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Introduction  
Flood forecasting, and more broadly flow forecasting, are an extremely relevant topic worldwide. This is certainly 
the case in Africa, due to significant reasons. Water is a prized resource in much of the continent, being that basic 
needs can be better served and substantial economic gains made using effective flow forecasting techniques. Also, 
populations often occupy dangerous floodplain areas due to lack of awareness of the risks, scarce information, and 
necessity, being particularly exposed to floods; more lives and livelihoods can be saved when flood warnings are 
issued timely. 

On the one hand flow forecasting deals with uncertainty and is a technically challenging problem over which the 
scientific community has invested both a lot of time and resources. Yet, despite great advancements having been 
made in the past, many scientific and technical challenges associated with flow forecasting are far from being 
solved. On the other hand, in many African countries, the expertise to maintain flow forecasting systems is lacking, 
the required data is simply not available, and the infrastructure needed to prepare and transmit it is not in place. 

A novel state-of-the-art probabilistic flow forecasting tool that aims to address these shortcomings is presented in 
this contribution. Designed for Africa and based on machine learning techniques, the tool is cheap to implement (in 
fact nearly free, as the code is open-sourced), has fully adaptable data requirements (simulations improve as more 
relevant data is used as a predictor), and provides a full and extremely accurate depiction of forecast uncertainty. 
Presently, the system is being tested on the Zambezi River Basin, where it is expected to alleviate the impacts of 
flooding and contribute to enhance hydropower production. 

1. Background 
1.1 Motivation 

Flow forecasting is paramount for reservoir management and plays a central role in the prevention of downstream 
floods and the optimization of hydropower production. Accurate flow forecasting is, however, not always easy. In 
fact, in order to obtain flow forecasts one should have access to numerical weather forecasts, a calibrated 
hydrological model, and an ensemble forecasting system that brings those components together [Cloke and 
Pappenberger, 2009]. 

Even if all those components are available, it should be kept in mind that forecasts are always uncertain, and it is 
therefore important to have a good idea about the quality of the information that is being relied upon to make 
reservoir management decisions. One way to do so is to move from a deterministic paradigm to a probabilistic one. 
In fact, that has been the tendency of the hydrology community for several years. 

Obtaining reliable probabilistic forecasts can be a complex and computationally intensive process. Arguably, the 
two main ways to achieve that goal are uncertainty postprocessors or ensemble forecasting systems. Uncertainty 
postprocessors rely on a deterministic hydrological model whose predictive error is modeled based on past 
forecasting performance and can, therefore, be estimated operationally [Krzysztofowicz, 2002; Todini, 2008; 
Solomatine and Shrestha, 2009; Weerts et al., 2011]. Ensemble forecasting systems are based on multiple runs of 
one or more deterministic models among which sets of parameters, initial conditions, and inputs change. As such, 
their reliability depends, firstly, on the reliability of the numerical weather prediction system and, secondly, on the 
data assimilation scheme (e.g. an Ensemble Kalman Filter) that manages each model run. Often, the predictive 
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distributions produced by ensemble forecasting systems must themselves be postprocessed to match observations 
from a statistical standpoint. 

Whether opting for a postprocessor or an ensemble forecasting system, the following requirements should be met: 

 Availability of a calibrated hydrological model. 
 Access to a numerical weather prediction system that provides future inputs to the hydrological model (e.g. 

precipitation and temperature forecasts). 

 Computational capacity to run the postprocessor or ensemble forecasting system. 

In Southern Africa, and particularly in the Zambezi River Basin, some of these requirements have been hard to 
fulfil. While presently the Zambezi Watercourse Commission (ZAMCOM) is making concrete efforts towards the 
operationalization of a centralized forecasting system for the basin, until very recently major reservoirs upon whose 
hydropower production the regional economy depends did not have access to a probabilistic flow forecasting 
systems. This is perhaps not surprising, as flow forecasting systems are usually expensive and require a fair amount 
of expertise to set up and operate. 

In 2016, the largest artificial reservoirs in the Zambezi River Basin, Kariba and Cahora Bassa, operated at low water 
levels. This affected Kariba particularly, with repercussions on the dam’s hydropower production capacity and, 
consequently, on the regional electricity supply. 

In the present contribution, a free and open source flow forecasting system designed for Africa is presented. It is a 
data-driven approach based on state-of-the-art machine learning models that fully adapts to the information capable 
of producing probabilistic forecasts. 

1.2 Development of the forecasting system 

The system started being developed with the African Dams Project (ADAPT) which, focusing on integrated water 
resources management in the Zambezi River Basin, has been a fruitful endeavor to collect and interpret data in order 
to increase the scientific basis for decision making [Mertens et al., 2013]. Among others, the project’s research 
partners included the Integrated Water Resources Management Centre at the University of Zambia, the Centre for 
Engineering Studies of the Eduardo Mondlane university (Mozambique), the hydropower operators Zesco and ZRA, 
the Laboratory of Hydraulic Constructions (LCH) of the École Polytechnique Fédérale de Lausanne (EPFL, 
Switzerland), the Department of Surface Water – Research and Management of the Swiss Federal Institute for 
Aquatic Science and Technology, the institutes of Integrative Biology, Environmental Engineering, Environmental 
Decisions, Biogeochemistry and Pollutant Dynamics, the Center for Comparative and International Studies, and 
Advanced Studies in Development and Cooperation at the Swiss Federal Institute of Technology in Zurich [Mertens, 
2013]. 

Following ADAPT, the smaller-scale ADAPT-Database (ADAPT-DB) endeavor aimed to produce a water resources 
database with data analyses capabilities. It was within ADAPT-DB, which finished in 2016, that the present 
forecasting system was mainly developed. Working with local stakeholders, the project benefitted particularly from 
the engagement and interest of the Water Resources Institute of Angola (Instituto Nacional de Recursos Hídricos), 
the Zambezi River Authority (managing the Kariba dam), the Eduardo Mondlane University in Mozambique 
(Universidade Eduardo Mondlane), and the Hydroelectric of Cahora Bassa (Hidroeléctrica de Cahora Bassa, 
managing the Cahora Bassa dam). 

At its core, the forecasting system developed under ADAPT-DB can predict an inverse conditional distribution 
based on a sufficiently long historical series of observed values and ancillary data. For a given probability, p , the 
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