superpixels and Polygons using Simple Non-Herative Clustering (SNIC) Algorithm .(I)ﬂ-

" _ - - 1. Pick seeds on a reqular square grid. ECOLE POLYTECHNIQUE
Slmple Non Ite ratlve CIUSterIng SNIC makes two important modifications to SLIC : 2. |Initialize priority queue Q with immediate neighbors of seeds. FEDERALE DE LAUSA&\IE

RADHAKRISHNA ACHANTA & SABINE SUSSTRUNK 1. Centroids are evolved using online averaging. While Q is not empty:
IVRL (IC), EPFL 2. Label assignment is achieved using a priority queue, which returns 3.Pop Q, and label the pixel P.
the element with the shortest distance D to a centroid. 4. Update corresponding centroid.
Simple Non-Iterative Clustering (SNIC) is an improved version of the 5. For all unlabeled neighbors of P, compute D and push on Q.

Simple Linear Iterative Clustering* (SLIC) algorithm. SNIC is non- Unlabeled pixe
iterative, enforces connectivity from the start, requires less memory, is Labeled pixel
faster, and yet is a simpler algorithm. On segmentation benchmarks
SNIC performs better than the state-of-the-art, including SLIC.
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Segmentation error (CUSE)

SLIC review

SLIC performs k-means clustering on the image plane with centroids chosen
on a square grid in the image plane and distance D to be a weighted sum of Q=0 Q| =16 Q=15 Q=18

the normalized spatial and color distances. 1. Initial seeds with a unique 2. For each seed compute 3. Pop the top-most element 4. Compute distance D to the
label. Q is empty at this time. distance D to unlabeled on the queue and label the nearest neighbors of this newly
neighbors and push on Q. corresponding pixel. labeled pixel and push on Q.
Continue until Q is empty.
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Polygon Partitioning Algorithm SNIC superpixels SNIC polygons _ amST
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Global k-means Local k-means (SLIC) ®. boundaries using a standard algorithm.
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) ) .’~W 2. Assign initial vertices to be pixels that
D — HXj — XjHQ | HCj — ¢k |5 “‘@" touch at least three different segments, at
S m {éa.' least two segments and the image borders,
- - L , SHEERE - Or are image corners.
X = [2,y] c=,a,b| ..*w‘
“‘@"- 3. New vertices are added using the

:’ﬂ‘ ."‘ Douglas-Peucker curve simplification
13 AR algorithm.

Shortcomings of SLIC: (
1. Several iterations ' —
2. Repeat computations in overlapping local regions '."&“ | N
3. Pixel connectivity enforced as a post-processing step i‘)a‘ 4. Merge vertices that are too close and join

* SLIC Superpixels Compared to the State-of-the-art Superpixel Methods. \ “
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Boundary precision
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R. Achanta, S. Shaji, K. Smith, A. Lucchi, P. Fua. S. Stisstrunk (TPAMI 2012).




