lévy processes associated with specific differential or

pseudo-differential whitening operators.

3.3.1 Existence Criterion
Our goal is to give general conditions of compatibility between the operator L and the Lévy

noise w such that the process s in (3.1) exists. By exploiting the results of Section 3.2, we first

show that the domain of definition of the Lévy noise is also the domain of continuity of its

characteristic functional.

Proposition 3.20. The characteristic functional of the Lévy noise w is well-defined, continuous,

positive-definite over LΘ(Rd ), and normalized such that P̂w (0) = 1.

Proof. The characteristic functional ϕ �→ P̂w (ϕ) = E[ei〈w,ϕ〉] is a priori continuous over S (Rd ).

For f ∈ LΘ(Rd ), the random variable 〈w, f 〉 is well-defined and its characteristic function is

ξ �→ E[eiξ〈w, f 〉] = exp
(∫

Rd Ψ(ξ f (x))dx
)

(Proposition 3.10). We can therefore extend P̂w to

LΘ(Rd ) by setting

P̂w ( f ) = E[ei〈w, f 〉] = exp

(∫
Rd

Ψ( f (x))dx
)

for f ∈ LΘ(Rd ).

Positive-definiteness. Let N ≥ 1, an ∈C, fn ∈ LΘ(Rd ), n = 1, . . . , N . Simple functions are dense

in the generalized Orlicz space LΘ(Rd ). Moreover, any simple function can be approximated

by functions of S (Rd ) in LΘ(Rd ), so that, S (Rd ) is dense in LΘ(Rd ). Let us fix N sequences

(ϕn,k )k∈N such that the ϕk,n converge to fn in LΘ(Rd ) for n = 1, . . . , N as k goes to infinity. From

Theorem 3.4, we know that f �→ 〈w, f 〉 is continuous from LΘ(Rd ) to L0(Ω). In particular, we

have E[ei〈w,ϕi
k−ϕ

j
k 〉] −→

k→∞
E[ei〈w, fi− f j 〉] for every 1 ≤ i , j ≤ N . This implies that

∑
1≤i , j≤N

ai a∗
j P̂w ( fi − f j ) = ∑

1≤i , j≤N
ai a∗

j E[ei〈w, fi− f j 〉]

= lim
k→∞

∑
1≤i , j≤N

ai a∗
j E[ei〈w,ϕi

k−ϕ
j
k 〉]

= lim
k→∞

∑
1≤i , j≤N

ai a∗
j P̂w (ϕi

k −ϕ
j
k )

≥ 0,

where we used the positive-definiteness of P̂w over S (Rd ).

Continuity. Using the Lévy-Khintchine representation (2.1) of Ψ with Lévy triplet (μ,σ2,ν), we
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have

|Ψ(ξ)| =
∣∣∣iμξ+ i

∫
R

tξ
(
�|tξ|≤1 −�|t |≤1

)
ν(dt )+σ2ξ2 +

∫
R

(eitξ−1− itξ�|tξ|≤1)ν(dt )
∣∣∣

≤
∣∣∣μξ+∫

R
tξ
(
�|tξ|≤1 −�|t |≤1

)
ν(dt )

∣∣∣+σ2ξ2 +2
∫
R

min(1, |tξ|2)ν(dt )

≤ 2Θ(ξ), (3.42)

where we used the triangular inequality and the relation |eiy − 1− iy�|y|≤1| ≤ 2min(1, y2)

applied to y = tξ. Applying (3.42) to ξ = f (x) and integrating over Rd , we have for every

f ∈ LΘ(Rd ),

|logP̂w ( f )| ≤
∫
Rd
|Ψ( f (x))|dx ≤ 2Θ( f ).

This shows that P̂w is continuous at 0. The functional P̂w is positive-definite and continuous

at 0, and therefore continuous (Proposition 2.11).

Combining Proposition 3.20 with the Bochner-Minlos theorem, we obtain the following gen-

eral criterion for the existence of solution of stochastic differential equations driven by Lévy

noise.

Theorem 3.5. Consider a Lévy noise w in S (Rd ). For any linear operator T continuous from

S (Rd ) to LΘ(Rd ), there exists a generalized random process s such that

P̂s(ϕ) = P̂w (T{ϕ}). (3.43)

In particular, if T is a left-inverse of the adjoint L∗ of a linear, continuous, and shift-invariant

operator L from S (Rd ) to S ′(Rd ), then

Ls
(L )= w. (3.44)

If moreover the operator T continuously maps S (Rd ) to LΘp (Rd ) for some 0 < p ≤ 2, then the

process s has finite pth-moments.

Proof. The operator T is continuous from S (Rd ) to LΘ(Rd ) and P̂w is continuous over LΘ(Rd )

according to Proposition 3.20. Hence, the functional P̂ = P̂w (T{·}) is continuous over S (Rd ).

The positive-definiteness of P̂ over S (Rd ) is a direct consequence of the positive-definiteness

of P̂w over LΘ(Rd ) (again thanks to Proposition 3.20), and the fact that T{ϕ} ∈ LΘ(Rd ) for

ϕ ∈D(Rd ). Finally, P̂(0) = P̂w (T{0}) = P̂w (0) = 1. We are therefore in the conditions of the

Bochner-Minlos theorem: The process s with characteristic functional (3.43) exists.

For the second part, we remark that, for ϕ ∈S (Rd ),

P̂Ls(ϕ) = P̂s(L∗{ϕ}) = P̂w (TL∗{ϕ}) = P̂w (ϕ),

due to the left-inverse property. Then, the processes Ls and w , having the same characteristic

functional, are equal in law.
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For the last part, we simply remark that, for any ϕ ∈S (Rd ), E[
∣∣〈s,ϕ〉∣∣p ] = E[

∣∣〈w,T{ϕ}〉∣∣p ] <∞
since T{ϕ} ∈ LΘp (Rd ).

Definition 3.7. Consider a tempered Lévy noise w and a continuous, linear, and shift-invariant

operator L from S (Rd ) to S ′(Rd ). We say that the generalized random process s is a generalized

Lévy process driven by w and whitened by L if there exists a left-inverse operator T of L∗,

continuous from S (Rd ) to LΘ(Rd ), such that

P̂s(ϕ) = P̂w (T{ϕ}). (3.45)

The operator L is the whitening operator of s.

Under the conditions of Definition 3.7, s satisfies (3.44). The following result links the stability

property of the corrected left-inverse (operator T) with the finiteness of generalized moments

of the Lévy measure of w .

Proposition 3.21. We consider a symmetric Lévy noise without Gaussian part w and a linear,

continuous, and shift-invariant operator L. We assume that, for 0 ≤ p0, p∞ ≤ 2, we have

•
∫
Rρp∞,p0 (t )ν(dt ) <∞, and

• the adjoint operator L∗ admits a left-inverse T that maps continuously S (Rd ) to Lp0,p∞(Rd ).

Then, there exists a generalized Lévy process s with characteristic functional (3.43) that satisfies

Ls
(L )= w.

Proof. Applying (3.38) with p = 0, the condition
∫
Rρp∞,p0 (t )ν(dt ) <∞ ensures that Lp0,p∞(Rd ) ⊂

LΘ(Rd ). This embedding and the assumption on T imply that T maps continuously S (Rd ) to

LΘ(Rd ), and Theorem 3.5 applies.

Comparison with previous works. Proposition 3.21 can be compared with other conditions

of compatibility between the whitening operator L and the Lévy noise w . The results are

reformulated with our notation.

• For 1 ≤ p ≤ 2, Ψ is p-admissibile if |Ψ(ξ)|+ |ξ| ∣∣Ψ′(ξ)
∣∣≤C |ξ|p . Note that the derivative

Ψ′(ξ) is well-defined as soon as the first moment of the underlying infinitely divisible

random variable is finite, what we assume now. This notion was introduced in [UT14]

together with the following compatibility condition: if Ψ is p-admissible and T contin-

uously map S (Rd ) to Lp (Rd ), then (3.43) specifies a valid characteristic functional. A

sufficient condition for the p-admissible is that
∫
R |t |p ν(dt ) <∞. Therefore, (3.43) is a

valid characteristic functional as soon as
∫
R |t |p <∞ and T maps continuously S (Rd )

to Lp (Rd ) for some 1 ≤ p ≤ 2. We recover this by selecting p0 = p∞ = p in Proposition

3.21. Our result extends this criterion in two ways. First, we can distinguish between

the behavior of ν around 0 and at ∞. Second, we do not restrict to the case p ≥ 1 (this

second improvement was already achieved in our work [FU16] thanks to a relaxation of

the p-admissibility).
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• In our work with A. Amini and M. Unser, we have shown that the characteristic functional

(3.45) specifies a generalized Lévy process if
∫
Rρp∞,p0 (t )ν(dt ) and T maps continuously

S (Rd ) to Lp0,p∞(Rd ) for 0 < p∞ ≤ p0 ≤ 2 [FAU14, Theorem 5]. When p∞ ≤ p0, we have

that

max(|ξ|p0 , |ξ|p∞) ≤ ρp0,p∞(ξ) ≤ |ξ|p0 +|ξ|p∞ .

Therefore, Lp0,p∞(Rd ) = Lp0 (Rd )∩Lp∞(Rd ) and we recover our previous result (at least

for symmetric Lévy noise without Gaussian part). Moreover, Proposition 3.21 is a im-

provement, since one can consider p∞ > p0. In that case, Lp0,p∞(Rd ) contains but is

strictly bigger than Lp0 (Rd )∩Lp∞(Rd ) and the requirement on T is less strong: our new

criterion is applicable to a more general class of operators.

• Combining (3.38) and Proposition 3.20, we generalize [AU14, Theorem 2] again by

considering the case p∞ > p0: we are able to specify a larger domain of definition and of

continuity than Lp0 (Rd )∩Lp∞(Rd ) in that case.

3.3.2 Specific Classes of Generalized Lévy Processes
We introduce the generalized Lévy processes associated with the classes of differential and

pseudo-differential operators presented in Section 2.2.2. The model (3.44) appears to contain

many classical families of random processes related to Lévy noise, both in the univariate and

multivariate settings. The main aspect here is to understand on concrete examples when the

operator L and the Lévy noise w are compatible so to generate a generalized Lévy process.

The whitening operators that we shall consider share the following properties. They are linear,

shift-invariant, continuous from S (Rd ) to S ′(Rd ), and admits a measurable Green’s function

of slow growth ρL; that is, a measurable function, bounded by a polynomial, such that such

that L{ρL} = δ. Then, the function ρL∗(x) = ρL(−x) is a Green’s function of the adjoint operator

L∗.

We have seen in Theorem 3.5 that a natural way to define a solution s to (3.44) is to identify a

(left-)inverse to L∗. The natural candidate is the shift-invariant operator (L∗)−1, inverse of L∗,

defined for ϕ ∈S (Rd ) as

(L∗)−1{ϕ} = ρL∗ ∗ϕ. (3.46)

Note that the convolution is well-defined since ρL∗ is of slow growth. Two different scenarios

occur in practice.

• If (L∗)−1 continuously maps S (Rd ) to LΘ(Rd ), then one selects T = (L∗)−1 in (3.45) to

define s solution of (3.44). We then have s = ρL ∗w , and the process s is stationary.

• For many operators L, the Green’s function ρL does not decay at infinity, so that one

easily finds ϕ ∈ S (Rd ) with (L∗)−1ϕ ∉ LΘ(Rd ). In that case, we need to correct the

operator (L∗)−1. In doing so, we do not look for a standard two-sided inverse since we
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know from Theorem 3.5 that we only need to specify a left-inverse. The construction of

valid left-inverses will be crucial in the examples below, for which we rely on existing

works on operators.

When the operator (L∗)−1 is unstable, we are looking for left-inverses T of L∗ satisfying one of

the two following properties for the construction of generalized Lévy processes:

• Condition (C1): T is continuous from S (Rd ) to R(Rd ). In this scenario, Tϕ is possibly

non-smooth but has nice decay properties.

• Condition (C2): T is continuous from S (Rd ) to Lp (Rd ) for some 0 < p ≤ 2. Again, T

should preserve some stability, but this is much less restrictive.

Condition (C1) will concern ordinary differential operators. This situation is particularly

pleasant: Due to the embeddings R(Rd ) ⊆ LΘ(Rd ), valid for any noise, one can construct

generalized Lévy processes whitened by L for any noise w . Condition (C2) is of interest

for pseudo-differential operators that are fractional versions of the differential operators.

In that case, the generalized Lévy process is well-defined provided that Lp (Rd ) ⊆ LΘ(Rd ).

Consequently, under (C2), there are restrictions on the class of Lévy noises that are compatible

with L.

Lévy processes. Most traditionally, Lévy processes are introduced as the unique random

processes (s(t))t∈R+ that have stationary and independent increments, are continuous in

probability, and vanishes at 0 [App09, Ber98]. They are unseparable from the infinitely divisible

laws [Sat13].

In the framework of generalized random processes, Lévy processes are solutions of the equa-

tion Ds = w where w is a one-dimensional Lévy noise and the whitening operator L = D is the

derivative. This construction is developed more extensively, with generalizations to N th-order

Lévy processes, in [UTS14]. The function −�R+ is a Green’s function of D∗ =−D. The inverse

(3.46) is therefore (D∗)−1ϕ=−(�R+ ∗ϕ)(x). Since −�R+ does not decay at infinity, the operator

(D∗)−1 is unstable. We introduce the corrected version of (D∗)−1 as the operator I0 defined by

I0{ϕ}(x) =−(�R+ ∗ϕ)(x)+ ϕ̂(0)�R+(x). (3.47)

The operator I0 is a left-inverse of −D (since D̂ϕ(0) = 0 for any ϕ ∈S (Rd )), that continuously

maps S (Rd ) to R(Rd ) [UTS14, Proposition 2].

For any tempered Lévy noise, I0 is therefore continuous from S (Rd ) to LΘ(Rd ). Applying

Theorem 3.5, there exists a generalized random process s such that

P̂s(ϕ) = P̂w (I0{ϕ}) = exp

(∫
R
Ψ(I0{ϕ}(x))dx

)
(3.48)

for any ϕ ∈S (Rd ), with Ψ the Lévy exponent of w . Such a process is called a Lévy process. It is

solution of the differential equation

Ds
(L )= w.
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We recover the well-known fact that the Lévy noise can be thought as the derivative of the Lévy

process in 1D. Finally, I0{δ}(x) =�R+(x)−�R+(x) = 0, so that

s(0) = 〈s,δ〉 (L )= 〈w, I0{δ}〉 = 0.

By exploiting the properties of the characteristic functional (3.48) and the criteria in Proposi-

tions 2.14 and 2.15, we easily show that s has first-order independent and stationary incre-

ments. Again thanks to Proposition 2.15, we show that if the Lévy noise is H-self-similar, then

the corresponding Lévy process is (H +1)-self-similar.

An in depth discussion on the two constructions—Lévy processes as generalized random

processes and Lévy processes as pointwise stochastically continuous random processes with

stationary and independent increments—can be found in [DH15].

Remark. The class of processes we study in this thesis are named generalized Lévy processes.

They generalize Lévy processes in two ways: they are built using more for general differential

or pseudo-differential whitening operators L, and they can be defined on Rd with d ≥ 2—in

which case we talk about generalized Lévy fields.

CARMA Lévy processes. A N th-order CARMA (continuous auto-regressive moving average)

Lévy process is a stationary solution of the stochastic differential equation

P (D)s = w (3.49)

with w a 1-dimensional Lévy noise and P (X ) a polynomial of degree N . Requiring the sta-

tionarity of s put constraints on the roots of the polynomial P . Essentially, the condition is

that P has no purely imaginary roots [UTS14]. For instance, when P (X ) = X , we recover the

stochastic differential equation (3.48) that does not admit any stationary solution.

We construct the CARMA Lévy process solution of (3.49) by decomposing P as

P = X N +aN−1X N−1 +·· ·+a0 =
N∏

n=1
(X −αn)

with αn ∈ C, ℜ{αn} �= 0 for all n. We assume here that the coefficient aN = 1 without loss of

generality.

For ℜ{α} �= 0, the operator (D−αId)∗ = −(D+αId) is a continuous bijection from S (Rd ) to

S (Rd ) with a continuous and shift-invariant inverse −(D+αId)−1. The Fourier multiplier of

the inverse is ω �→ −(iω+α)−1 (the denominator does not vanish by assumption on α). By

selecting T =−(D+αId)−1 in (3.45), we construct s from its characteristic functional

P̂s(ϕ) = exp

(∫
R
Ψ(−(D+αId)−1{ϕ}(x))dx

)

by applying Theorem 3.5. Then, s satisfies (D−αId)s
(L )= w and is stationary. It is therefore

a first-order CARMA process, often called an Ornstein-Uhlenbeck process driven by a Lévy

noise. The general solution of (3.49) is constructed following the same principle by composing
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the operators −(D+αnId)−1 for 1 ≤ n ≤ N .

Several authors are more generally considering CARMA (p, q) processes, that are solutions of

P (D)s = Q(D)w (the integers p and q are the degrees of P and Q, respectively), as classical

processes [MS07] or generalized random processes [Bro01, BL09, BH10]. The construction is

easily deduced from the one we exposed by applying Q(D) to the solution of (3.49).

By combining the construction of Lévy processes and of CARMA processes, one can also

construct the random solution of any differential equation of the form P (D)s = w , where P is

any polynomial. See [UTS14] for more details.

Until now, we defined univariate random processes. The next ones are defined over Rd with

d ≥ 1. Note that there is not a unique way to extend Lévy processes to higher dimensions.

One approach, different from ours, is proposed in [DJ12], with a discussion on the definition

of multivariate Lévy processes. The same remark applies for multivariate generalized Lévy

processes, for which we propose two types of random fields. The random sheets, are based on

separable whitening operators, as direct transposition of the 1-dimensional case. The isotropic

random fields involve rotation-invariant operators.

Lévy sheets. The d-dimensional Lévy sheet is a generalized Lévy process whitened by the

operator Λ= D1 · · ·Dd . Its markovian properties have been studied in the Gaussian case in

[DW92b] and in the general case in [DW92a]. In the theory of sparse stochastic processes,

it is presented as the Mondrian process for its ability to reproduce Mondrian-like patterns

[UT11, UT14].

In the framework of generalized Lévy processes, the construction of the Lévy sheet is very

similar to the one of the Lévy process. As for the derivative, the operator Λ has no stable

inverse and we need to specify a corrected left-inverse. For i = 1. . .d , we set

I0,i {ϕ}(x) =−
∫xi

0
ϕ(x + (y −xi )ei )dy +�R+(xi )

∫
R
ϕ(x + (y −xi )ei )dy,

where the ei are the canonical basis of Rd . When d = 1, we recover the operator I0 defined

in (3.47). As for I0, we show that
∏d

i=1 I0,i is a left-inverse of Λ∗ = (−1)dΛ that continuously

maps S (Rd ) to R(Rd ). This is developed for a general class of multivariate operators in our

work [FAU14, Section 4.2]. The stability of the left-inverse ensures that the Lévy sheet with

characteristic functional

exp

(∫
Rd

Ψ

(
d∏

i=1
I0,i {ϕ}(x)

)
dx

)

is well-defined for any tempered Lévy noise w with Lévy exponent Ψ.

CARMA Lévy sheets. We define CARMA Lévy sheets that generalizes CARMA Lévy processes.

For α ∈C with ℜ{α} �= 0, we set Λα =∏d
i=1(Di −αId). As we did in dimension 1, one defines a

stable (right and left) inverse (Λ∗
α)−1 to Λ∗

α = (−1)d∏d
i=1(Di +αId). Then, the generalized Lévy



86 Construction of Generalized Lévy Processes

process with characteristic functional

exp

(∫
Rd

Ψ
(
(Λ∗

α)−1{ϕ}(x)
)

dx
)

is well-defined and stationary for every Lévy noise w with Lévy exponent Ψ. More details can

be found in [FAU14, Section 4.2] that also includes the specification of a more general class of

directional Lévy fields.

Fractional Lévy processes and fields. Fractional Lévy processes are solution of the equation

(−Δ)γ/2s = w

with (−Δ)γ/2 the fractional Laplacian of order γ> 0 and w a d-dimensional Lévy noise. In the

1-dimensional setting, one can consider similarly the stochastic pseudo-differential equation

Dγs = w with Dγ the fractional derivative. As soon as d ≥ 2, we talk about fractional Lévy

fields. As for Lévy processes, fractional Lévy processes are classically defined as pointwise

processes. In dimension 1, the fractional Brownian motion is Gaussian with 0 < γ < 1 and

was introduced by B.B. Mandelbrot and J.W. Van Ness in [MN68]. Higher-order extensions

(γ≥ 1) are studied in [PHBJ+01]. Fractional SαS processes are studied as pointwise process,

for instance, in [ST94, EM00], while the general Lévy case is considered in [Mar06, EW13]. In

the framework of generalized random processes, the fractional Lévy process was constructed

for Gaussian noise in [BU07, LSSW16], for Poisson noise in [UT11, SU12], and for SαS noise in

[HL07] (for α> 1). The multivariate case is studied for instance in [LSSW16, UT11, UT14].

The construction of fractional Lévy processes and fields in the framework of generalized

random processes was considered in [SU12]. This work was dedicated to the construction of

stable left-inverses of (−Δ)γ/2 with the adequate invariances that we exploited to extend the

construction of fractional Lévy processes as generalized random processes in [FAU14, Section

4.1]. The operator (−Δ)γ/2 admits a unique shift- and scale- invariant left-inverse operator as

soon as (γ−d) ∉N. It is the operator Iγ with frequency response ‖ω‖γ [SU12, Theorem 1.1]. In

general, this operator is not stable from S (Rd ) to Lp (Rd ). By giving up the shift-invariance

property, it is possible to specify stable left-inverses. For p ≥ 1, we define the operator Iγ,p for

any ϕ ∈S (Rd ) by

F {Iγ,pϕ}(ω) :=
(
F {ϕ}(ω)− ∑

|m|≤γ−d(1−1/p)

1

m!
(Dmϕ)(0)ωm

)
‖ω‖−γ,

with the usual multi-index notation. Then, according to [SU12, Theorem 1.2], as soon as γ ∉N

and γ−d +d/p ∉ N, the operator Iγ,p is the unique (−γ)-homogeneous left inverse of the

fractional Laplacian (−Δ)γ/2 that continuously maps S (Rd ) to Lp (Rd ).

Therefore, for any Lévy noise w with exponents Ψ and Θ such that Lp (Rd ) ⊆ LΘ(Rd ), the

generalized random process s with characteristic functional

exp

(∫
Rd

Ψ
(
Iγ,p {ϕ}(x)

)
dx
)
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is well-defined and satisfies (−Δ)γ/2s
(L )= w according to Theorem 3.5. From Proposition 3.15,

we know, for instance, that Lp (Rd ) ⊆ LΘ(Rd ) as soon as Θ(ξ) ≤C |ξ|p over R for some constant

C > 0. Sufficient conditions on the Lévy measures for the well-definiteness of s are given in

[FAU14, Proposition 6].

To summarize, we have characterized classes of generalized Lévy processes based on their

whitening operator. By focusing on specific types of Lévy noises, we may also define the class

of CARMA compound Poisson processes (for L a differential operator with no purely imaginary

characteristic roots and w a 1-dimensional compound Poisson noise), fractional SαS processes

(for L = (−Δ)γ/2 and w a SαS noise, assumed to be compatible), etc.





4 Limit Theorems for Generalized Lévy
Processes
In this chapter, we establish two different asymptotic results for generalized Lévy processes.

Both of them highlight important properties of the considered processes. In Section 4.1, we

review the fundamental theorem on the convergence in law of generalized random processes,

which is the source of our contributions: the Fernique-Lévy theorem. We then prove that any

generalized Lévy process is the limit in law of a family of generalized Poisson processes in

Section 4.2. In Section 4.3, we investigate the coarse and fine scale behavior of generalized

Lévy Processes.

89



90 Limit Theorems for Generalized Lévy Processes

4.1 The Lévy-Fernique Theorem
In finite dimensions, the convergence in law of a sequence of random variables is equivalent

to the pointwise convergence of the underlying characteristic function: This is the Lévy

continuity theorem presented in Section 2.1.

The generalization of this result to infinite-dimensional Hilbert spaces is not straightforward.

For instance, the domain of definition of the characteristic functional of a random variable in

H ′ is not H , in contrast to the finite-dimensional case. Nevertheless, there is one class of func-

tion spaces on which the Lévy theorem is directly generalizable: the nuclear multi-Hilbertian

spaces introduced in Section 2.2.1. Here, we restrict ourselves to tempered generalized ran-

dom processes in S ′(Rd ), but the result remains valid for generalized random processes in

D ′(Rd ).

Definition 4.1. We say that the sequence of tempered generalized random processes (sk ) con-

verges in law to the tempered generalized random process s if the underlying probability laws

Psk converge weakly to the probability law Ps ; that is, if∫
S ′(Rd )

f (u)dPsk (u) −→
k→∞

∫
S ′(Rd )

f (u)dPs(u)

for every bounded and continuous functional f from S ′(Rd ) to R.

Theorem 4.1 (Lévy-Fernique continuity theorem). A sequence of tempered generalized random

processes (sk ) converges in law to the tempered generalized random process s if and only if

P̂sk (ϕ) −→
k→∞

P̂s(ϕ)

for every ϕ ∈S (Rd ).

Theorem 4.1 is a powerful tool to deduce the limit in law of generalized random processes.

We shall exploit it extensively in this chapter. It was proved by X. Fernique on D ′(Rd ) [Fer67,

Theorem III.6.5]. Along the same line as the Bochner-Minlos theorem, we call Theorem

4.1 the Lévy-Fernique theorem, the result on random vectors of the former mathematician

being generalized for generalized random processes by the latter. P. Boulicaut has shown that

the result is valid on any nuclear space [Bou74, Theorem 4.5]. He also obtained a converse

result applicable to countably multi-Hilbertian spaces. If X is a Fréchet space, or the dual

of a Fréchet space ((DF)-space), the convergence in law of X ′-valued random variables is

equivalent to the pointwise convergence of the characteristic functionals on X if and only if

the space X is nuclear [Bou74, Theorems 5.3 and 5.4]. This demonstrates that the nuclearity

is essential for a direct generalization of the finite-dimensional concepts of probability theory

to function spaces. Other infinite-dimensional generalizations (not only for nuclear spaces) of

the Lévy theorem are extensively developed in [Mus96].
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4.2 Generalized Poisson Processes Generate Generalized Lévy Pro-

cesses
In their landmark paper on linear prediction [BS50], H.W. Bode and C.E. Shannon proposed

that “a (...) noise can be thought of as made up of a large number of closely spaced and very

short impulses." In this section, we formulate this intuitive interpretation of a white noise in a

mathematically rigorous way. This allows us to extend this intuition beyond noise and to draw

additional properties for the class of generalized Lévy processes. More precisely, we show

that these processes can be statistically approximated as closely as desired by generalized

Poisson processes that can also be viewed as random L-splines. This section is mostly based

on our publication [FUU17]. A preliminary version of this work was presented to the SampTA

conference [FWU15].

4.2.1 Generalized Poisson Processes are L-Splines

Splines are continuous-domain functions characterized by a sequence of knots and sample

values. They provide a powerful framework to build discrete descriptions of continuous objets

in sampling theory [Uns99]. Initially defined as piecewise-polynomial functions [Sch73a],

they were further generalized by exploiting their connection with differential operators [SV67,

MN90, UB00]. Recently, in the one-dimensional setting, a very general formulation has been

proposed to specify under which condition a linear operator can be associated to a spline

[AMU].

A linear and continuous operator L from S (Rd ) to S ′(Rd ) is spline-admissible if it is shift-

invariant and if there exists a measurable function of slow growth ρL such that

L{ρL} = δ.

The function ρL is a Green’s function of L. The differential and pseudo-differential operators

of Section 2.2.2 are spline-admissible. The corresponding Green’s functions and adequate

references are given in Table 4.1.

Definition 4.2. Let L be a spline-admissible operator with measurable Green’s function ρL. A

nonuniform L-spline is a function s such that

Ls = ∑
k≥0

akδ(·− xk ) := wδ. (4.1)

The ak are the weights, the xk the knots, and wδ is the innovation of the spline.

The generic expression for a nonuniform L-spline is

s = p0 +
∑
k≥0

akρL(·−xk )

with p0 in the null space of L (i.e., Lp0 = 0). Indeed, we have, by linearity and shift-invariance
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Table 4.1 – Some families of spline-admeissible operators

Operator Parameter ρL(x) Spline type

DN N ∈N\{0} 1
(N−1)! xN−1

�x≥0 B-splines [Uns99, Sch73a]
(D+αId) α ∈C,ℜ(α) > 0 e−αx

�x≥0 E-splines [UB05]
Dγ γ> 0 1

Γ(γ) xγ−1
�x≥0 fractional splines

[UB00, UB07]
D1 · · ·Dd - �x≥0 =∏d

i=1�xi≥0 separable splines [UT14]
(−Δ)m/2 m −d ∈ 2N cm,d‖x‖m−d log‖x‖ cardinal polyharmonic

splines [MN90]
(−Δ)γ/2 γ−d ∈R+\2N cγ,d‖x‖γ−d fractional polyharmonic

splines [VBU05]

of L, that

L
{

s −∑
k≥0

akρL(·−xk )
}
= Ls −∑

k≥0
akδ(·− xk ).

Therefore,
(
s −∑k≥0 akρL(·−xk )

)
is in the null space of L.

By comparing (3.1) and (4.1), one easily realizes that the operator L connects the random and

deterministic frameworks. The link is even stronger when one notices that compound Poisson

white noises can be written as wPoisson = wδ according to (3.5). This means that generalized

Poisson processes are (random) L-splines.

4.2.2 The Convergence Theorem

Our main result uncovers the link between L-splines and generalized Lévy processes through

the use of generalized Poisson processes. A compound Poisson noise is made of a sparse

sequence of weighted impulses whose jumps follow a common law. The average density of

impulses λ is the primary parameter of such a Poisson white noise: Upon increasing λ, one

increases the average number of impulses by unit of time. Meanwhile, the intensity of the

impulses is governed by the common law of the jumps of the noise: Upon decreasing this

intensity, one makes the weights of the impulses smaller. By combining these two effects, one

can recover the intuitive conceptualization of a white noise proposed by Bode and Shannon

in [BS50].

We start by fixing some notation. For simplicity, we shall consider symmetric Lévy noise

without Gaussian part. The extension to the general case can be made thanks to Proposition

3.14 and is done in [FUU17]. If Ψ is a Lévy exponent, we set PΨ the compound Poisson law

with sparsity parameter λ= 1 and law of jumps the infinitely divisible law with exponent Ψ.

Then, for λ,τ> 0, the Lévy exponent associated to the compound Poisson law with sparsity

parameter λ and law of jumps PτΨ is

Ψλ,τ(ξ) =λ(eτΨ(ξ) −1). (4.2)
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Proposition 4.1. We consider a Lévy exponentΨwith Lévy measure ν, associated to a symmetric

Lévy noise without Gaussian part. For λ,τ> 0, we denote by νλ,τ the Lévy measure associated to

the Lévy exponent Ψλ,τ defined in (4.2). If∫
R
ρp∞,p0 (t )ν(dt ) <∞ (4.3)

for some 0 ≤ p∞, p0 ≤ 2, then,∫
R
ρp∞,p0 (t )νλ,τ(dt ) <∞ (4.4)

for any λ,τ> 0.

Therefore, under (4.3), if T maps continuously S (Rd ) to Lp0,p∞(Rd ), then T maps continuously

S (Rd ) to LΘλ,τ(Rd ) for any λ,τ> 0, where Θλ,τ is the Rajput-Rosinski exponent associated to

the Lévy exponent Ψλ,τ.

Proof. The Lévy measure of the compound Poisson noise wλ,τ is νλ,τ = λPτΨ. Without loss

of generality, one can assume that λ = 1. First,
∫
|t |≤1 |t |p0 PτΨ(dt) is finite because PτΨ is a

probability measure. To show (4.4), it suffices to show that
∫
|t |>1 |t |p∞ PτΨ(dt) <∞. This is

equivalent to E[|Y |p∞ ] <∞, where

Y =
N∑

i=1
Xi

is a compound Poisson random variable, with N ∼P (1) and the Xk are i.i.d., infinitely divisible

with common Lévy exponent τΨ. Let us fix x, y ∈R. If 0 < p < 1, then we have that

|x + y |p ≤ |x|p +|y |p .

On the contrary, if 1 ≤ p ≤ 2, then the inequality

∣∣∣x + y

2

∣∣∣p ≤ |x|p +|y |p
2

follows from the convexity of x �→ xp on R+. From these two inequalities, we readily see that

for any 0 < p ≤ 2 and (xi )1≤i≤N ,

∣∣∣ N∑
i=1

xi

∣∣∣p ≤ N max(p−1,0)
N∑

i=1
|xi |p ≤ N

N∑
i=1

|xi |p . (4.5)

Therefore, we have that

E[|Y |p∞ ] = E
[∣∣∣ N∑

i=1
Xi

∣∣∣p∞]≤ E
[

N
N∑

i=1
|Xi |p∞

]
= ∑

n≥0
P(N = n)E

[
n

n∑
i=1

|Xi |p∞
]

=
( ∑

n≥0
n2P(N = n)

)
×E
[|X1|p∞

]
. (4.6)
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Finally, using that
∑

n≥0 n2P(N = n) = E[N 2] = 2λ= 2, we deduce that E[|Y |p∞] = 2E [|X1|p∞ ].

We conclude by remarking that E [|X1|p∞ ] < ∞, what is equivalent to
∫
|t |>1 |t |p∞ ν(dt) < ∞

according to Proposition 2.3.

From (4.4), we deduce with Proposition 3.17 that Lp0,p∞(Rd ) ⊆ LΘ(wλ,τ)(Rd ), implying directly

the second part of Proposition 4.1.

Proposition 4.1 has an important consequence. If a whitening operator L and a Lévy noise w

with Lévy exponent Ψ satisfy together the conditions of Proposition 3.21 (and are therefore

compatible), then L is also compatible with any compound Poisson noise whose law of jumps

has Lévy exponent τΨ.

Proposition 4.2. Let w be a symmetric Lévy noise without Gaussian part, whose Lévy measure

ν satisfies∫
R
ρp∞,p0 (t )ν(dt ) <∞

for some 0 ≤ p0, p∞ ≤ 2. We define, for k ≥ 1,

Ψk (ξ) = k
(
eΨ(ξ)/k −1

)
. (4.7)

Then, the followings hold.

• The function Ψk is the Lévy exponent of the compound Poisson noise wk with sparsity

parameter λ= k and infinitely divisible law of jumps with Lévy exponent eΨ/k .

• The characteristic functionals P̂wk are well-defined, continuous, and positive definite

over Lp0,p∞(Rd ).

• For any ϕ ∈ Lp0,p∞(Rd ), we have that

P̂wk (ϕ) −→
k→∞

P̂w (ϕ). (4.8)

Proof. The first point is obvious. Remark that eΨ/k is a valid characteristic function because

Ψ is a Lévy exponent (see Theorem 2.2). We set Θ (Θk , respectively) the Rajput-Rosinski

exponent of w (of wk , respectively). The second point of Proposition 4.2 is a consequence

of the embeddings Lp0,p∞(Rd ) ⊆ LΘ(Rd ) and Lp0,p∞(Rd ) ⊆ LΘk (Rd ), deduced from Proposition

4.1, and of the extension of the domain of continuity of the characteristic functional with

Proposition 3.20. We can now prove the convergence (4.8). For every fixed x ∈Rd , we have that

Ψk (ϕ(x)) = k
(
eΨ(ϕ(x))/k −1

)
−→

k→∞
Ψ(ϕ(x)).

Due to the convexity of the exponential, we have that |ex −1| ≤ |x| for any x ≤ 0. The symmetry

of w implies the one of the wk . Hence, both Ψ and the Ψk are real and negative. Therefore, we

have that

|Ψk (ϕ(x))| = k|eΨ(ϕ(x))/k −1| ≤ |Ψ(ϕ(x))|,



4.2 Generalized Poisson Processes Generate Generalized Lévy Processes 95

which is integrable for ϕ ∈ Lp0,p∞(Rd ). The Lebesgue dominated convergence theorem implies

then that∫
Rd

Ψk (ϕ(x))dx −→
k→∞

∫
Rd

Ψ(ϕ(x))dx

and, therefore, (4.8) holds.

We are now ready to state the main result of this section.

Theorem 4.2. Let s be a generalized Lévy process with characteristic functional ϕ �→ P̂w (Tϕ)

as in Theorem 3.5, with w a symmetric Lévy noise without Gaussian part. We assume that there

exist 0 ≤ p0, p∞ ≤ 2 such that

• the Lévy measure ν of s satisfies
∫
Rρp∞,p0 (t )ν(dt ) <∞, and

• the operator T continuously maps S (Rd ) to Lp0,p∞(Rd ).

For k ≥ 1, let wk be the compound Poisson noise with Lévy exponent (4.7), then

• the characteristic functional ϕ �→ P̂wk (Tϕ) specifies a generalized Poisson process sk , and

• we have the convergence in law

sk
(L )−→

k→∞
s. (4.9)

Proof. The conditions on w and T ensures with Proposition 4.1 that T continuously maps

S (Rd ) to the domain of definition of all the wk . Therefore, the generalized Poisson process sk

is well-defined for all k ≥ 1.

For the second point, we fix ϕ ∈S (Rd ). Then, Tϕ ∈ Lp0,p∞(Rd ), and we have with Proposition

4.2 that

P̂sk (ϕ) = P̂wk (T{ϕ}) −→
k→∞

P̂w (T{ϕ}) = P̂s(ϕ).

The Lévy-Fernique theorem then implies (4.9).

4.2.3 Examples and Simulations
We illustrate the convergence result of Theorem 4.2 on generalized Lévy processes of three

types, namely

• Gaussian processes based on Gaussian noise, which are non-sparse;

• Laplace processes based on Laplace noise, which are sparse and have finite variance;

• Cauchy processes based on Cauchy noise, our prototypical example of infinite-variance

sparse model.
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Table 4.2 – Lévy noises used in Section 4.2.3.

Lévy Noise Parameters Lévy Exponent

Gaussian σ2 > 0 −σ2ξ2

2

Laplace σ2 > 0 − log
(
1+ σ2ξ2

2

)
Cauchy c > 0 −c|ξ|

Gauss-Poisson λ,σ2 > 0 λ

(
e−

σ2ξ2

2λ −1

)
Laplace-Poisson λ,σ2 > 0 λ

(
1

(1+σ2ξ2/2)1/λ −1
)

Cauchy-Poisson λ,c > 0 λ
(
e−

c|ξ|
λ −1

)

For a given Lévy noise w with Lévy exponent Ψ, we consider compound Poisson processes

that follow the principle of Proposition 4.2. Therefore, we consider compound Poisson noise

with parameter λ and law of jumps with Lévy exponent Ψ(ξ)/λ, for increasing values of λ.

In Table 4.2, we specify the parameters and Lévy exponents of six types of noise: Gaussian,

Laplace, Cauchy, and their corresponding compound Poisson noises. We name a compound

Poisson noise in relation to the law of its jumps (e.g., the compound Poisson noise with

Gaussian jumps is called a Gauss-Poisson noise). As λ increases, the associated compound

Poisson noise features more and more jumps on average (λ per unit of volume) and is more

and more concentrated towards 0. For instance, in the Gaussian case, the Gauss-Poisson noise

has jumps with variance σ2

λ −→
λ→∞

0. To illustrate our results, we provide simulations for the 1-D

and 2-D settings.

Simulations in 1-D. We consider two families of 1-D processes:

• (D+αI)s = w , with parameter α> 0;

• Ds = w .

All the processes are plotted the interval [0,10]. We show in Figure 4.1 a Cauchy process

generated by D+αI. In Figure 4.2 and 4.3, we show a Gaussian and a Laplace process, respec-

tively. Both of them are whitened by D. In all cases, we first plot the processes generated with

compound Poisson noises with increasing values of λ. Then, we show the processes obtained

from the corresponding Lévy noise.

Interestingly, we observe that the processes obtained with Poisson noises of small λ in Fig-

ures 4.2 and 4.3 are very similar. However, their asymptotic processes (large λ) differ, as

expected from the fact that they converge to processes obtained from different Lévy noises.

Simulations in 2-D. We consider three families of 2-D fields s:

• Dx Dy s = w ;

• (Dx +αI)(Dy +αI)s = w , with parameter α> 0;
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(a) λ= 0.5 (b) λ= 3 (c) λ= 100 (d) λ→∞

Figure 4.1 – Processes whitened by D+αI, α= 0.1. In (a)-(c), Cauchy-Poisson noises. In (d),
Cauchy noise.

(a) λ= 0.5 (b) λ= 3 (c) λ= 100 (d) λ→∞

Figure 4.2 – Processes whitened by D. In (a)-(c) Gauss-Poisson noises. In (d), Gaussian noise.

(a) λ= 0.5 (b) λ= 3 (c) λ= 100 (d) λ→∞

Figure 4.3 – Processes whitened by D. In (a)-(c), Laplace-Poisson noises. In (d), Laplace noise.

(a) λ= 0.1 (b) λ= 1 (c) λ= 50 (d) λ→∞

Figure 4.4 – Processes whitened by Dx Dy . In (a)-(c), Gauss-Poisson noise. In (d), Gaussian
noise.
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(a) λ= 0.1 (b) λ= 1 (c) λ= 50 (d) λ→∞

Figure 4.5 – 3-D representation of the processes in Figure 4.4.

(a) λ= 0.1 (b) λ= 1 (c) λ= 50 (d) λ→∞

Figure 4.6 – Processes whitened by (−Δ)γ/2, γ= 1.5. In (a)-(c), Gauss-Poisson noises. In (d),
Gaussian noise.

(a) λ= 0.1 (b) λ= 1 (c) λ= 50 (d) λ→∞

Figure 4.7 – 3-D representation of the processes in Figure 4.6

• (−Δ)γ/2s = w , with parameter γ> 0.

We represent our 2-D examples in two ways: first as an image, with gray levels that correspond

to the amplitude of the process (lowest value is dark, highest value is white); second as a 3-D

plot. All processes are plotted on [0,10]2. In Figures 4.4 and 4.5, we show a Gaussian process

with D as whitening operator. A Gaussian process generated by the fractional Laplacian

(−Δ)γ/2 is illustrated in Figures 4.6 and 4.7. Finally, we plot in Figures 4.8 and 4.9 a Laplace

process generated by D+αI. We always first show the process generated with an appropriate

Poisson noise with increasing λ and then plot the processes obtained from the corresponding

Lévy noise.
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(a) λ= 0.1 (b) λ= 1 (c) λ= 50 (d) λ→∞

Figure 4.8 – Processes whitened by (Dx +αI)(Dy +αI), α = 0.1. In (a)-(c), Laplace-Poisson
noises. In (d), Laplace noise.

(a) λ= 0.1 (b) λ= 1 (c) λ= 50 (d) λ→∞

Figure 4.9 – 3-D representation of the processes in Figure 4.8.

text
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4.3 Scaling Limits of Generalized Lévy Processes
In this section, we focus on the impact of rescaling operations for a broad class of generalized

Lévy processes that are asymptotically self-similar. Consider a solution s of the stochastic

(pseudo-)differential equation Ls = w , with w a d-dimensional Lévy noise and L a linear,

continuous, and shift invariant operator. Our aim is to study the statistical behavior of the

rescaling x �→ s(x/a) of s when a > 0 is varying. The two questions we focus on are:

• What is the asymptotic behavior of s(·/a) when we zoom out the process (i.e., when

a → 0)?

• What is the asymptotic behavior when we zoom in (i.e., when a →∞)?

Our main contribution is to identify sufficient conditions such that the rescaling aH s(·/a) has

a self-similar asymptotic limit as a goes to 0 or ∞. When this limit exists, the parameter H

is unique and depends essentially on the degree of homogeneity γ of L and on the indices

αloc and αasymp of w introduced in Definition 2.8. These indices are used in the literature to

characterize the local and asymptotic behaviors of Lévy processes that are not self-similar

[BG61, Pru81, BSW14].

This section is based on two publications [FBU15, FBU14]. In [FBU15], we study the coarse

scale behavior of finite-variance generalized Lévy processes and apply our results to the

wavelet expansion of wide-sense self-similar sparse processes. This work also contains sta-

tistical experiments on real-world images and is an extension of an earlier conference paper

[FBU14]. We address the general case in [FU16], both at coarse and fine scales, for possibly

infinite-variance processes. The organization of this section is mainly based on this second

publication.

4.3.1 Self-Similar Generalized Lévy Processes
The study of self-similar processes and self-similar fields is a branch of probability theory

[EM00]. Self-similar processes and fields have been applied in areas such as signal and

image processing [BU07, FBU15, PPV02] or traffic network [LTWW94, MRRS02], among others

[Man82]. Many notorious random processes are self-similar, starting with fractional Brownian

motions [MN68] and their higher-order extensions [PHBJ+01]. It also allows for infinite-

variance stable processes [ST94] and their fractional versions [HL07]. Self-similar random

fields have also been investigated both in the Gaussian [BS81, Dob79, LSSW16, TU10] and the

α-stable case [ARX07, BS81].

Self-similar processes are intimately linked with stable laws [ST94]. Stable laws are indeed

known to be the only possible probabilistic limits of the renormalized sum of independent and

identically distributed random variables: This is the well-known (generalized) central-limit

theorem. From this result, self-similar processes are scaling limits of many discretization

schemes and stochastic models [Sur81, BEK10, BD09, DGP09, KLNS07, Sin76].

We recall (Definition 2.19) that a generalized random process s is self-similar of order H if

aH s(·/a) and s have the same law for all a > 0. The parameter H is often referred to as the

Hurst exponent of s. The coarse and fine scale behaviors of a self-similar process are obvious,

since the law of the process is not changed by scaling, up to renormalization.
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Here, we consider generalized Lévy processes solution of (pseudo-)differential equations of

the form

Lγs = wα, (4.10)

with Lγ a γ-homogeneous operator with adequate invertibility properties and w a SαS noise.

Proposition 4.3. Assume that

• w = wα is a SαS noise with α ∈ (0,2], and

• T = Tγ is a linear, continuous, and (−γ)-homogeneous operator from S (Rd ) to Lα(Rd ).

Then, the generalized random process s with characteristic functional

P̂s(ϕ) = exp
(−cα‖Tγ{ϕ}‖αα

)
,

where c > 0, is well-defined, self-similar, with Hurst exponent

H = γ+d

(
1

α
−1

)
. (4.11)

In particular, when Tγ is a left-inverse of the adjoint L∗
γ of a γ-homogeneous whitening operator

Lγ, then s is a self-similar generalized Lévy process solution of (4.10).

Proof. First, the domain of definition of the SαS noise wα is Lα(Rd ) (Proposition 3.19). There-

fore, the assumption on Tγ ensure that s is well-defined, according to Theorem 3.5.

Fix H according to (4.11). Then, H +d = γ+d/α and we have, for any ϕ ∈S (Rd ),

P̂s(aH+dϕ(a·)) = P̂s(aγ+d/αϕ(a·))

= exp
(
−cα‖aγ+d/αTγ{ϕ(a·)}‖αα

)
= exp

(
−cα‖ad/α{Tγϕ}(a·)‖αα

)
(4.12)

= exp
(−cα‖Tγϕ‖αα

)
(4.13)

= P̂s(ϕ),

where we used respectively the (−γ)-homogeneity of Tγ and the change of variable y = ax in

(4.12) and (4.13). According to Proposition 2.15, this implies that s is self-similar with Hurst

exponent H .

Remark. We should comment on the assumptions of Proposition 4.3. First, in order to have a

well-defined generalized Lévy process s, we require Tγ to be at least continuous form S (Rd )

to L(wα) = Lα(Rd ) (see Theorem 3.5). The additional assumption is on the homogeneity of

Tγ. If Tγ is a homogeneous left-inverse of a γ-homogeneous operator L∗
γ, then the order of

homogeneity of Tγ is necessarily (−γ). However, we do not know a priori whether one can

select a left-inverse with this invariance. The construction of such a stable homogeneous
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left-inverse is not straightforward, as seen for instance the case of the fractional Laplacian

studied in [SU12]. This assumption is nevertheless crucial to ensures the self-similarity of s.

Among the classes of generalized Lévy processes introduced in Section 3.3.2, the self-similarity

is achieved under two conditions. First, the underlying Lévy noise must be stable. Second,

the adjoint of Lγ must admit a (−γ)-homogeneous left-inverse with the adequate stability

properties.

• SαS noise: Any d-dimensional stable noise is self-similar. Stable noises are actually

the only self-similar Lévy noise [EM00, Theorem 4.2]. The complete family of stable

laws is presented for instance in [ST94]. Here, we restrict ourselves to symmetric ones,

called SαS (see Section 2.1.3 for more details). All the self-similar generalized Lévy

processes that we consider are driven by SαS noise. The Hurst exponent of a SαS noise

is H = d (1/α−1).

• SαS processes: The operator D∗ = −D admits a (−1)-homogeneous left-inverse with

adequate stability property (it is the operator I0 introduced in 2.2.2). Therefore, the Lévy

process driven by a SαS noise is self-similar. Its Lévy exponent is H = 1+ (1/α−1) = 1/α.

• Fractional SαS processes: The fractional derivative Dγ is γ homogeneous. It admits

a (−γ)-homogeneous that is continuous from S (Rd ) to Lα(Rd ) if α ≥ 1, γ > 0, and

γ−1+1/α ∉N [UT14]. Under this condition, the fractional SαS process exists according

to Theorem 3.5 and is self-similar with Hurst exponent H = γ+ (1/α−1). In particular,

we recover the fractional Brownian motion when α= 2, which gives H = γ−1/2.

• SαS sheets: We now consider generalized random fields. The d-dimensional Lévy sheets

driven by a SαS is also self-similar. It is based on the (−d)-homogeneous left-inverse

of the adjoint of Λ= D(1,...,1) introduced for instance in [FAU14, Section 4.2]. Its Hurst

exponent is H = d/α.

• Fractional Lévy fields: The fractional Laplacian (−Δ)γ/2 of order γ> 0 admits a continu-

ous and (−γ)-homogeneous left-adjoint from S (Rd ) to Lα(Rd ) as soon as α≥ 1, γ ∉N,

and γ−d(1−1/α) ∉N [SU12]. Using Theorem 3.5, one can construct the generalized

Lévy process such that (−Δ)γ/2s = wα. Then, the process s is self-similar with Hurst

exponent H = γ+d (1/α−1).

4.3.2 Generalized Lévy Processes at Coarse and Fine Scales
The self-similarity imposes a strong constraint on the law of the random process. In particular,

it intimately links the behaviors at coarse and fine scales. Many phenomenon are adequately

modeled by self-similar processes [Man97]. However, it can also appear to be too restrictive.

An advantage of the general class of Lévy processes is to overcome this restriction. Poisson

processes are dramatic examples that are piecewise constant and possibly self-similar at

coarse scales as we shall see. As such, they can be used as stochastic models for piecewise

constant signals [UT11]. In the study of many physical systems, the Cauchy process (also
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referred to as the Lévy flight) share many good properties with the observations, while the

variance of the phenomenon is by essence finite. This motivated the construction of the so-

called truncated Lévy flight, that allows for a tradeoff between this two a priori contradictory

requirements [MS94]. More generally, Rosinski introduced tempered stable processes that are

α-stable at fine scale (with 0 <α< 2) and Gaussian at coarse scales [Ros07]. Here we consider

the general problem of characterizing the coarse and large scale behaviors of generalized Lévy

processes.

Inspired by Theorem 3.5, we study random processes s with characteristic functional of the

form

P̂s(ϕ) = P̂w (Tγ{ϕ}) (4.14)

with w a Lévy noise and Tγ a linear and continuous operator from S (Rd ) to L(w).

We have seen in Section 4.3.1 that two ingredients are sufficient to make a generalized Lévy

process self-similar: the self-similarity of the Lévy noise and the homogeneity of the left-

inverse operator appearing in (4.14). This second point is the reason why we index the

operator with γ, the order of homogeneity of the underlying whitening operator Lγ. Moreover,

the self-similarity of a Lévy noise is equivalent to the stability of the underlying infinitely

divisible random variable [ST94]. Even if generalized Lévy processes are not self-similar in

general, one can recover some self-similarity by zooming the process in or out.

Definition 4.3. We say that the generalized random process s is asymptotically self-similar of

order Hasymp if the rescaled processes aHasymp s(·/a) converge in law to a non-trivial Hasymp-self-

similar process as a → 0.

We say that the generalized random process s is locally self-similar of order Hloc if the rescaled

processes aHloc s(·/a) converge in law to a non-trivial Hloc-self-similar process as a →∞.

The main issues that remain are the following: When is a generalized Lévy process asymptoti-

cally self-similar, when is it locally self-similar, and, if so, what are the asymptotic and local

Hurst exponents?

One crucial question is the compatibility of the noise w and the operator Lγ, through the

operator Tγ). We are used to this for well-defined processes s. Here, we reinforce the stability

properties for the left-inverse Tγ so that Lγ is also compatible with the adequate SαS noise. In

what follows, we consider two scenarios:

• Condition (C1): We assume that Tγ is continuous from S (Rd ) to R(Rd ), with no restric-

tion on the noise w .

• Condition (C2): We assume that Tγ is continuous from S (Rd ) to Lp (Rd ) and that Lp (Rd )

is embedded into L(w) for some adequate value of p ∈ (0,2].

The whitening operators presented in Section 2.2.2 satisfy one of these two properties. Typi-

cally, differential operators satisfy (C1), while pseudo-differential (or fractional) ones meet

(C2). These assumptions will be discussed later.
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In order to emphasize the different assumptions, we analyse the coarse and fine scale behavior

separately even if the methods of proof are similar. The relevant parameter of the underlying

white noise is the index αasymp at coarse scales and αloc at fine scales.

Theorem 4.3. Let Lγ be a homogeneous whitening operator of order γ ≥ 0 and w be a Lévy

noise with Lévy exponent Ψ and asymptotic index 0 <αasymp ≤ 2. We assume that there exists a

(−γ)-homogeneous left-inverse Tγ of L∗
γ that satisfies one of the two following conditions.

• Condition (C1): Tγ is continuous from S (Rd ) to R(Rd ), or

• Condition (C2): Tγ is continuous from S (Rd ) to Lmin(αasymp,2)(Rd ) and the Lévy exponent

is bounded as |Ψ(ξ)| ≤ M |ξ|min(αasymp,2) for some constant M > 0.

Let s be the generalized Lévy process with characteristic function P̂s(ϕ) = P̂w (Tγϕ). Then,

if the Lévy exponent Ψ satisfies Ψ(ξ) ∼
0
−C |ξ|min(αasymp,2) for some constant C > 0, we have the

convergence in law

a
γ+d

(
1

min(αasymp,2)−1
)
s(·/a)

(L )−→
a→0

sLγ,min(αasymp,2), (4.15)

where LγsLγ,min(αasymp,2)
(L )= wmin(αasymp,2) is a SαS white noise with α= min(αasymp,2). In par-

ticular, the process s is asymptotically self-similar with asymptotic Hurst exponent

Hasymp = γ+ d

min(αasymp,2)
−d .

Proof. For this proof, we set α = min(αasymp,2). Assume first that (C1) holds. Then, Tγ

is continuous over L(w) and L(wα) = Lα(Rd ) since R(Rd ) is embedded in the domain of

definition of any Lévy noise. We can therefore apply Theorem 3.5 to deduce that both s and

sLγ,α are well-defined. Now, if (C2) holds, then the bound of Ψ implies that Lα(Rd ) ⊆ L(w),

and Tγ is still continuous from S (Rd ) to L(w). The processes are thus again well-defined with

Theorem 3.5.

By the Lévy-Fernique theorem (Theorem 4.1), we know in addition that the convergence in

law (4.15) is equivalent to the pointwise convergence of the characteristic functionals. Hence,

we have to prove that, for every ϕ ∈S (Rd ),

logP̂aγ+d(1/α−1)s(·/a)(ϕ) −→
a→0

logP̂wα
(Tγϕ) =−C‖Tγϕ‖αα. (4.16)

Let ϕ ∈S (Rd ). Then, we have

〈aγ+d(1/α−1)s(·/a),ϕ〉 = 〈w, aγ+d/αϕ(a·)〉
= 〈w,Tγ{aγ+d/αϕ(a·)}〉 (4.17)

= 〈w, ad/α{Tγϕ}(a·)〉, (4.18)

where we have used that 〈s,ϕ〉 = 〈w,Tγϕ〉 and the (−γ)-homogeneity of T in (4.17) and (4.18),
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respectively. Therefore, we have

logP̂aγ+d(1/α−1)s(·/a)(ϕ) = logP̂w (ad/α{Tγϕ}(a·))

=
∫
Rd

Ψ(ad/α{Tγϕ}(ax))dx

=
∫
Rd

(
a−dΨ(ad/αTγϕ(y)

)
dy . (4.19)

By assumption on Ψ, we moreover have that, for every y ∈Rd ,

a−dΨ(ad/αTγϕ(y)) −→
a→0

−C
∣∣Tγϕ(y)

∣∣α .

We split the proof in two parts depending on whether Tγ and Ψ satisfy (C1) or (C2).

• We start with (C2). The bound on Ψ implies that∣∣∣a−dΨ(ad/αTγϕ(y))
∣∣∣≤ M

∣∣Tγϕ(y)
∣∣α (4.20)

for every y ∈ Rd . The right term of (4.20) is integrable by assumption on Tγ. The

Lebesgue dominated convergence theorem therefore applies and (4.16) is proven.

• We assume now (C1). In that case, we do not have a full bound on Ψ. However, we

know that Tγϕ is bounded, so that ‖Tγϕ‖∞ <∞. Since Ψ is continuous and behaves like

(−C |ξ|α) at 0, there exists M > 0 such that |Ψ(ξ)| ≤ M |ξ|α for every |ξ| ≤ ‖Tγϕ‖∞. Hence,

for all a ≤ 1, we have
∣∣ad/αTγϕ(y)

∣∣≤ 1, and (4.20) is still valid. Again, we deduce (4.16)

from the Lebesgue dominated convergence theorem.

Theorem 4.4. Let Lγ be a homogeneous whitening operator of order γ≥ 0 and w be a Lévy noise

with Lévy exponent Ψ and Blumenthal-Getoor index 0 <αloc ≤ 2. We assume that there exists a

(−γ)-homogeneous left-inverse Tγ of L∗
γ that satisfies one of the two following conditions.

• Condition (C1): Tγ is continuous from S (Rd ) to R(Rd ), or

• Condition (C2): Tγ is continuous from S (Rd ) to Lαloc (Rd ) and the Lévy exponent is

bounded as |Ψ(ξ)| ≤ M |ξ|αloc for some constant M > 0.

Let s be the generalized Lévy process with characteristic function P̂s(ϕ) = P̂w (Tγϕ). Then, if

the Lévy exponent Ψ satisfies Ψ(ξ) ∼∞−C |ξ|αloc for some constant C > 0, we have the convergence

in law

a
γ+d

(
1

αloc
−1
)
s(·/a)

(L )−→
a→∞ sLγ,αloc ,

where LsLγ,αloc

(L )= wαloc is a SαS white noise with α=αloc. In particular, the process s is locally



106 Limit Theorems for Generalized Lévy Processes

self-similar with local Hurst exponent

Hloc = γ+ d

αloc
−d .

Proof. The proof is very similar to the one of Theorem 4.3, thus we only develop the parts that

differ. If Tγ and Ψ satisfy (C2), the proof follows exactly the line of Theorem 4.3. We should

therefore assume that Tγ continuously maps S (Rd ) to R(Rd ). Restarting from (4.19) with αloc

instead of min(αasymp,2), we split the integral into two parts and get

logP̂aγ+d(1/αloc−1)s(·/a)(ϕ) =
∫
Rd
�|Tγϕ(y)|ad/αloc≥1a−dΨ(ad/αloc Tγϕ(y))dy

+
∫
Rd
�|Tγϕ(y)|ad/αloc<1a−dΨ(ad/αloc Tγϕ(y))dy

:= I (a)+ J (a).

Control of I (a): By assumption on Ψ, we have that, for any y ∈Rd ,

�|Tγϕ(y)|ad/αloc≥1a−dΨ(ad/αloc Tγϕ(y)) −→
a→∞−C

∣∣Tγϕ(y)
∣∣αloc .

Moreover, since the continuous function Ψ asymptotically behaves like (−C |ξ|αloc ), there exists

a constant C ′ such that |Ψ(ξ)| ≤C ′ |ξ|αloc for every ξ with |ξ| ≥ 1. The function Tγϕ, which is in

R(Rd ), is bounded. Hence, for any a > 0, we have that∣∣∣�|Tγϕ(y)|ad/αloc≥1a−dΨ(ad/αloc Tγϕ(y))
∣∣∣≤C ′

�|Tγϕ(y)|ad/αloc≥1

∣∣Tγϕ(y))
∣∣αloc

≤C ′ ∣∣Tγϕ(y)
∣∣αloc

for all y ∈Rd . The function on the right is integrable, and the Lebesgue dominated convergence

thus applies We obtain finally that I (a) −→
a→∞−C‖Tγϕ‖αloc

αloc
.

Control of J (a): The Lévy noise being tempered and, according to Proposition 2.4, there exists

C ′ > 0 and ε> 0 such that |Ψ(ξ)| ≤C ′(|ξ|ε+|ξ|2). Without loss of generality, one can choose

ε<αloc. Then, for |ξ| ≤ 1, we have |Ψ(ξ)| ≤ 2C ′ |ξ|ε and, therefore,∣∣∣∣∫
Rd
�|Tγϕ(y)|ad/αloc<1a−dΨ(ad/αloc Tγϕ(y))dy

∣∣∣∣≤ 2C ′ad(ε/αloc−1)‖Tγϕ‖εε.

Since R(Rd ) ⊂ Lε(Rd ) and ε<αloc, we have ‖Tγϕ‖εε <∞ and ad(ε/αloc−1) −→
a→∞ 0, which implies

that J (a) −→
a→∞ 0. Finally, we have shown that

logP̂aγ+d(1/αloc−1)s(·/a)(ϕ) = I (a)+ J (a) −→
a→∞−C

∣∣Tγϕ(y)
∣∣αloc ,

as expected.

Remarks

• The renormalization procedures in Theorems 4.3 and 4.4 have to be compared with the
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index H = γ+d(1/α−1) of a self-similar generalized Lévy process (see Proposition 4.3).

One can say that the lack of self-similarity of s is asymptotically or locally removed.

• (C1) has to be understood as the sufficient assumption on the operator Tγ such that the

process s with characteristic functional P̂w (Tγϕ) is well-defined without any additional

assumption on the Lévy white noise w . Therefore, (C1) is restrictive for the operator but

not for the noise.

• The previous remark is in contrast to (C2). Here, the restriction on Tγ is minimal since

the process sLγ,α should be well-defined for α= min(αasymp,2) or α=αloc. Therefore, Tγ

should at least map S (Rd ) into Lα(Rd ). It means that (C2) gives sufficient assumptions

on the Lévy white noise (more precisely on the bound of the Lévy exponent) such that

the minimal assumption on Tγ is also sufficient.

• When the variance of the noise is finite, we have in particular that αasymp ≥ 2, and there-

fore min(αasymp,2) = 2. Under the assumptions of Theorem 4.3, the process aγ−d/2s(·/a)

converges to a Gaussian self-similar process. This can be seen as a central limit theorem

for finite-variance generalized Lévy processes.

• For important classes of Lévy white noises, the parameter αloc vanishes, and Theorem

4.4 does not apply. This includes generalized Laplace noises and compound Poisson

noises (see Section 3.1.2). In that case, the underlying processes do not admit any scaling

limit at fine scales, at least when Tγ satisfies (C1), as shown in Proposition 4.4.

Proposition 4.4. Let Lγ be a homogeneous whitening operator of order γ≥ 0 and w be a Lévy

noise with Lévy exponent Ψ and Blumenthal-Getoor index αloc = 0. We assume that there

exists a (−γ)-homogeneous left-inverse Tγ of L∗
γ , continuous from S (Rd ) to R(Rd ). Let s be the

generalized Lévy process with characteristic function P̂s(ϕ) = P̂w (Tγϕ). Then, for every H ∈R,

aH s(·/a)
(L )−→

a→∞ 0.

Proof. Due to the Lévy-Fernique theorem, we have to show that, for every ϕ ∈S (Rd ),

logP̂aH s(·/a)(ϕ) −→
a→∞ 0.

Proceeding as in Theorem 4.3, we easily show that

logP̂aH s(·/a)(ϕ) =
∫
Rd

a−dΨ(ad+H Tγϕ(y))dy . (4.21)

According to Proposition 2.4, there exists ε,C ′ > 0 such that |Ψ(ξ)| ≤C ′ |ξ|ε for |ξ| ≤ 1. Without

loss of generality, one can assume that ε< d
d+|H | . This implies in particular that ε(d+H )−d < 0.

The knowledge that αloc = 0 is enough to deduce that Ψ(ξ) is also dominated by |ξ|ε for |ξ| ≥ 1,

and that there exists C > 0 such that

|Ψ(ξ)| ≤C |ξ|ε
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for every ξ ∈R. Resuming from (4.21), we obtain that∣∣∣logP̂aH s(·/a)(ϕ)
∣∣∣≤C

∫
Rd

aε(d+H)−d
∣∣Tγϕ(y)

∣∣ε dy =C‖Tγϕ‖εεaε(d+H)−d ,

which vanishes when a →∞ due to our choice of ε. This concludes the proof.

4.3.3 Examples and Simulations
The processes consider in this section have been introduced in Section 3.3.2.

Lévy processes and sheets. We recall the notation Λ= D1 · · ·Dd . We consider Lévy sheets

solutions of Λs = w . The left-inverse of Λ introduced in Section 3.3.2 is (−d)-homogeneous

and continuous from S (Rd ) to R(Rd ). We satisfy therefore the Condition (C1) Applying the

results of Section 4.3.2, we directly deduce Proposition 4.5. We denote the SαS Lévy sheet for

α ∈ (0,2] by sΛ,α.

Proposition 4.5. Let w be a Lévy noise with indices αasymp ∈ (0,∞] and αloc ∈ [0,2] and s the

Lévy sheet driven by w.

• If Ψ(ξ) ∼
0
−C |ξ|min(αasymp,2) for some C > 0, then

ad/min(αasymp,2)s(·/a) −→
a→0

sΛ,min(αasymp,2).

• If αloc �= 0 and Ψ(ξ) ∼∞−C |ξ|αloc for some C > 0, then

ad/αloc s(·/a) −→
a→∞ sΛ,αloc .

We illustrate our results in 1-dimension with simulations of Lévy processes. First, we consider

three Lévy processes driven by the Laplace white noise, the Gaussian-Poisson white noise, and

the Cauchy-Poisson white noise, respectively. We look at the processes at three different scales

by representing them on [0,1], [0,10], and [0,1000]. We only generate one process of each

type and represent it on the different intervals, which corresponds to zooming out of it. The

theoretical prediction at large scale is as follows. The Laplace and Poisson-Gaussian process

should be statistically indistinguishable from the Brownian motion, while the Poisson-Cauchy

process should be statistically indistinguishable from the Cauchy process (also called Lévy

flight). We see in Figure 4.10 that this can indeed be observed on simulations. For comparison

purposes, we also represent one realization of the expected limit process.

We also depict the difference between fine-scale and coarse scale behaviors. To do so, we

consider a Lévy noise w , which is the sum of two independent Gaussian and Cauchy noises.

The prediction states that the Lévy process driven by w converges to the Brownian motion at

fine scales and to the Cauchy process (or Lévy flight) at coarse scales. Again, this theoretical

result is observed on simulations in Figure 4.11, where one realization of the process is

represented on [0,0.1] (fine-scale), [0,10] (medium scale), and [0,1000] (coarse scale).
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Fractional Lévy Processes and Fields In dimension d , we consider the stochastic differential

equation (−Δ)γ/2s = w , where (−Δ)γ/2 is the fractional Laplacian. The conditions of existence

of s were discussed in Section 3.3.2 and we assume that they are satisfied. Again, the direct

application of the results of Section 4.3.2 yields Proposition 4.6. We denote by s(−Δ)γ/2,α the

fractional Lévy process driven by the SαS Lévy noise (assuming that it is well-defined).

Proposition 4.6. Let w be a Lévy noise with indices αasymp ∈ (0,∞] and αloc ∈ [0,2] and s be

the fractional Lévy process driven by w (which is assumed to exist).

• If Ψ(ξ) ∼
0
−C |ξ|min(αasymp,2) and |Ψ(ξ)| ≤C ′ |ξ|min(αasymp,2) for some C ,C ′ > 0, then

aγ+d(1/min(αasymp,2)−1)s(·/a) −→
a→0

s(−Δ)γ/2,min(αasymp,2).

• If αloc �= 0, Ψ(ξ) ∼∞−C |ξ|αloc , and |Ψ(ξ)| ≤C ′ |ξ|αloc for some C ,C ′ > 0, then

aγ+d(1/αloc−1)s(·/a) −→
a→∞ s(−Δ)γ/2,αloc

.

In dimension d = 1, one can construct generalized Lévy field whitened by the fractional

derivative L = Dγ. This includes the fractional Brownian motion [MN68] when considering

Figure 4.10 – Lévy processes at three different scale and comparison with the corresponding
self-similar process at large scale according to Theorem 4.3.
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Figure 4.11 – Sum of a Lévy flight and a Brownian motion at three different scales.

the Gaussian noise and Lévy driven generalizations [EW13]. For a left-inverse-based approach

in this case, see [UT14, Section 7.5].



5 Regularity of Generalized Lévy Pro-
cesses
In this chapter, we aim at specifying in which function spaces, associated to different notions

of regularity (Hölder, Sobolev, and more generally Besov), the generalized Lévy processes

are localized. A special attention will be given to the Lévy noise, for which we identify the

local smoothness and the asymptotic decay rate. We then deduce local smoothness of the

generalized Lévy processes specified in the periodic framework. This chapter is based on our

publications [FUW17b, FFU, AFU], in collaboration with S. Aziznejad, A. Fallah, M. Unser, and

J.P. Ward.
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5.1 Smoothness and Decay Rate in S ′(Rd )
For us, random processes are constructed as random elements in the space of tempered

generalized functions. We will therefore describe their smoothness and decay properties as

we would do for a (deterministic) tempered generalized function.

For p = 2, we have seen that the space of tempered distribution is the union of the weighted

Sobolev spaces (see (2.16)). More generally, if we fix the integrability rate 0 < p ≤∞, the space

of tempered generalized functions satisfies [Kab08, Proposition 1]

S ′(Rd ) = ⋃
τ,ρ∈R

Bτ
p (Rd ;ρ), (5.1)

where the weighted Besov spaces Bτ
p (Rd ;ρ) are introduced in Section 2.2.3. Ideally, for f ∈

S ′(Rd ), we want to identify the set

Ep ( f ) =
{

(τ,ρ) ∈R2
∣∣∣ f ∈ Bτ

p (Rd ;ρ)
}

.

We remark that Ep ( f ) is non-empty due to (5.1). When τ1 ≤ τ2 and ρ1 ≤ ρ2, we have the

embeddings

Bτ2
p (Rd ;ρ) ⊆ Bτ1

p (Rd ;ρ),

Bτ
p (Rd ;ρ2) ⊆ Bτ

p (Rd ;ρ1).

Thus, if (τ0,ρ0) ∈ Ep ( f ), then

(−∞,τ0]× (−∞,ρ0] ⊂ Ep ( f ).

Assume that we know two quantities τp ( f ) ∈ (−∞,∞] and ρp ( f ) ∈ (−∞,∞] such that:

• if τ< τp ( f ) and ρ < ρp ( f ), then f ∈ Bτ
p (Rd ;ρ); while

• if τ> τp ( f ) or ρ > ρp ( f ), then f ∉ Bτ
p (Rd ;ρ).

The case τp ( f ) =∞ corresponds to infinitely differentiable functions, and ρp ( f ) =∞ means

that f is rapidly decaying. When these two quantities are finite, we have that

(−∞,τp ( f ))× (−∞,ρp ( f )) ⊂ Ep ( f ) ⊂ (−∞,τp ( f )]× (−∞,ρp ( f )]. (5.2)

The value of τp ( f ) measures the local smoothness of f in the Lp -scale, while ρp ( f ) quantifies

its asymptotic decay rate. Knowing τp ( f ) and ρp ( f ) allows to almost completely characterize

in which weighted Besov spaces the generalized function f is. The only remaining part is

precisely when τ= τp ( f ) or ρ = ρp ( f ).

Remark. We do not claim that τp ( f ) and ρp ( f ) are well-defined for any f ∈ S ′(Rd ) and

0 < p ≤∞. In particular, the space Ep ( f ) is not necessarily sandwiched between open and

closed separable spaces in R2 as in (5.2). Nevertheless, the description of the Besov regularity

of f is particularly simple when it occurs. This is true for the Lévy noise, as we shall see in
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Section 5.2. It is also the case for the Dirac impulse, for which τp (δ) = d/p−d and ρp (δ) =+∞,

as easily deduced from Proposition 2.7.
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5.2 Besov Regularity of the Lévy Noise
This section is dedicated to the identification of the local smoothness τp (w) and the asymp-

totic decay rate ρp (w) of the Lévy noise for 0 < p ≤∞. We will see that these quantities are

well-defined.

Our results are based on the wavelet characterization of Besov spaces exposed in Section

2.2.3, where we used Daubechies wavelet bases. In order to identify a certain Besov regularity,

we therefore need to justify that one can analyse the Lévy noise with Daubechies wavelets.

We have seen in Section 3.2 that any Lévy noise can be extended as a random linear and

continuous functional on its domain of definition (Theorem 3.4). Moreover, the domain of

definition always includes the space of compactly supported functions, which is a subspace of

L2,0(Rd ) (see Proposition 3.17). This means that the family of random variables

(〈w,ψ j ,G ,k〉) j≥0, G∈G j , k∈Zd (5.3)

is always well-defined in a compatible way (with the notation of Section 2.2.3).

An alternative justification of the well-definiteness of (5.3) was exposed in our works [FFU,

FUW17b]. There, we have shown, based on considerations on the characteristic functional,

that a Lévy noise is almost surely located in the Sobolev space W τ
2 (Rd ;ρ) as soon as τ<−d/2

and ρ <−d/min(αasymp,2) [FFU, Proposition 8]. Then, it suffices to take a Daubechies wavelet

basis with a sufficient regularity in accordance with Proposition 2.9 to justify the wavelet

analysis. The two approaches convey the same message: we can apply Daubechies wavelets

to any Lévy noise.

We split the different cases as follows. In Sections 5.2.1 and 5.2.2, we fully characterize the

Besov regularity of the Gaussian noise and the compound Poisson noise, respectively. The

case of Lévy noise without Gaussian part (or sparse Lévy noise) is treated in Section 5.2.3. We

combine and comment all the results in Section 5.2.4.

We briefly present the strategy of the proof, which is similar for the different classes of noise.

Showing that the noise is almost surely (almost surely not, respectively) in a given Besov space

is called a positive result (a negative result, respectively). Given a Lévy noise and a Besov space

Bτ
p (Rd ;ρ), we study the random variable

‖w‖p
Bτ

p (Rd ;ρ)
=∑

j≥0
2 j (τp−d+ d p

2 )
∑

G∈G j

∑
k∈Zd

〈2− j k〉ρp |〈w,ψ j ,G ,k〉|p . (5.4)

We assume that we have identified (or guessed) the values τp (w) and ρp (w).

• For τ < τp (w) and ρ < ρp (w), we show that ‖w‖Bτ
p (Rd ;ρ) < ∞ almost surely. For p <

αasymp, we show the strongest result that E[‖w‖p
Bτ

p (Rd ;ρ)
] <∞. This requires a precise

estimation of the behavior of E[|〈w,ψ j ,G ,k〉|p ] as j goes to infinity. When p > αasymp,

the random variables 〈w,ψ j ,G ,k〉 have an infinite pth moment and the method is not

applicable. For p ≥αasymp, we actually deduce the result using the embeddings between

Besov spaces. It appears that this approach is sufficient to obtain sharp positive results.

• For τ> τp (w), we show that ‖w‖Bτ
p (Rd ;ρ) =∞ almost surely. To do so, we consider only
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the mother wavelet (gender G = M d ) and restrain the shifts k to retain the lower bound

‖w‖p
Bτ

p (Rd ;ρ)
≥C
∑
j≥0

2 j (τp−d+ d p
2 )

∑
0≤k1,...,kd<2 j

|〈w,ψ j ,M d ,k〉|p , (5.5)

with C smaller than 〈2− j k〉ρp for the considered range of k . We need to show then that

|〈w,ψ j ,G ,k〉| cannot be too small, with Borel-Cantelli-type arguments.

• For ρ > ρp (w), we show again that ‖w‖Bτ
p (Rd ;ρ) =∞ almost surely. It appears that the

evolution among the scale j is not what makes the Besov norm explode. We only

consider the father wavelet (gender G = F d ) in (5.4), and use the lower bound

‖w‖p
Bτ

p (Rd ;ρ)
≥ ∑

k∈Zd

〈k〉ρp |〈w,ψ0,F d ,k〉|p . (5.6)

Again, a Borel-Cantelli-type argument is used to show that the |〈w,ψ0,F d ,k〉| cannot be

too small, and that the Besov norm is almost surely infinite.

5.2.1 Gaussian Noise
The Gaussian case is much simpler than the general one since the wavelet coefficients of the

Gaussian noise are independent and identically distributed. We present it separately for three

reasons: (i) it can be considered as an instructive toy problem that already contains some

of the technicalities that will appear for the general case, (ii) it cannot be deduced from the

other sections, where the results are based on a careful study of the Lévy measure, and (iii)

the localization of the Gaussian noise in weighted Besov spaces has not been addressed in the

literature, to the best of our knowledge (for the local Besov regularity, a complete answer was

given in [Ver10]). We first state a lemma that will be useful throughout this section.

Lemma 5.1. Assume that (Xk )k∈Zd , is a sequence of i.i.d. nonzero random variables. Then,

∑
k∈Zd

|Xk |
〈k〉d

=∞ a.s.

Proof. Lemma 5.1 can be easily proved using for instance Kolmogorov’s three-series theorem.

We propose here a short and self-contained proof. First of all, the result for any dimension

d is easily deduced from the one-dimensional case. Moreover, |k| and 〈k〉 are equivalent

asymptotically, so that it is equivalent to show that
∑

k≥1
|Xk |

k =∞ for Xk i.i.d. For k ≥ 1, we set

Zk = 1
2k

∑2k−1
l=2k−1 |Xl |, so that

∑
k≥1

|Xk |
k

= ∑
k≥1

2k−1∑
l=2k−1

|Xl |
l

≥ ∑
k≥1

1

2k

2k−1∑
l=2k−1

|Xl | =
∑
k≥1

Zk

The Zk are independent because the Xk are. Moreover, we have E[Zk ] = E[|X1|] for all k. The

weak law of large numbers ensures that P(Zk > E[|X1|]/2) goes to 1, therefore
∑

k≥1 P(Zk >
E[|X1|]/2) =∞. Since the events {Zk > E[|X1|]/2} are independent, we apply the Borel-Cantelli

lemma to deduce that infinitely many Zk are bigger than E[|X1|]/2 almost surely. Finally, this



116 Regularity of Generalized Lévy Processes

implies that
∑

k≥1 Zk =∞ almost surely and the result is proved.

Theorem 5.1. Let 0 < p <∞. The Gaussian noise wGauss is

• almost surely in Bτ
p (Rd ;ρ) if τ<−d/2 and ρ <−d/p, and

• almost surely not in Bτ
p (Rd ;ρ) if τ≥−d/2 or ρ ≥−d/p.

Proof. Without loss of generality, we assume that the variance of the Gaussian noise is 1.

If τ<−d/2 and ρ <−d/p. For p > 0, we denote by Cp the p-th moment of a Gaussian random

variable with mean 0 and variance 1. For the Gaussian noise, 〈wGauss,ϕ1〉 and 〈wGauss,ϕ2〉 are

independent if and only if 〈ϕ1,ϕ2〉 = 0, and 〈wGauss,ϕ〉 is a Gaussian random variable with

variance ‖ϕ‖2
2 [UT14]. The family of functions (ψ j ,G ,k ) j ,G ,k being orthonormal, the random

variables 〈wGauss,ψ j ,G ,k〉 are therefore i.i.d. with law N (0,1). We then have

E[‖wGauss‖p
Bτ

p (Rd ;ρ)
] =∑

j≥0
2 j (τp−d+ d p

2 )
∑

G∈G j

∑
k∈Zd

〈2− j k〉ρpE[|〈wGauss,ψ j ,G ,k〉|p ]

=Cp
∑
j≥0

2 j (τp−d+ d p
2 )Card(G j )

∑
k∈Zd

〈2− j k〉ρp

≤ 2dCp
∑
j≥0

2 j (τp−d+ d p
2 )
∑

k∈Zd

〈2− j k〉ρp .

The last inequality is due to Card(G j ) ≤ 2d . Since ρp <−d and 〈2− j k〉 ∼∞ 2− j‖k‖, we have that∑
k∈Zd 〈2 j k〉ρp <∞. Moreover, we recognize a Riemann sum and have the convergence

2− j d
∑

k∈Zd

〈2 j k〉ρp −→
j→∞

∫
Rd
〈x〉ρp dx <∞.

In particular, the series
∑

j 2 j (τp+ d p
2 )
(
2− j d∑

k〈2− j k〉ρp
)

converges if and only if the series∑
j 2 j (τp+ d p

2 ) does; that is, if and only if τ < d/2. Finally, if τ < d/2 and ρ < −d/p, we have

shown that E[‖wGauss‖p
Bτ

p (Rd ;ρ)
] <∞, and therefore wGauss ∈ Bτ

p (Rd ;ρ) almost surely.

If τ≥−d/2. We then have 2 j (τ−d+d p/2) ≥ 2− j d . We aim at finding a lower bound for the Besov

norm of w and we restrict ourselves to the wavelet with gender G = M d ∈ G j for any j ≥ 0.

Using (5.5), we have that

‖wGauss‖p
Bτ

p (Rd ;ρ)
≥C
∑
j≥0

2− j d
∑

0≤k1,...,kd<2 j

|〈wGauss,ψ j ,M d ,k〉|p :=C
∑
j≥0

Z j .

The random variables Z j = 2− j d∑
0≤k1,...,kd<2 j |〈wGauss,ψ j ,M d ,k〉|p are independent, non-negative,

and have the same average E[Z j ] =Cp equals to the pth-moment of a Gaussian random vari-

able with variance 1. The same argument as in Lemma 5.1 therefore implies that
∑

j≥0 Z j =∞
almost surely, hence ‖wGauss‖p

Bτ
p (Rd ;ρ)

=∞ almost surely.
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If ρ ≥−d/p. Using (5.6), we have the lower bound

‖wGauss‖p
Bτ

p (Rd ;ρ)
≥ ∑

k∈Zd

〈k〉ρp |〈wGauss,ψ0,F d ,k〉|p ≥ ∑
k∈Zd

|〈wGauss,ψ0,F d ,k〉|p
〈k〉d

.

Finally, the random variables 〈wGauss,ψ0,F d ,k〉 being i.i.d., Lemma 5.1 applies, implying that

‖wGauss‖p
Bτ

p (Rd ;ρ)
=∞ almost surely.

Theorem 5.1 fully characterizes the Besov localization of the Gaussian noise. We reinterpret it

as

Ep (wGauss) = (−∞,−d/2)× (−∞,−d/p)

for any 0 < p <∞.

The proof of Theorem 5.1 for the case ρ ≥−d/p uses an argument that is valid for any Lévy

noise. We state this result right now in full generality.

Proposition 5.1. Fix 0 < p < ∞ and τ,ρ ∈ R. If w is a nontrivial Lévy white noise, then,

w ∉ Bτ
p (Rd ;ρ) as soon as ρ ≥−d/p.

Proof. By restricting to the scale j ≥ 0, with only the father wavelet (gender G = F d ), and

selecting k0 such that the ψ0,F d ,k have disjoint supports two by two for k ∈ k0Z
d , we have the

lower bound

‖w‖p
Bτ

p (Rd ;ρ)
≥ ∑

k∈k0Z
d

〈k〉ρp |〈w,ψ0,F d ,k〉|p ≥ ∑
k∈k0Z

d

|〈w,ψ0,F d ,k〉|p
〈k〉d

.

The ψ0,F d ,k having disjoint supports, the random variables 〈w,ψ0,F d ,k〉 are i.i.d. when k ∈ k0Z
d .

Lemma 5.1 hence applies and ‖w‖p
Bτ

p (Rd ;ρ)
=∞, as expected.

In other terms, for any Lévy noise w , we have Ep (w) ⊂R× (−∞,−d/p).

5.2.2 Compound Poisson Noise
As for the Gaussian case, we treat the Besov regularity of the compound Poisson noise for

every 0 < p <∞. Our positive results are based on a careful estimation of the moments for

compound Poisson noise.

Lemma 5.2. Let wPoisson be a compound Poisson noise with asymptotic index αasymp and

p <αasymp ≤∞. Then, there exists a constant C such that

E[
∣∣〈wPoisson,ψ j ,G ,k〉

∣∣p ] ≤C 2 j pd/2− j d

for every j ≥ 0, G ∈ G j , and k ∈Zd .

Proof. We denote by λ> 0 and P the sparsity parameter and the law of the jumps of wPoisson,
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respectively. We know from (3.5) that we can write

wPoisson
(L )= ∑

k≥0
akδ(·− xk ), (5.7)

where the ak are i.i.d. with law P , and the xk , independent from the ak , are randomly located

such that Card{xk ∈ B} is a Poisson random variable with parameter λLeb(B) for any Borel set

B ⊂Rd with finite Lebesgue measure. For M big enough, the support of the ΨG is included in

[−M/2, M/2]d . Then, the support of Ψ j ,G ,k is included in I j ,k :=∏d
i=1[2− j (ki −M/2),2− j (ki +

M/2)]. We set

A j ,k = Card
{
k ≥ 0

∣∣ xk ∈ I j ,k
}

.

It is a Poisson random variable with parameter λLeb(I j ,k ) = λM d

2 j d . Then, we have the equality

in law

〈wPoisson,ψ j ,k〉 (L )=
A j ,k∑
n=1

a′
nψ j ,k (x ′

n)

where the a′
n are i.i.d. with the same law than the ak . The law of the x ′

n can be specified

explicitly but will play no role in the sequel.

By conditioning on A j ,k and using the inequality (4.5), we deduce that

E[
∣∣〈wPoisson,ψ j ,G ,k〉

∣∣p ] =
∞∑

N=1
P(A j ,k = N )E

[∣∣〈wPoisson,ψ j ,G ,k〉
∣∣p |A j ,k = N

]
=

∞∑
N=1

P(A j ,k = N )E

[∣∣∣∣∣ N∑
n=1

a′
nψ j ,G ,k (x ′

n)

∣∣∣∣∣
p]

≤
∞∑

N=1
P(A j ,k = N )N max(0,p−1)E

[
N∑

n=1

∣∣a′
nψ j ,G ,k (x ′

n)
∣∣p]

≤ ‖ψ j ,G ,k‖p
∞

∞∑
N=1

P(A j ,k = N )N max(1,p)E
[|a1|p

]
= 2 j d p/2‖ψG‖p

∞E
[|a1|p

] ∞∑
N=1

N max(1,p)P(A j ,k = N ). (5.8)

We used at the end the relation ‖ψ j ,G ,k‖p
∞ = 2 j d p/2‖ψG‖p

∞. Knowing the law of A j ,k , we then

have

∞∑
N=1

N max(1,p)P(A j ,k = N ) =
∞∑

N=1
N max(1,p) 1

N !
(M dλ)N 2− j d N e−λM d 2− j d

.

Then, 2− j d N ≤ 2− j d for every N ≥ 1 and e−λM d 2− j d ≤ 1, hence,

∞∑
N=1

N max(1,p)P(A j ,k = N ) ≤ C̃ 2− j d (5.9)
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where C ′ =∑∞
N=1 N max(1,p) 1

N ! (M dλ)N <∞. Finally, including (5.9) into (5.8), we deduce the

result with C =C ′E[|a1|p ]‖ψG‖p
∞.

Theorem 5.2. Let wPoisson be a compound Poisson noise with asymptotic index αasymp ∈ (0,∞]

and 0 < p <∞. Then, wPoisson is

• almost surely in Bτ
p (Rd ;ρ) if τ< d/p −d and ρ <−d/min(p,αasymp),

• almost surely not in Bτ
p (Rd ;ρ) for p ≤αasymp if τ≥ d/p −d or ρ ≥−d/p, and

• almost surely not in Bτ
p (Rd ;ρ) for p >αasymp if τ≥ d/p −d or ρ >−d/αasymp.

Proof. If p <αasymp, τ< d/p −d, and ρ <−d/p. Under these assumptions, we apply Lemma

5.2 to deduce that

E[‖wPoisson‖p
Bτ

p (Rd ;ρ)
] =∑

j≥0
2 j (τp−d+d p/2)

∑
G ,k

〈2− j k〉ρpE[
∣∣〈wPoisson,ψ j ,G ,k〉

∣∣p ]

≤C 2d
∑
j≥0

2 j (τp−d+d p) 1

2 j d

∑
k∈Zd

〈2− j k〉ρp .

The sum over the gender was removed using that Card(G j ) ≤ 2d . Then,

1

2 j d

∑
k∈Zd

〈2− j k〉ρp −→
j→∞

∫
Rd
〈x〉ρp dx <∞

as soon as ρ < −d/p. Assuming this condition on ρ, the sum in is finite if and only if∑
j 2 j (τp−d+d p) <∞, that is, if and only if τp −d +d/p < 0, as expected.

If p ≥αasymp, τ< d/p −d, and ρ <−d/αasymp. From the conditions on τ and ρ, one can find

p0, ρ0, and τ0 such that

ρ < ρ0 <− d

p0
<− d

αasymp
,

τ+ d

p0
− d

p
< τ0 < d

p0
−d . (5.10)

Then, in particular, p0 < p, τ0 −τ> d/p0 −d/p, and ρ0 > ρ, so that Bτ0
p0

(Rd ;ρ0) is embedded

in Bτ
p (Rd ;ρ) (according to (2.21)). Moreover, p0 <αasymp, τ0 < d/p0 −d , and ρ0 <−d/p0. We

are therefore back to the first case, for which we have shown that wPoisson ∈ Bτ0
p0

(Rd ;ρ0) almost

surely. In conclusion, wPoisson ∈ Bτ
p (Rd ;ρ) almost surely.

Combining these first two cases, we obtain that wPoisson ∈ Bτ
p (Rd ;ρ) if τ < d/p − d and

ρ <−d/min(p,αasymp).

If τ≥ d/p −d. We use again the representation (5.7) of the compound Poisson noise. Assume

that wPoisson is in Bτ
p (Rd ;ρ) for some ρ ∈ R. Then, the product of wPoisson by any compactly
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supported smooth test function ϕ ∈D(Rd ) is also in Bτ
p (Rd ;ρ). Choosing ϕ such that ϕ(x0) = 1

and ϕ(xk ) = 0 for k �= 0, we get

ϕ ·wPoisson = a0δ(·− x0) ∈ Bτ
p (Rd ;ρ),

which is absurd due to Proposition 2.7. This proves that wPoisson ∉ Bτ
p (Rd ;ρ) for any ρ ∈R.

If ρ ≥−d/p. We already know that wPoisson ∉ Bτ
p (Rd ;ρ) for any τ ∈R according to Proposition

5.1.

If p >αasymp and ρ >−d/αasymp. This means in particular that αasymp <∞. We treat the case

ρ < 0, the extension for ρ ≥ 0 comes easily by embedding. We set q =−d/ρ. Using (5.6), we

have that

‖wPoisson‖p
Bτ

p (Rd ;ρ)
≥ ∑

k∈k0Z
d

|〈wPoisson,ψ0,F d ,k〉|p
〈k〉d p/q

. (5.11)

Consider the events Ak = {
∣∣〈wPoisson,ψ0,F d ,k〉

∣∣≥ 〈k〉d/q } for k ∈ k0Z
d . The Ak are independent

because the Xk = 〈wPoisson,ψ0,F d ,k〉 are. Moreover, the Xk have the same law since wPoisson is

stationary. Set Y = |X0|q . Then,∑
k∈k0Z

d

P(Ak ) = ∑
k∈k0Z

d

P(Y ≥ 〈k〉d ) ≥ ∑
m≥1

P(Y ≥ mk0). (5.12)

Moreover, exploiting that P(Y ≥ x) is decreasing in x, we have that

E[Y ] =
∫∞

0
P(Y ≥ x)dx = ∑

m≥1

∫(m+1)k0

mk0

P(Y ≥ x)dx ≤ ∑
m≥1

P(Y ≥ mk0). (5.13)

The relation q = d
−ρ >αasymp implies that E[Y ] = E[|X0|q ] =∞. Hence, from (5.12) and (5.13),

we deduce that
∑

k∈k0Z
d P(Ak ) =∞. The Borel-Cantelli lemma implies that |Xk |p ≥ 〈k〉pd/q

for infinitely many k almost surely. Due to (5.11), this implies that ‖wPoisson‖p
Bτ

p (Rd ;ρ)
= ∞

almost surely and the result is proved.

Theorem 5.2 can be reformulated in terms of the Besov localization of the compound Poisson

noise as follows:

• If p ≤αasymp, then

Ep (wPoisson) = (−∞,d/p −d)× (−∞,−d/p).

• If p >αasymp, then

(−∞,d/p −d)× (−∞,−d/αasymp) ⊂ Ep (wPoisson),

Ep (wPoisson) ⊂ (−∞,d/p −d)× (−∞,−d/αasymp].
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The only remaining part for a complete characterization of the Besov regularity is when

p >αasymp, τ< d/p−d , andρ =−d/αasymp. In particular, our results are complete when all the

moments of wPoisson are finite (αasymp =∞). We conjecture that wPoisson ∉ Bτ
p (Rd ;−d/αasymp)

when p >αasymp and τ ∈R.

5.2.3 Non-Gaussian Lévy Noise
A non-Gaussian Lévy noise is a Lévy noise whose Lévy measure is nonzero. When it has no

Gaussian part (σ2 = 0 in the Lévy-Khintchine representation (2.1)), we say that the noise is

sparse1. When the Gaussian part is nonzero, we say that the noise is composed in the sense

that it has both a Gaussian and a sparse part. This section is at the heart of our contributions

on the Besov regularity of Lévy noise.

Moment estimations. We start with preliminary results that will be used in the proof. We

estimate the moments of a random variable by relaying the fractional moments to the charac-

teristic function. Proposition 5.2 can be found for instance in [DS15, Lau80, MP13] with some

variations. For the sake of completeness, we recall the proof, similar to the one of [DS15].

Proposition 5.2. For a random variable X with characteristic function P̂X and 0 < p < 2, we

have the relation

E[|X |p ] = cp

∫
R

1−ℜ(P̂X )(ξ)

|ξ|p+1 dξ ∈ [0,∞], (5.14)

for some finite constant cp > 0.

Proof. For p ∈ (0,2), we have, for every x ∈R,

h(x) =
∫
R

(1−cos(xξ))
dξ

|ξ|p+1 =
(∫

R
(1−cos(u))

du

|u|p+1

)
|x|p ,

which is obtained by the change of variable u = xξ. Applying this relation to x = X and

denoting cp =
(∫

R(1−cos(u)) du
|u|p+1

)−1
, we have by Fubini’s theorem that

E[|X |p ] = cpE

[∫
R

(1−cos(ξX ))
dξ

|ξ|p+1

]
= cp

∫
R

(1−ℜ(E[eiξX ]))
dξ

|ξ|p+1

= cp

∫
R

1−ℜ(P̂X )(ξ)

|ξ|p+1 dξ.

Proposition 5.3. We consider a Lévy noise w with indices αloc and αasymp. Then, for 0 < p <
1This terminology will be justified in Chapter 6.
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min(αasymp,2) and ε> 0 small enough, there exists C > 0 such that

E[
∣∣〈w, f 〉∣∣p ] ≤C (‖ f ‖p

αloc+ε+‖ f ‖p
min(αasymp,2)−ε) (5.15)

for any f ∈ LΘp (Rd ), the domain of finite pth moments of w.

Proof. For simplicity, we write α̃= min(αasymp,2) in this proof. We start with a preliminary

property: There exists a constant C > 0 such that, for every z ∈C with ℜ(z) ≤ 0, we have that

|1−ez | ≤C
(
1−e−|z|

)
. (5.16)

Indeed, the function h(z) = |1−ez |
1−e−|z| is easily shown to be bounded for ℜ(z) ≤ 0 by a continuity

argument.

Defining X = 〈w, f 〉 with f ∈ LΘ(Rd ), the characteristic function of X is (Proposition 3.10)

P̂X (ξ) = exp

(∫
Rd

Ψ(ξ f (x))dx
)

.

Moreover, using (3.42) and Proposition 3.18, we deduce that

|Ψ(ξ)| ≤ 2Θ(ξ) ≤Cραloc+ε,α̃−ε(ξ) ≤C
(|ξ|α̃−ε+|ξ|αloc+ε) .

This implies that∫
Rd

|Ψ(ξ f (x))|dx ≤C
(‖ f ‖α̃−εα̃−ε|ξ|α̃−ε+‖ f ‖αloc+ε

αloc+ε|ξ|αloc+ε) . (5.17)

We therefore have that

1−ℜ(P̂X )(ξ) ≤ |1−P̂X (ξ)|
(i )≤ C

(
1−exp

(
−
∣∣∣∣∫Ψ(ξ f (x))dx

∣∣∣∣))
(i i )≤ C

(
1−exp

(
−
∫

|Ψ(ξ f (x))|dx
))

(i i i )≤ C ′
(
1−e−‖ f ‖α̃−εα̃−ε|ξ|α̃−εe−‖ f ‖αloc+ε

αloc+ε|ξ|
αloc+ε
)

(i v)≤ C ′
(
(1−e−‖ f ‖α̃−εα̃−ε|ξ|α̃−ε)+ (1−e−‖ f ‖αloc+ε

αloc+ε|ξ|
αloc+ε

)
)

,

where (i) comes from (5.16), (ii) and (iii) from the fact that x �→ 1−e−x is increasing, (iii) from

(5.17), and (iv) from the inequality (1−x y) ≤ (1−x)+(1−y). By a change of variable, we remark

that for α ∈ (0,2) and p <α, there exists a constant cp,α such that

∫
R

1−e−|xξ|
α

|ξ|p+1 dξ= cp,α|x|p .

Applying this result with (x = ‖ f ‖α̃−ε,α = α̃− ε) and (x = ‖ f ‖αloc+ε,α = αloc + ε) respectively,

we deduce using (5.14) that
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E[|X |p ] = cp

∫
R

1−ℜ(P̂X )(ξ)

|ξ|p+1 dξ≤C ′′ (‖ f ‖p
α̃−ε+‖ f ‖p

αloc+ε
)

,

which completes the proof.

Sparse Lévy noise. We first assume that the Lévy noise has no Gaussian part (σ2 = 0 in the

Lévy triplet). We split the main result in different subcases.

Proposition 5.4. Let 0 < p <∞. Then, the Lévy noise w with indices αloc and αasymp is almost

surely in Bτ
p (Rd ;ρ) if τ< d/max(p,αloc)−d and ρ <−d/min(p,2,αasymp).

In particular, if 0 < p < 2, then w is almost surely in Bτ
p (Rd ;ρ) if τ < d/max(p,αloc)−d and

ρ <−d/min(p,αasymp).

We base the proof on the following estimation.

Lemma 5.3. Let w be a Lévy noise whose indices satisfy αloc < min(αasymp,2). We fix αloc <α<
min(αasymp,2) and p <α. Then , there exists C > 0 such that

E[
∣∣〈w,ψ j ,G ,k〉

∣∣p ] ≤C 2 j d p(1/α−1/2) (5.18)

for any j ≥ 0, G ∈ G j , and k ∈Zd .

Proof. For ε> 0 small enough such that αloc +ε≤α≤ min(αasymp,2)−ε, we have the embed-

ding Lα(Rd ) ⊆ Lαloc+ε(Rd )∩Lmin(αasymp,2)−ε(Rd ) and there exists M > 0 such that

‖ f ‖p
αloc+ε+‖ f ‖p

min(αasymp,2)−ε ≤ M‖ f ‖p
α. (5.19)

Applying (5.15) and (5.19) to f =ψ j ,G ,k , we get

E[
∣∣〈w,ψ j ,G ,k〉

∣∣p ] ≤C (‖ψ j ,G ,k‖p
αloc+ε+‖ψ j ,G ,k‖p

min(αasymp,2)−ε)

≤C M‖ψ j ,G ,k‖p
α

=C M‖ψG‖p
α2 j d p(1/α−1/2).

Finally, (5.18) is proved for the constant C M supG‖ψG‖p
α.

Proof of Proposition 5.4. The second part of Proposition 5.4 is directly deduced from the first

part because min(p,αasymp) = min(p,2,αasymp) when p < 2. We now prove the first part.

If αloc < min(αasymp,2) and p < min(αasymp,2). One select α close enough to max(p,αloc) such

that

max(p,αloc) <α< min(αasymp,2) and τ< d

α
−d < d

max(p,αloc)
−d .
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Since, in addition, p <αasymp and p < 2, we have p < min(αasymp,2). We are in the conditions

of Lemma 5.3. Therefore, we know that there exists a constant C > 0 such that

E[
∣∣〈w,ψ j ,G ,k〉

∣∣p ] ≤C 2 j d p(1/2−1/α).

Then, we have that

E[‖w‖p
Bτ

p (Rd ;ρ)
] =∑

j≥0
2 j (τp−d+d p/2)

∑
G ,k

〈2− j k〉ρpE[
∣∣〈w,ψ j ,G ,k〉

∣∣p ]

≤ 2dC
∑
j≥0

2 j (τp−d+d p/2)+ j d p(1/2−1/α)

(∑
k
〈2− j k〉ρp

)
.

By assumption, we have that ρ <−d/min(p,αasymp) =−d/p, and 〈x〉ρp is hence integrable

over Rd . We recognize a Riemman sum and deduce that

∑
k
〈2− j k〉ρp ∼

j→∞
2 j d
∫
Rd
〈x〉ρp dx . (5.20)

Therefore, for C ′ big enough, we have that

E[‖w‖p
Bτ

p (Rd ;ρ)
] ≤C ′∑

j≥0
(2τp+d p−d p/α) j .

The sum converges if and only if τ< d/α−d , which we have assumed. Finally, we have shown

that w is almost surely in Bτ
p (Rd ;ρ).

If αloc < min(αasymp,2) and p ≥ min(αasymp,2). We deduce the result by embeddings (Proposi-

tion 2.8) from the case p < min(αasymp,2), as we did in (5.10).

General case. The Lévy noise w can be decomposed as w = w1 +w2 where w1 a compound

Poisson noise and w2 a noise with all its moments finite. Then, we have that αasymp =
αasymp(w1) ≤ αasymp(w2) = ∞ and αloc = αloc(w2) ≥ αloc(w1) = 0. From this, we easily see

that τ < d/max(p,αloc(wi ))−d and ρ < −d/min(p,2,αasymp(wi )) for i = 1,2. Moreover, we

have that αloc(w1) = 0 < αasymp(w1) and αloc(w2) ≤ 2 = min(αasymp(w2),2). Thus, we can

apply the first cases (αloc < min(αasymp,2)) to deduce that both w1 and w2 ∈ Bτ
p (Rd ;ρ) almost

surely. Besov spaces being linear, w inherits this property.

Remark. Proposition 5.4 gives sufficient conditions relying on the indices αloc and αasymp.

For p < 2, we have seen that one can replace min(αasymp,2) by αasymp. Actually, we shall see

that the decay rate is captured by the asymptotic index αasymp and not by the Pruitt index

β0 = min(αasymp,2). This means in particular that Proposition 5.4 is sharp only for p ≤ 2.

This is the reason why we have reformulated the result for p < 2, with αasymp instead on

min(αasymp,2).

Proposition 5.5. Let p ≥ 2 be an even integer. Then, the Lévy noise w with indices αloc and

αasymp is almost surely in Bτ
p (Rd ;ρ) if τ< d/p−d = d/max(p,αloc)−d andρ <−d/min(p,αasymp).
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The proof is based on the estimation of the moments of the wavelet decomposition of the

noise, in particular with the evolution with the scale j .

Lemma 5.4. Let w be a Lévy with finite (2k)-moments, with k ≥ 1 an integer. Then, there exists

a constant C such that

E[
∣∣〈w,ψ j ,G ,k〉

∣∣2k ] ≤C 2 j d(k−1)

for every j ≥ 0, G ∈ G j , and k ∈Zd .

Proof. Consider a test function f ∈ LΘ(Rd ) and set X = 〈w, f 〉. The characteristic function of

X is (Proposition 3.10)

P̂X (ξ) = exp

(∫
Rd

Ψ(ξ f (x))dx
)

:= exp(Ψ f (ξ)).

The functions P̂X and Ψ f are (2k)-differentiable because the (2k)-moment of X is finite.

Their Taylor expansions give the moments and the cumulants of X , respectively. In particular,

we have that E[X 2k ] = (−1)kP̂ (2k)
X (0). The (2k)th derivative of P̂X is deduced from the Faà di

Bruno formula [Fra78], and is

P̂ (2k)
X (ξ) =

⎛⎝ ∑
n1,...n2k :

∑
u unu=2k

(2k)!

n1! . . .n2k !

2k∏
v=1

⎛⎝Ψ(v)
f (ξ)

v !

⎞⎠nv
⎞⎠P̂X (ξ).

Exploiting that Ψ(v)
f (0) = (∫Rd ( f (x))v dx

)
Ψ(v)(0) we obtain the bound, for ξ= 0,

∣∣∣P̂ (2k)
X (0)

∣∣∣≤C ′ ∑
n1,...n2k :

∑
u unu=2k

2k∏
v=1

∣∣∣∣∫
Rd

f (x)v dx

∣∣∣∣nv

(5.21)

with C > 0 a constant.

We now apply (5.21) to f =ψ j ,G ,k . Since we have∫
Rd

ψ j ,G (x)v dx = 2 j d v/2
∫
Rd

ψG (2 j x −k)v dx = 2 j d(v/2−1)
∫
Rd

ψG (x)v dx ,

we deduce from (5.21) the new bound

E[〈w,ψ j ,G ,k〉2k ] =
∣∣∣P̂ (2k)

〈w,ψ j ,G ,k 〉(0)
∣∣∣

≤C ′′ ∑
n1,...n2k :

∑
u unu=2k

2k∏
v=1

2 j d(v/2−1)nv

=C ′′ ∑
n1,...n2k :

∑
u unu=2k

2 j d
∑

v (nv (v/2−1)).

Finally, since
∑

v vnv = 2k and
∑

v nv ≥ 1, we have
∑

v (nv (v/2−1)) ≤ k −1, and therefore

E[〈w,ψ j ,G ,k〉2k ] ≤C 2 j d(k−1)
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for an adequate C > 0, as expected.

Proof of Proposition 5.5. We set p = 2k with k ≥ 1, k ∈N. Then, we assume that τ< d/2k −d

and ρ <−d/min(2k,αasymp).

If αasymp =∞. The assumption on ρ becomes ρ < −d/2k. According to Lemma 5.4, there

exists a constant C > 0 such that

E[
∣∣〈w,ψ j ,G ,k〉

∣∣p ] ≤C 2 j d(k−1). (5.22)

Applying (5.22), we deduce that

E[‖w‖2k
Bτ

2k (Rd ;ρ)
] =∑

j≥0
2 j (2kτ−d+dk)

∑
G ,k

〈2− j k〉2kρE[
∣∣〈w,ψ j ,G ,k〉

∣∣2k ]

≤ 2dC
∑
j≥0

2 j (2kτ−d+dk+dk−d)

(∑
k
〈2− j k〉2ρk

)
≤C ′∑

j≥0
(22kτ+2kd−d ) j ,

where we have finally used (5.20) for the last inequality, which holds since ρ <−d/2k. The

final sum converges if and only if τ < d/2k −d , which we have assumed. Finally, we have

shown that w ∈ Bτ
2k (Rd ;ρ) almost surely.

General case. We decompose w = w1 +w2 with w1 a compound Poisson noise and w2 a Lévy

noise with αasymp(w2) =∞, w1 and w2 being independent. Then, the conditions on τ and

ρ easily imply that τ < d/max(p,αloc(wi ))−d and ρ < −d/min(p,2,αasymp(wi )) for i = 1,2.

Therefore, w1 ∈ Bτ
p (Rd ;ρ) according to Theorem 5.2, and w2 ∈ Bτ

p (Rd ;ρ) as we have seen in the

previous case. Finally, by linearity, w = w1 +w2 ∈ Bτ
p (Rd ;ρ) almost surely.

Remark. The second part of Proposition 5.4 and Proposition 5.5 state the same result for

different ranges of p. We conjecture that this result is actually valid for any p ∈ (0,∞]. What is

missing is an adequate estimation of the moments E[
∣∣〈w,ψ j ,G ,k〉

∣∣p ] for general p, in the spirit

of Lemmas 5.3 and 5.4.

We now prove negative results; that is, we identify the Besov spaces to which the Lévy noise

does not belong almost surely. We split the results for the smoothness (for which we have

the result for any p > 0) and for the decay rate (for which we do not consider the case p > 2,

p/2 ∉N).

Proposition 5.6. Let p > 0. Then, the non-Gaussian Lévy noise w is not in Bτ
p (Rd ;ρ) almost

surely if τ> d/p −d.

Proof. We adapt the proof of the compound Poisson case to the general case. The main idea

is as follows. We decompose w = w1 +w2 with w1 a compound Poisson noise and w2 a Lévy

noise with finite moments. We can always impose that w1 is not zero, since w is non-Gaussian.
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Then, we will see that the jumps of the compound Poisson part forces the Besov norm to

explode, and cannot be compensated by w2.

First, we remark that it is sufficient to show the existence of a test function ϕ ∈D(Rd ) such

that ‖w ·ϕ‖Bτ
p (Rd ) =∞ almost surely. This proves that w ∉ Bτ

p (Rd ; loc), the local Besov space,

and therefore w ∉ Bτ
p (Rd ;ρ) ⊆ Bτ

p (Rd ; loc).

According to (3.5), we can write w1 =∑k≥0 akδ(·−xk ). The random variables |ak | are i.i.d. and

almost surely strictly positive. Let c0 > 0 be such that P(|ak | ≥ c0) > 0. Then, almost surely,

there exists k ≥ 0 such that |ak | ≥ c0. We fix such a random k0 in the sequel. We therefore have∣∣ak0

∣∣≥ c0 > 0 almost surely. We chose ϕ ∈D(Rd ) random such that ϕ(xk ) = 0 for k �= k0, and

ϕ= 1 on a neighbourhood
{

x ∈Rd
∣∣ ‖x −xk0‖∞ ≤ δ

}
of xk0 .

We consider a Daubechies mother wavelet such that
∣∣ψM d (x)

∣∣≥ m0 > 0 for x ∈ [−1/2,1/2]d .

This is always possible because the Daubechies wavelets converge to the sinc function, which

admits a strictly positive lower bound over [−1/2,1/2]. Therefore, it is sufficient to take

Daubechies wavelets of a large enough order.

Then, let k j ∈Zd be the closed multi-integer to 2 j xk0 . In particular, 2 j xk0 −k j ∈ [−1/2,1/2]d

and ∣∣∣ψM d (2 j xk0 −k j )
∣∣∣≥ m0 > 0.

This relation is important since it provides a uniform and deterministic lower bound on the

random quantities
∣∣ψM d (2 j xk0 −k j )

∣∣. We fix J ∈N such that

Leb(Suppψ j ,M d ,k ) = 2− j d Leb(SuppψM d ) ≤ δ

for every j ≥ J and k ∈Zd . Then, SuppΨ j ,M d ,k j
⊂ {x ∈Rd ,‖ ∣∣ x −xk0‖∞ ≤ δ

}
due to the size of

the support of ψ j ,M d ,k j
. Therefore, for every j ≥ J , we have that ϕ(x)·ψ j ,M d ,k j

(x) =ψ j ,M d ,k j
(x),

since ϕ(x) = 1 on the support of ψ j ,M d ,k j
.

Then, we set a lower bound on the Besov norm of ϕ ·w by restricting to the gender G = M d , the

scales j ≥ J , and k = k j . We then exploit that ϕ·ψ j ,M d ,k j
=ψ j ,M d ,k j

and that 〈w1 ·ϕ,ψ j ,M d ,k j
〉 =

ak0ψ j ,M d ,k j
(xk0 ) to deduce that

‖ϕ ·w‖Bτ
p (Rd ) ≥

∑
j≥J

2 j (τp−d+d p)2− j d p/2
∣∣∣〈w,ϕ ·ψ j ,M d ,k j

〉
∣∣∣p

≥ max
j≥J

2 j (τp−d+d p)
∣∣∣〈w,ψM d (2 j ·−k j )〉

∣∣∣p
= max

j≥J
2 j (τp−d+d p)

∣∣∣〈w2,ψM d (2 j ·−k j )〉+ak0ψM d (2 j xk0 −k j )
∣∣∣p . (5.23)

We apply the Markov inequality P(|X | ≥ x) ≤ E[|X |2]/x2 to x = c0m0/2 and X = 〈w2,ψM d (2 j ·
−k j )〉 and get

P
(∣∣∣〈w2,ψM d (2 j ·−k j )〉

∣∣∣≥ 1

2
c0m0

)≤ 4

c2
0m2

0

E
[
〈w2,ψM d (2 j ·−k j )〉2

]
.
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The mean of 〈w2,ψM d (2 j ·−k j )〉 is 0 because the mother wavelet has a 0 mean. We denote by

σ2
0 the variance of the noise w2. Then, we have that

E
[
〈w2,ψM d (2 j ·−k j )〉2

]
=σ2

0‖ψM d (2 j ·−k j )‖2
2 =σ2

02− j d ,

using that the wavelet is normalized. Finally, we have shown that

P
(∣∣∣〈w2,ψM d (2 j ·−k j )〉

∣∣∣≥ 1

2
c0m0

)≤ 4σ2
0

c2
0m2

0

2− j d .

From this, and because
∣∣ψM d (2 j xk0 −k j )

∣∣≥ m0 and
∣∣ak0

∣∣≥ c0 almost surely, we deduce that

P
(∣∣∣〈w2,ψM d (2 j ·−k j )〉

∣∣∣≥1

2

∣∣ak0

∣∣ ∣∣∣ψM d (2 j xk0 −k j )
∣∣∣)

≤P
(∣∣∣〈w2,ψM d (2 j ·−k j )〉

∣∣∣≥ 1

2
c0m0

) −→
j→∞

0.

This implies that

P

(
∃ j ≥ J ,

∣∣∣〈w2,ψM d (2 j ·−k j )〉
∣∣∣< 1

2

∣∣ak0

∣∣ ∣∣∣ψM d (2 j xk0 −k j )
∣∣∣)= 1.

We denote by Ω0 this space of probability 1. On Ω0, we have that

∣∣∣〈w2,ψM d (2 j ·−k j )〉+ak0ψM d (2 j xk0 −k j )
∣∣∣≥ ∣∣ak0ψM d (2 j xk0 −k j )

∣∣
2

≥ c0m0

2

for some j ≥ J . Finally, using (??) in (5.23), we deduce that

‖ϕ ·w‖Bτ
p (Rd ) ≥ max

j≥J
2 j (τp−d+d p) c0m0

2
=∞

almost surely, since τp −d +d p > 0 by assumption. Finally, the noise is almost surely not in

Bτ
p (Rd ;ρ).

Proposition 5.7. Let w be a non-Gaussian Lévy noise with local index αloc > 0 and Lévy

exponent Ψ. We assume that

Ψ(ξ) ∼∞−C |ξ|αloc (5.24)

for some constant C > 0. We fix p ∈ (0,∞], ρ,τ ∈ R. Then, w is almost surely not in Bτ
p (Rd ;ρ)

almost surely if τ> d/αloc −d.

We base the proof on the following estimation.

Lemma 5.5. Let w be a non-Gaussian Lévy noise with indices αasymp,αloc > 0 and Lévy expo-
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nent Ψ satisfying (5.24). Then, for every p <αloc,αasymp, we have, for every k ,G,

E[
∣∣〈w,Ψ j ,G ,k〉

∣∣p ] ∼
j→∞

CG ,p,α2
j d p
(

1
2− 1

αloc

)
(5.25)

with CG ,p,α > 0 a constant.

Proof. We first remark that

〈w,Ψ j ,G ,k〉 = 2− j d/2〈w(·/2 j ),ΨG (·−k)〉
= 2 j (d/2−d/αloc)〈2 j d(1/αloc−1)w(·/2 j ),ΨG (·−k)〉. (5.26)

Moreover, with Theorem 4.4, we know that 2 j d(1/αloc−1)w(·/2 j ) converges to a SαS noise wαloc

with α=αloc and P̂wαloc
(ϕ) = e−C‖ϕ‖αloc

αloc . In particular, for p <αloc, we have the convergence

E
[∣∣∣〈2 j d(1/αloc−1)w(·/2 j ),ΨG (·−k)〉

∣∣∣p] −→
j→∞

E
[∣∣〈wαloc ,ΨG〉

∣∣p] . (5.27)

Finally, (5.25) is a consequence of (5.26) and (5.27).

Proof of Proposition 5.7. By the embeddings Bτ+ε
q (Rd ;ρ) ⊆ Bτ

p (Rd ;ρ) valid for every q > p and

ε> 0, it is sufficient to show the result for p arbitrarily small. We assume that p <αasymp.

Let k0 ≥ 1 be such that the families of random variables (〈w,Ψ j ,G ,k〉)k∈k0Z
d are independent

at j ≥ 0 and G ∈ G j fixed. This is possible because the wavelets are compactly supported. It

therefore suffices to take k0 big enough such that the supports do not intersect at a given

gender and scale. By restricting to G = M d and the range of k , we have that

‖w‖p
Bτ

p (Rd ;ρ)
≥C
∑
j≥0

2 j (τp−d+d p/2)
∑

k∈k0Z
d ,0≤ki<k02 j

∣∣∣〈w,ψ j ,M d ,k〉
∣∣∣p .

We set X j ,k = 2
j d
(

1
αloc

− 1
2

)
〈w,ψ j ,M d ,k〉 and

M j ,p := 2− j d
∑

k∈k0Z
d ,0≤ki<k02 j

∣∣X j ,k
∣∣p ,

which is an average among 2 j d random variables. According to Lemma 5.5, the sequence

(2
j d p
(

1
αloc

− 1
2

)
E[
∣∣〈w,Ψ j ,G ,k〉

∣∣p ]) j≥0 converges to a strictly positive constant, and is therefore

bounded below and above by some constants mp , Mp > 0, respectively. In particular, we have

that mp ≤ E[M j ,p ] ≤ Mp for every p <αloc and j ≥ 0.

We now assume that p <αloc/2. Then, by exploiting the independence of the X j ,k , we have

E[M 2
j ,p ] = 2− j dE[2− j d (∑∣∣X j ,k

∣∣p)2]

= 2− j dE[2− j d
∑∣∣X j ,k

∣∣2p ]

= 2− j dE[M j ,2p ]

≤ 2− j d M2p .
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Moreover, due to the Markov inequality, we have that

P
(∣∣M j ,p −E[M j ,p ]

∣∣≥ δ
)≤ δ−2E

[∣∣M j ,p −E[M j ,p ]
∣∣2]

≤ δ−2E[M 2
j ,p ]

≤ δ−22− j d M2p .

Taking δ= 2− jε with 0 < ε< d/2, we have that

P
(∣∣M j ,p −E[M j ,p ]

∣∣≥ 2− jε
)
≤ 2 j (2ε−d)M2p −→

j→∞
0. (5.28)

We fix now N ≥ 0. Let J ≥ 0 big enough such that 2J p(τ+d−d/αloc) ≥ N (it exists because τ+
d −d/αloc > 0). According to (5.28), if we denote by Ω0 = {∃ j ≥ J , M j ,p ≥ mp /2}, we have that

P(Ω0) = 1. Then, on Ω0, we have that

‖w‖p
Bτ

p (Rd ;ρ)
≥∑

j≥J
2 j p(τ−d+d/αloc)M j ,p ≥ N

∑
j≥J

M j ,p ≥ N mp

2
.

This is valid for every N ≥ 0, hence ‖w‖p
Bτ

p (Rd ;ρ)
=∞ almost surely.

Proposition 5.8. Let 0 < p < 2 be real or p ≥ 2 be an even integer. Then, the non-Gaussian Lévy

noise w with asymptotic indexαasymp is almost surely not in Bτ
p (Rd ;ρ) ifρ >−d/min(p,αasymp).

Proof. If ρ ≥ −d/p, we already know that w ∉ Bτ
p (Rd ;ρ) almost surely with Proposition 5.1.

One can therefore assume that p >αasymp and that ρ >−d/αasymp. We make the additional

assumption that ρ <−d/p (possible since αasymp < p) and that τ< d/max(p,αloc)−d . Then,

we decompose w = w1+w2 with w1 a nontrivial compound Poisson noise and w2 a Lévy noise

with finite moments. Since ρ >−d/αasymp =−d/αasymp(w1), we apply Theorem 5.2 to deduce

that w1 ∉ Bτ
p (Rd ;ρ) almost surely. Moreover, the upper bounds τ < d/max(p,αloc)− d =

d/max(p,αloc(w2))−d and ρ < −d/p = −d/min(p,αasymp(w2)) imply that the Lévy noise

w2 ∈ Bτ
p (Rd ;ρ). This come from Proposition 5.4 for p < 2 and from Proposition 5.5 if p ≥ 2

is an even integer. Thus, w ∉ Bτ
p (Rd ;ρ) as the sum between an element of Bτ

p (Rd ;ρ) and an

element that is not in Bτ
p (Rd ;ρ).

Finally, the assumptions τ< d/max(p,αloc)−d and ρ <−d/p can be removed by embedding.

Remarks. Proposition 5.6 does not assume any restriction on p > 0. On the other hand,

Proposition 5.8 has the same restriction than the one we had for the positive results. This

is due to the fact that the proof uses these positive results for the Besov localization of the

Lévy noise with finite moments w2. Therefore, if one extends Proposition 5.5 to any p ≥ 2, it

automatically implies that Proposition 5.8 is also valid for any p > 0.

Besov regularity of non-Gaussian Lévy noise:. Theorem 5.3 condenses the results of Sec-

tion 5.2.3 and handles the case of composed Lévy noise, that is, Lévy noise with both nonzero

sparse and Gaussian parts.
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Theorem 5.3. Consider a non-Gaussian Lévy noise with indices αloc and αasymp. We fix 0 <
p < 2 a real number or p ≥ 2 an even integer. Then, w is

• almost surely in Bτ
p (Rd ;ρ) if

τ< d

max(p,αloc)
−d and ρ <− d

min(p,αasymp)
;

• almost surely not in Bτ
p (Rd ;ρ) if

τ> d

p
−d or ρ >− d

min(p,αasymp)
; and

• almost surely not in Bτ
p (Rd ;ρ) if

τ> d

max(p,αloc)
−d or ρ >− d

min(p,αasymp)

and under the additional assumption that the Lévy exponent satisfies

Ψ(ξ) ∼∞−C |ξ|αloc (5.29)

for some C > 0 when αloc > 0.

Proof. When the Lévy noise is sparse (without a Gaussian part), Theorem 5.3 is a reformulation

of Propositions 5.4 to 5.8. We now assume that w is composed, that is, w = wGauss +wsparse

with w = wGauss and wsparse two independent Gaussian and sparse noise, respectively. In that

case, one has that αloc = 2.

Theorem 5.3 implies that, for a non-Gaussian Lévy noise and if 0 < p < 2 or p ≥ 2 is an even

integer, then

Ap (αloc,αasymp) ⊂ Ep (w) ⊆ Āp (p,αasymp).

with Ap (x, y) =
(
−∞, d

max(p,x) −d
)
×
(
−∞,− d

min(p,y)

)
and Āp (x, y) its closure. If in addition the

Lévy exponent behaves adequately at infinity, then we have the more precise estimate

Ap (αloc,αasymp) ⊂ Ep (w) ⊆ Āp (αloc,αasymp). (5.30)

Several questions remain for a complete characterization of the Besov localization of Lévy

noise.

• First, and most importantly, the negative result on the smoothness is not complete.

In the general case, we only showed that the Lévy noise is not in the corresponding

Besov space if τ > d/p −d . Under an additional assumption on the Lévy exponent

(see (5.29)) , we showed that this condition becomes τ> d/max(p,αloc)−d . This latter
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condition is sharp, as we see by comparing with the positive results. We conjecture that

this results remain valid in general. In particular, this would imply that (5.30) is valid for

any non-Gaussian Lévy noise.

• We did not treat the case p ≥ 2 when p is not an even integer. We conjecture that our

conclusions are also valid in this case.

• Finally, we did not consider in full generality the limit cases when τ= d/max(p,αloc)−d

or ρ =−d/min(p,αasymp). For these smoothness or decay rate values, we conjecture

that the Lévy noise is not in the corresponding Besov space, in analogy with the Gaussian

case.

5.2.4 Smoothness and Decay Rate of Lévy Noise
In light of the above, we deduce the local smoothness and the asymptotic decay rate of Lévy

noise in the following cases.

Theorem 5.4. Let w be a Lévy noise with local and asymptotic indices αloc ∈ [0,2] and αasymp ∈
(0,∞]. All the following equalities are almost sure.

• If w = wGauss is Gaussian, then, for every 0 < p ≤∞,

τp (wGauss) =−d

2
and ρp (wGauss) =−d

p
. (5.31)

• If w = wPoisson is compound Poisson, then, for every 0 < p ≤∞,

τp (wPoisson) = d

p
−d and ρp (wPoisson) =− d

min(p,αasymp)
. (5.32)

• If w is non-Gaussian, αloc > 0, and under the assumption (5.29), then, for every real

0 < p < 2, even integer p ≥ 2, or p =∞,

τp (w) = d

max(p,αloc)
−d and ρp (w) =− d

min(p,αasymp)
. (5.33)

• If w is non-Gaussian, then, for every real 0 < p < 2, even integer p ≥ 2, or p =∞,

d

max(p,αloc)
−d ≤ τp (w) ≤ d

p
−d and ρp (w) =− d

min(p,αasymp)
. (5.34)

Proof. We treat the case of the compound Poisson noise, the other being very similar. We fix

0 < p <∞. The positive results of Theorem 5.2 imply that

τp (wPoisson) ≥ d/p −d and ρp (wPoisson) ≥−d/min(p,αasymp).

The negative results imply the other inequalities, therefore we deduce (5.48).
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If now p =∞, the results are deduced from p <∞ by taking p →∞ and ε> 0 in the embedding

Bτ+d/p−ε
p (Rd ;ρ+ε) ⊆ Bτ∞(Rd ;ρ) valid for all p <∞ and ε> 0 (Proposition 2.8). For Lévy noise

that are non-Gaussian and non-Poisson, the same argument works with p = 2k and k →∞.

Remarks.

• For Gaussian and Poisson noises, the local smoothness τp (w) and asymptotic decay

rate ρp (w) are fully characterized for every p > 0.

• The local smoothness and the asymptotic decay rate are if p < 0 is real, p ≥ 2 is an even

integer, or p =∞ when αloc = 0 or when αloc > 0 and under the condition (5.29).

• In the general case, the results are for p < 0 real, p ≥ 2 an even integer, or p = ∞.

Under this restriction, the asymptotic decay rate is characterized. Moreover, the local

smoothness is known for p ≥αloc. It is in particular the case for p = 2 and p =∞.

• What remains is to show that τp (w) = d/αloc−d when p <αloc, without the assumption

(5.29).

Sobolev and Hölder regularity. By specifying the value of p, one deduces the Sobolev (p = 2)

and the Hölder (p =∞) regularity of the Lévy noise.

Corollary 5.1. For any nontrivial Lévy noise, we have that

τ2(w) =−d/2, and

ρ2(w) =−d/min(αasymp,2). (5.35)

Proof. We simply remark that all the local smoothness of Theorem 5.4 are equal to −d/2 when

p = 2 (since αloc ≤ 2). When w is non-Gaussian, the value ρ2(w) is always −d/min(αasymp,2).

Moreover, min(αasymp,2) = 2 for the Gaussian noise and (5.35) is coherent with (5.47).

Remarks. It is remarkable that the local Sobolev regularity of the Lévy noises is identical.

The case p = 2 is not sufficient to distinguish between different noises when considering the

local regularity. If the variance of the noise is finite (αasymp ≥ 2), we have that ρ2(w) =−d/2,

independently of the Lévy noise. Otherwise, the smaller αasymp, the bigger ρ2(w) (in absolute

value). We need to compensate the asymptotic decay due to the heavy-tailedness of the noise.

The Pruitt index β0 = min(αasymp,2) is therefore the relevant quantity to measure the Sobolev

decay rate of a Lévy noise.

Corollary 5.2. Let wGauss and w be a Gaussian noise and a non-Gaussian Lévy noise (ν �= 0),

respectively. Then, we have almost surely that

τ∞(wGauss) =−d/2 and τ∞(w) =−d .

Moreover, for any nontrivial Lévy noise, we almost surely have that

ρ∞(w) =−d/αasymp. (5.36)
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Remarks.

• The non-Gaussian noises have an identical Hölder regularity τ∞(w) =−d , that is also

the one of the Dirac implies δ. The case of Gaussian noise is different. With the same

idea, the Brownian motion is the unique Lévy process that has continuous sample

paths, other Lévy processes being only càdlàg [Ber98]. The interest of Corollary 5.2 is to

quantify the gap of Hölder regularity between the two types of noise. The fact that the

Hölder regularities are all negative is coherent with the idea that Lévy noises have no

pointwise interpretation and should be described by their effects on test functions.

• When all the moments of the noise are finite, we have that ρ∞(w) = 0. For heavy-tailed

noises (αasymp <∞), it is required to compensate with a weight of order −d/αasymp.

• Conversely to the Sobolev regularity, it is the asymptotic index αasymp that is relevant to

quantify the Hölder decay rate of a Lévy noise. Comparing (5.35) and (5.36), we have

another justification for our choice of notation for the asymptotic indices of the Lévy

noise. The Pruitt index min(αasymp,2) is associated to the Sobolev rate of decay ρ2(w),

while αasymp is inversely proportional to the Hölder decay rate ρ∞(w).

Comparison with known results. Several authors have studied the Besov regularity of Lévy

processes or Lévy white noises. For comparison purposes, we interpret their results in terms of

the functions τp (s) and ρp (s), with s the random process of interest. When the study is local,

the only information is on τp (s). In the literature, most of the results are expressed with the

index β0 = min(αasymp,2). Most of the authors work with Besov spaces Bτ
p,q , where q ∈ (0,∞]

is an additional parameter. In our case, we have only considered p = q . This is reasonable

for our purpose because the parameter q plays a secondary role, due to the embeddings

Bτ+ε
p,q (Rd ;ρ) ⊆ Bτ

p,r (Rd ;ρ), valid for any ε> 0 and 0 < p, q,r ≤∞. Finally, we sometimes com-

plete the results we refer to by using embeddings between Besov spaces without specifying it.

Lévy processes. In the past, the Besov regularity of Lévy processes has received more attention

than the one of Lévy noises. A Lévy process X is solution of the stochastic differential equation

DX = w with D the derivative and w a one-dimensional Lévy noise.

Ciesielski et al. have studied the Gaussian and SαS cases locally in [CKR93]. Their results

imply that

τp (XGauss) = 1/2, (5.37)

τp (Xα)

⎧⎨⎩= 1/α if p <α

≥ 1/p if p ≥α,
(5.38)

for 1 ≤ p ≤∞, with XGauss the Brownian motion and Xα the SαS process for 1 ≤ α < 2. In

a series of papers [Sch97, Sch98, Sch00], summarized in [BSW14], Schilling obtained the
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following results for Lévy processes:

1

max(p,αloc)
≤ τp (X ) ≤ 1

p
, (5.39)

− 1

p
− 1

min(αasymp,2)
≤ ρp (X ). (5.40)

This yields several comments.

• The regularity of a Lévy process and the underlying noise are linked by the relation

τp (X ) = τp (w)+1. With that respect, (5.37), (5.38), and (5.39) are coherent with Theorem

5.4.

• Ciesielski et al. obtained an exact estimation for stable processes by exploiting the

self-similarity. On the contrary, the general results of Schilling mostly deal with positive

results that imply a lower bound on τp (X ). The upper bound in (5.39) is not sharp

and exploits the discontinuity of the trajectories of non-Gaussian Lévy processe; see

[BSW14, Corollary 5.28]. The results (5.39) are equivalent with our smoothness result

(5.34). Under the assumption (5.29), we improved the result by showing that the lower

bound of (5.39) is sharp.

• Conversely to the smoothness, the decay rate ρp (X ) of the Lévy process and the one of

ρp (w) of the underlying Lévy noise seem not to be related by a constant (with respect to

p). This needs to be confirmed by a precise estimation of τp (X ) for which only a lower

bound is known, together with a precise estimation of τp (w) when p > 2 is not an even

integer. Our conjecture is that the lower bound (5.40) is sharp for any p > 0. If this is

true, it means that min(αasymp,2) is the relevant quantity for the growth rate of the Lévy

process, contrary to the Lévy noise for which it is αasymp.

Lévy noise. Veraar studied the local Besov regularity of the Gaussian white noise. As a corollary

of [Ver10, Theorem 3.4], we deduce that τp (w) = −d/2. We gave a new proof of this result

with alternative technics based on wavelets, while Veraar was considering Fourier series

expansions. The localization of the Gaussian white noise in weighted Sobolev spaces was

studied by Kusuoka [Kus82].

Application of the Results to Specific Lévy Noises. The Gaussian and Poisson cases have

already been treated. Knowing their indices (cf. Section 2.1.3), the SαS and Laplace cases are

easily deduced from Corollary 5.4. Note that the local smoothness is known for these two

examples, because αloc = 0 for the Laplace noise, while the Lévy exponent satisfies (5.29) for

SαS.

Corollary 5.3. Let 0 < p < 2 be a real number or p ≥ 2 be an even integer.

• The SαS noise wα almost surely satisfies

τp (wα) = d

max(p,α)
−d and ρp (wα) =− d

min(p,α)
.
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• The Laplace noise wLaplace almost surely satisfies

τp (wLaplace) = d

p
−d and ρp (wLaplace) =−d

p
.
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5.3 Smoothness of Periodic Generalized Lévy Processes
In this section, we identify the local smoothness τp (s) of a large class of generalized Lévy pro-

cesses s. To do so, we work on the d-dimensional torus, and therefore specify the considered

processes as the periodized version of the generalized Lévy processes of Section 6. However,

we will not address here the question of the asymptotic decay rate of s.

The section is mostly based on [FUW17a]. Since we are only interested in the local smoothness,

we simplify the study of the stochastic differential equation Ls = w by introducing spaces of

homogeneous (or 0-mean) periodic functions in Section 5.3.1. On such spaces, the study of

the whitening operators is particularly pleasant. It is exposed in Section 5.3.2. Finally, we

collect the results in Section 5.3.3, where the local smoothness of periodic generalized Lévy

processes is quantified.

5.3.1 Homogeneous Periodic Function Spaces
We work with periodic generalized functions in S ′(Td ). The set of homogeneous smooth

functions is

Ṡ (Td ) :=
{
ϕ ∈S (Td )

∣∣∣ c0(ϕ) = 〈ϕ,1〉 = 0
}

.

Its topological dual Ṡ (Td ) is the space

Ṡ ′(Td ) :=
{

u ∈S ′(Td )
∣∣∣ c0(u) = 〈u,1〉 = 0

}
.

The space Ṡ (Td ) inherits the structure of nuclear countably multi-Hilbert (or nuclear Fréchet)

space of S (Td ) (see Section 2.2.1). Thus, the space Ṡ ′(Td ) is a nuclear (DF)-space.

It is possible to specify periodic Besov spaces (homogeneous periodic Besov spaces, respec-

tively) in S ′(Td ) (in Ṡ ′(Td ), respectively) using wavelet methods, as we did for weighted

Besov spaces in Section 2.2.3. Here, we follow a different but equivalent approach, based on

Fourier transform, that is more adapted to the study of operators in periodic function spaces.

The equivalence between the wavelet-based and the Fourier-based constructions is proven in

[Tri08, Section 1.3.3].

The following definition of homogeneous periodic Besov spaces (Definition 5.1) is taken from

[Tri08, Definition 1.27]. The idea is to decompose a function f by grouping dyadic frequency

bands using a partition of unity in the Fourier domain. In what follows, we fix υ̂ ∈S (Rd ) such

that

• υ̂(ω) = 0 if ‖ω‖ ≤ 1/2 or ‖ω‖ ≥ 2,

• υ̂(ω) > 0 if 1/2 < ‖ω‖ < 2,

•
∑
j≥0

υ̂(2− jω) = 1 if 1 ≤ ‖ω‖.

We say that υ̂ generates a hierarchical partition of unity outside the ball of radius 1/2 centered

at the origin.
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Definition 5.1. Suppose 0 < p ≤∞ and τ ∈R. A generalized function f ∈ Ṡ ′(Td ) with Fourier

coefficients cn( f ) is in Ḃτ
p (Td ) if the quantity

‖ f ‖Ḃτ
p (Td ) :=

⎛⎝ ∞∑
j=0

2 jτp

∥∥∥∥∥ ∑
n∈Zd \{0}

cn( f )υ̂(2− j n)e2πi〈n,·〉
∥∥∥∥∥

p

Lp (Td )

⎞⎠1/p

(5.41)

is finite, with the usual modification when p =∞.

The Besov spaces Ḃτ
p (Td ) are Banach spaces for the norm (5.41) when p ≥ 1. For p < 1, (5.41)

is a quasi-norm and Besov spaces are quasi-Banach spaces. The validity of the embeddings

between homogeneous periodic Besov spaces is governed by Proposition 5.9 [Tri08], which is

the periodic version of Proposition 2.8.

Proposition 5.9. Let 0 < p0 ≤ p1 ≤∞ and τ0,τ1,ρ0,ρ1 ∈R.

• We have the embedding Ḃτ0
p0

(Td ) ⊆ Ḃτ1
p1

(Td ) as soon as

τ0 −τ1 > d

p0
− d

p1
. (5.42)

• We have the embedding Ḃτ1
p1

(Td ) ⊆ Ḃτ0
p0

(Td ) as soon as

τ0 < τ1. (5.43)

If we fix the integrability rate p ∈ (0,∞], we define the local smoothness of f ∈ Ṡ′(Td ) as

τp ( f ) := sup
{
τ ∈R

∣∣∣ f ∈ Ḃτ
p (Rd )

}
. (5.44)

Proposition 5.10. For every 0 < p0 ≤ p1 ≤∞, and every f ∈ Ṡ′(Td ), we have

τp0 ( f )−
(

d

p0
− d

p1

)
≤ τp1 ( f ) ≤ τp0 ( f ). (5.45)

In particular, p �→ τp ( f ) is a decreasing continuous function.

Proof. We prove the second inequality in (5.45), the first one being similar. Let τ< τp1 ( f ) and

ε> 0. Then, f ∈ Ḃτ
p1

(Td ) ⊆ Ḃτ−ε
p0

(Td ) according to (5.43). Therefore, for every τ< τp1 ( f ) and

ε> 0, we have τp0 ( f ) ≥ τ−ε. We deduce the result with τ→ τp1 ( f ) and ε→ 0.

5.3.2 Operators on Homogeneous Periodic Functions
We shall consider the class of differential and pseudo-differential operators that reduce the

Besov regularity of a function by some (possibly fractional) order γ> 0. Importantly, since we

are interested in the regularity properties of the solutions of the differential equation Ls = w ,

we focus on those operators that are continuous bijections from Ḃτ+γ
p (Td ) to Ḃτ

p (Td ). For

those operators, the smoothness of the generalized Lévy process is easily deduced from that

of the underlying Lévy noise.
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We consider linear and shift-invariant operators L that continuously maps S (Rd ) to S ′(Rd ).

We assume that L has a continuous Fourier multiplier L̂. We have seen in Section 2.2.2 that L

specifies a continuous operator from S (Td ) to itself (and by extension from S ′(Td ) to itself)

if and only if the sequence (L̂(2πn))n∈Zd is slowly growing.

By working on homogeneous function space, we can also consider operators for which L̂(ω)

has no limit when ω vanishes. Therefore, L specifies a continuous operator from Ṡ (Td ) to

itself (and by extension from Ṡ ′(Td ) to itself) if and only if the sequence (L̂(2πn))n∈Zd \{0} is

slowly growing. For instance, the integrator D−1 with impulse response �R+ does not specify

a operator from S (T) to itself (D−1ϕ ∈S (T) if and only if ϕ has zero mean) However, it is a

valid operator on Ṡ (T), and by extension on Ṡ ′(T), characterized by the relation

D−1{u} = ∑
n∈Z\{0}

(in)−1cn(u)en

for any u ∈ Ṡ ′(T), where en(x) = einx . This motivates the use of homogeneous function spaces:

we do not have to pay attention to the mean of the function, which can always be considered

as being equal to 0. This makes the operators such as D−1 stable in Ṡ′(Td ). The operator D−1

is actually a continuous bijection from Ṡ (T) to Ṡ (T), which reduces the regularity of any

function of one order (τDs(p) = τs(p)−1). The following definition generalizes this idea.

Definition 5.2. An operator L, continuous from Ṡ (Td ) to itself, is said to be γ-admissible

for γ ∈ R if L : Ḃτ+γ
p (Td ) → Ḃτ

p (Td ) is a continuous bijection and L−1 is continuous for every

0 < p ≤∞ and τ ∈R.

In particular, a γ-admissible operator is a bijection from Ṡ (Td ) to itself. This imposes that

L̂(2πn) �= 0 for any n �= 0, and that the sequence (L̂(2πn))n �=0 and (L̂(2πn)−1)n �=0 are slowly

increasing.

The fractional Laplacian (−Δ)γ/2 of order γ > 0 is the canonical example of a γ-admissible

operator. Moreover, perturbations of the fractional Laplacian are also γ-admissible. The

next few results make this statement precise. The idea is the following: An operator L is

γ-admissible if and only if (−Δ)γ/2L−1 and (−Δ)−γ/2L are automorphisms on Besov spaces.

Proposition 5.11. The fractional Laplacian (−Δ)γ/2 is a γ-admissible operator.

Proof. This follows from the homogeneity of the Fourier multiplier of the fractional Laplacian.

Applying Theorem 3.3.4 of [ST87] to Definition 5.1 gives the result.

Theorem 5.5. Let L be an admissible operator with continuous Fourier multiplier L̂. For γ> 0,

we define mL,γ(ω) = ‖ω‖−γL̂(ω). Also, let ζ be any function in S (Rd ) satisfying

0 ≤ ζ(x) ≤ 1, ζ(x) =
⎧⎨⎩0 if ‖x‖ ≤ 1/4 or ‖x‖ ≥ 4,

1 if 1/2 ≤ ‖x‖ ≤ 2.

If the function m satisfies

sup
j∈N

(∥∥∥ζ(·)mL,γ(2 j ·)
∥∥∥

W τ
2 (Rd )

+
∥∥∥ζ(·)mL,γ(2 j ·)−1

∥∥∥
W τ

2 (Rd )

)
<∞
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for all τ> 0, then L is γ-admissible.

Proof. This follows from a sufficient condition for Fourier multipliers on Besov spaces [ST87,

Theorem 3.6.3]. To summarize, if 0 < p <∞ and

τ> d

(
1

min
(
1, p
) − 1

2

)
,

then there exists C > 0 such that

∥∥∥∥∥ ∑
n∈Zd \{0}

mL,γ(2πn)cn ( f )e2iπ〈n,·〉
∥∥∥∥∥

Ḃτ
p (Td )

≤C

(
sup
j∈N

∥∥∥ζ(·)mL,γ(2 j ·)
∥∥∥

W τ
2 (Rd )

)∥∥ f
∥∥

Ḃτ
p (Td )

holds for all functions m ∈ L∞(Rd ) and all f ∈ Ḃτ
p (Td ).

Examples. The following whitening operators are γ-admissible.

• The derivative D is 1-admissible.

• The differential operators DN +aN−1DN−1+·· ·+a0Id with non-vanishing Fourier multi-

pliers (except possibly at 0) are N -admissible.

• The fractional derivative Dγ is γ-admissible for any γ> 0.

• The fractional Laplacian (−Δ)γ/2 is γ-admissible for any γ> 0.

• The Bessel operator Jγ = (Id−Δ)γ/2 is γ-admissible for any γ> 0.

5.3.3 From Lévy Noises to Generalized Lévy Processes
The definition of generalized random processes, characteristic functionals, and the corre-

sponding results of Section 2.3 are still valid over the nuclear space Ṡ′(Td ). Let Ψ be a Lévy

exponent. We define the periodic Lévy noise w as the periodic generalized random process

with characteristic functional

P̂w (ϕ) = exp

(∫
Td

Ψ(ϕ(x))dx
)

for every ϕ ∈ Ṡ (Td ). If L is a γ-admissible operator for some γ ≥ 0, then the functional

ϕ �→ P̂w (L−1ϕ) is a valid characteristic functional over Ṡ(Td ), because L−1 is an automorphism

on Ṡ(Td ). Thus, the generalized Lévy process s = L−1w with characteristic functional P̂s(ϕ) =
P̂w (L−1ϕ) is well-defined. We call s a periodic generalized Lévy process.

For Ψ a Lévy exponent, we have two notions of Lévy noise: one over Rd and the other on Td ,

that we denote by w and wper, respectively. In particular, τp (w) is characterized in Section

5.1, while τp (wper) is defined by (5.44). One important difference between the periodic and

the global settings is that τp ( fper) is effectively well-defined for any periodic function fper. In

the global setting, we have characterized τp ( f ) in a unique fashion, but we did not prove its
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existence in general, as commented at the end of Section 5.1. In particular, the following result

holds for the periodic setting.

Proposition 5.12. If fper satisfies τp ( fper) = d/p+τ0 for every even integer p ≥ 2, then τp ( fper) =
d/p +τ0 for every real p ≥ 2.

Proof. We fix 2k < p < 2(k +1) with k ≥ 1 an integer. According to Proposition 5.10, we have

that

τp ( f ) ≥ τ2k ( f )−
(

d

2k
− d

p

)
= d

p
+τ0. (5.46)

If now τ> d/p +τ0, then

τ−
(

d

p
− d

2(k +1)

)
> d

2(k +1)
+τ0 = τ2(k+1)( f ),

implying that f ∉ Ḃτ−(d/p−d/2(k+1)
2(k+1) (Td ). According to the embedding (5.42), this implies that

f ∉ Ḃτ+ε
p (Td ) for every ε> 0. In particular, τp ( f ) ≤ τ+ε. By taking ε→ 0 and τ→ d/p +τ0, we

deduce that τp ( f ) ≤ d/p +τ0, which, together with (5.46), gives the result.

The proofs for the Besov regularity of the Lévy noise in the global setting can be adapted to the

periodic setting, and we obtain that τp (w) = τp (wper). Based on this principle, we deduce the

smoothness of periodic generalized Lévy processes.

Corollary 5.4. We consider a periodic generalized Lévy process s = L−1w, where w is a Lévy

white noise with local index αloc ∈ [0,2] and L is a γ-admissible operator with γ≥ 0.

• If w = wGauss is Gaussian, then, for every 0 < p ≤∞, we have almost surely

τp (s) = γ− d

2
. (5.47)

• If w = wPoisson is compound Poisson, then, conditionally to wPoisson �= 0, for every 0 < p ≤
∞, we have almost surely

τp (s) = γ+ d

p
−d . (5.48)

• If w is non-Gaussian and non-Poisson with αloc > 0 and its Lévy exponent satisfies (5.29),

then, for every 0 < p ≤∞, we have almost surely

τp (s) = γ+ d

max(p,αloc)
−d . (5.49)

• If w is non-Gaussian and non-Poisson, then, for every 0 < p ≤∞, we have almost surely

γ+ d

max(p,αloc)
−d ≤ τp (s) ≤ γ+ d

p
−d . (5.50)
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Proof. For compound Poisson noise, w is zero with probability e−λ (that corresponds to a

number of jump N = 0 over Td . In that case, of course, τp (w) =∞. We condition to the event

N �= 0 to avoid this case. The case of the Lévy noise (L is the identity and γ= 0) is treated by

adapting the proof of Theorem 5.4 to the periodic setting (which is possible using the wavelet-

domain characterization of periodic Besov spaces; see [FUW17b] for the case of SαS noise).

With Proposition 5.12, we extend the result to any p > 0 for sparse and composed Lévy noise.

Finally, the result is extended to s because L is γ-admissible, implying that τp (L f ) = τp ( f )−γ

for any f .

In the periodic framework, we have identified the local regularity of many generalized Lévy

process whitened by a γ-admissible operator. As for the Lévy noises, what remains is to show

that the lower bound of (5.50) is sharp, even when αloc > 0 but the Lévy exponent does not

satisfies (5.29).



6 Local Compressibility of Generalized
Lévy Processes
In Chapter 1, we have argued that non-Gaussian generalized Lévy processes are good candi-

dates for the stochastic modeling of sparse signals. In this section, we define and evaluate

the local compressibility of generalized Lévy processes. The compressibility of a function is

measured by the decay rate of the error of its best N -term approximation. Our results are

based on the estimations of the Besov regularity of the Lévy white noises and generalized

Lévy processes presented in Chapter 5. We show, in particular, that non-Gaussian generalized

Lévy processes are more compressible in a wavelet basis than their Gaussian counterpart

in the sense that the error of their best N -term approximation decays faster. We quantify

the compressibility in terms of the local (or Blumenthal-Getoor) index αloc of the Lévy noise

and of the order γ of the whitening operator. This section is mostly based on our work from

[FUW17a], with important extensions taking advantage of the results of [AFU].

143
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6.1 N -Term Approximation and Besov Regularity
In this section, we highlight the link between the Besov regularity and the decay rate of the

approximation error of a (deterministic) generalized function. The application of these results

to random processes will be done in Section 6.2. We here focus on homogeneous periodic

function spaces, in order to study the local properties of functions. We are mostly interested in

the approximation error in the space L̇2(Td ) of homogeneous square-integrable functions in

Td , but we shall consider the approximation error in a general homogeneous periodic Besov

space.

Following Triebel [Tri08], we briefly introduce the Daubechies wavelets in the d-dimensional

torus. We also give a wavelet-based characterization of homogeneous Besov spaces. Peri-

odizing the compactly supported Daubechies wavelets [Dau92] results in the orthonormal

basis of L2(Td ). With the exception of the Haar wavelet, the support of classical Daubechies

wavelets is larger than Td = [0,1]d . Consequently, the coarsest scale is scaled by 2L , where the

parameter L ∈N ensures that the support is included in Td . For the rest of this chapter, we set

L (as a function of the Daubechies wavelet order) to be the smallest integer that guarantees

this condition on the support. The wavelet translates are still indexed by k , and the set of

translations at scale j is given by

Pd
j =
{

k ∈Zd
∣∣∣ 0 ≤ ki < 2 j+L , i = 1, . . . ,d

}
.

Using the notation of Section 2.2.3, we set I :=
{

( j ,G ,k)
∣∣∣ j ∈N,G ∈ G j ,k ∈Pd

j

}
. The Daubechies

wavelet basis is denoted by (ψper
j ,G ,k )( j ,G ,k)∈I , where

ψ
per
j ,G ,k = 2 j d/2ψ

per
0,G ,0(2 j ·−k).

The wavelet decomposition of f ∈ L2(Td ) is f =∑ j ,G ,k〈 f ,ψper
j ,G ,k〉ψ

per
j ,G ,k , with 〈·, ·〉 the canonical

scalar product on L2(Td ). More details on the periodization of wavelet bases can be found in

[Tri08, Section 1.3].

The following characterization of the periodic Besov spaces can be found in [ST87, Theorem

1.36]. It is the periodic version of Proposition 2.9.

Proposition 6.1. Let τ,τ0 ∈R and 0 < p ≤∞. We set

r0 > max
(|τ0| , (d(1/p −1))+−τ

)
.

Then, the periodic generalized function f ∈ Ḃτ0
2 (Td ) = Ẇ τ0

2 (Td ) is in Ḃτ
p (Td ) if and only if

∑
j≥0

2 j (τp−d+d p/2)
∑

G∈G j

∑
k∈Pd

j

∣∣∣〈 f ,ψper
J ,G ,k〉

∣∣∣<∞.

with (ψper
j ,G ,k ) a Daubechies wavelet basis of L2(Td ) with a regularity of at least r0, with the usual

modification for p =∞.
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N -term Approximation. We fix a generalized function f ∈ Ṡ ′(Td ) and a Daubechies wavelet

basis with enough regularity such that the duality products between f and the wavelets are

well-defined. An N -term approximation to f is a finite sum of the form∑
( j ,G ,k)∈J

c j ,G ,kψ
per
j ,G ,k ,

with c j ,G ,k ∈R and J a finite subset of I of size N . If moreover f ∈ Ḃτ
p (Td ) for 0 < p ≤∞ and

τ ∈ R, we denote by ΣN ,p,τ( f ) the best N -term approximation of f in Ḃτ
p (Td ), defined as the

N -term approximation that minimizes the approximation error in Ḃτ
p (Td ). We also set

σN ,p,τ( f ) = ∥∥ f −ΣN ,p,τ( f )
∥∥

Ḃτ
p (Td ) ,

which is the approximation error of f in Ḃτ
p (Td ). When p = 2 and τ= 0, i.e., Ḃτ

p (Td ) = L̇2(Td ),

we simply write ΣN ,2,0( f ) =ΣN ( f ) and σN ,2,0( f ) =σN ( f ).

Control of the approximation error. The speed of decay of the Fourier series coefficients of

a function is well-known to be tightly related to its smoothness. This is also valid in wavelet

bases [Mal99]. As a consequence, it is possible to relate the decay rate of the approximation

error of functions in L2(Td ), and more generally in Bτ
p (Td ), to their inclusion in periodic Besov

spaces. This topic has been investigated extensively in (deterministic) approximation theory

[CDH00, Dev98, GH04]. We give now some insight for the case of the approximation error in

L̇2(Td ).

• If we know that f ∈ L̇2(Td ) is in the Sobolev space Ẇ τ
2 (Td ) for some τ > 0, this im-

plies that the approximation error σN ( f ) is dominated by N−τ/d . The higher τ, the

faster the decay of the upper bound. When f is infinitely smooth, we deduce that the

approximation error vanishes faster than any polynomial.

• The previous result focuses on the integrality rate p = 2. It can be improved if we have

additional information on the Besov localization for other integrability rates p < 2.

The Besov regularity is indeed characterized by weighted �p -norms on the wavelet

coefficients Correspondingly, the minimization of �p -norms for p < 2 induces sparser

approximations. This is true in particular for p = 1 [UFW16, UFG16]. The limit case

is when p → 0, with strong connections to the notion of sparsity in the theory of com-

pressed sensing [FR13]. The quantitative study of this fact is specified in Theorem 6.1

thereafter.

• It moreover appears that the complete characterization of the Besov localization of f

fully determines the decay rate of its approximation error. Basically, the approximation

error of a non-smooth function cannot have a fast rate of decay. This phenomenon

can be captured sharply once one knows the Besov smoothness τp ( f ) of f for integra-

bility rate p ∈ (0,2]. The simplest case p = 2 is usually not sufficient to obtain sharp

results. Again, this is quantified in Theorem 6.1, in which we consider the decay of the

approximation error in a general Besov space Ḃτ0
p0

(Td ) and not only L̇2(Td ).
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Theorem 6.1. We fix 0 < p0 <∞ and τ ∈R. Assume that p and τ are such that

0 < p < p0 and Δτ := τ−τ0 = d

p
− d

p0
.

i) If f ∈ Ḃτ
p (Td ), then there is a constant C > 0 such that

σN ,p0,τ0 ( f ) ≤C N−Δτ/d
∥∥ f
∥∥

Ḃτ
p (Td ) .

ii) If there are constants C ,ε> 0 such that

σN ,p0,τ0 ( f ) ≤C N−Δτ/d−ε,

then f ∈ Ḃτ
p (Td ).

Proof. We define the Besov sequence spaces bτ
p as the sequences λ such that

‖λ‖bτ
p

:=
( ∑

( j ,G ,k)∈I

2 j (τp−d)
∣∣λ j ,G ,k

∣∣p)1/p

<∞.

This proof uses Corollary 6.2 of [GH04], which characterizes N -term approximation spaces as

Besov spaces. In particular,

bτ0+Δτ
p = AΔτ/d

p (bτ0
p0

), (6.1)

where AΔτ/d
p (bτ0

p0
) is an approximation space with error measured in bτ0

p0
. Essentially, AΔτ/d

p (bτ0
p0

)

is the collection of sequences f for which the sequence of error terms

NΔτ/dσN ,p0,τ0 ( f )

is in �p with respect to a Haar-type measure on N.

This characterization along with standard embedding properties of approximation spaces

[DL93, Chapter 7] allow us to derive our result. In particular, (6.1) together with the aforemen-

tioned embedding implies that

bτ0+Δτ
p ⊂ AΔτ/d

∞ (bτ0
p0

).

Similarly, we have that

AΔτ/d+ε
∞ (bτ0

p0
) ⊂ bτ0+Δτ

p .

The fact that the continuous-domain Besov spaces are isomorphic to Besov sequence spaces

[ST87, Theorem 1.36] completes the proof.

Compressibility of a function. The compressibility of a (generalized) function quantifies

the speed of convergence of its approximation error in a wavelet basis.
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Definition 6.1. For a generalized function f ∈ Ḃτ0
p0

(Td ), we define its (p0,τ0)-compressibility

as

κp0,τ0 ( f ) := sup

{
κ≥ 0

∣∣∣∣ sup
N∈N

(N +1)κ
∥∥ f −ΣN ,p0,τ0 ( f )

∥∥
Ḃ

τ0
p0

(Td ) <∞
}
∈ [0,∞]. (6.2)

The quantity (6.2) is well-defined for f ∈ Ḃτ0
p0

(Td ). If the approximation error has a faster-than-

algebraic decay, then κp0,τ0 ( f ) =∞. The value of κp0,τ0 ( f ) quantifies the local compressibility

of f in a wavelet basis: the higher the κp0,τ0 ( f ), the more compressible the function f . In

particular, we say that f is strictly more compressible than g in Ḃτ0
p0

(Td ) if κp0,τ0 ( f ) >κp0,τ0 (g ).

The (p0,τ0)-compressibility of f ∈ Ḃτ
p0

(Td ) is fully determined by the inclusion of f in the

Besov spaces Ḃ d/p−d/p0+τ0
p (Td ), where p describes (0, p0).

Proposition 6.2. Let f ∈ Ḃτ
p0

(Td ), with 0 < p0 <∞ and τ ∈R. We set

pp0,τ0 ( f ) := inf
{

p ≤ p0

∣∣∣ f ∈ Ḃ d/p−d/p0+τ0
p (Td )

}
= inf

{
p ≤ p0

∣∣ d/p −d/p0 +τ0 < τp ( f )
}

∈ [0, p0].

Then, we have

κp0,τ0 ( f ) = 1

pp0,τ0 ( f )
− 1

p0
. (6.3)

Proof. First, f ∈ Ḃ d/p0−d/p0+τ0
p0

(Td ) = Ḃτ0
p0

(Td ); hence pp0,τ0 ( f ) is well-defined. We set τ =
d/p −d/p0 −τ0. If p > pp0,τ0 ( f ), then f ∈ Bτ

p (Td ). Applying the first part of Theorem 6.1, we

deduce that σN ,p0,τ0 ( f ) ≤ C N−(1/p−1/p0)‖ f ‖Ḃτ
p (Td ), and therefore that κp0,τ0 ≥ 1/p −1/p0. By

taking p → pp0,τ0 ( f ), we deduce that κp0,τ0 ≥ 1/pp0,τ0 ( f )−1/p0.

If now p < pp0,τ0 ( f ), then f ∉ Bτ
p (Td ). From the second part of Theorem 6.1, we know that,

for every ε> 0, the quantity σN ,p0,τ0 ( f )N 1/p−1/p0+ε is not bounded. This implies that κp0,τ0 ≤
1/p−1/p0−ε. With ε→ 0 and p → pp0,τ0 ( f ), we deduce that κp0,τ0 ≤ 1/pp0,τ0 ( f )−1/p0. Finally,

we have shown (6.3).

Proposition 6.2 implies that the compressibility of f can easily be read using the graphical

representation of τp ( f ) in the (1/p,τ)-diagram.
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6.2 The Compressibility of Generalized Lévy Processes
From what precedes, we know:

• The Besov localization of periodic generalized Lévy processes (Section 5.3.3);

• The characterization of the compressibility of a (deterministic) function via its Besov

localization (Section 6.1).

We are therefore ready to deduce the compressibility of the generalized Lévy processes.

Theorem 6.2. Let s = L−1w be a generalized Lévy process in Ṡ′(Td ), with L a γ-admissible

operator, γ≥ 0, and w a periodic Lévy noise. We fix 0 < p0 <∞ and τ ∈R.

• Assume that w = wGauss so that s = sGauss is Gaussian. If

γ> τ0 + d

2
,

then, almost surely, sGauss ∈ Ḃτ0
p0

(Td ) and

κp0,τ0 (sGauss) = γ−τ0

d
− 1

2
.

• Assume that w is non-Gaussian with local index αloc = 0, or αloc > 0 and the Lévy

exponent of w satisfies (5.29). If

γ> τ0 +d − d

max(p0,αloc)
, (6.4)

then, almost surely, s ∈ Ḃτ0
p0

(Td ) and

κp0,τ0 (s) = γ−τ0

d
+ 1

αloc
−1.

• Assume that w is non-Gaussian with local index αloc ∈ [0,2]. If

γ> τ0 +d − d

max(p0,αloc)
,

then, almost surely, s ∈ Ḃτ0
p0

(Td ) and

κp0,τ0 (s) ≥ γ−τ0

d
+ 1

αloc
−1.

Proof. The proofs for the Gaussian and non-Gaussian cases are very similar. We shall therefore

only develop the non-Gaussian case, with αloc = 0 or αloc > 0 and the Lévy exponent satisfies

(5.29). In particular, τp (s) = γ+ d
max(p,αloc) −d (Corollary 5.4). Condition (6.4) ensures that the

process s is almost surely in Ḃτ0
p0

(Td ) according to Corollary 5.4. We identify κp0,τ0 (s) thanks to
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(6.3). Let us first remark that pp0,τ0 (s) ≤αloc. This is straightforward when αloc ≥ p0. If now

αloc < p0, we fix p ∈ (αloc, p0) and we easily check that

d

p
− d

p0
< τp (s) = γ−τ0 + d

p
−d .

This condition is equivalent to 0 < γ−τ0 + d
p0

−d = γ−τ0 + d
max(αloc,p0) −d , which is precisely

(6.4).

Once we know that pp0,τ0 (s) ≤αloc, we can restrict to p ≤αloc and therefore have

pp0,τ0 (s) = inf
{

p ≤αloc
∣∣ d/p −d/p0 +τ0 < γ+d/αloc −d

}
.

Finally, this means that

d

pp0,τ0

− d

p0
= γ−τ0 + d

αloc
−d ,

and, according to (6.3), that κp0,τ0 (s) = 1/pp0,τ0 (s)−1/p0 = (γ−τ0)/d +1/αloc −1 as expected.

In the general case, we only have a lower bound on τp (s), inducing a lower bound on the local

compressibility κp0,τ0 (s).

Corollary 6.1. Let s = L−1w be a periodic generalized Lévy process. We assume that s ∈ Ḃτ0
p0

(Td )

with 0 < p0 <∞ and τ0 ∈R. Then, we have

κp0,τ0 (s) = τ0(s)−τ0

d
, (6.5)

where

τ0(s) := lim
p→0

τp (s) ∈ [γ−d/2,∞].

Proof. First of all, the limit of τp ( f ) exists for every f ∈ Ṡ′(Td ) when p → 0, because the

function p �→ τp ( f ) is decreasing (Proposition 5.10). With Corollary 5.4, we see that τ0(s) =
γ−d/2 if w is Gaussian, and τ0(s) = γ+d/αloc −d otherwise, where αloc is the local index

of w . Finally, it suffices to compare κp0,τ0 (s) with the values of à (τ0(s)−τ0)/d in each of the

different cases to deduce (6.5).

Remark: Corollary 6.1 connects the local compressibility with the weighted �p -quasi-norms

of the wavelet coefficients when p → 0. This reinforces the interpretation that the sparsity of

a function—here a generalized Lévy process—is intimately linked with the “�0-norm" of its

wavelet coefficients.

The following result is a direct consequence of Theorem 6.2.

Corollary 6.2. We consider that sGauss, sPoisson, and s are periodic generalized Gaussian, Pois-

son, and Lévy noises, respectively. Moreover, the three processes are assumed to be whitened by
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the same γ-admissible operator, for some γ≥ 0. We assume that

γ> τ0 +d −d/max(p0,αloc), (6.6)

with αloc the local index of s, 0 < p0 <∞, and τ0 ∈R. Then, we have that

γ

d
− 1

2
=κp0,τ0 (sGauss) ≤ κp0,τ0 (s) ≤κp0,τ0 (sPoisson) =∞. (6.7)

Moreover,

κp0,τ0 (s) =κp0,τ0 (sGauss) ⇐⇒αloc = 2, and

κp0,τ0 (s) =κp0,τ0 (sPoisson) ⇐⇒αloc = 0.

Proof. Condition (6.6) ensures that the three processes sGauss, sPoisson, and s are in Ḃτ0
p0

(Td ).

Then, (6.7) is a direct consequence of Theorem 6.2, exploiting the fact that αloc ∈ [0,2]. The

extreme cases are easily deduced.

Remarks.

• With Theorem 6.2, we see that the local compressibility is determined by the local index

and the order γ of the whitening operator. For a fixed γ, the local compressibility of the

generalized Lévy process s increases when αloc decreases. Moreover, the compressibility

also increases when γ increases: for a fixed Lévy noise, the more we smooth the process,

the more compressible it becomes.

• Corollary 6.2 highlights the extreme cases. The Gaussian Lévy noise is the less compress-

ible. This is in line with the empirical observations stated in Chapter 1. Simply stated,

sparse processes are more compressible than Gaussian ones. Our characterization gives

a new mathematical justification for the terminology of sparse processes introduced in

[UT14].

However, we point out that there exists non-Gaussian Lévy noises that induce the same

local compressibility as the Gaussian ones. This corresponds to the case αloc = 2. It is

typically the case of any generalized Lévy process whose Lévy noise has a Gaussian part.

It is also possible to construct Lévy noises without Gaussian part with a local index of

αloc = 2.

• The other extreme case is reached by compound Poisson processes. Here, the order γ of

the operator is not relevant provided that γ> τ+d −d/p0 and the local compressibility

is always infinite. This means that the approximation error has a faster-than-algebraic

decay. Generalized Laplace processes are other examples of highly compressible random

processes.

• As soon as 0 <αloc < 2, we are strictly located between the Gaussian and Poisson cases.

The generalized Lévy process is then strictly sparser than its Gaussian counterpart and
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Table 6.1 – Compressibility of Gaussian and sparse processes.

White noise w Parameter Ψ(ξ) αloc κ(s)

Gaussian σ2 > 0 −σ2ξ2/2 2 γ− d
2

Cauchy [ST94] — −|ξ| 1 γ

SαS [ST94] α ∈ (0,2) −|ξ|α α γ+d/α−d
Compound Poisson [UT11] λ> 0,P λ(P̂ (ξ)−1) 0 ∞
Laplace [KKP01] — − log(1+ξ2) 0 ∞

has an approximation error that decays polynomially. This is the case with non-Gaussian

SαS processes.

• In our initial work [FUW17a], we only obtained a lower bound on the compressibility

of non-Gaussian and non-Poisson generalized Lévy processes. These earlier bounds

provided in [FUW17a] are proved to be sharp in this chapter when αloc = 0 or when the

Lévy exponent behaves asymptotically as a power law. This is possible thanks to the

sharp estimation of τp (w) for a Lévy noise w developed in Chapter 5.

We summarize the results in Table 6.1 for different classes of Lévy noises. We express the

compressibility for p0 = 2 and τ0 = 0. We assume that γ is big enough such that s is in L̇2(Td )

almost surely. In that case, we denote its local compressibility by κ := κ2,0.





7 Conclusion: Local versus Asymptotic

This thesis is dedicated to the mathematical study of the innovation model, specified by the

stochastic differential equation Ls = w , with L a possibly fractional differential operator and

w a Lévy white noise. Our contributions were organized in four chapters.

• In Chapter 3, we gave general conditions for the existence of generalized Lévy processes.

This was achieved in three steps. We started with the characterization of Lévy noises

that are in the space S ′(Rd ) of tempered generalized functions. Then, we maximally

extended the domain of definition of Lévy noises to non-smooth and non-rapidly de-

caying test functions. Finally, we applied these results to the construction of generalized

Lévy processes.

• We obtained two limit theorems in Chapter 4. First, we have shown that any general-

ized Lévy process is the limit in law of generalized Poisson processes. The latter are

particularly pleasant, since they can be described as random L-splines. Second, we gave

general conditions on generalized Lévy processes such that they become self-similar at

fine or coarse scales.

• In Chapter 5, we studied the Besov regularity of the Lévy noise in order to identify its

local smoothness and its asymptotic decay rate. We then applied the local results to

generalized Lévy processes.

• Finally, in Chapter 6, we used our smoothness results in order to quantify the local

compressibility of generalized Lévy processes.

The principle underlying all of our research is the analyse of the local and asymptotic properties

of generalized Lévy processes. When the Lévy noise is SαS, the two behaviors are intrinsically

connected. We now propose to revisit our results for this particular case, and then recap the

changes observed in the general case.

Local and asymptotic behaviors of generalized SαS processes. We consider the model

Lγs = wα with Lγ a γ-homogeneous differential operator and wα a SαS stable noise. The

153
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model is Gaussian when α= 2, and has infinite variance otherwise. The characteristic func-

tional of wα is

P̂wα
(ϕ) = exp(−‖ϕ‖αα).

We assume that the generalized SαS process is well-defined, in accordance with the construc-

tion of Section 3.3. We obtained the following results, where parameter α plays a crucial

role.

• Tempered Lévy noise: For mathematical purposes, it is reasonable to ask for a noise

model in S ′(Rd ). The SαS noise has finite pth moments (for every p > 0 when α= 2

and for 0 < p < α when α < 2). From Theorem 3.1, it is therefore in S ′(Rd ) for every

0 <α≤ 2.

• Domain of definition: The extension of the domain of the noise allows one to define the

broadest possible class of generalized SαS processes in S ′(Rd ). The Rajput-Rosinski

exponent (see (3.11)) of the SαS noise is proportional to ξ �→ |ξ|α. This implies that the

domain of definition of the SαS noise is Lα(Rd ) (Proposition 3.19).

• Fine and coarse scales behaviors: If Lγ admits a left-inverse with adequate stability and

homogeneity properties, one can construct a self-similar process s solution of Lγs = wα.

The self-similarity exponent is then H = γ+d/α−d and, for any a > 0, we have that

s
(L )= aH s(·/a). (7.1)

We zoom in the process when a > 1 and zoom out of it when a < 1. With (7.1), we see

that the local (a →∞) and asymptotic (a → 0) behaviors of s are identical. This property

is not conserved for non-stable noises.

• Besov Regularity: When fixing the integrability rate p ∈ (0,∞], there exists a limit smooth-

ness τs(wα) and a limit asymptotic decay rate ρp (wα) such that wα is in Bτ
p (Rd ;ρ) when

τ and ρ are strictly smaller that these limits, and wα is not in Bτ
p (Rd ;ρ) when one of

them is strictly bigger that its corresponding limit. This is also valid for other tempered

Lévy noises. The local smoothness and the asymptotic decay rate of wα are given by

τp (wGauss) =−d

2
and ρp (wGauss) =−d

p

when α= 2, in which case w2 = wGauss is therefore Gaussian, and by

τp (wα) = d

max(p,α)
−d and ρp (wα) =− d

min(p,α)

when α< 2 (see Theorem 5.4 and Corollary 5.3). The local smoothness and the asymp-

totic decay rate are therefore both characterized by α.
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• Compressibility: Consider a periodic generalized SαS process sγ,α whitened by a γ-

admissible operator (Definition 5.2). Its local compressibility in L2(Td ) is given by

(Theorem 6.2)

κ(sγ,α) = γ

d
+ 1

α
−1.

The local and asymptotic indices. We have seen that the parameter α is central for the

quantification of the self-similarity exponent, the local regularity, the asymptotic decay rate,

together with the local compressibility of a generalized SαS process. For non-stable noise, this

parameter is not well-defined anymore. We recall that the characteristic functional of a Lévy

noise has the general form

P̂w (ϕ) = exp

(∫
Rd

Ψ(ϕ(x))dx
)

,

with Ψ its Lévy exponent. Then, Ψ admits a Lévy-Khintchine representation (2.1) and is

characterized by its Lévy triplet (μ,σ2,ν), with ν the Lévy measure, as

Ψ(ξ) = iμξ− σ2ξ2

2
+
∫
R

(eiξt −1− iξt�|t |≤1)ν(dt ).

The relevant quantities that extend the parameter α for non-stable infinitely divisible laws are

as follows. The local behavior of a generalized Lévy process is captured by the local index

αloc = inf

{
p > 0

∣∣∣∣ ∫|t |≤1
|t |p ν(dt ) <∞

}
= inf

{
p > 0

∣∣∣∣∣ limsup
|ξ|→∞

|Ψ(ξ)|
|ξ|p <∞

}
.

The corresponding quantities for the asymptotic behaviors differ, depending if we consider

the Lévy exponent or the Lévy measure. We define the asymptotic index as

αasymp = sup

{
p > 0

∣∣∣∣ ∫|t |>1
|t |p ν(dt ) <∞

}
.

Then, we have min(αasymp,2) = sup

{
p > 0

∣∣∣∣∣ limsup
|ξ|→0

|Ψ(ξ)|
|ξ|p <∞

}
. Depending on the asymptotic

question of interest, the relevant quantity is αasymp or min(αasymp,2). Note that, for SαS, one

has

α=αloc =αasymp = min(αasymp,2).

Local versus asymptotic. The indices αloc and αasymp are not related. It is indeed possible

to construct a Lévy noise with any possible pair (αloc,αasymp) ∈ [0,2]× (0,∞]. Local and

asymptotic indices have first been introduced for the local and asymptotic study of Lévy

processes, by Blumenthal and Getoor [BG61] and Pruitt [Pru81], respectively. The role of the

indices for the local and asymptotic behaviors of Lévy and Lévy-type processes is well-known
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[Sat13, BSW14]. This thesis confirmed that fact by investigating new directions of research.

• Tempered Lévy noise: Theorem 3.1 can be reformulated as follow:

w ∈S ′(Rd ) a.s. ⇐⇒αasymp > 0.

We recover that fact that the temperedness of a Lévy noise is an asymptotic property.

• Domain of definition: Roughly speaking, the Lévy exponent Ψ behaves like −|ξ|αloc at

infinity, and like −|ξ|min(αasymp,2) around 0 and the Rajput-Rosinski exponent Θ inherits

this property. The criteria for the domain of definition exposed in Section 3.2.4 can be

summarized by the informal relation

LΘ(Rd ) ≈ Lαloc,min(αasymp,2)(R
d ).

This equality is in particular true when Θ behaves like a power law both at the origin and

asymptotically. We recall that the functions in Lαloc,min(αasymp,2)(Rd ) are locally in Lαloc

and asymptotically in Lmin(αasymp,2) (see Section 3.2.3). The duality local/asymptotic can

be read on the domain of definition.

• Fine and coarse scales behaviors: When the noise is not stable, the generalized Lévy

process is not self-similar anymore. Therefore, a rescaling of the process impacts its

probability law.

Under some reasonable conditions (existence of a stable and homogeneous left-inverse

and conditions on the Lévy exponent), a generalized Lévy process admits self-similar

limits at coarse and fine scales. We assume that we are in the conditions of Theo-

rems 4.3 and 4.4 respectively. In particular, Ψ(ξ) behaves like −A |ξ|αloc at infinity, and

like −B |ξ|min(αasymp,2) around 0 for some constant A,B > 0. Then, at coarse scales, the

rescaled processes aH∞ s(·/a) converges in law to a H∞-self-similar process as a → 0

with

H∞ = γ+ d

min(αasymp,2)
−d . (7.2)

At fine scales, aH∞ s(·/a) converges in law to a Hloc-self-similar process as a →∞ with

Hloc = γ+ d

αloc
−d . (7.3)

The asymptotic and local self-similarity exponents are characterized by the truncated

asymptotic and local index, respectively.

• Besov Regularity: The integrability rate 0 < p ≤∞ being fixed, the local smoothness

τp (w) and the asymptotic decay rate ρp (w) of a non-Gaussian Lévy noise w are given
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by (see Theorem 5.4)

τp (w) = d

max(p,αloc)
−d and ρp (w) =− d

min(p,αasymp)
.

We have shown that this is valid for αloc = 0, or under minor assumptions of the Lévy

exponent when αloc > 0. However, in future works, we hope to remove these assump-

tions. Contrarily to the SαS case, the local and asymptotic behaviors are dissociated.

The parameter αloc characterizes the local smoothness, while αasymp determines the

asymptotic decay rate.

Three integrability rate are especially interesting: p =∞ (Hölder), p = 2 (Sobolev), and

p = 0 (as the limit of p → 0). If wGauss is Gaussian and w is a non-Gaussian Lévy noise,

then we have:

τ∞(w) =−d <−d

2
= τ∞(wGauss) and ρ∞(w) =− d

αasymp
≤ 0 = ρ∞(wGauss);

τ2(w) =−d

2
= τ∞(wGauss) and ρ2(w) =− d

min(αasymp,2)
≤−d

2
= ρ2(wGauss);

τ0(w) = d

αloc
−d ≥−d

2
= τ0(wGauss) and ρ0(w) =−∞= ρ0(wGauss).

• Compressibility: We have studied the local compressibility of a generalized Lévy process

s via its wavelet coefficients

〈s,Ψ j ,G ,k〉, j ≥ 0,G ∈ G j ,‖k‖∞ < 2 j .

The crucial point for the local study is to restrict the range of the shifts k (or, equivalently,

to work on the d-dimensional torus). If s = L−1
γ w with Lγ a γ-admissible operator, the

local compressibility of s in L2(Td ) is then given by (Theorem 6.2)

κ(s) = γ

d
+ 1

αloc
−1.

Our proof covers all the cases for which we have an exact estimation of the local smooth-

ness. Again, the local compressibility is captured by the local index αloc. When αloc

increases, the local compressibility of the process decreases. The local compressibility

therefore implies the following local hierarchy, from non-sparse to sparse:

Gauss � non-Gaussian SαS � Laplace = Poisson.

The asymptotic counterpart of our result can be described as follows. We only consider

the wavelet coefficients for the scale j = 0; that is,

〈s,Ψ0,G ,k〉, G ∈ G0,k ∈Zd . (7.4)
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An adequate notion of asymptotic compressibility could emerge by considering the

Besov localization of the sequence (7.4). This calls for further investigations. The asymp-

totic compressibility has strong connections with the study of the compressibility of

i.i.d. random sequences that has been investigated by several authors [Cev09, AUM11,

SP12, GCD12]. From these works, it appears that the tail properties of the common

law of the sequence determines the compressibility. In particular, heavy-tailed random

sequences are more compressible, which corresponds to αasymp <∞ for infinitely di-

visible laws. The parameter αasymp again seems to be relevant to order the asymptotic

compressibility. This induces the following asymptotic hierarchy, from non-sparse to

sparse:

Gaussian � Laplace = Poisson (with finite moments) � non-Gaussian SαS.

In both cases, the Gaussian law is the least sparse. Non-Gaussian innovation models

are therefore sparse, in the sense that they are sparser than Gaussian, both locally and

asymptotically. However, what makes an innovation model sparse differs whether it

is observed from a local (characterized by αloc) or an asymptotic (captured by αasymp)

point of view.
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