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ABSTRACT
In cloud storage systems, hot data is usually replicated over mul-

tiple disks/servers in order to accommodate simultaneous access

by multiple users as well as increase the fault tolerance of the sys-

tem. Recent cloud storage research has proposed using availability

codes, which is a special class of erasure codes, as a more storage-

e�cient way to store hot data. �ese codes enable data recovery

from multiple, small disjoint groups of servers. �e number of the

recovery groups is referred to as the availability and the size of

each group as the locality of the code. Up till now, we have very

limited knowledge on how code locality and availability a�ect data

access time. Data download from these systems involves multi-

ple fork-join queues operating in-parallel, making the analysis of

access time a very challenging problem.

In this paper, we present an analysis of average data access

time in storage systems employing simplex codes, which are an

important, in certain sense optimal, class of availability codes. We

generalize the analysis for codes with locality 2 and any degree of

availability. Speci�cally, using a queueing theoretic approach, we

derive bounds and approximations on the average response time for

two di�erent Poisson request arrival models. We also compare two

scheduling strategies for reduced access time and load balancing.
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1 INTRODUCTION
In distributed computing and storage systems, data is traditionally

replicated across multiple nodes[1, 8]. Compared to erasure cor-

recting codes, replication is a storage-ine�cient option to provide

system reliability. However, it is simple and allows a straightfor-

ward regeneration of data stored on a failed node from one of its

replicas on other nodes. Another important feature of replication

is that it allows easy access to hot-data which multiple users can
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simultaneously download from di�erent replicas, or each user can

issue simultaneous requests to multiple replicas and wait for the

�rst download to �nish [6, 7, 15]. Data access systems arising in

erasure coded storage have received a lot of a�ention for all-data

(see for example [12, 14, 19, 24] and references therein) and some for

hot-data download [16, 17], and usually involve single or multiple

inter-dependent fork-join queueing systems.

Locally repairable codes (LRCs) are a recently proposed class of

erasure codes that provides be�er storage/reliability tradeo� than

repetition codes, while limiting the number of nodes that need to

be accessed to repair a single failed node [9, 21]. Because of these

properties, LRCs are already used in practice [11, 23]. However,

very li�le is known about the hot data download time performance

of these codes.

LRCs of interest for storage are systematic, that is, they append

n−k parity symbols tok data or systematic symbols. We will refer to

the nodes that store systematic (data) symbols as systematic (data)

nodes. If a data symbol can be repaired by accessing at most r other

symbols, the symbol is said to have locality r . If all the code symbols

have locality r , the code is said to have locality r . If the code allows

repairing any data symbol by independently accessing one of t
disjoint repair groups, it is said to have availability t . Availability

is useful for distributed storage in two ways: 1) multiple repair

groups decrease the probability that simultaneous node failures

prevent the user from accessing data and 2) users may request a

subset of data more frequently than others and the requests for

this ”hot-data” can be simultaneously served by disjoint groups of

nodes. LRCs with good locality and availability are explored and

several construction methods are presented in e.g., [22, 26].

Our goal is to understand the e�ect of LRCs with availability on

time to access hot-data. We focus on two data request scheduling

strategies: (1) Replicate-to-all: arriving requests for downloading

a data symbol are forked to the systematic node and all its repair

groups and (2) Select-one: requests are forwarded to either the sys-

tematic node or one of the repair groups. An analysis is given in

[16] for these strategies for general LRCs. However, their results

are mainly for low-tra�c regime where download request arrival

rate is low enough that the system can �nish serving a download re-

quest before the next one arrives. When the low-tra�c assumption

does not hold, analysis involves queueing which gets intractable

because of complex system dynamics. A requested data symbol

is reconstructed from a repair group by accessing coded symbols

from each repair node in the group. �erefore, there is a fork-join

queueing sub-system for downloads from a repair group, and anal-

ysis of fork-join queues is a notoriously hard problem. �erefore,

analyzing access time in systems employing availability codes is

challenging for high-tra�c regime.

Contribution: In this paper, we focus on availability codes with

locality 2. �ere are two main reasons for studying these codes:

1) Codes with locality 2 include simplex codes, an important and,

in several ways optimal, class of codes, e.g., they meet the upper

bound on the distance of LRCs with a given locality [2] as well
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as the Griesmer bound and are therefore linear codes with lowest

possible length given the code distance [18]. 2) Codes with locality

2 give rise to fork-join queues with two servers, which are be�er

understood than the general fork join queueing models [20].

We consider two request arrival scenarios. In �xed-arrival sce-

nario, requests that arrive in a busy period are for only one data

symbol. In mixed-arrival scenario, requests may arrive for down-

loading any data symbol during a busy period. We give an analysis

for the system under replicate-to-all scheduling strategy. Starting

with the simplest possible simplex code with availability 1, we ob-

tain close lower and upper bounds on the average access time to

hot-data. �en we argue that extending these results further to

codes with higher availability is hard. However, using ideas from

queueing and renewal theory, we obtain lower and upper bounds,

and an approximation for the average access time to hot-data. Fi-

nally, select-one scheduling is compared with the replicate-to-all

scheduling in terms of access time.

2 SYSTEM MODEL
Data [d1, . . . ,dk ] to be stored consists of elements of a �nite �eld.

A systematic (n,k, r = 2, t)-LRC is assumed to be used to generate

coded symbols [d1, . . . ,dk , c1, . . . , cn−k ] in which each di has t
disjoint repair groups of size 2 where t ∈ Z+. Each code symbol is

then stored in a separate node.

Download requests arrive for data symbols (e.g., a) rather than

the complete data set [a,b, c]. Each server (node) can serve only one

download request at a time and the arriving requests get enqueued

locally. Content download at each server takes a random amount of

time, which is referred to as service time. We refer to a request for

downloading a data symbol as a job and the time that a job spends

in the system between its arrival and its departure is referred to as

the system time.
Two request scheduling strategies are analyzed. �e �rst type

of system replicate-to-all creates replicas of the arriving jobs and

forwards them to the systematic server and all the repair groups.

Job is completed when any of its replicas has been serviced. Within

each repair group there is a fork-join sub-system that forks the

incoming job replica into sibling tasks, which are then sent to two

repair servers. To complete a job replica in a repair group, both

sibling tasks must �nish service. When a job replica is completed

at the systematic node or at a repair group, all the remaining job

replicas with their sibling tasks get canceled. Redundant job replicas

are expected to reduce the average time to access data. �e second

type of system select-one forwards the arriving jobs to either the

systematic node or one of the repair groups. �is load-balancing

behavior trades access time with resource usage e�ciency. Fig. 1

illustrates these access schemes.

Job arrivals

Ss S1,1 S1,2 St,1 St,2

Figure 1: Arriving jobs can either be replicated to systematic server
and all repair groups, replicate-to-all or be forwarded to one of
them, select-one.

We make the following assumptions throughout. Arriving tasks

at the servers get serviced according to First Come First Served

(FCFS) scheme. Jobs arrive according to a Poisson process of known

rate. Service time at each server is exponential and independent

between servers and tasks. We name the resulting system as the

simplex queue and denote it throughout as Simplex(t ). �e afore-

mentioned concepts can be illustrated as follows: a Simplex(t = 3)

code encodes data [a,b, c] into [a,b,a+b, c,a+c,b+c,a+b+c]where

each code symbol is stored on nodes 1, . . . , 7, respectively. Each

data symbol can be recovered from three disjoint repair groups, e.g.,

besides the systematic {node-1}, a can be recovered from {node-2,

node-3}, {node-4, node-5}, {node-6, node-7}. In a replicate-to-all
setup, a request for a is split among the four node sets and it de-

parts whenever one of them is done. As for the select-one setup, the

request for a is directed to one of these node sets only. Finally, we

assume throughout that the decoding procedure for data recovery

takes negligible time compared to download time.

3 EXPECTED HOT-DATA DOWNLOAD TIME
We are interested in analyzing how the availability provided by the

simplex setup a�ects the download time of hot-data. To illustrate

the complexity of the simplex queueing system, a possible system

snapshot is given in Fig. 2.
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Figure 2: System snapshot of a queue corresponding to the (7, 3) sim-
plex code i.e., Simplex(t = 3).

�is queueing system, namely the Simplex(t = 3), uses (7, 3)
binary simplex code. Two-server fork-join queues (FJ-2) are im-

plemented within a repair group for reconstructing a data symbol.

Steady-state behavior of FJ-2 is analyzed in [3, 4]. Using this result,

[20] presents an exact expression for the average system time for

FJ-2 and a very good approximation for FJ-n > 2.

�e state space of simplex queues is complex. Not only the

number of tasks waiting or in service at each server but also the

order and the jobs to which the tasks belong to must be identi�ed by

the system state. LetT be the random variable denoting the time to

download a data symbol (i.e., job system time). Derivation of E[T ]
for the low-tra�c regime is presented in [16]. Using these results,

under low tra�c regime for Simplex(t = 3) E[T ] = β (2,0.5)
2µ ≈

0.46

µ . In [16], an upper bound on E[T ] is found by using the more

restrictive split-merge (SM) scheme in which all servers are blocked

until the job in service is completed, thus multiple jobs cannot be

in service simultaneously. �e simulation results in [16] show that

the upper bound suggested by SM-model is loose unless the arrival

rate is low.
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Analysis given until Section 7 is for the �xed-arrivals scenario in

which servers are just for fetching and streaming data to the user

while the data is stored across a pool of resources shared by the

servers. �anks to this, we can �x one as the systematic server while

others as the repair servers within the �xed repair groups. �ere-

fore, all the arriving jobs can be treated the same even though they

may possibly be for downloading di�erent symbols. Even though

this reduces the practicality of the system under consideration, it

greatly simpli�es the analysis of the system time by signi�cantly

reducing the state space complexity. Without this assumption, be-

sides the arrival order, every task needs to be associated with a data

symbol where for di�erent symbols di�erent nodes must act as the

systematic or repair servers. Another system level consideration

which serves the same simpli�cation is as follows. Suppose the

coded symbols are both stored and served at the servers. However,

only one symbol is frequently accessed in a busy period while other

symbols are rarely requested. �is also allows us to assume that

download requests arrive for only one symbol in a busy period. As

an example for how this can be the case in practice, suppose the

data of interest are pieces of movies and web pages. During the

day mostly web pages are expected to be requested while at night

tra�c for movies is expected to dominate.

In Sec. 7, results for the �xed-arrivals are shown to be upper-

bounds for the mixed-arrival scenario. �is la�er scenario is more

natural in that coded symbols are stored and served by the corre-

sponding servers, and the arriving requests are mixed i.e., each may

be for downloading one of the data symbols.

4 DOWNLOADWITH AVAILABILITY ONE
As the simplest version of the simplex queue, consider Simplex(t =
1) where a data symbol can be downloaded from either the system-

atic server or the repair group. Let the service rates at the systematic

server and two repair servers be respectively γ , α and β . We refer

to the systematic server as Ss and the repair servers as S1,1 and

S1,2. Let N (t) = [Ns (t),N1,1(t),N1,2(t)] be the system state where

N∗(t) is the number of tasks waiting or in-service in S∗ and denote

Pr {N (t) = [k, i, j]} as pk,i, j (t). N (t) is a Markov process where the

state space consists of tuples (k, i, j),k, i, j ≥ 0. Job arrival process

is assumed to be Poisson with arrival rate λ (Poisson(λ)). Suppose

that the stability is imposed and limt→∞pk,i, j (t) = pk,i, j . Balance

equations for N (t) are,

[γ1(k ≥ 1) + α1(i ≥ 1) + β1(j ≥ 1)]pk,i, j =
λ1(k ≥ 1, i ≥ 1, j ≥ 1)pk−1,i−1, j−1

+

γpk+1,i+1, j+1
+ (γ + α)pk+1,i+1, j + (γ + β)pk+1,i, j+1

.

(1)

where k, i, j ≥ 0 and 1 is the indicator function. Computing the

generating function Pw,x,y =
∑
pk,i, jw

kx iy j from the balance

equations in (1) to �nd the exact analysis of the steady state behavior

is intractable. Our approach is to look into approximating the

average system time E[T ].
For every job in Simplex(t = 1), when the last task starts service,

two situations are possible: either all of the three tasks are in service

simultaneously or only two of them (at Ss , S1,1 or Ss , S1,2, and the

third task being already delivered). We call the former job starting

setup where all the tasks start service at the same time as complete-
start while the la�er one as partial-start. Fig. 3 shows an example

where all the tasks of job 1 starts service simultaneously while one

of the task of job 2 departs earlier than its siblings and the remaining

tasks will start service simultaneously upon the completion of job

1. Overall, we de�ne job service start time as the instant when all

tasks of the job start service.

Lemma 4.1. Simplex(t = 1) is an M/G/1 queue with job service
time V . Given E[V ] and E[V 2], the Pollaczek-Khinchin (PK) formula
gives the average system time as,

E[T ] = E[V ] + λE[V 2]
2(1 − λE[V ]) (2)

E[V ] = fcE[Vc ] + fpE[Vp ] and E[V 2] = fcE[V 2

c ] + fpE[V 2

p ]. (3)

where Vc and Vp represent job service time for respectively complete
and partial-start, and fi is the limiting probability that the starting
setup J of an arbitrary job is j ∈ {p, c}.

Proof. According to the de�nition of job service start time

given above, multiple jobs cannot be in service simultaneously.

For example, while a job is in service, at most a single task of the

next job can be in service. �e system preserves the job order and

multiple job departures at a time instant is not possible. �erefore,

Simplex(t = 1) can be modeled as an M/G/1 queue.

Job service time distribution for an arbitrary job satis�es Pr {V ≥
v} = fcPr {Vc ≥ v} + fpPr {Vp ≥ v} where Pr {Vc ≥ v} = Pr {V ≥
v |J = c} and Pr {Vp ≥ v} = Pr {V ≥ v |J = p}. Random variables

V ,Vc andVp are non-negative, E[V ] and E[V 2] follow from E[V ] =∫ ∞
0

Pr {V ≥ v}ds and E[V 2] =
∫ ∞
0

2sPr {V ≥ v}ds . �

In partial-start, one task starts service at Ss simultaneously with

another starting service at either S1,1 or S1,2. For simplicity, as-

sume α = β = µ. Completion of either of these tasks signal

the job termination; Vp = min{Exp(γ ),Exp(µ)} ∼ Exp(γ + µ).
In complete-start, all tasks start service simultaneously; Vc =
min{Exp(γ ),max{Exp(µ),Exp(µ)}}, then one can �ndE[Vc ] = 2/(γ+
µ) − 1/(γ + 2µ) and E[V 2

c ] = 4/(γ + µ)2 − 2/(γ + 2µ)2.

Starting setup Ji of job-i depends on the state of the systemN (ai )
seen by the job at arrival at time ai . Since Poisson arrivals see time

averages [28] under stability, we have limi→∞ Pr {Ji = j} = fj
where fj denotes distribution of starting setups for an arbitrary job.

An exact expression for fj is found as follows. �e sub-sequence of

the job arrivals that see an empty system forms a renewal process

([5], �eorem 5.5.8) and we de�ne Rj (t) = 1{J (t) = j} as a renewal-

reward function where J (t) = j is the event that job in service at

time t made a type-j start and 1 is the indicator function.

fj = lim

τ→∞
Pr {Rj (τ ) = 1} = lim

τ→∞
E[Rj (τ )]

(a)

= lim

τ→∞
1

τ

∫ τ

−∞
Rj (τ )

(b)

=
E[Rn ]
E[X ] .

where (a) and (b) are due to the equality of the limiting time and en-

semble averages of Rj (t) by ([5], �eorem 5.4.5), Rn =
∫ Srn
Srn−1

Rj (t)dt ,
and Srn−1

, Srn are the (n − 1)th, nth renewal epochs (i.e., epochs

for job arrivals that �nd the system empty), and X is the iid inter-

renewal interval. To compute fj , we need E[Rn ] and E[X ], �nding

which is a hard problem.
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Figure 3: (a) complete-start for job-1 and (b) partial-start for job-2 upon the completion of job-1 in Simplex(t = 1).

4.1 Markov process for the system
Imagine that the synchronization between the tasks of every job is

handled by a join queue at the tail of the system that queues the

departures from each server. Join queue merges the incoming tasks

according to their job ids. Since task departure from Ss terminates

the job immediately, a job waiting for synchronization must be

initiated by the �rst task departing from S1,1 or S1,2. State of the

join queue can be de�ned as the pair n(t) = (n1,1(t),n1,2(t)) where

n∗ denotes the number of jobs in the join queue that are initiated

by S∗. Observe that n1,1(t)n1,2(t) = 0 holds for all t since the order

of the tasks in repair servers are preserved and departure of both

sibling repair tasks terminates the job. Together with the total

number of jobs N (t) at time t waiting or in service in the system;

(N (t),n(t)) de�nes a Markov process for Simplex(t = 1) as shown

in Fig. 4. However, this markov process is tedious to analyze (see

Appendix 9.2). �erefore, we estimate fj by studying a di�erent

system approximating the actual setup which is given next.

0, (0, 0)

1, (0, 0) 1, (1, 0)1, (0, 1)

2, (0, 0) 2, (1, 0) 2, (2, 0)2, (0, 1)2, (0, 2)
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Figure 4: Markov process (Top) for Simplex(t = 1), and (Bottom) its
high tra�c approximation.

4.2 Analysis under high-tra�c regime
Suppose λ is very close to its critical value for stability and the

system is started at −∞. Starting to observe the system state at

t = 0, we assume that queues Ss , S1,1 and S1,2 are never empty,

which is a rather crude assumption and holds only when system

is unstable. We will refer to this set of working conditions as

”high-tra�c regime”. Using the assumption that queues are never

empty, state of the join queue n(t) itself is a simple Markov process

shown on the bo�om in Fig. 4. Note that a�er every transition, an

exponential service time is restarted for each server and the �rst

task completion causes the process to transit to another state. Here

task cancellation at a server due to job completion is not considered

as a task completion.

Steady-state balance equations for high-tra�c approximation is

αpi,0 = (γ + β)pi+1,0, βp0,i = (γ + α)p0,i+1, i ≥ 0. (4)

where limt→∞Pr {n(t) = [i, j]} = pi, j . Solving balance equations:

pi,0 = (
α

β + γ
)ip0,0, p0,i = (

β

α + γ
)ip0,0, i ≥ 1. (5)

By the axiom of probability, (1 + ∑∞
i=1
( β
α+γ )i + (

α
β+γ )

i )p0,0 = 1

assuming β < α + γ and α < β + γ ,

p0,0 = (1 +
β

α + γ − β +
α

β + γ − α )
−1 =

γ 2 − (α − β)2
γ (α + β + γ )

from which pi,0 and p0,i is found by substituting p0,0 in (5). Other

useful quantities are

∞∑
i=1

pi,0 =
α(α + γ − β)
γ (α + β + γ ) ,

∞∑
i=1

p0,i =
β(β + γ − α)
γ (α + β + γ )

For tractable analysis, we continue with the assumption α = β = µ,

then we have p0,0 =
γ

γ+2µ and

∑∞
i=1

pi,0 =
∑∞
i=1

p0,i =
µ

γ+2µ . Next,

we use the steady-state probabilities for the high-tra�c assumption

to obtain estimates for the quantities of interest.

4.3 Winning frequencies
We de�ne the fraction of the jobs terminated by a server as the

”winning frequency” of that server where a server wins when it ter-

minates a job. �eorem 4.2 gives bounds on the winning frequencies

for servers in Simplex(t = 1).

Theorem 4.2. In Simplex(t = 1), letws ,wr be respectively win-
ning frequencies of the systematic server with Exp(γ ) service time
and identical repair servers with Exp(µ) service time. �en bounds
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on winning frequencies are given as

ws ≥
γν

γν + 2µ2
, wr ≤

µ2

γν + 2µ2
, where ν = γ + 2µ .

Proof. �e fraction of the jobs terminated by a server can be

computed from the steady-state probabilities of the Markov chain

(MC) that is embedded in the process for high-tra�c approximation.

System state isn(t) = (n1,1(t),n1,2(t))wheren∗ denotes the number

of jobs waiting in the join queue that are initiated by S∗. We stay

in each state an exponential amount of time with rate ν = γ + 2µ.

�erefore, steady-state probabilities of n(t) (pi : limiting fraction of

the time the process spends in state i) and the embedded chain (πi :
limiting fraction of the state transitions into state i) are equal as

seen by πi =
piν

ν
∑
i piν

= pi .

Limiting fraction of state transitions fs , f1,1, f1,2 that represent

job terminations by the respective servers Ss , S1,1, S1,2 are

fs = π0,0
γ

ν
+

∞∑
i=1

πi,0
γ

ν
+

∞∑
i=1

π0,i
γ

ν
=
γ

ν
,

f1,1 =
∞∑
i=1

π0,i
α

ν
= ( µ

ν
)2, f1,2 =

∞∑
i=1

πi,0
β

ν
= ( µ

ν
)2.

Limiting fraction of state transitions that represent job depar-

tures is fjd = fs + f1,1 + f1,2 =
γ ν+2µ2

ν 2
. Winning frequencies for

high-tra�c approximation as

ŵs =
fs
fjd
=

γν

γν + 2µ2
, ŵr =

f1,1
fjd
=

f1,2
fjd
=

µ2

γν + 2µ2
.

�eues are never empty under high-tra�c while fraction of the

time repair servers are idle is non-zero under stability. �erefore,

winning frequencies of repair servers are smaller under stability

than they would be under high-tra�c, so ws ≥ ŵs , wr ≤ ŵr . �

Fig. 5 shows simulated winning frequencies for γ = µ. As λ
increases, high-tra�c assumption becomes more accurate and the

simulated values converge to values ŵs = 0.6, ŵr = 0.2.

Figure 5: Simulated winning frequencies of the servers in
Simplex(t = 1).

4.4 Average system time
Lemma 4.3. Average system time E[T̂ ] under high-tra�c is a lower-

bound on the average system time E[T ] for Simplex(t = 1).

Proof Sketch. Comparing the two Markov processes in Fig. 4,

one can see that high tra�c approximation can be obtained from

the actual one as follows: (1) Introduce additional transitions of

rate α from state (i, (i, 0)) to (i+1, (i+1, 0)) and transitions of rate β
from state (i, (0, i)) to (i + 1, (0, i + 1)) for i ≥ 0, (2) Gather the states

(i, (m,n)) for i ≥ 0 into a ”super state”, (3) Observe that the process

with these super-states is the same as the process for high-tra�c

regime. �erefore, high-tra�c assumption has the e�ect of placing

extra state transitions for the system to serve jobs faster. �

Theorem 4.4. In Simplex(t = 1), let V be job service time. Lower-
bounds on the �rst and second moments of V are,

E[V ] ≥ E[V̂ ] = γν

γν + 2µ2
( 2

γ + µ
− 1

γ + 2µ
) + 2µ2

γν + 2µ2

1

γ + µ
,

E[V 2] ≥ E[V̂ 2] = γν

γν + 2µ2
( 4

(γ + µ)2

− 2

(γ + 2µ)2
) + 2µ2

γν + 2µ2

2

(γ + µ)2
.

(6)

�en a lower-bound on the average system time E[T ] is,

E[T ] ≥ E[T̂LB ] = E[V̂ ] + λE[V̂ 2]
2(1 − λE[V̂ ])

(7)

Proof. De�ne fjd as the fraction of state transitions represent-

ing job departures and f→c as the fraction of state transitions into

a complete-start for the subsequent job. Since the system is always

busy, a complete-start occurs for every transition into state (0, 0)
while partial-start occurs for every transition into (i, 0) and (0, i) for

i ≥ 1. �en, given ν = γ +2µ, limiting fraction of the jobs that make

partial
ˆfp or complete-start

ˆfc under high-tra�c approximation

are found as

fjd = π0,0
γ

ν
+

∞∑
i=1

(π0,i + πi,0)
µ + γ

ν
=

2µ2 + 2µγ + γ 2

ν2

f→c = π0,0
γ

ν
+ π1,0

µ + γ

ν
+ π0,1

µ + γ

ν

= π0,0(
γ

ν
+

2µ

µ + γ

µ + γ

ν
) = π0,0 =

γ

γ + 2µ
,

ˆfc =
f→c

fjd
=

γν

γν + 2µ2
, ˆfp = 1 − ˆfc =

2µ2

γν + 2µ2
.

Local queues at the servers are never empty under high-tra�c

approximation, which increases the fraction of the jobs that make

partial-start. Under stability, system has to return to the initial

state with no job. �e job that arrives �rst when the system is

in no-job state makes a complete-start. �erefore, stability allows

the system to have such renewals and
ˆfc obtained for high-tra�c

approximation is a lower-bound;
ˆfc ≤ fc and

ˆfp ≥ fp . Substituting

ˆfc ,
ˆfp for fc , fp in (6) yields estimates E[V̂ ] and E[V̂ 2] for E[V ] and

E[V 2]. As shown in (6), these estimates are lower-bounds; E[V̂ ] ≤
E[V ] and E[V̂ 2] ≤ E[V 2] because E[Vc ] > E[Vp ], E[V 2

c ] > E[V 2

p ]
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and
ˆfc ≤ fc . Finally, substituting E[V̂ ], E[V̂ 2] for E[V ], E[V 2] in (2)

gives the lower-bound E[T̂LB ] ≤ E[T ] as shown in (7). �

Fig. 6 shows that E[T̂LB ] is a close lower-bound on the simulated

E[T ]. As expected from high-tra�c approximation, E[T̂LB ] is more

accurate for increasing values of λ.

4.5 Service rate allocation
Now we have a close (especially for high arrival rate) estimate

E[T̂LB ] for E[T ], which we use to argue about how to allocate

limited service capacity between the systematic node and repair

group. Denote the total service rate available as C = γ + 2µ and

de�ne ρ = γ/µ. In Appendix 9.1, we show that
∂E[T̂LB ]

∂ρ < 0 holds

under stability, which suggests to allocate all of the available service

rate to the systematic node to achieve the minimum system time.

4.6 Matrix analytic solution
Here we �nd an upper-bound on E[T ] by analysing a di�erent

system approximating Simplex(t = 1). We truncate the in�nite

dimensional Markov chain in Fig. 4 such that the pyramid is limited

to only �ve central columns. �is means we reduce the process

(N (t),n(t)) to (N (t), n̂(t)) = (N (t), (n̂1,1(t), n̂1,2(t))), with n̂1,1(t) ≤
2 and n̂1,1(t) ≤ 2. �is choice is motivated by the simulation results

and the analysis in Appendix 9.2, which show that the most visited

states are located at the central columns.

4.6.1 Computing the limiting probabilities. Finding a closed

form solution to steady-state probabilities for the truncated chain is

as challenging as the original problem. However one can solve the

truncated Markov chain numerically with an arbitrarily small error

using the ”Matrix Analytics” method described in ([10], chapter 21).

In the following, we denote the vectors and matrices in bold font.

Start by de�ning the limiting probability vector

π =[π
0,(0,0),π1,(0,1),π1,(0,0),π1,(1,0),

π
2,(0,2),π2,(0,1),π2,(0,0),π2,(0,1),π2,(2,0),

π
3,(0,2),π3,(0,1),π3,(0,0),π3,(1,0),π3,(2,0), · · · ]

=[π0,π1,π2,π3,π4, · · · ].

where πk,(i, j) is the limiting steady-state probability for statek, (i, j)
and

π0 = [π0,(0,0),π1,(0,1),π1,(0,0),π1,(1,0)],
πi = [πi+1,(0,2),πi+1,(0,1),πi+1,(0,0),πi+1,(1,0),πi+1,(2,0)], i ≥ 1.

One can write the balance equations governing the limiting proba-

bilities in the form below

πQ = 0 (8)

For the truncated Markov chain, Q has the following form

Q =



F0 H0

L0 F H 0
L F H

L F H
0 L F H

. . .
. . .


, (9)

where the sub-matrices F0, H0, L0, F , L and H are given in Ap-

pendix 9.3 in terms of α , β , γ and λ. Using (8) and (9) we get the

following system of equations in matrix form,

π0F0 + π1L0 = 0

π0H0 + π1F + π2L = 0

πiH + πi+1F + πi+2L = 0, i ≥ 1.

(10)

In order to solve the system above, we assume the steady-state

probability vectors to be of the form,

πi = π1R
i−1, i ≥ 1. (11)

where R ∈ R5×5
. Combining (10) and (11) we get the following:

π0F0 + π1L0 = 0,

π0H0 + π1(F + RL) = 0,

πi (H + RF + R2L) = 0, i ≥ 1.

(12)

From (12) we have common conditions for the system to hold:

H + RF + R2L = 0, R = −
(
R2L +H

)
F−1

(13)

�e inverse of F in (13) exists since det(F ) = −δ3(δ − α)(δ −
β) , 0 assuming δ = α + β + γ + λ and λ > 0. Using (13), an

iterative algorithm to compute R is given in Algorithm 1. �e

norm | |Ri − Ri−1 | | corresponds to the absolute value of the largest

element of the di�erence matrix Ri −Ri−1. �erefore, the algorithm

terminates when the largest di�erence between the elements of the

last two computed matrices is smaller than the threshold ϵ . �e

initial matrix R0 could take any value, not necessarily 0. �e error

threshold ϵ could be �xed to any arbitrary value, but the lower this

value the slower the convergence. Computing R, the vectors π0

Algorithm 1 Computing matrix R

1: procedure ComputingR
2: ϵ ← 10

−6
, R0 ← 0, i ← 1

3: while true do
4: Ri ← −

(
R2

i−1
L +H

)
F−1

5: if | |Ri − Ri−1 | | > ϵ then
6: i ← i + 1

7: else return Ri

and π1 are remaining to be found in order to deduce the values of

all limiting probabilities. Recall that in (12) the �rst two equations

are yet to be used. Writing these two equations in matrix form,[
π0 π1

] [
F0 H0

L0 RL + F

]
= 0, (14)

where 0 is a 1×9 zeros vector and Φ =

[
F0 H0

L0 RL + F

]
∈ R9×9

. In

addition, we have the normalization equation to take into account.
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Denoting 10 = [1, 1, 1, 1], 11 = [1, 1, 1, 1, 1], by (11), we get

π01T0 +
∞∑
i=1

πi1T1 = 1

π01T0 +
∞∑
i=1

π1R
i−11T

1
= 1

π01T0 + π1(I − R)−11T
1
= 1[

π0 π1

] [
1T

0

(I − R)−1 .1T
1

]
= 1, (15)

where I is the 5 × 5 identity matrix. In order to �nd π0 and π1, we

solve the following system[
π0 π1

]
Ψ = [1, 0, 0, 0, 0, 0, 0, 0, 0] , (16)

whereΨ is obtained by replacing the �rst column ofΦwith [10, 11(I−
RT )−1]T . Hence, (16) is a linear system of 9 equations with 9 un-

knowns. A�er solving (16), we obtain the remaining limiting prob-

abilities vector using (11).

4.6.2 Approximating the average system time E[T ]. We �rst no-

tice that

Pr {N = 0} = π
0,(0,0),

Pr {N = 1} = π
1,(0,0) + π1,(0,1) + π1,(1,0) = π01T0 − π0,(0,0),

Pr {N = i} = πi,(0,2) + πi,(0,1) + πi,(0,0) + πi,(1,0) + πi,(2,0)
= πi−11T1 , i ≥ 2.

�en, the average number of jobs E[N̂MA] in the truncated system

is computed as

E[N̂MA] =
∑∞
i=0

iPr {NMA = i}

= π01T0 − π0,(0,0) +
∞∑
i=2

i(πi−11T1 )

= π01T0 − π0,(0,0) +
∞∑
i=2

i(π1R
i−21T

1
)

= π01T0 − π0,(0,0) + π1(
∞∑
i=2

(i − 1)Ri−2 + Ri−2)1T
1

= π01T0 − π0,(0,0) + π1(
∞∑
j=1

jR j−1 +

∞∑
i=0

Ri )1T
1

= π01T0 − π0,(0,0) + π1((I − R)−2 + (I − R)−1)1T
1
.

(17)

Equation (17) shows that we only need π0, π1 and R, thus no need

to calculate in�nite number of limiting probabilities.

Theorem 4.5. A strict upper-bound on the average system time of
Simplex(t = 1) is given by,

E[T ] < E[T̂MA] =
E[N̂MA]

λ
. (18)

where E[N̂MA] is given in (17).

Proof. Markov chain that is analysed is obtained by truncating

the actual chain for Simplex(t = 1). It is equivalent to imposing a

blocking on the repair group whenever one of the repair server leads

by 2 tasks, which works slower than the simplex queue. �erefore,

Figure 6: Split-merge upper bound E[T̂SM ], upper-bound E[T̂MA]
obtained by the matrix analytic analysis on the truncated MC, sim-
ulated E[T ] and the M/G/1 lower-bound E[T̂LB ] for the average sys-
tem time in Simplex(t = 1).

average system time found for the truncated system is an upper

bound on E[T ] and Li�le’s law gives (18). �

Fig. 6 shows that E[T̂MA] is a close upper-bound on the simulated

E[T ]. �is is due to the fact that truncation keeps the mostly visited

system states and gives a good approximation.

5 DOWNLOADWITH ANY AVAILABILITY
We start by generalizing some of the ideas developed for Simplex(t =
1). Suppose that the service time at systematic server is Exp(γ ) and

at each repair server it is Exp(µ). We index all possible service start

types (instead of calling them complete or partial) starting from 0

up to t where type-i setup means that at the job starting instant,

only one task of the job is in service at i repair groups while in the

remaining t−i repair groups both sibling tasks are in service. Given

this de�nition, complete-start is equivalent to type-0 start. First

and second moments E[Vi ], E[V 2

i ] for the job service completion

time for type-i starting setup can be calculated as follows,

Pr {Vi ≥ s} = Pr {Eγ ≥ s}Pr {Eµ ≥ s}iPr {max{Eµ ,Eµ } ≥ s}t−i

= e−γ se−iµs (1 − (1 − e−µs )2)t−i

= e−(γ+t µ)s (2 − e−µs )t−i

= e−(γ+t µ)s
t−i∑
k=0

(
t − i
k

)
2
k (−e−µs )t−i−k

=

t−i∑
k=0

(
t − i
k

)
2
k (−1)t−i−ke−(γ+µ(2t−i−k ))s
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E[Vi ] =
∫ ∞

0

Pr {Vi ≥ s}ds

=

t−i∑
k=0

(
t − i
k

)
2
k (−1)t−i−k 1

γ + µ(2t − i − k)

E[V 2

i ] =
∫ ∞

0

2sPr {Vi ≥ s}ds

=

t−i∑
k=0

(
t − i
k

)
2
k (−1)t−i−k 2

(γ + µ(2t − i − k))2

(19)

where Eγ and Eµ denote Exponential service time respectively at

the systematic server and each repair server.

Intuitively, E[Vi ] should decrease with i because type-i start

means that at i repair groups, one sibling task already �nished

service. �at is to terminate the job, only one task is le� in these

leading repair groups which is be�er than having to wait for both

sibling tasks. In the following, we establish that E[Vi ]monotonically

decreases with i .

E[Vi −Vi+1] =
∫ ∞

0

(Pr {Vi ≥ s} − Pr {Vi+1 ≥ s})ds

=

∫ ∞
0

e−(γ+t µ)s ((2 − e−µs )t−i − (2 − e−µs )t−i−1)ds > 0

(20)

where (2− e−µs )t−i − (2− e−µs )t−i−1 > 0 since 2− e−µs > 1. Same

calculations can be carried out to show that E[V 2

i ] monotonically

decreases with i .
Lemmas 4.1 and 4.3 generalize for simplex queue with any degree

of availability as follows.

Lemma 5.1. Simplex(t) is an M/G/1 queue with job service time
V . Given E[V ] and E[V 2], PK formula gives the average system time.
Moments of V are,

E[V ] =
t∑
j=0

fjE[Vj ], E[V 2] =
t∑
j=0

fjE[V 2

j ]. (21)

where E[Vj ] and E[V 2

j ] are given in (19), and fj is the limiting prob-
ability that an arbitrary job makes type-j service start.

Proof. According to our de�nition of job start, a job starts ser-

vice the �rst time when all its tasks are in service. �is guarantees

that only one job can be in service at a time and multiple jobs

cannot depart at the same time. In addition, jobs depart in the

order they arrive. Service time of a job V depends on its service

start setup J . We can write Pr {V ≥ v} = ∑t
j=0

fjPr {Vi ≥ v}
where Pr {Vi ≥ v} = Pr {V ≥ v |J = i}. Random variables Vi
are non-negative, E[V ] and E[V 2] E[V ] =

∫ ∞
0

Pr {V ≥ v}ds and

E[V 2] =
∫ ∞
0

2sPr {V ≥ v}ds . �erefore, Simplex(t ) can be modeled

as an M/G/1 queue. �

Lemma 5.2. Average system time E[T̂ ] under high-tra�c assump-
tion is a lower-bound on the average system time E[T ] for Simplex(t ).

Proof. Local queues at the servers are never empty under high-

tra�c approximation while system has to visit the initial state with

no-jobs many times under stability. While there is enough jobs in

the system to keep all the servers busy under stability, high-tra�c

approximation becomes exact. We know by (20) that the more tasks

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

2µ

2µ

γ+ µ

2µ

µ

. . .

γ+ µ

2µγ+ µ

µ

...

2µ

µ

...

µ . . .

γ
+
2µ

µ

...

γ
+
2µ

γ+ µ

2µ µ . . .

γ
+
2µ

γ
+
2µ

Figure 7: Markov process for Simplex(t = 2) under high-tra�c.

are completed earlier at the leading repair servers, the faster the

jobs get served on average. �erefore, system under stability can

be thought as the blocking version of high-tra�c approximation,

which completes the proof. �

5.1 Simplex�eue for Availability Two
In this section, we extend the ideas developed in Section 4 and �nd

close estimates for average system time E[T ] for Simplex(t = 2).

Using Lemma 5.1 for t = 2, we get

E[V ] = f0E[V0] + f1E[V1] + f2E[V2]
E[V 2] = f0E[V 2

0
] + f1E[V 2

1
] + f2E[V 2

2
]

(22)

where E[Vj ] and E[V 2

j ] for j ∈ {0, 1, 2} follow from (19).

We next estimate fj under high-tra�c. Consider a join queue

at the tail of the system, in which the tasks that �nish service

wait for their siblings. In each repair group, only one server can

be ahead with the task completion. Since the repair servers are

assumed identical and there is no need to distinguish the leading

server in a repair group, state of the join queue can be de�ned

as n(t) = (n1(t),n2(t)) where ni represents the number of tasks

waiting in the join queue at time t that departed from the leading

server at repair group i . Under high-tra�c approximation, n(t) is a

Markov process shown in Fig. 7.

Embedded MC within n(t) allows us to �nd estimates
ˆf0,

ˆf1 and

ˆf2. Lemma 5.2 implies that
ˆf0 < f0 and consequently

∑t
j=1

ˆfj >∑t
j=1

fj given (20). Using this fact and Lemma 5.1, we get lower-

bounds E[V̂ ], E[V̂ 2] on E[V ], E[V 2] as shown in (23) by substituting

ˆf0,
ˆf1 and

ˆf2 for f0, f1 and f2.

E[V ] ≥ E[V̂ ] = ˆf0E[V0] + ˆf1E[V1] + ˆf2E[V2],

E[V 2] ≥ E[V̂ 2] = ˆf0E[V 2

0
] + ˆf1E[V 2

1
] + ˆf2E[V 2

2
].

(23)

Finally, substituting E[V̂ ], E[V̂ 2] for E[V ], E[V 2] in PK formula

gives a lower-bound on E[T ].
Steady-state probabilities pi, j for n(t) and those πi, j for the

embedded MC are equal since the total transition rate ν out of

every state in n(t) is equal to γ + 4µ. Based on the same method for

Simplex(t) with availability 1, one can compute the estimates
ˆf0,

ˆf1 and
ˆf2 by using the limiting fraction of state transitions for job
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departures fjd , and those into type-0, type-1 and type-2 starting

states f→0, f→1 and f→2 for the subsequent job as

fjd =
γ

ν
π0,0 +

γ + µ

ν

∞∑
i=1

(π0,i + πi,0)

+
γ + 2µ

ν
(1 − π0,0 −

∞∑
i=1

(π0,i + πi,0)),

f→0 =
γ

ν
π0,0 +

γ + µ

ν
(π0,1 + π1,0) +

γ + 2µ

ν
π1,1,

f→1 =
γ + 2µ

ν

∞∑
i=2

(πi,2 + π2,i ),

ˆf0 =
f→0

fjd
, ˆf1 =

f→1

fjd
, ˆf2 = 1 − ˆf0 − ˆf1.

(24)

However (24) requires exact analysis of n(t), which is hard
1
. It

is irreducible and for recurrence, pi, j should decrease with i and

j. One can see this from the simulation or from the following

informal argument. Expected dri� at (i, j), i, j > 0 (i.e., inner states)

towards (i − 1, j − 1) is greater than the dri� towards (i + 1, j) and

(i, j + 1). Expected dri� at (i, 0), i > 0 (i.e., states at the horizontal

boundary) towards (i−1, 0) and (i, 1) is greater than the dri� towards

(i + 1, 0). Similar observation can be made for the states at the

vertical boundary. �erefore, we expect the system to spend more

time in the lower-le� region of the state-space, which gives us the

idea of doing the analysis by truncating the process. To keep the

transition probabilities within the embedded MC same, we de�ne

the truncation as follows. Suppose the transition probability matrix

of n(t) is P and the truncated process is ñ(t) = {(i, j)|i, j ≤ M}
where M de�nes the boundary at which the truncation starts. �en

the transition probability matrix P̃ of ñ(t) is de�ned as

P̃i, j =


0, j > M, i ≤ M,∑
j≥M Pi, j , j = i ≤ M,

Pi, j , j ≤ M, i ≤ M .

(25)

Substituing π̃i, j ’s of the MC embedded in ñ(t) for πi, j in (24) gives

estimates
ˆf0,

ˆf1,
ˆf2. However one important consequence of trun-

cation is that π̃i, j ’s have higher values for the remaining states i.e.,

π̃i, j > πi, j , i, j ≤ M , which is shown in Appendix 5.1. �erefore,

we observe
ˆf0 > f0,

ˆf1 > f1. �erefore, there is no guarantee that

E[V̂ ], E[V̂ 2] by substituting
ˆf0,

ˆf1,
ˆf2 in (23) are lower-bounds on

E[V ], E[V 2], thus substituting E[V̂ ], E[V̂ 2] in PK formula does not

always give a lower-bound.

We can solve the truncated chain
2

to compute
ˆf0,

ˆf1,
ˆf2 and get

E[T̂ ] using the PK formula. Fig. 8 compares E[T̂ ] a�ained by se�ing

the truncation index M = 5 and M = 2 with the simulated E[T ].
Lower-bound obtained by M = 5 performs pre�y good. Note that

as discussed in the previous paragraph, when M is low, the model

is not a lower-bound anymore. �is can be seen for M = 2. Models

for lower values of M can be used only as an approximation.

1
Fig. 7 shows that n(t ) is multi-dimensional and has in�nite number of states.

2
Solving the truncated chain analytically is tedious but steady-state probabilities can

be computed easily with a computer

Figure 8: Split-merge upper-bound E[T̂SM ], the M/G/1 lower-bound
E[T̂ ] attained by setting M = 2 and M = 5, and the simulated E[T ]
for the average system time in Simplex(t = 2).

5.2 Simplex�eue with any Availability
Analysis of the high-tra�c approximation to �nd an estimate as

in Sec. 4 and 5.1 is not possible for Simplex(t > 2). State-space

complexity for the join queue under high-tra�c approximation

exponentially increases with t and analyzing systems with higher

number of repair groups becomes quickly intractable.

We previously observed for t = 1, 2 that the fraction of the

jobs that make type-i start decrease with i . �is can be explained

with the following informal argument. For type-i start, at the job

starting time instant, system should have i repair groups with a

leading server that already �nished servicing the assigned task of

the job. We call such groups ”leading groups”. For a repair group, it

is less likely to be leading because every job termination helps the

slow servers to catch up with the leading server. Remember that

completion of a job allows the slow servers that are still working

on the tasks of the completed job to cancel the task and proceed

with the next task waiting in the queue. In simplex queue, job

termination can be signaled by the systematic server or by any

repair group. However, a leading server should serve faster and

compete with every other server to keep leading. Overall, it is

intuitively expected to have more jobs making type-i start for lower

values of i .
What is informally argued in the previous paragraph is further

discussed in a slightly more formal way in Appendix 9.5. Even

though we could not give a complete proof, the simulations suggest

the following conjecture.

Conjecture 5.3. In Simplex(t ), we have fj > fj+1 for 0 ≤ j ≤ t−1

where fj denotes the limiting fraction of jobs that make type-j start.
In other words, fj+1 = ρ j fj where ρ j < 1.

Given fj ’s, exact expression for average system can be found

by Lemma 5.1. However, even for t ≤ 2, we could only �nd esti-

mates for fj ’s. �eorem 5.4 gives a general lower-bound on average

system time E[T ] of Simplex(t ) by using an upper-bound on fj ’s.
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Theorem 5.4. For ρ ≥ max{ρ j |0 ≤ j ≤ t − 1}, fj ’s are bounded
as

f0 > ˆf0(ρ) =
1 − ρt+1

1 − ρ , fi < ˆfi (ρ) = ρ j ˆf0(ρ), 1 ≤ i ≤ t . (26)

A lower-bound on E[T ] for Simplex(t ) is given by

E[T ] ≥ E[T̂ (ρ)] = E[V̂ (ρ)] + λE[V̂ 2(ρ)]
2(1 − λE[V̂ (ρ)])

(27)

for E[V̂ (ρ)] = ∑t
j=0

ˆfj (ρ)E[Vj ] and E[V̂ 2(ρ)] = ∑t
j=0

ˆfj (ρ)E[V 2

j ]
where E[Vj ] and E[V 2

j ] are given in (19).

Proof. Using the normalization requirement

∑t
i=0

fi = 1, fi ’s
in terms of ρi ’s are found as,

t∑
i=0

fi =
t∑
i=0

f0

i−1∏
j=0

ρ j = 1 gives,

f0 =
1

1 +
∑t
i=1

∏i−1

j=0
ρ j
, fi = f0

i−1∏
j=0

ρ j .

(28)

Substituting each ρi with an upper-bound ρ and solving for
ˆfi (ρ)’s

gives
ˆf0(ρ) = 1−ρt+1

1−ρ ,
ˆfi (ρ) = ρi ˆf0, which preserves Conjecture 5.3.

We have

ˆfi (ρ) − fi
fi

=
ˆfi (ρ)
fi
− 1 =

ˆf0(ρ)ρk

f0
∏i−1

j=0
ρ j
− 1 =

ˆf0(ρ)
f0

i−1∏
j=0

ρ

ρ j
− 1,

where 0 ≤ j ≤ t and
ρ
ρ j > 1 so we obtain

ˆfi (ρ) > fi and

ˆfi+1(ρ)−fi+1

fi+1

>
ˆfi (ρ)−fi

fi
. Overall, estimates E[V̂ (ρ)], E[V̂ 2(ρ)] for

E[V ], E[V 2] found by substituting
ˆfi (ρ)’s in (21) are lower-bounds

as shown

E[V ] − E[V̂ (ρ)] =
t∑
j=0

(fi − ˆfi (ρ))E[Vi ]

=(f0 − ˆf0(ρ))E[V0] +
t∑
j=1

(fi − ˆfi (ρ))E[Vi ]

(a)

=

t∑
j=1

( ˆfi (ρ) − fi )(E[V0] − E[Vi ]) > 0.

where (a) follows from

t∑
i=0

fi =
t∑
i=0

ˆfi (ρ) =⇒ f0 − ˆf0(ρ) =
t∑
i=0

( ˆfi (ρ) − fi ).

and (20). Same analysis can be done to show E[V̂ 2(ρ)] < E[V 2].
Substituting E[V̂ (ρ)] and E[V̂ 2(ρ)] in PK formula gives (27). �

�e tighter the bound ρ on ρi ’s is, the be�er the estimates

E[V̂ (ρ)] and E[ ˆV 2(ρ)] are, so E[T̂ (ρ)] is. �e naive way is to sim-

ply set ρ to 1. �en
ˆfi (1)’s follow a uniform distribution and

becomes equal to 1/(t + 1). �en estimates become E[V̂ (1)] =∑t
i=0

E[Vi ]/(t + 1) and E[ ˆV 2(1)] = ∑t
i=0

E[V 2

i ]/(t + 1), which are

then substituted in (27) to get the lower-bound E[T̂ (1)]. In Fig. 9,

comparison between E[T̂ (1)] and the simulated E[T ] is shown. Next,

we improve the estimate ρ.

Corollary 5.5. Estimate ρ in �eorem 5.4, holds the inequality,

E[X ] − E[V̂ (1)]
E[X ] ρt+1 − ρ + 1 − E[X ] − E[V̂ (1)]

E[X ] ≥ 0 (29)

where X is the inter-arrival interval time for job arrivals, E[X ] = 1/λ,
and E[V̂ (1)] = ∑t

i=0
E[Vi ]/(t + 1).

Proof. See Appendix 9.6. �

Next we use inequality (29) to get an upper bound on ρ as follows.

Unfortunately, solving for ρ in (29) does not yield a closed form solu-

tion, so to get one we take the limit as limt→∞
E[X ]−E[V̂ (1)]

E[X ] ρt+1 −

ρ + 1 − E[X ]−E[V̂ (1)]
E[X ] ≥ 0, which gives ρ ≤ ρ̂ = E[V̂ (1)]/E[X ]. Note

that taking the limit may make ρ̂ not an upper-bound on ρ for

small values of t . �is may lead E[T̂ (ρ̂)] to be not a lower-bound

but only an approximation. However, as we see in Fig. 9, E[T̂ (ρ̂)] is

a lower-bound even for t = 1.

�e expected relation E[T̂ (1)] ≤ E[T̂ (ρ̂)] ≤ E[T ] can be seen

in Fig. 9. An interesting observation from these plots is that the

relative gain achieved by E[T̂ (ρ̂)] over E[T̂ (1)] improves as the

number of repair groups t increases.

5.2.1 An Approximation of E[T ] for Simplex �eues with Any
Degree of Availability. Lower-bound E[T̂ (1)] was obtained by set-

ting the upper-bound ρ on ρi ’s to maximum value 1 in �eorem

5.4. Corollary 5.6 gives an approximate on E[T ] by using be�er

upper-bounds on each ρi which are found incrementally. Note

that, the given incremental computation aims at �nding as tight

bounds on ρi as possible but it does not guarantee that E[T̂ (ρ̂)] is

a lower-bound on E[T ] but only an approximation. We observe in

Fig. 9 that E[T̂ (ρ̂)] is almost equal to E[T ] for t = 2 and for higher

values of t it serves as an upper-bound be�er than E[T̂SM ] that is

obtained from split-merge approximation. Simulation comparison

for Simplex(t = 1) shows that the lower bounds E[T̂ (1)], E[T̂ (ρ̂)]
and the approximation E[T̂ (ρ̂)] approximates the average system

time for t = 1 almost exactly.

Corollary 5.6. E[T ] for Simplex(t ) is well approximated as

E[T ] ≈ E[T̂ (ρ̂)] = E[V̂ (ρ̂)] + λE[V̂ 2(ρ̂)]
2(1 − λE[V̂ (ρ̂)])

(30)

for E[V̂ (ρ̂)] = ∑t
j=0

ˆfj (ρ̂)E[Vj ] and E[V̂ 2(ρ̂)] = ∑t
j=0

ˆfj (ρ̂)E[V 2

j ]
where E[Vj ] and E[V 2

j ] are given in (19), and

ˆf0(ρ̂) =
1

1 +
∑t
i=1

∏i−1

j=0
ρ̂ j
, ˆfi (ρ̂) = ˆf0(ρ̂)

i−1∏
j=0

ρ̂ j (31)

Estimates ρ̂ j are computed recursively as

ρ̂i =
E[X ] − E[Y ](1 +∑i−1

k=0

∏k
l=0

ρ̂l )
E[Y ](t − i)∏i−1

k=0
ρ̂k

(32)

for E[Y ] = E[X ] − E[V̂ (1)] and ρ̂0 =
E[X ]−E[Y ]

tE[Y ] .

Proof. See Appendix 9.7 �

In Appendix 9.8, another lower bound is found by analyzing an

equivalent model for Simplex(t ). It is shown as E[T̂f ast−ser ial ] in
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Figure 9: Comparison of the upper-bound E[T̂SM ] under split-merge assumption, the approximation E[T̂ (ρ̂)], the lower-bounds E[T̂ (1)],
E[T̂ (ρ̂)], E[T̂f ast−ser ial ] (cf. Appendix 9.8) and the simulated system time E[T ] for simplex queue where t is the number of repair groups.

Fig. 9 and is a much looser lower bound than E[T̂ (1)] and E[T̂ (ρ̂)],
especially for higher job arrival rate.

6 SELECT-ONE SIMPLEX QUEUES
Load balancing is simply managing resources e�ectively to supply

the demanded service capacity. �is feature is desired for systems

which are expected to work under high load. �e system can expe-

rience either symmetric high load throughout the operation lifetime

or asymmetric high load where the system may go through phases

of high and low loads. For asymmetric load, the system bene�ts

from a dynamic resource provisioning strategy, the simplest of

which could have two operational states: one gets activated for

low-load while the other is active for the high-load phase. For

a distributed storage system, data access schemes are either im-

posed or limited by the way the data is encoded and distributed

over the nodes. Data access schemes optimized for low-load and

high-load may require the data to be re-encoded every time the

system switches from one scheme to another. �is introduces ad-

ditional operational complexity, which makes the system prone

to operational errors, and couples the problems of reliability and

fast content access, which is against the ”separation of concerns”

principle for system design.

LRCs, and in particular simplex codes, provide the necessary

�exibility in the data encoding layer for the system to seamlessly

switch between di�erent request scheduling strategies. Batch codes

have been proposed for load balancing purposes in [13] and their

connection to LRCs is studied in [25]. Simplex codes are linear

batch codes. In Simplex(t ), the simplest strategy for load balancing,

namely select-one, is to forward the arriving requests either to

the systematic server or one of the repair groups according to a

scheduling distribution. Simplex setup allows previously analyzed

replicate-to-all and the newly introduced select-one access strate-

gies to be used interchangeably. For example, suppose that the

request tra�c for content follows an asymmetric load pa�ern. For

low or middle-arrival rate regime, replicate-to-all strategy yields

smaller average data access time, however with select-one strategy

system operates under stability over a greater range of arrival rate.

�is may allow system to switch from replicate-to-all to select-one

strategy seamlessly when the arrival rate increases beyond the criti-

cal point so the system can continue operating under stability. �is

is shown in Fig. 10 by comparing the average system time under

replicate-to-all and select-one with uniform scheduling distribution

in Simplex(t = 1). A closed form expression for the average system

time E[T ] for Simplex(t ) under select-one scheduling is given in

�eorem 6.1.

Theorem 6.1. Given a scheduling distribution p such that pi is the
probability of forwarding a request independently to repair group-i
where group-0 represents the systematic server, average system time
for Simplex(t ) under select-one access strategy is

E[T ] = p0

γ − p0λ
+

t∑
i=1

pi
12µ − piλ

8µ(µ − piλ)
(33)

Proof. Every arriving job is independently sent either to sys-

tematic server with probability p0 or repair group-i with proba-

bility pi for 1 ≤ i ≤ t . �erefore, given the job arrival process

is Poisson(λ), the arrivals to repair group-i follow Poisson(λpi ).
�en the systematic server is M/M/1 queue with service rate γ for

which the average system time is 1/(γ − λ0). Each repair group is

a fork-join system of two servers (i.e., FJ-2) with the same service

rate µ for which the average system time using the result in [20] is

(12 − λi/µ)/(8µ(µ − λi )). Pu�ing these together, E[T ] is found. �

Figure 10: Comparison of the simulated average system time E[T ]
with replicate-to-all and select-one Simplex(t = 1).
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Figure 11: Comparison of the lower-bounds E[T̂ (1)], E[T̂ (ρ̂)] for E[TFA], and simulated average system times E[TFA] for �xed-arrival setup
and E[TMA] for mixed-arrival setup in Simplex(t ) for t = 1, 2, 3.

7 MIXED-ARRIVAL SCENARIO
Analysis given so far is for �xed-arrivals where roles of servers

(systematic or repair) are for each job by assuming that the arriving

jobs ask for always the same symbol throughout a busy period. In

this Section, we discuss how the results for �xed-arrival scenario

relate to the mixed-arrival scenario where the arriving jobs are

uniformly asking for one of the data symbols stored. For example, in

Simplex(t = 3) data symbols [a,b, c] are encoded into code symbols

[a,b,a + b, c,a + c,b + c,a + b + c] and each symbol is stored over

nodes 1, . . . , 7. In �xed-arrival setup, all the arriving jobs will be

either asking for only a or only b or only c . �us, one of the nodes

1, 2, 3 is �xed to be the systematic server and the remaining servers

compose three repair groups. However for mixed-arrival setup,

one arriving job might ask for a while another one might ask for

b. Hence, the systematic server and the repair groups will change

depending on the arriving job.

Proposition 7.1. Average system time for mixed-arrivals is a
lower-bound for that of the �xed-arrivals.

Proof. In Simplex(t ), tasks of the job at the head of the system

are served in one systematic server and t repair groups of size 2.

One of the servers in each repair group may be leading such that it

may be ahead with serving the tasks in its local queue compared to

its sibling. Leading servers proceed with the tasks of the waiting

jobs. For �xed-arrivals, these waiting tasks are one of the sibling

tasks of a repair group and completion of tasks at the leading servers

alone cannot terminate jobs, so jobs depart in order. For mixed-

arrival, leading servers may start serving a systematic task for one

of the waiting jobs and completion of a systematic task terminates

the job, so jobs do not necessarily depart on the order of arrival.

�erefore, a task completion at the leading servers may �nish a job

for mixed-arrivals while it only shortens the average service time

of the consecutive jobs for �xed-arrivals. �

Proposition 7.1 shows that the results found on average system

time for �xed-arrivals E[TFA] can be used as an upper bound for

that of mixed-arrivals E[TMA]. Note that, the fact that jobs don’t

necessarily depart in order and multiple jobs can depart at the same

time makes the analysis of mixed-arrivals very challenging. Fig. 11

shows simulated values of E[TFA], E[TMA] and the lower-bounds

E[T̂ (1)], E[T̂ (ρ̂)] obtained for E[TFA] in Subsection 5.2. �e codes

employed by the system are respectively (i) [a,b] → [a,b,a+b] for

t = 1, (ii) [a,b] → [a,b,a+b,a+2b,a+3b] for t = 2, (iii) [a,b, c] →
[a,b,a+b, c,a+c,b +c,a+b +c] for t = 3. In the simulated mixed-

arrival scenario, arriving jobs are independently and uniformly for

one of the data symbols. An interesting observation here is that

lower-bound E[T̂ (ρ̂)] for E[TFA] is a close approximate of E[TMA]
for t = 2, 3.

8 CONCLUSION
We studied the performance of codes with locality 2 and any degree

of availability, speci�cally simplex codes, in terms of average down-

load time of hot-data. We derived tight upper and lower bounds on

the download time for codes with availability 1. We then general-

ized these results to systems with arbitrary availability. We argued

that analyzing mixed-arrival scenarios is very challenging, and �rst

gave an analysis on �xed-arrival scenario under replicate-to-all

request scheduling strategy. Furthermore, we studied select-one

scheduling strategy for load-balancing which allows the system to

operate under stability over a greater range of arrival rates. �e sim-

plex setup allows the system to use both strategies interchangeably.

While replicate-to-all achieves lower download time, the system

can switch to select-one once the stability threshold is exceeded.

Finally, we showed that the download time in mixed-arrival sce-

nario is shorter than in the �xed-arrival scenario, and explained

how the results presented for download time under �xed-arrivals

relate to download time under mixed-arrivals.
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9 APPENDIX
9.1 Service rate allocation in Simplex(t = 1)
Algebra to show

∂E[T̂LB ]
∂ρ < 0 that is discussed in Subsection 4.5 is

given here. De�ne C = γ + 2µ and ρ = γ/µ, then the followings

can be calculated

ˆfc =
1

1 + 2

ρ(ρ+2)
,

∂ ˆfc
∂ρ
=

4(ρ + 1)
(ρ2 + 2ρ + 2)2

,

E[Vp ] =
ρ + 2

C(ρ + 1) , E[V 2

p ] =
2

C2
(ρ + 2

ρ + 1

)2,

E[Vc ] =
2(ρ + 2)
C(ρ + 1) −

1

C
, E[V 2

c ] =
4

C2
(ρ + 2

ρ + 1

)2 − 2

C2
,

∂E[Vp ]
∂ρ

=
−1

C(ρ + 1)2
,

∂E[V 2

p ]
∂ρ

=
−4(ρ + 2)
C2(ρ + 1)3

,

∂E[Vc ]
∂ρ

=
−2

C(ρ + 1)2
,

∂E[V 2

c ]
∂ρ

=
−8(ρ + 2)
C2(ρ + 1)3

,

(i) E[V̂ ] = E[Vp ] + ˆfc (E[Vc ] − E[Vp ]),

∂E[V̂ ]
∂ρ

=
∂E[Vp ]
∂ρ

+
∂ ˆfc
∂ρ
(E[Vc ] − E[Vp ])

+
∂(E[Vc ] − E[Vp ])

∂ρ
ˆfc

=
−1

C(ρ + 1)2
+

4(ρ + 1)
(ρ2 + 2ρ + 2)2

1

C(ρ + 1)

− 1

C(ρ + 1)2
ρ(ρ + 2)

ρ2 + 2ρ + 2

=
1

C
( −1

(ρ + 1)2
+

4

(ρ2 + 2ρ + 2)2
− ρ(ρ + 2)
(ρ + 1)2(ρ2 + 2ρ + 2)

)

=
−(ρ2 + 2ρ + 2)2 + 4(ρ + 1)2 − (ρ2 + 2ρ)(ρ2 + 2ρ + 2)

C(ρ + 1)2(ρ2 + 2ρ + 2)

=
−2(ρ + 1)2(ρ2 + 2ρ + 2) + 4(ρ + 1)2

C(ρ + 1)2(ρ2 + 2ρ + 2)

=
−2(ρ + 1)2(ρ2 + 2ρ)

C(ρ + 1)2(ρ2 + 2ρ + 2)
< 0,

http://dx.doi.org/10.1016/S0012-365X(03)00201-2
http://dx.doi.org/10.1016/S0012-365X(03)00201-2
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(ii) E[V̂ 2] = E[V 2

p ] + ˆfc (E[V 2

c ] − E[V 2

p ]),

∂E[V̂ 2]
∂ρ

=
∂E[V 2

p ]
∂ρ

+
∂ ˆfc
∂ρ
(E[V 2

c ] − E[V 2

p ])

+
∂(E[V 2

c ] − E[V 2

p ])
∂ρ

ˆfc

=
−4(ρ + 2)
C2(ρ + 1)3

+
8(ρ + 1)

C2(ρ2 + 2ρ + 2)2
((ρ + 2

ρ + 1

)2 − 1)

− 4ρ(ρ + 2)2

C2(ρ + 1)3(ρ2 + 2ρ + 2)

=
8

C2
( 2ρ + 3

(ρ + 1)(ρ2 + 2ρ + 2)2
− ρ + 2

(ρ + 1)3
)

− 4ρ(ρ + 2)2

C2(ρ + 1)3(ρ2 + 2ρ + 2)
< 0,

(iii) E[T̂LB ] = E[V̂ ] + λE[V̂ 2]
2(1 − λE[V̂ ])

∂E[T̂LB ]
∂ρ

=
∂E[V̂ ]
∂ρ

+
λ

2

( ∂E[V̂
2]

∂ρ (1 − λE[V̂ ]) +
∂E[V̂ ]
∂ρ λE[V̂ 2])

(1 − λE[V̂ ])2

=
∂E[V̂ ]
∂ρ
(1 + λ2E[V̂ 2]

2(1 − λE[V̂ ])
) + ∂E[V̂

2]
∂ρ

λ

2(1 − λE[V̂ ])
under stability λE[V̂ ] < 1 and we found above

∂E[V̂ ]
∂ρ

< 0,
∂E[V̂ 2]
∂ρ

< 0 which shows that

∂E[T̂LB ]
∂ρ

< 0.

9.2 Approximate analysis of Markov process
for Simplex(t = 1)

Here we give an exact solution of the pyramid Markov process

for Simplex(t = 1) shown in Figure 4 by using guess-based local

balance equations. Consider the case α = β = µ that makes the

pyramid process symmetric i.e., pk,(i,0) = pk,(0,i), 1 ≤ i ≤ k . Using

the symmetry, discussion in the following is given in terms of the

states on the right side of the pyramid.

Observe that under low-tra�c load, system spends almost entire

time in states (0, (0, 0)), (1, (0, 0)), (1, (0, 1)) and (1, (1, 0)). Given

this observation, notice that the rate entering into (1, (0, 0)) due

to job arrivals is equal to the rate leaving the state due to task

completions at any server. To help with guessing the steady-state

probabilities we start with the assumption that rate entering into a

state due to job arrivals is equal to the rate leaving the state due

to task completions. �is gives us the following relation between

steady-state probabilities of the column-wise subsequent states:

pk,(i,0) =
λ

γ + 2µ
pk−1,(i,0), 0 ≤ i ≤ k . (34)

De�ne τ = λ/(γ + 2µ). �is relation allows us to write pk,(i,0) =
τk−ipi,(i,0). However this obviously won’t hold for higher arrival

rates since at arrival rates some jobs wait in the queue, which

requires the rate entering into a state due to job arrivals to be

higher than the rate leaving the state due to task completions. To

be used in the following discussion, �rst we write p
1,(1,0) in terms

of p
0,(0,0) from the global balance equations as the following.

λp
0,(0,0) = γp1,(0,0) + 2(γ + µ)p

1,(1,0),

p
1,(1,0) =

λ − γτ
2(γ + µ)p0,(0,0)

(35)

For the nodes at the far right side of the pyramid, we can write the

global balance equations and solve the corresponding recurrence

relation as the following:

pi,(i,0)(λ + µ + γ ) = pi,(i−1,0)µ + pi+1,(i+1,0)(µ + γ ), i ≥ 1,

pi+2,(i+2,0) = bpi+1,(i+1,0) + api,(i,0), i ≥ 0 where

b = 1 +
λ

µ + γ
, a =

−τ µ
γ + µ

,

=⇒ pi,(i,0) =
A

r i
0

+
B

r i
1

where

B =
r0p0,(0,0) + (p1,(1,0) − bp0,(0,0))r0r1

r0 − r1

,

A = p
0,(0,0) − B where

(r0, r1) = (
−b −

√
∆

2a
,
−b +

√
∆

2a
); ∆ = b2 + 4a,

pk,(i,0) = pk,(0,i) = τ
k−i (A

r i
0

+
B

r i
1

), 0 ≤ i ≤ k .

(36)

Even though the required algebra does not permit much cancel-

lation, once can �nd the unknowns A and B above by computing

p
0,(0,0) as follows.

∞∑
k=0

pk,(0,0) +
∞∑
i=1

∞∑
k=i

(pk,(i,0) + pk,(0,i))

=
p

0,(0,0)
1 − τ +

2

1 − τ

∞∑
i=1

pi,(i,0) (τ < 1)

=
p

0,(0,0)
1 − τ +

2

1 − τ

∞∑
i=1

(A
r i
0

+
B

r i
1

)

=
p

0,(0,0)
1 − τ +

2

1 − τ (
A

r0 − 1

+
B

r1 − 1

) ((36), r0, r1 > 1)

=
p

0,(0,0)
1 − τ +

2

1 − τ (
(p

0,(0,0) − B)(r1 − 1) + B(r0 − 1)
(r1 − 1)(r0 − 1) )

=
p

0,(0,0)
1 − τ +

2

1 − τ (
B(r0 − r1) + p0,(0,0)(r1 − 1)

(r1 − 1)(r0 − 1) )

=
p

0,(0,0)
1 − τ +

2

1 − τ (
(r0p0 + r0r1(p1,(1,0) − bp0,(0,0))) + p0,(0,0)(r1 − 1)

(r1 − 1)(r0 − 1) )

= p
0,(0,0)(

1 + 2(
r0+r0r1( λ−γ τ

2(γ +µ )−b)+r1−1

(r1−1)(r0−1) )
(1 − τ ) ) = 1,

=⇒ p
0,(0,0) =

(1 − τ )

1 + 2(
r0+r0r1( λ−γ τ

2(γ +µ )−b)+r1−1

(r1−1)(r0−1) )
.

(37)

Simulation results show that the model for pk,(i,0) discussed above

is proper in structure i.e., pk,(i,0) decreases exponentially as k or i
increases. However, simulations show that τ (λ) = k(γ , µ)λ/(γ +2µ).
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For instance, for γ = µ we can �nd that k(γ , µ) ' 0.3. Nevertheless

this does not permit to �nd a general expression for k(γ , µ).

9.3 Matrix Analytic Solution for Simplex(t=1)
De�ning δ = α + β + γ + λ, the sub-matrices forming Q are given

below.

F0 =


−λ 0 λ 0

α + γ β − δ 0 0

γ β −δ α
β + γ 0 0 α − δ

 ,
H0 =


0 0 0 0 0

0 λ 0 0 0

0 0 λ 0 0

0 0 0 λ 0

 ,

L0 =


0 α + γ 0 0

0 0 α + γ 0

0 0 γ 0

0 0 β + γ 0

0 0 0 β + γ


,

F =


β − δ 0 0 0 0

β −δ 0 0 0

0 β −δ α 0

0 0 0 −δ α
0 0 0 0 α − δ


,

L =


0 α + γ 0 0 0

0 0 α + γ 0 0

0 0 γ 0 0

0 0 β + γ 0 0

0 0 0 β + γ 0


,

H =


λ 0 0 0 0

0 λ 0 0 0

0 0 λ 0 0

0 0 0 λ 0

0 0 0 0 λ


.

9.4 Truncated Markov process for t = 2

Here we show that truncating Markov process n(t) shown in Fig. 8

according to rule in (25) and ge�ing ñ(t) imply π̃i, j > πi, j , i, j ≤ M .

�ink of ñ(t)with two disjoint set of nodes SK = {(i, j)|min{i, j} ≤
K} and S ′K = ñ(t)/SK where K > 0, i, j ≤ M . Observe that transi-

tions between SK and S ′K exist only between the nodes that are on

boundaries BK = {(i, j)|min{i, j} = K} and BK+1. Using ([29], �e-

orem 12.13), we have by le�ing ΣK =
∑
(i, j)∈BK πi, j and ν = γ +4µ,

(Σ0 − π0,0)
2µ

ν
= Σ1

γ + 2µ

ν
,

(Σi − πi,i )
µ

ν
= Σi+1

γ + 2µ

ν
; i > 0,

De�ning ρ = 2 +
γ

µ
, Σ0 ≥

ρ

2

Σ1, Σi ≥ ρΣi+1; i > 0.

Next think of the truncated chain with the two disjoint set of nodes

SK = {(i, j)|max{i, j} ≤ K} and S ′K = ñ(t)/SK where K > 0, i, j ≤
M . Observe that transitions between SK and S ′K exist only between

the nodes that are on boundaries CK = {(i, j)|max{i, j} = K} and

CK+1. We have by le�ing σK =
∑
(i, j)∈CK πi, j

(σ0 − π0,0)
2µ

ν
≥ σ1

γ + µ

ν
,

(σi − πi,i )
µ

ν
≥ σi+1

γ + µ

ν
,

De�ning τ = 1 +
γ

µ
,σ0 ≥

τ

2

σ1, σi ≥ τσi+1; i > 0.

Overall for any M > 0, Σi and σi decrease at least exponentially

with i . �is is suggesting that π̃i, j − πi, j due to truncation will

be higher for lower i, j because the lower-le� region of the chain

is weighted exponentially more i.e., lower-le� region gets higher

share of increase.

9.5 On the Conjecture 5.3 for Simplex(t )
Here we do not give a complete proof for Conjecture 5.3. However

�eorem 9.1 helps to build an intuition for Conjecture 5.3. �ink

of the system state S as the starting setup type of the job that is in

service, so state space is S ∈ {0, . . . , t} where the state transition

corresponds to departure of the job in service and immediate start of

the next job’s service. Given that Conjecture 5.3 holds i.e., fi > fi+1

for 0 ≤ i ≤ t , one would expect the average dri� at a state-i to be

towards states-(< i). Biggest challenge in proving the conjecture is

that there is a transition with some probability between every pos-

sible value of state S . For instance, if the transitions were possible

only between consecutive states i and i + 1 as in birth-death chain,

theorem below would have implied the conjecture.

Theorem 9.1. Let Jj represent the type of service start that job-j
makes. �en Pr {Jj+1 > i |Jj = i} < 0.5. In other words, for an
arbitrary job that makes an arbitrary type-i service start, next job is
more likely to make type-(≤ i) start.

Proof. De�ne Lk (t) as the number of tasks that the leading

server at repair group k is leading by at time t . Suppose jth job

makes a type-i start at time τ , namely Jj = i . We have the following

inequality Pr {Jj+1 > i |Jj = i,A} > Pr {Jj+1 > i |Jj = i} where A
denotes the event that Lk (τ ) > 1 for every leading repair group k .

Event A guarantees Jj+1 ≥ i i.e., Pr {Jj+1 ≥ i |Jj = i,A} = 1, since

even in case none of the leading servers advances before jth job

terminates, next job will make at least type-i start. We will try

to compute Pr {Jj+1 > i |Jj = i,A} = 1 − Pr {Jj+1 = i |Jj = i,A}.
Suppose jth job terminates at time τ ′ and without loss of generality

repair group k is leading if k ≤ i and non-leading otherwise. Events

{Jj+1 = i |Jj = i,A} and Bi = {Lk (ζ ) < 2; ζ ∈ [τ ,τ ′], i < k ≤ t} for

0 < i < t−1 are equivalent since for (j+1)th job to make type-(i+1)
start, in at least one of the non-leading repair groups a server should

advance by at least 2 tasks before jth job terminates. Event Bi can be

expressed as

t−i⋃
l=0

Cl where Cl = {Lkj (τ ) = 1; 1 ≤ j ≤ l , i < kj ≤ t}.

EventCl describes that l non-leading repair groups start leading by

1 before jth job terminates. Given that there exists i leading groups,

denote the probability of an event that a new repair group starts

to lead by 1 as p+1

i and of the event that jth job terminates as pTi ,

so we can write Pr {Cl } = pTi+l

i+l−1∏
k=i

p+1

k . Since events Cl for 0 ≤

l ≤ t − i are disjoint, Pr {Bi } =
t−i∑
l=0

Pr {Cl } from which we can get
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the recurrence relation Pr {Bi } = pTi + p
+1

i Pr {Bi+1}. Since service

times at the servers are assumed Exponential, probabilities are easy

to �nd as pTi = (γ + iµ)/(γ + 2tµ) and p+1

i = (2(t − i)µ)/(γ + 2tµ)
where γ and µ are respectively service rates of the systematic server

and repair servers.

We �nd,

Pr {Bt−1} = pTt−1
+ p+1

t−1
pTt

=
γ + (t − 1)µ
γ + 2tµ

+
2µ

γ + 2tµ

γ + tµ

γ + 2tµ

=
γ + tµ

γ + 2tµ
+

γ µ

(γ + 2tµ)2

= 1 − tµ

γ + 2tµ
+

γ µ

(γ + 2tµ)2
>

1

2

(38)

�en suppose Pr {Bi+1} > 0.5,

Pr {Bi } =
γ + iµ

γ + 2tµ
+

2(t − i)µ
γ + 2tµ

Pr {Bi+1}

>
γ + iµ

γ + 2tµ
+
(t − i)µ
γ + 2tµ

=
γ + tµ

γ + 2tµ
=

1

2

+
γ/2

γ + 2tµ
>

1

2

(39)

Knowing Pr {Bt−1} > 0.5 together with Pr {Bk } > 0.5 given that

Pr {Bk+1
} > 0.5 gives us Pr {Bi } > 0.5 for each i . Remember

Pr {Jj+1 = i |Jj = i,A} = Pr {Bi }, so we �nd Pr {Jj+1 > i |Jj = i} <
Pr {Jj+1 > i |Jj = i,A} = 1− Pr {Bi } < 0.5. �is tells us that for any

job and any type-i starting state, next job is more likely to make

type-(≤ i) start. �

9.6 Proof of Corollary 5.5
Proof. Under stability, sub-sequence of the job arrivals that

see an empty system in Simplex(t ) forms a renewal process ([5],

�eorem 5.5.8). Since Simplex(t ) is an M/G/1 queue, the expected

number of job arrivals E[J ] between successive renewal epochs

(busy periods) is E[J ] = E[X ]/(E[X ]−E[V ]) by ([5], �eorem 5.5.10).

Jobs that see an empty system upon arrival de�nitely make type-0

start while within a busy period any type of start is probable. �is

observation reveals that 1/E[J ] is a lower bound for f0. Computing

the value of E[J ] requires knowing E[V ], which we have been

trying to estimate because it is hard to �nd. �erefore, we use the

inequality f0 ≥ 1/E[J ] ≥ 1/E[J ]ub where E[J ]ub ≥ E[J ]. An upper

bound on E[J ] is E[J ]ub = E[X ]/(E[X ] − E[V ]lb ) where E[V ]lb ≤
E[V ]. One possible value of E[V ]lb is E[V̂ (1)] = ∑t

i=0
E[Vi ]/(t + 1).

�erefore, we get f0 ≥ 1/E[J ]ub = (E[X ] − E[V̂ (1)])/E[X ].
Firstly, we have

ˆf0(1) = 1/(1+ t) by se�ing ρ to 1 in �eorem 5.4.

In the system for which
ˆf0(1) becomes exact (i.e., f0 = 1/(t + 1)),

the lower-bound obtained from renewal theory (E[X ]−E[V ])/E[X ]
holds as well under stability. For this system, E[V̂ (1)] is exact and

equal to E[V ]which gives
ˆf0(1) = 1/(1+t) ≥ (E[X ]−E[V̂ (1)])/E[X ].

Secondly, one can see that (1 − ρ)/(1 − ρt+1) ≥ 1/(1 + t) for

0 < ρ < 1 so we have (1 − ρ)/(1 − ρt+1) ≥ 1/(1 + t) ≥ (E[X ] −
E[V̂ (1)])/E[X ] from which (29) is obtained. �

9.7 Proof of Corollary 5.6
Proof. Se�ing

ˆfi = ρ̂0
ˆf0 for 1 ≤ i ≤ t , ρ̂0 ∈ (0, 1] and using

normalization requirement

∑t
i=0

ˆfi = 1 one can �nd
ˆf0 = 1/(1+t ρ̂0).

Using the inequality 1/(1+t ρ̂0) ≥ 1/(1+t) ≥ (E[X ]−E[V̂ (1)])/E[X ],
we get an upper bound on ρ̂0 as ρ̂0 ≤ (E[X ] − E[Y ])/E[Y ] where

E[Y ] = E[X ] − E[V̂ (1)].
Fixing ρ̂0 = (E[X ] − E[Y ])/E[Y ], and se�ing

ˆf1 = ρ̂0
ˆf0,

ˆfi =

ρ̂1ρ̂0
ˆf0 for 2 ≤ i ≤ t , we �nd an upper-bound on ρ̂1 executing the

same steps done to �nd the upper-bound on ρ̂0. Normalization

requirement gives
ˆf0 = 1/(1 + ρ̂0(1 + ρ̂1(t − 1))) and we have

ˆf0 ≥ 1/(1 + t) ≥ E[Y ]/E[X ] which yields ρ̂1 ≤ (E[X ] − E[Y ](1 −
ρ̂0))/(ρ̂0E[Y ](t − 1)). �e same process can be repeated by �xing

ρ̂0 = (E[X ]−E[Y ])/E[Y ] and ρ̂1 = (E[X ]−E[Y ](1−ρ̂0))/(ρ̂0E[Y ](t−
1)) to �nd an upper bound on ρ̂2. Generalizing this, �xing ρ̂0, …,

ρ̂i−1 to their respective upper-bounds, an upper-bound for ρ̂i can

be found as follows:

ρ̂i ≤
E[X ] − E[Y ](1 +∑i−1

k=0

∏k
l=0

ρ̂l )
E[Y ](t − i)∏i−1

k=0
ρ̂k

Finally, se�ing each ρ̂i to their respective upper-bounds lets us

to compute the values of
ˆfi ’s using which estimates E[V̂ (ρ̂)] and

E[V̂ 2(ρ̂)] where ρ̂ = [ρ̂0, . . . , ρ̂t−1] can be computed, and �nally

substitution in PK formula gives (32). �

9.8 A lower-bound for the expected hot-data
download time in simplex queue by using
an equivalent system model

We present another lower-bound for the expected system time E[T ]
of Simplex(t ). Main idea is to express the simplex setup consisting

of multiple sub-systems working in parallel in terms of sub-systems

cascaded in serial. Similar type of argument is used in [27] to �nd

bounds and approximations on the system time in fork-join systems

of n servers. �en the idea is generalized and used to �nd a lower-

bound in [14] on the average access time to data encoded with MDS

codes. In the following, we extend the idea introduced in these

papers for Simplex(t ) to derive a similar lower-bound as in [14].

�e state space for Simplex(t ) can be expressed by states rep-

resented as tuples n = (n0,n1, . . . ,nt ) where n0 is the number

of tasks in systematic server and each tuple ni = (n(1)i ,n
(2)
i ) for

1 ≤ i ≤ t denotes the number of tasks at the sibling servers in the

repair group i . Since all repair servers are identical, state can be

rede�ned as n = (n0, (l1,n1), . . . , (lt ,nt )) where li is the number

of tasks the fast server is leading by and ni is the number of tasks

waiting in queue at the slow server in repair group i . In addition,

tuples for the repair groups are ordered with respect to li such that

l1 ≥ l2 ≥ . . . ≥ lt .

�e time that a job spends in the system can be thought as

factored into phases. Every arriving job is split into 1 + 2t tasks

in which t pairs of tasks are siblings that are sent to the same

repair group. Until the job is completed, it may have some tasks

from some repair groups �nishing service earlier. For instance, in

Simplex(t = 3), at most 3 tasks of the job may depart earlier before

the job �nishes. We call a job being in phase-i if i tasks of the job

already departed where phase-0 for a job means that all the tasks

of the job are in system, waiting or in service. Overall, every job
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may go through possibly t + 1 phases, namely phase-0, phase-1,

…, phase-t , where jobs can move from one phase to only the next

phase in order and at each phase, jobs may �nish service and depart

before moving to the next phase. For instance, in Simplex(t = 3),

a job in phase-0 may depart before moving to phase-1 if the task

at the systematic server �nishes service earlier, or similarly a job

in phase-1 may depart before moving to phase-2 if the task at the

systematic server or the remaining task at the leading repair group

�nishes service earlier.

�e system can be thought as one with i + 1 queues cascaded in

serial where jobs in phase-i are present in queue-i . We call this view

of the system as the serial model while we refer to the structural

view of the simplex queue as the parallel model. In serial model,

jobs arrive to queue-0 and may possibly travel along the line of

the following queues and the job is said to be in phase-i while it

is waiting or in service in queue-i as illustrated in Fig. 12. Let Ni
represent the number of jobs in queue-i which by construction

represents the number of jobs in phase-i . �en the state space

of the serial model consists of tuples (N0, . . . ,Nt ). Service time

distribution isVi at queue-i and a�er departing queue-i , a job leaves

the system with probability Pi→exit or moves to queue-i + 1 with

probability Pi→i+1. Vi , Pi→exit and Pi→i+1 depend on Ni+1, . . .Nt .

For instance for Simplex(t = 2), if N0 > 0, N1 = N2 = 0 at the

systematic server Vi Exp(γ + 4µ), Pi→exit = γ/(γ + 4µ), Pi→i+1 =

4µ/(γ + 4µ) while if N0 > 0, N1 = N2 = 1Vi Exp(γ + µ), Pi→exit =

γ/(γ+µ), Pi→i+1 = µ/(γ+µ). In general,Vi Exp(µi )with µi varying

between γ + µ and γ + iµ + 2(t − i)µ by increments of µ.

Next with a rather ”graphical” argument (i.e., imagining the

Markov chain for the parallel and serial models), we argue that

the parallel model and the serial model we constructed above are

equivalent. By construction, parameters ni and li composing the

state space of the parallel model can be expressed in terms of the

parameter Ni composing the state space of the serial model as

follows, ni =
∑t
k=i Nk , li =

∑i−1

k=0
Nk . Note that, n0 is equal to

the total number of jobs in the system as ni + li is for queue-

i . Following the same argument given in [27], there is a one-to-

one correspondence between the states of the parallel and serial

models. In addition, system dynamics for both models are the same

meaning that thinking of the Markov chain for both state space,

each transition arc between a pair of states in parallel model is

present with the same transition probability for the serial model.

�us, these two models are equivalent.

λ µ0
P0→1

P0→exit

. . . . . . µt−1
Pt−1→t

Pt−1→exit

µt

Figure 12: Representation of the serial model for Simplex(t ).

Equivalent serial model for the simplex system does not help

much with �nding an exact expression for the average system time

E[T ] but gives a way to �nd a lower bound which is presented in

�eorem 9.2.

Theorem 9.2. A lower-bound for average system time in Simplex(t )
is given by

E[T ] > E[T̂f ast−ser ial ] =
1

γ + 2tµ − λ+

t∑
i=1

( 2(t − i)µ
γ + (2t − i)µ )

1

γ + (2t − i)µ − λ∏i−1

k=0

2(t−k)µ
γ+(2t−k )µ

.

(40)

Proof. In the serial model, consider ajob in service at queue-

i . What this implies in the parallel model is that among the re-

maining 1 + 2t − i tasks of the job, at least one of them must

be in service or at best all of the tasks can be in service. �us

the service rate µi at queue-i is at most γ + (2t − i)µ. Se�ing all

the µi ’s to their highest possible value results in a system that

is faster in completing jobs. Fixing each µi , each queue becomes

an M/M/1 using Burke’s �eorem so an expression for the aver-

age system time E[T̂f ast−ser ial ] can be easily found, which then

can be used as a lower-bound for E[T ]. Rate of arrivals λi to

queue-i is λ
∏i−1

k=0
Pk→k+1

, Pi→exit = (γ + iµ)/(γ + (2t − i)µ),
Pi→i+1 = 1 − Pi→exit and time that a job spends in queue-i is

1/(µi − λi ). �en E[T̂f ast−ser ial ] can be found as

E[T̂f ast−ser ial ] =
1

µ0 − λ
+

t∑
i=1

Pi−1→i
µi − λi

=
1

γ + 2tµ − λ+

t∑
i=1

( 2(t − i)µ
γ + (2t − i)µ )

1

γ + (2t − i)µ − λ∏i−1

k=0

2(t−k)µ
γ+(2t−k)µ

< E[T ].
�
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