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Abstract

Guided by multiple heuristics, a unified taxonomy of entities and categories is distilled from the
Wikipedia category network. A comprehensive evaluation, based on the analysis of upward gen-
eralization paths, demonstrates that the taxonomy supports generalizations which are more than
twice as accurate as the state of the art. The taxonomy is available at http://headstaxonomy.com.

1 Introduction

Motivation. As possibly the largest resource of publicly available, semi-structured knowledge,
Wikipedia (Remy, 2002) serves as a stepping stone towards the construction of collections of structured
data (Remy, 2002; Hoffart et al., 2013; Vrandec̆ić and Krötzsch, 2014). Data within Wikipedia benefits
from new additions and distributed curation by human editors, and has proven beneficial in text analysis
tasks ranging from co-reference resolution (Ratinov and Roth, 2012), word sense (Mihalcea, 2007) and
entity disambiguation (Ratinov et al., 2011), to information retrieval (Hu et al., 2009) and information
extraction (Wu and Weld, 2010; Nastase and Strube, 2013; Hoffart et al., 2013; Dong et al., 2014).

Wikipedia links millions of entities (e.g. Barack Obama) to thousands of inter-connected categories
of different granularity (e.g. Presidents of the United States, Political office-holders, Politicians) to form
what is often referred to as the Wikipedia category network (WCN). However, obtaining a taxonomy of
increasingly general categories from WCN is by no means trivial because upward edges in WCN, from
entities to categories and also from child to parent categories, are not confined to is-a relations (Ponzetto
and Strube, 2007). In fact, consistently discarding not-is-a edges such as Japan↝660 BC or Award win-
ners↝Awards, while retaining as many true is-a edges as possible, has been the object of a steady body of
research (Ponzetto and Strube, 2007; Hovy et al., 2013; Flati et al., 2014). Recent methods still produce
taxonomies with glaring gaps in precision and coverage. More importantly, even if the methods correctly
identify individual is-a edges with an accuracy as high as 85% (Flati et al., 2014), it is not uncommon
for upward paths to traverse at least some incorrect edges. The resulting taxonomies transitively connect
entities (e.g., Natural language processing) to many ancestor categories (e.g., Physical body, Mass)1 that
are not true generalizations, thus limiting their utility in practice.

Contributions. This paper proposes a novel method for taxonomy induction from WCN. As described
in Section 3, the method exploits syntactic evidence in category titles to connect entities (i.e., pages)
with increasingly more general categories. A novel, comprehensive framework for taxonomy evaluation
is proposed, focusing on the accuracy and granularity of longer generalization paths, as opposed to
individual edges. Section 4 describes the evaluation framework and carries out an in-depth comparison
of the proposed taxonomy against the state of the art. It shows significant gains in accuracy relative to
current state of the art, while maintaining similar coverage.

1Examples taken from http://wibitaxonomy.org .
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Figure 1: Taxonomy induction phases. Black cir-
cles denote entities. White circles denote cate-
gories. Dashed lines denote paths including possi-
bly multiple edges. (a) Step 1: Page heuristics (αp,
βp and γp) and category heuristics (αc, βc and γc)
are applied sequentially to select candidate gen-
eralizations for each node (page or category), un-
til one produces at least one candidate (white cir-
cles). Gray nodes show candidates that would have
been produced by remaining heuristics. (b) Step 2:
Nodes that encode redundant information are re-
moved (grey). (c) Resulting taxonomy.

2 Related work

Thanks to continuous contributions and curation by many human editors, Wikipedia (Remy, 2002) rec-
ommends itself as a high quality resource of semi-structured knowledge. It enables multiple approaches
to large scale knowledge acquisition and taxonomy induction (Hovy et al., 2013). One of the earliest
attempts towards the latter is WikiTaxonomy (Ponzetto and Strube, 2007; Ponzetto and Strube, 2011).
In WikiTaxonomy, relations are labeled as either is-a or not-is-a, using a cascade of heuristics based on
the syntactic structure of category labels, the topology of the network and lexico-syntactic patterns for
detecting subsumption and meronymy, similar to Hearst patterns (Hearst, 1992). WikiNet (Nastase et al.,
2010) extends WikiTaxonomy by expanding not-is-a relations into fine-grained relations such as part-
of, located-in, etc. YAGO, induces a taxonomy by employing heuristics linking Wikipedia categories
to corresponding synsets in WordNet (Hoffart et al., 2013). YAGO’s taxonomy forms the backbone of
a variety of intelligent applications, including Watson (Ferrucci et al., 2010). DBPedia (Lehmann et
al., 2015) aims to provide a fully-structured representation of semi-structured content of Wikipedia. It
focuses on linking the extracted knowledge with existing resources such as YAGO, OpenCyc etc.

The Wikipedia Bitaxonomy project, or WIBI (Flati et al., 2014), the most recent effort towards large-
scale taxonomy induction from Wikipedia, simultaneously induces a taxonomy for pages and a separate
taxonomy for categories from WCN using the idea that information contained in pages can be useful
in constructing a taxonomy of categories and vice-versa. First, an initial taxonomy over pages is con-
structed by extracting lemmas from their first sentences and resolving them to other pages in Wikipedia.
Alternating between the two taxonomies, edges are added to each taxonomy based on the information
available in the other. Finally, heuristics further enrich the category taxonomy by adding hypernym
edges for nodes which are still orphans after the first two steps. In contrast to both WikiTaxonomy and
our work, WIBI ignores the syntactic structure of category titles.

3 Taxonomy induction

A unified, high-accuracy taxonomy of pages and categories is induced from WCN through the applica-
tion of a cascade of linguistically motivated heuristics, which exploit lexical and structural information
(mainly the lexical head of categories) from Wikipedia to generate a set of candidate generalizations for
pages (page heuristics) and categories (category heuristics). Subsequently, other heuristics are used to
simplify the taxonomy by eliminating redundant nodes (see Figure 1). The heuristics, which are derived
empirically or adapted from previous work, are described in this section using these notations:
● E: set of all WCN edges;
● hc: lexical head of the title of category c;
● Ca(n): set of all direct parents of node n (page or category) in WCN, {c ∣ (n, c)∈E}2;
● Cpl(n)⊂Ca(n): subset of parent categories (Ca(n)) whose titles have a plural lexical head, such as
Administrative divisions. Categories with plural heads have played an important role in earlier work on
taxonomy induction from Wikipedia, as they are more likely to be genuine classes (e.g. Countries) as
opposed to instances (e.g. France) (Suchanek et al., 2007; de Melo and Weikum, 2010);

2Wikipedia maintenance categories (e.g., Sports award stubs) are removed using a handful of blacklisted keywords such as
“articles”, “stubs” etc.

2301



● Lp: set of defining lemmas attached to the root copular verb in the first sentence of the Wikipedia
description of page p, e.g., “William Shakespeare was an English poet, ...” (Flati et al., 2014);
● sup(hc1 , hc2): global support for an ordered pair of lexical heads hc1 and hc2 , defined as the number
of edges in E, from a category with head hc1 to a category with head hc2 ;
●
Ð→vh: vector of co-occurrence counts of plural head h with every unique plural head h′ in WCN, where

co-occurrence count is defined as the number of pairs of categories with heads h and h′ which have at
least one common child (page or category);
● tsim (h1, h2): type similarity, defined as the cosine similarity betweenÐ→vh1 and Ð→vh2 ;

3.1 Category heuristics

Same head. Similarly to the head-matching heuristic in Ponzetto and Strube (2007), for any category c,
pick all categories c′ ∈ Ca(c) as candidate generalizations, if they have the same lexical head as c. E.g.
Category:American actors is picked as candidate generalization for Category:American child actors.

Global head support. For any category c, pick the category c′ ∈ Cpl(c) with the highest3 global support
sup(hc, hc′) as a candidate generalization, provided the support is above a fixed threshold Tsup. E.g.
Category:American entertainers is picked as candidate generalization for Category:American actors be-
cause sup(actors, entertainers) > Tsup.

Type similarity. For any category c, pick the category c′ ∈ Cpl(c) which has head h′ with the highest3

type similarity tsim(h,h′) as a candidate generalization, if the similarity is above a fixed threshold Ttsim.
E.g. Category:People by occupation is picked as candidate generalization for Category:Entertainers
because tsim(entertainers,people) > Ttsim.

Only plural parent. For any category c, if Cpl(c) contains only one category, pick it as a candidate
generalization.

Only singular parent. For any category cwith a non-plural head hc, ifCa(c) contains only one category,
pick it as a candidate generalization.

Grouping child category. Categories whose titles match the pattern X by Y (e.g. “Actors by national-
ity”) usually indicate groupings of instances of class X by attribute Y (Nastase and Strube, 2008). Thus,
for category c whose title matches the pattern X by Y, pick the category with title X (if one exists) as a
candidate generalization.

Grouping parent category. For any category c, pick those categories in Cpl(c) as candidate generaliza-
tions, whose titles match the pattern X by Y. E.g. Category:Occupations by type is picked as candidate
generalization for Category:Legal professions.

Suffix head. For any category c, pick all categories c′ ∈Cpl(c), whose lexical heads hc′ are suffixes of hc,
as candidate generalizations. E.g. Category:People by occupation is picked as candidate generalization
for Category:Sportspeople.

Lookahead candidates. For any category c, pick its grandparents (second-level ancestor categories) as
candidate generalizations, if they satisfy the conditions in the SAME HEAD, GROUPING PARENT CATEGORY or
SUFFIX HEAD heuristics. Higher-level ancestors are ignored as they are usually inaccurate.

Title head. For any category c, pick the category with the title hc as a candidate generalization, if the
lemma of hc is in top Tl% most frequent lemmas among the defining lemmas Lp of the child pages of c.
E.g. Category:Writers is picked as candidate generalization for Category:Legal Writers4.

3If multiple categories satisfy the condition, all of them are picked.
4Key difference between Same head and Title head heuristic is that the latter does not require the candidate generalizations

to be present in Ca(c).
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3.2 Page heuristics

Exact defining lemma. For page p, pick the category c ∈ Cpl(p) as a candidate generalization if the
lemma of its lexical head is in Lp. E.g. all parent categories of page Johnny Depp with lexical head
actors are picked as candidate generalizations because actor is present in LJohnny Depp.

Type-similar lemma. For page p, pick a category c ∈ Cpl(p) as a candidate generalization, if the type
similarity between the category’s lexical head (hc) and at least one of the defining lemmas in Lp is greater
than a fixed threshold T ′tsim. E.g. all parent categories of page Johnny Depp with lexical head people
are picked as candidate generalizations because actor is present in LJohnny Depp and tsim (actors,people)
> T ′tsim.

Plural head. Similar to YAGO (Suchanek et al., 2007), for page p, pick all categories in Cpl(p) as
candidate generalizations.

Transfer. If a page p has an equivalent category5, pick candidate generalizations generated by category
heuristics for the equivalent category as candidate generalizations of p.

3.3 Construction of the HEADS taxonomy
The heuristics6 are applied to individual pages or categories in order of decreasing edge-level precision,
as measured on a manually annotated development set, which is the same order in which they have been
presented above. For each node, the process stops when one of the heuristics produces at least one gen-
eralization, and the remaining heuristics for that node are ignored. For example, in Figure 1a, only the
generalizations proposed by αp for entity Tom Cruise are retained, namely Living people and Male actors
from NY. Certain categories encode information that is orthogonal to types, and therefore superfluous as it
may refer to time (20th-century actors), location (Actors from Singapore) or grouping by attributes (Ac-
tors by nationality). Such categories are detected using a few regular expressions and eliminated: their
children are linked directly to their parents, and the redundant nodes are removed (Fig. 1b) producing a
more compact taxonomy (Fig. 1c). This step is hereafter referred to as simplification.

The described process results in the HEADS taxonomy, which is evaluated in the next section. Taxon-
omy generation and evaluation in this submission is restricted to English Wikipedia. However, it can be
easily adapted to other languages by porting the heuristics, a fairly straightforward task if a dependency
parser is available in the target language. Adaptation to other languages is not explored in this study, and
remains the object of future work.

4 Taxonomy evaluation

This section compares the HEADS taxonomy against the state of the art. It presents the standard edge-
level evaluation (Ponzetto and Strube, 2011; Flati et al., 2014); demonstrates that, as popular as they
might be, edge-level metrics do not reflect the real quality of a taxonomy; and proposes a more compre-
hensive evaluation, which takes into account the correctness of multi-edge generalization paths, overall
probability of generalization errors, granularity of individual generalizations and accuracy of specializa-
tions. It is shown that performance along these newly-proposed dimensions is not necessarily correlated
with edge-level metrics and cannot be estimated directly from them.

Experimental setup HEADS is constructed using a November 2015 snapshot of the English Wikipedia.
To create a baseline for comparison, we initially attempted to re-implement the state-of-the-art taxonomy
induction approach of Flati et al. (2014), but were unable to replicate the reported results. In particular,
recall of the re-implementation was lower than expected. Since the source code for WIBI was not made
public and was not available upon request, we instead compared HEADS directly against the entity and

5A page and category are considered equivalent if they have the same title after lemmatization of each token. If a disam-
biguation string is specified in the title (e.g., biology in Family (biology)), it should also match. e.g., Families (biology) ∼ Family
(biology) ≁ FAMILY.

6Threshold Tsup is set to 5, Ttsim and T ′tsim are set to 0.2 and Tl is set to 10.
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Taxonomy WIBIE WIBIC HEADS

Nodes 3,414,512 597,179 4,580,662
Entities (E) 3,414,512 - 4,239,486
Categories (C) - 597,179 341,176
Leaves 3,308,755 465,682 4,359,178

Edges 3,859,717 594,917 11,648,975
E → E 3,859,717 - -
E → C - - 11,077,992
C → C - 594,917 570,983

Avg. degree 1.13 0.996 2.54

WCCs 6,448 2,301 3,195
Largest WCC

Nodes 3,386,995 469,453 4,563,949
(99.2%) (78.6%) (99.6%)

Edges 3,838,286 469,453 11,634,161
(99.4%) (78.9%) (99.9%)

Table 1: Topological properties of HEADS and WIBI
taxonomies. (WCC: weakly connected component)

Taxonomy Edge type P R C A

WCN E → C 0.785 1.000 1.000 0.902
C → C 0.807 1.000 0.970 0.840

HEADS
E → C 0.394 0.249 0.898 0.956
C → C 0.405 0.344 0.249 0.931

WIBIE E → E 0.841† 0.794† 0.926† 0.789
WIBIC C → C 0.852† 0.829† 0.973† 0.840

Table 2: Edge-level evaluation. E→C represents
entity→category edges, E→E represents entity→entity
edges and C→C represents category→category edges.
†: results as reported in Flati et al. (2014). P: precision,
R: recall, C: coverage, A: accuracy.

category taxonomies made available by Flati et al. (2014), referred to as WIBIE and WIBIC , respectively.
It is important to stress that WIBI taxonomies are generated using an older Wikipedia snapshot (October
2012). However, to the best of our knowledge, there is no evidence suggesting that taxonomy induction is
easier or harder on more recent vs. older snapshots. Noisy edges between categories such as Japan↝660
BC can be found in both snapshots. Meanwhile, the network has grown significantly, with more than
twice as many categories (1.37M vs. 619K) and 20% more entities (4.7M vs 3.8M), possibly adding to
the complexity of the task.

4.1 Topological properties

The main topological properties of the HEADS and WIBI taxonomies are shown in Table 1. HEADS

contains fewer categories and category→category edges than WIBIC , due to the simplification step (cf.
Section 3.3), which removes approximately 53% of parent categories from WCN. HEADS covers a
larger number of entities than WIBI taxonomies, but a direct comparison of absolute sizes is not neces-
sarily meaningful since the three taxonomies are defined in different spaces (WIBIE has entity→entity
edges, WIBIC has category→category edges, while HEADS has entity→category and category→category
edges). In addition, as already mentioned, WIBI taxonomies are generated using an older snapshot of
Wikipedia. As shown in Table 1, the largest weakly connected component in HEADS and WIBIE covers
over 99% of the nodes. HEADS has 50% fewer components, which is desirable, as each component is an
enclave of isolated entities. WIBIC , which is an order of magnitude smaller than WIBIE and HEADS,
has even fewer connected components, but is overall less connected, with the largest connected compo-
nent containing only 78% of the nodes. Lastly, HEADS contains about twice as many edges per node
as the WIBI taxonomies (see avg. degree), which allows it to better account for multiple aspects of a
concept or an entity, e.g., Johnny Depp being both an Actor and a Film producer.

4.2 Edge-level evaluation

The first comparison between HEADS and WIBI taxonomies follows the methodology introduced and
consistently followed in prior literature, namely computing edge-level precision and recall scores against
a gold standard (Ponzetto and Strube, 2011; Flati et al., 2014). To build the gold standard, 500 entities
and 500 categories are randomly selected, and their parents in WCN are annotated by three human judges
as correct or incorrect generalizations. 7 Table 2 shows precision and recall scores for HEADS and WIBI

taxonomies by edge type. Precision and recall with respect to the golden edges are computed for each
sampled node, and then averaged over all the nodes in the gold standard.

Compared to the WIBI taxonomies, HEADS shows significantly lower precision and recall scores
in this evaluation. However, the losses can be largely attributed to the simplification procedure (cf.
Section 3.3). For example, in Figure 1, the edge Tom Cruise→Male actors from NY would be missing
from the final HEADS taxonomy as the node Male actors from NY would be removed by the simplification

7The inter-annotator agreement in terms of Fleiss’ Kappa is 0.52. Annotations were harmonized by majority voting.
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procedure, thus resulting in loss of precision and recall. Similarly, Living People→People, a correct edge,
would be considered a precision loss, as it is absent from WCN (and hence, from the gold standard).

Table 2 also reports coverage, defined as the fraction of entities and categories in a taxonomy with
at least one generalization, independent of its correctness. HEADS shows lower coverage on categories,
because 65% of categories in WCN are removed from HEADS due to the simplification procedure.

As an additional metric, Table 2 reports edge-level accuracy, defined as the ratio of edges annotated
as correct over the total number of edges sampled from a taxonomy. Accuracy scores are computed for
each taxonomy by randomly sampling 450 edges of each type and annotating their correctness. HEADS

is more accurate than WIBIE for entities, though a direct comparison is not meaningful, as WIBIE con-
tains entity→entity edges while HEADS contains entity→category edges. For category→category edges,
HEADS achieves a fairly significant > 10% improvement in accuracy compared to WIBIC taxonomy.

4.3 Beyond edge-level evaluation

Good performance at edge level, though widely used as an indicator of quality for a taxon-
omy (Ponzetto and Strube, 2007; Nastase and Strube, 2008; Flati et al., 2014), does not auto-
matically translate into good performance at path level. For example, the generalization path ap-
ples→fruits↝vegetarians→people→organisms is 75% edge-accurate (i.e., 3/4 edges are correct as in-
dicated by the symbol→), but it can lead to the wrong inference that apples are vegetarians and, in turn,
people and organisms. A single incorrect edge, namely fruits↝vegetarians, causes a cascade of general-
ization errors for fruits and all its descendants, and a cascade of specialization errors for vegetarians and
all its ancestors.

As an alternative to edge-level evaluation, the remainder of this section proposes a more structured
scheme for evaluating a taxonomy. More specifically, it seeks to estimate the following: (1) What is
the accuracy of multi-edge generalization paths ? (2) Are individual generalizations at the right level of
granularity ? and (3) What is the accuracy of specializations of a concept.

4.3.1 Path-level evaluation
From the above example (apples⇢organisms), it is clear that during traversal of an upward general-
ization path, the correctness of individual edges is inconsequential to finding a good generalization for
starting node (i.e., apples) once the first wrong edge (fruits↝vegetarians) is encountered. Therefore, a
good taxonomy should not only provide a large proportion of correct edges, but also provide correct gen-
eralization paths, i.e., paths which are correct in their entirety. However, since in practice it is common
for relatively deep taxonomies to provide long generalization paths which pick at least one wrong edge,
it would be still desirable to have a long correct path prefix, i.e., the maximal prefix of a path which is
correct in its entirety.

This section evaluates HEADS and WIBI taxonomies on their ability to provide longer correct path
prefixes and correct generalization paths. To avoid bias, it is desirable that paths sampled from different
taxonomies start from the same node. Therefore, WIBIC , which lacks the notion of entities, is first
augmented with E→C edges from HEADS, resulting in a new hybrid taxonomy hereafter referred to as
WIBIC+HE . For a sample of 250 entities present in HEADS, WIBIE and WIBIC+HE , one upward
path is sampled per entity per taxonomy, for a total of 750 paths. Example paths are shown in Table 3,
while Figure 2 shows the length distribution of the generalization paths sampled from each taxonomy.
As expected, HEADS paths are generally shorter than WIBI taxonomies due to simplification.

To compare the three taxonomies, three human annotators8 inspect each path starting from the entity
and annotate the first incorrect generalization (e.g., Film producer↝Filmmaking for the WIBIE example
in Table 3). Figure 3 shows the average length of the correct path prefix in HEADS and WIBI tax-
onomies, along with 95% confidence interval bars9, depending on the total length of a path. For a correct
generalization path, the length of correct path prefix is the same as the path length, so an ideal taxonomy

8At least two annotators agreed for 93% of paths. All three annotators agreed for 53% of paths. Annotations are harmonized
using majority voting.

9The confidence intervals reflect the distribution of the paths being sampled. A larger confidence bar indicates lower
probability that a path of that length is chosen.
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WIBIE WIBIC +HE HEADS

Structure Government
↑Algebraic structure ... 23 more categories ... Apes
↑Category (mathematics) ↑Cinema by region ↑Humans
↑Sequence ↑Cinema by continent ↑People
↑Process (science) ↑North American cinema ↑Producers
↑Filmmaking ↑Cinema of the United States ↑American producers
↑Film producer ↑American film producers ↑American film producers
Johnny Depp Johnny Depp Johnny Depp

Table 3: Upward generalization paths for Johnny Depp in three taxonomies. Correct path prefixes are shown in bold.
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Figure 2: Length distribution of sampled generalization
paths in different taxonomies.
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Figure 3: Average length of correct path prefix (CPP)
in different taxonomies (computed using 750 annotated
paths).

with only correct generalization paths would show up as the line y = x in Figure 3. The behavior of
HEADS is very close to an ideal taxonomy for the majority of path lengths, and outperforms WIBIE or
WIBIC+HE at all lengths, while WIBIC+HE slightly outperforms WIBIE . It is interesting to note that
this difference does not translate into similar differences in edge-level evaluation, where all taxonomies
consistently show relatively high accuracy (cf. Section 4.2). The superior performance of HEADS is
further confirmed by Figure 4, which shows the probability of obtaining a correct generalization path of
length ≤ k. In contrast with WIBI taxonomies, HEADS generalization paths maintain high probability of
correctness (> 0.7) at all lengths.

4.3.2 Path-granularity evaluation
A good taxonomy should not only provide correct generalization paths, but also ensure that each indi-
vidual edge in the path provides generalization at the right level of granularity, i.e., neither too specific
nor too general. To evaluate this aspect, 100 generalization paths originating from the same starting en-
tities are sampled from different taxonomies. For each path, each individual edge is annotated by three
human annotators with one of the following labels: 0 for wrong generalization (fruits↝vegetarians); 1
for under-generalization (fruits by country→fruits); 2 for good-generalization (edible fruits→fruits); 3
for over-generalization (edible fruits→physical bodies). An edge under-generalizes if it adds or removes
little information relative to the source node (e.g. cricketers by team→cricketers) or if it is a synonym or
rephrasing of the original category (e.g. coaches by sport→sport coaches). An edge over-generalizes if
it removes too much information. For example, for bitstream→concept one would expect the taxonomy
to provide additional intermediate nodes (e.g. binary sequences) before generic node concept. Good-
generalization label implies that edge is correct and neither over-generalizes nor under-generalizes. In
order to ensure that the paths on which the comparison is performed are similar in length and complexity,
we only consider pairs of shortest paths ⟨p1, p2⟩ with the same final node, selected so as to minimize the
difference in the length of the shortest paths ∣∣p1∣ − ∣p2∣∣ in the two taxonomies, while ensuring that the
paths are not identical (p1 ≠ p2).

WIBIE is excluded from this experiment, since in contrast to HEADS and WIBIC+HE , WIBIE does
not contain categories, hence the condition of same final node cannot be satisfied. Figure 5 graphically
summarizes the results of this experiment. HEADS has fewer under-generalizations than WIBIC+HE
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Figure 5: Generalization granularity evaluation for
HEADS and WIBIC +HE using 100 generalization
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(under-generalization), 2 (good-generalization) and 3
(over-generalization). Top row shows overall distribu-
tion of labels. Other rows represent number of sampled
paths which have an edge with the corresponding label
at the given distance from starting node.

Taxonomy Overall accuracy Per-node accuracy

WIBIE 0.243 0.230
HEADS (entity) 0.703 0.727

WIBIC 0.381 0.408
HEADS (category) 0.670 0.725

Table 4: Accuracy of specializations (computed using 100 (node, descendant) pairs). Overall accuracy is fraction of sampled
(node, descendants) pairs which are correct, and per-node accuracy represents the average ratio of correct descendants per node.
Results for entity and category descendants of HEADS are reported separately.

(0.3% vs 16.3%), which can be largely attributed to the simplification procedure (cf. Section 3.3). De-
spite the removal of 65% of categories through simplification, HEADS still does not suffer significantly
from over-generalizations.

4.3.3 Specializations evaluation
A good taxonomy provides not only accurate generalizations going upwards in the taxonomy, but also
accurate specializations going downwards. To evaluate this aspect, three human annotators annotate the
correctness of a sample of descendants, for nodes in the taxonomies WIBIE , WIBIC and HEADS. To
avoid bias, nodes (entities for WIBIE ; categories for WIBIC , HEADS) are sorted in decreasing order of
the number of descendants in the respective taxonomies. 10 nodes at fixed ranks (5, 10, .., 50) from each
list are selected for evaluation. To enable a comparison of WIBIE with WIBIC and HEADS, category
nodes are manually mapped to equivalent entity nodes and vice-versa (e.g., Category:Concepts is mapped
to the entity Concept). The annotators judge the correctness of 10 randomly sampled descendants for
each selected node in each of the three taxonomies (see Table 4). HEADS is almost three times as accurate
for entities as WIBIE , and almost twice as accurate for categories as WIBIC .

4.3.4 Extrinsic evaluation
This section compares HEADS, WIBIE and WIBIC+HE on the task of selecting correct generalizations
(e.g., Countries) for the variable slot in lexicalized templates such as Passport of [X]. These templates
are mined by aggregation of Wikipedia page titles (e.g., Passport of France, Passport of Canada). The
lexical fillers observed in the titles (e.g., France, Canada) are automatically disambiguated to a specific
page (e.g., France, European country rather than France, NY town)10, resulting in a set of filler entities
for a template referred to as the template support.

To evaluate a taxonomy, for each template, the taxonomy is repeatedly traversed starting from sub-
samples of the support entities and equal-sized samples of random entities. Each non-leaf node in the
taxonomy receives a score equal to the difference between the counts of support entities versus random

10Details of non-trivial problems of template mining and filler disambiguation are omitted due to space constraints, as they
are not the main focus of this paper.
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Selected Generalizations
Template WIBIE WIBIC+HE HEADS

railways in [X] Tool, Entity, Publication, Operation (mathematics),
Property (philosophy), Administrative division, Fine
art, Material, Wealth, Combination

Geography, Countries, Statistics, Mathematical and quantita-
tive methods (economics), Least developed countries, Capitals

Cities, Least developed coun-
tries, Administrative territorial
entities

forestry in [X] Entity, Wealth Muslim-majority countries, Geography, Countries, Statistics,
Mathematical and quantitative methods (economics), French-
speaking countries and territories, Least developed countries

Muslim-majority countries,
Least developed countries, Ad-
ministrative territorial entities

[X] reader Economic system, Entity, Document, Property (philos-
ophy), Fine art, Material, Wealth

Philosophical concepts, Branches of philosophy, Concepts in
metaphysics, Digital technology, Society, Psychology, Intelli-
gence, Classification systems

Intellectual works, Concepts,
Storage media, Literary charac-
ters

[X] ’ day Plurality (voting) Public economics, Heavy metal subgenres, Intelligence, Eco-
nomic policy, Heavy metal musical groups by nationality

Social groups, Occupations,
Creative works

tomb of [X] Tool, Value (mathematics), Publication, Proclamation,
Official, Document, Instance (computer science), Fine
art, Capital (economics), Material, Aesthetics, Electoral
district, [+2 more]

People by nationality, Countries by continent, Hebrew Bible
people, Ancient people, Religion, Genetics, Behavior, Peo-
ple by occupation, Fields of application of statistics, Jewish
priests, Monarchy, Statistics, [+16 more]

People, Families, Ethnic groups,
Noble titles

Table 5: Lists of selected generalizations for HEADS and WIBI taxonomies.
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Figure 6: A view of the largest connected component of HEADS explored during the generalization of the template Tomb of
[X]. The highlighted nodes are the selected generalizations.

entities from which the node can be reached in the given taxonomy. A node is selected as the general-
ization of fillers for the template, if its score is higher than both 1) the score of any of its parents, and
2) the sum of the scores of its children. For example, Figure 6 shows a subset of the largest connected
component of HEADS explored while generalizing the fillers of the template Tomb of [X]. The selected
generalizations are highlighted. The rationale behind this process is that in a good taxonomy, entities
in the support (e.g., France, Canada) should consistently activate the same set of good generalizations
(e.g., Countries).

Table 5 shows the lists of generalizations obtained with WIBIE , WIBIC+HE and HEADS for a few
templates. A quantitative comparison of the results is inherently complex and outside the scope of this
paper, yet it is immediately apparent that the generalizations obtained with WIBIC+HE and WIBIE
are generally quite noisy (e.g., Genetics for Tomb of [X], Wealth for railways in [X]). On the contrary,
HEADS shows a superior ability to select meaningful and compact generalizations that account for the
polysemy of the templates without sacrificing precision (e.g., People, Families, Ethnic groups and Noble
titles for Tomb of [X]).

5 Conclusion

Whether built from scratch or derived by filtering existing data, automatically-constructed taxonomies are
accurate and useful only to the extent that they correctly assert not only short-range, but also longer-range
generalizations among concepts or entities. The unified taxonomy introduced in this paper assembles
entities and categories from Wikipedia that are in is-a relation relative to one another, primarily by
detecting and analyzing lexical heads. A thorough evaluation framework is presented, and applied to the
new taxonomy. In every respect, the taxonomy represents a significant improvement over the state of the
art. It is more accurate along paths of arbitrary length and provides more accurate specializations.
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