
Privacy-Preserving Exploration of Genetic Cohorts with i2b2
At Lausanne University Hospital

Gwangbae Choi1,∗, Jean Louis Raisaro1,∗, Sylvain Pradervand2, Raphael Colsenet 2,
Nathalie Jacquemont 2, Nicolas Rosat 2, and Jean-Pierre Hubaux 1

1 EPFL, 2 CHUV
∗ First co-authors

Abstract

Re-use of patients’ health records can provide tremendous benefits for clinical research. One of the first essential steps
for many research studies, such as clinical trials or population health studies, is to effectively identify, from electronic
health record systems, groups of well-characterized patients who meet specific inclusion and exclusion criteria. This
procedure is called cohort exploration. Yet, when researchers need to compile specific cohorts of patients, privacy
issues represent one of the major obstacles to accessing patients’ data, especially when sensitive data, such as genomic
data, are involved. Because of this, cohort exploration could become extremely difficult and time-consuming. In this
joint paper between the École Polytechnique Fédérale de Lausanne (EPFL) and the Lausanne University Hospital
(CHUV), we address the challenge of designing and deploying an efficient privacy-preserving explorer for genetic
cohorts. Our solution is built on top of i2b2 (informatics for integrating biology and the bedside), the state-of-the-art
open-source framework for cohort exploration, and exploits on cutting-edge privacy-enhancing technologies (PETs)
such as homomorphic encryption and differential privacy. To the best of our knowledge, our proposed solution is
the first of its kind to be successfully deployed in a real operational environment within a hospital. Especially, it has
been tested as one of the services of the clinical research data-warehouse of CHUV. Solutions involving homomorphic
encryption are often believed to be costly and still immature for use in operational environments. In this paper, we
prove the opposite by describing how actually, for specific use cases, this kind of PETs can be very efficient enablers.

1 Introduction

Secondary use of electronic health records and omics data is critical for accelerating biomarker identification for
clinical development and translational medicine. Yet, as nowadays most medical institutions have clinical and omics
data stored across a variety of systems, getting the information that is needed into the hands of researchers often
requires substantial time and resources.

Recently, many advanced medical institutions have taken important steps to address this problem. For example, since
2015, the Lausanne University Hospital (CHUV) has been setting up a service to support clinical research1 that is
in charge of building a centralized, secure and comprehensive research data-warehouse (DWH)a for storing all the
diverse clinical and molecular data. The goal is to provide its own researchers with an easy and cost-effective way to
access the vast amount of data necessary for identifying new predictive biomarkers and rapidly finding subjects with
similar clinical and omics characteristics.

Yet, because of the inherent sensitivity of these types of data, ensuring their security and privacy is a fundamental re-
quirement for the success of such initiatives. Reinforcing the feeling of trust between patients and healthcare providers
is key for fully realizing the benefits of personalized medicine.

For this reason, in the last few years, researchers from both the computer science and medical fields have started
collaborating to design new solutions that protect individuals’ medical and genomic privacy, in particular2,3. Actually,
because of their identifying nature, it is in the area of genomic data that privacy issues are the most acute. However,
to obtain acknowledgment and to be adopted in the real world, these solutions need to be deployed and assessed in
concrete operational scenarios.

In this paper, we describe how we addressed this challenge. In particular, we designed, developed and, for the first
time – to the best of our knowledge – successfully deployed in a real operational environment for clinical research
a privacy-preserving solution based on cutting-edge privacy-enhancing technologies (PETs). The proposed solution

aA research data-warehouse is a repository that integrates de-identified information on patients from multiple sources. These can include
electronic health records, lab results, genetic and research data, as well as demographic information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148029531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

makes use of differential privacy and homomorphic encryption (so far believed unpractical) to protect patients’ medical
and genomic privacy. This work is the result of a joint effort between the École Polytechnique Fédérale de Lausanne
(EPFL) and the Lausanne University Hospital (CHUV).

For a first attempt of real deployment in a clinical research operational setting, we decided to focus on the specific use
case of privacy-preserving exploratory analyses of genetic cohorts. Exploratory analyses represent a first and important
step for many types of research studies. They enable researchers to quickly generate new research hypotheses and to
effectively identify large groups of well-characterized patients for clinical trials or population health studies. Yet,
very often these types of analyses are heavily hindered by privacy and ethical regulations within the institution itself
that make it difficult, if not impossible, to access patients’ private and sensitive information such as genomic data.
Our solution enables researchers at a medical institution (CHUV, in our case) to efficiently and securely explore large
cohorts of patients without comprising patients’ privacy.

In particular, we built our solution on top of the i2b2 (Informatics for Integrating Biology and the Bedside)4 framework
that represents the state-of-the-art open-source system for exploring clinical research data-warehouses. The i2b2
framework was jointly developed, by the Harvard Medical School and MIT, to enable clinical researchers to use
existing clinical data and IRB-approved genomic data for discovery research and design of target therapies. It is
already well widespread in the US, as more than 80 universities and hospitals are currently using it for translational
research or academic purposes5. Yet, as other cohort explorers, i2b2 does not provide any convincing protection for
genomic data other than standard access control and data de-identification, both proven to be ineffective6,7,8,9,10,11,12.
In our solution, patients’ genetic data are homomorphically encrypted and stored in a centralized i2b2 server along
with pseudonymized and de-identified clinical data. These data can be queried in a privacy-preserving way (i.e.,
without ever decrypting the original genomic data) by researchers willing to determine the aggregate total number of
patients (or other summary statistics such as allele frequency) who meet a given set of inclusion and exclusion criteria
(currently demographics, diagnoses, medications, genomics or laboratory values). According to their different access
rights, researchers can receive either slightly perturbed (with noise satisfying the notion of differential privacy) – but
still useful – or unperturbed query results.

We extensively tested the performance of our solution in a real operational setting on real data for different cohort
sizes, and we found the overhead introduced by privacy-preserving techniques to be totally acceptable. The response
time is linear in the number of selected patients and always in the order of a few seconds for simple types of realistic
queries and cohort sizes.

The rest of this paper is organized as follows: In the next section, we summarize the related work. In Section 3, we
briefly describe the i2b2 frameworks and the main concepts in genomics and cryptography used throughout the paper.
In Section 4, we introduce the system and threat models and describe the proposed solution in detail. In Section 5,
we describe its implementation and evaluate the performance using real genomic in the operational setting of CHUV.
In Section 6, we discuss our findings and we conclude the paper. In the Appendix, we discuss a benchmark of some
state-of-the-art homomorphic cryptosystems and we describe in detail some privacy-preserving algorithm used in the
proposed solution.

2 Related Work

For many years, researchers have assumed that releasing anonymized genomic data for research purposes would not
compromise participants’ privacy. However, it has been shown at multiple rounds6,7,8,9,10,11,12 that standard anonymiza-
tion techniques are ineffective on genomic data. As a response to this concerns, many solutions were proposed in the
last few years, with the goal of protecting genomic data and enabling its utility for medical research. We can put them
in two main categories: (i) approaches that focus on the protection of data confidentiality against illegitimate access
and (ii) approaches that mitigate the risk of sensitive attribute inference from legitimate access genomic data.

The first category includes works such as the one by Canim et al.13 where the authors describe how to outsource
investigations on genomic data to a commercially available cryptographic hardware. Also in this category, a more
recent study by Kamm and co-authors14 proposes a new scheme for generating aggregated statistics on genomic data
by using secure multi-party computation based on homomorphic secret sharing. Their technique requires the presence
of multiple non-colluding servers. Xie et al. introduce in their work15 a novel cryptographic strategy based on secure
multi-party computation to securely perform meta-analysis for genetic association studies in large consortia, whereas
Wang et al.16 also rely on secure multi-party computation techniques to securely compare genomes across institutions.

Finally, several other works17,18,19,20,21 propose using homomorphic encryption to protect genomic information in order
to allow researchers to perform some statistics directly on the encrypted data and decrypt only the final result.

The second category includes the work by Uhler et al.22 that proposes new methods for releasing aggregate results
from genome-wide association studies (GWAS) without compromising a participant’s privacy, by focusing on the dif-
ferentially private release of minor allele frequencies. A similar approach is also adopted by Johnson and Shmatikov23,
Yu et al.24 and Simmons and Berger25,26,27, whereas Tramer et al.28 investigated a relaxation of differential privacy
thus providing a better tradeoff between privacy and utility.

In our work, differently from those mentioned above that address a single problem, we mitigate both risks. Our solution
makes use of both homomorphic encryption (HE) to protect patients’ genomic data confidentiality against illegitimate
access at rest and during processing and differential privacy (DP) to protect against re-identification attacks. Whereas
for the latter we propose a straightforward application of DP, we designed a new optimized solution based on HE that
outperforms the state-of-the-art. Moreover, to the best of our knowledge, our solution is the first to be deployed and
tested in a real medical research environment. Another work by McLaren and co-authors29 describes a successful
deployment in a medical operational environment. Yet, in that work homomorphic encryption is used to protect data
for personalized medicine and not for research purposes.

Two research contributions from the i2b2 community describe how to use genomic data within the i2b2 framework.
Phillips et al.30 propose to use a genomic ontology directly in the i2b2 native framework, whereas Gabetta et al.
propose BigQ31, an i2b2 plugin handling genomic variants and their annotations. Yet, both works do not at all address
privacy problems due to the use of genomic information. They simply rely on the i2b2 standard security protections
that are based on simple access control mechanisms as described in the work by Murphy et al.32. To the best of our
knowledge, our work is the first to combine i2b2 with advanced privacy-enhancing technologies for genomic data
protection.

3 Preliminaries

In this section, we briefly summarize the main concepts in cryptography and genomics that are used in the paper.

3.1 Notation

In this paper, we denote the cardinality of a set A by |A|. We denote x uniformly chosen from the set X as x U←− X .

3.2 Cryptographic Background

In this section, we briefly explain the cryptographic concepts necessary for understanding the rest of the paper.

Homomorphic Encryption. Homomorphic encryption (HE) is a special type of encryption that supports computation
on encrypted data. In 2009, Craig Gentry33 introduced for the first time a special type of HE enabling for arbitrary
computations on ciphertexts called fully homomorphic encryption (FHE). More formally, FHE could be described as
follows.

Let CS(Kp,Ks, P, C, E ,D) be a cryptosystem with the public key space Kp, the secret key space Ks, the plaintext
space P , the ciphertext space C, the encryption function E : P ×Kp → C, and the decryption functionD : C×Ks →
P . We say that the cryptosystem CS is fully homomorphic if and only if for any function f : P × P → P in the
plaintext domain, there exists another function h : C × C → C in the ciphertext domain such that

D(h(E(m1, kp), E(m2, kp)), ks) = f(m1,m2) (1)

for any m1,m2 ∈ P , kp ∈ Kp and ks ∈ Ks.

Yet, despite its complete functionality, FHE is totally unpractical as it introduces significant computational and stor-
age overheads that make it unusable for real-world applications. For this reason, many variations of FHE have been
proposed in the last few years with the goal of moving towards better efficiency by sacrificing some flexibility. Such
cryptosystems are called practical homomorphic cryptosystems, and according to their functionality, they can be clas-

sified as additively homomorphic if they only satisfy addition of of ciphertexts, multiplicatively homomorphic if they
only satisfy multiplication, or leveled (or somewhat) homomorphic if they support both addition and multiplication
but a limited number of multiplications.

Our proposed solution is based on the Fan and Vercauteren (FV) cryptosystem34 which is a lattice-based leveled
homomorphic encryption scheme based on the Ring Learning With Errors (RLWE) problem. The FV scheme ensures
indistinguishability against chosen plaintext attack if the standard RLWE problem is hard. Moreover, as other lattice-
based cryptosystems, it is supposed to be quantum-resistant. Let ` be a polynomial degree, q be a coefficient modulus,
t be a plaintext modulus, X be a distribution over a polynomial ring Zq[x]/(x` + 1), and M ∈ Zt[x]/(x` + 1) be a

plaintext polynomial. Let s U←− Z2[x]/(x` + 1) be the secret key and p = (p0, p1) = (−(a · s+ e) mod q, a), be the
public key where e← X and a U←− Zq[x]/(x` + 1). Then the FV scheme works as follows:

• Encryption:Enc(M,p) = c = (c0, c1) = ((p0 · u + e1 + bq/tc ·M) mod q, (p1 · u + e2) mod q), where
u, e1, e2 ← X

• Decryption: Dec(c, s) =
⌊
t
q · ((c0 + c1 · s) mod q)

⌉
mod t

• Homomorphic Addition:c⊕ c′ = ((c0 + c′0) mod q, (c1 + c′1) mod q)

We do not report the definition of homomorphic multiplication as it is not used in our solution. For further details we
invite the reader to refer to the original paper34. Note that we choose the FV scheme because, to the best of our knowl-
edge, it provides the best performance in terms of homomorphic computations and storage overhead for the operations
required in the proposed solution. We compared the FV scheme with the Elliptic curve ElGamal (EC-ElGamal) cryp-
tosystem35 and Yet Another Somewhat Homomorphic Encryption (YASHE) scheme36. Benchmark details can be
found in the Appendix.

Ciphertext Packing. Ciphertext packing37 is a technique that can be used to reduce the overall size of the ciphertext
and improve the efficiency of homomorphic operations. Despite recent advances, practical homomorphic encryption
is still quite expensive. This is because security considerations require ciphertexts to be large, thus slowing down
homomorphic computations. Ciphertext packing represents the main technique for dealing with this problem as a
vector of plaintext values, and not a single value, can be encrypted in only one ciphertext. Homomorphic operations
are applied to these vectors component-wise.

More formally, let CS(Kp,Ks, P, C, E ,D) be a cryptosystem, andm0,m1, · · · be the messages to be encrypted where

mi ∈M, ∀i. Let also n =
⌊
|P |
|M |

⌋
and P1, P2, · · ·Pn be n independent subspaces of P where |Pj | ≥ |M |, ∀j. When

|P | ≥ 2 · |M |, we can encrypt at most nmessages into one ciphertext by encryptingm′ = m1p1 +m2p2 + · · ·+mnpn,
where pj is the basis of the subspace Pj .

For example, when P = Zq[x]/(x` + 1) and M = Zq , we can encrypt at most ` messages into one ciphertext with
m′ = m0 +m1x+ · · ·+m`−1x

`−1.

Differential Privacy. Differential privacy is an approach to privacy-preserving reporting of results, introduced by
Cynthia Dwork38, that guarantees that a given statistic, f(D) = R, computed on a dataset D1 behaves almost the
same when computed on the neighbor dataset D2 that differs from D1 in exactly one element. More formally we have
that

Pr [f(D1) = R0] ≤ exp(ε) · Pr [f(D2) = R0] , (2)

where the parameter ε is a privacy parameter: the closer it is to 0 the more privacy is ensured. The most straightforward
method for achieving ε-differential privacy consists in perturbing the output of the statistic with noise drawn from the
Laplace distribution with mean 0 and scale ∆f

ε , where ∆f is known as the sensitivity of f :

∆f = max
D1,D2

||f(D1)− f(D2)||1. (3)

Differently from k-anonymity, differential privacy guarantees privacy against an adversary regardless of his prior
knowledge.

3.3 Genomic Background

In this section, we briefly introduce the basic genomic concepts used in this paper.

Genomic Variant. Around 99.9% of the whole human genome is identical between any two individuals and the
remaining part (∼0.1%) is referred to as genetic variation. Most commonly, this genetic variation comes from dif-
ferences in single nucleotides, called single nucleotide variants (SNVs). Yet, there exist many other types of genetic
differences also involving multiple nucleotides such as insertions/deletions (INDELs), duplications (DUPs), copy
number variants (CNVs) and more complex structural variants (SVs). In the human population, a given genetic lo-
cus can have several possible versions (or alleles) with different genetic variations. Because of the diploid nature of
somatic human cells, a human genome is comprised of two sets of chromosomes – one inherited from each parent.
Therefore, each individual either has two copies of the same allele/variant (homozygous) or two copies of different
alleles/variants (heterozygous).

Variant Call Format (VCF). The Variant Call Format (VCF)39 is the main format for storing genetic variants with
respect to the reference genome of one or more individual genomes. The VCF consists of two parts, header and
content. The header contains the meta-information about the file and data along with the definition of file variables.
The content contains the information about the genetic variants for each individual. Each variant is uniquely identified
by (i) its chromosomal position (CHR, POS), (ii) the reference allele (REF), and (iii) the alternate allele (ALT) We
can separate the content into two parts by the characteristics of the data. Each line of the content corresponds to the
information about a variant and the genotype (i.e., the value) of this variant for each individual in the VCF. We call the
information about the variant, such as CHR, POS, REF, ALT, meta-data. Meta-data is not sensitive from the privacy
perspective as it is public information, as opposed to genotype information that is sensitive and must be protected.

In the VCF file, a genotype is represented by two numbers separated by either ‘|’ or ‘/’. When it is separated by ‘|’, the
genotype is phased (i.e, we know which of the two chromosomes holds which allele). Whereas, when it is separated
by /, the genotype is unphased (i.e., there is no information on which chromosome holds which allele). Each number
represents the allele value. When it is 0, it means that the allele value is equal to the reference allele. When it is 1, it
means the allele value is equal to the alternate allele. When the allele has not been genotyped correctly and there is no
information about its value, we put ‘.’ instead of any number. Such an event is named no-call.

In our solution, we assume that the VCF file was processed in such a way that entries with multiple alternate alleles
were separated in several lines, with one allele per line.

4 Methodology

In this section, we introduce CHUV’s system and threat models. We then outline the functional requirements that our
system should satisfy and finally we describe our proposed privacy-preserving solution in details.

4.1 System Model

We propose a solution for privacy-preserving exploration of genetic cohorts at the Lausanne University Hospital
(CHUV). The CHUV’s information system consists of two physically separated networks, as depicted in Fig.1, each
of them hosts different services: (i) the main network of the hospital, also called clinical network and (ii) a research
network that is shared with the University of Lausanne (UNIL).

• Clinical network. The clinical network is used for hospital’s clinical daily activities. It hosts all services used
for daily healthcare and administration purposes along with the clinical research data-warehouseb (DWH-RC)
that contains pseudonymized clinical and genomic data of patients. This network is protected by a firewall that
blocks all incoming network traffic.

• Research network. The research network is also protected by a firewall that blocks all incoming network traffic
except the one from the clinical network. It hosts multiple services used by clinical or academic researchers

bThe detailed description of the clinical network is out of the scope of this work.

in their research activities; i2b2 is one of these services. The i2b2 service is composed of (i) an i2b2 server to
which pseudonymized and de-identified clinical data along with pseudonymized and encrypted genomic data
are pushed from the DWH-RC and (ii) a proxy server which is devoted to support the decryption phase and the
storage of partial decryption keys. Both servers are physically separated from each other, protected by different
firewalls and equipped with an intrusion detection system. Moreover, the two servers cannot communicate with
each other. Researchers already in the network access the i2b2 service after authentication through an internal
Web-client.

The main purpose of the CHUV’s IT architecture is to isolate data that is used for clinical care and that is accessible
only to few trusted and authorized individuals from data used for research activities that can be accessed by several
researchers through less restrictive authorization and authentication procedures. All communications are protected
through encryption.

Clinical	Network
DWH-RC

Research	Network

Researcher

I2b2	server

Proxy	server

1)	Query	generation

2)	Secure	
computation

4)	Partial	
decryption

6)	Final	decryption
5)	Partial	key	fetching

0)	Initialization:	 key	
generation	 +	data	encryption

3)	Noise	
addition

Figure 1: Architecture of the proposed solution.

4.2 Threat Model

In this project, we consider two types of potential attackers: (i) a honest-but-curious (or semi-honest) adversary at the
i2b2 server or at the proxy server who honestly follows the protocol but tries to passively infer some private information
about the patients, and (ii) a malicious-but-covert adversary that wants to re-identify a patient by performing multiple
malicious, but legitimate, queries to the i2b2 service. We consider the DWH-RC as a trusted party as it is the generator
and owner of the data.

• The honest-but-curious attacker can be represented by a careless or disgruntled employee of the hospital (i.e., an
insider) or a hacker who has illegitimate access to the i2b2 server and tries to obtain patients’ private genomic
and clinical information without altering the protocol. Note that although this information was pseudonymized
and there is no direct link with patients’ identities, re-identification would still be possible due to the identifying
nature of the genome and to some auxiliary (and often publicly available) information (e.g., public genomic
databases, recreational websites, online social networks, etc.) that the attacker might exploit6,7,8,9,10,11,12. As a
consequence, a potential loss of clinical and genomic data could be extremely dangerous, not only for the pa-
tients but also for the reputation of the medical institution itself. Re-identified health-care records are nowadays
extremely valuable for hackers as, according to a recent report by IBM40, their value on the black market is as

much as 60 times more that of stolen credit cards. We assume that the i2b2 server and the proxy server do not
collude or, in other words, that they are not compromised simultaneously.

• The malicious-but-covert adversary can be represented by a malicious but legitimate user of i2b2 (e.g., a ma-
licious researcher) or hacker who breaks into the research network and uses the i2b2 service to re-identify an
individual in a subset of patients with specific clinical characteristics. In particular, an attacker with already
some genomic information about the victim (e.g., the value of some of her genetic variants) might repeatedly
query the i2b2 service with this genomic information and use the system as an oracle. As such, he could re-
identify the presence of the victim in a sensitive subset of individuals (e.g., all cancer patients or all HIV-positive
patients, etc.) and infer her health status. For example, the attacker could exploit the aggregate information ob-
tained from the cohort explorer as described in well-known attacks such as Homer’s attack6 and the Beacon
attack7.

Therefore, with these adversarial models, there are two potential privacy threats that we need to address with our
proposed solution: (i) loss of patients’ health data confidentiality due to illegitimate data access and (ii) patients’
re-identification and resulting sensitive attribute disclosure from legitimate data access. Data confidentiality can be
protected at rest and during processing by using homomorphic encryption, whereas the re-identification risk can be
mitigated by perturbing the query result in order to satisfy the notion of differential privacy.

4.3 Functional Requirements

As a first example of advanced privacy-preserving solution for cohort exploration in a medical operational setting, we
decided to focus on a set of simple functional requirements. These requirements are based on the functionalities of
other well-known tools for exploration of genetic cohorts such as the Beacon system of Global Alliance for Genomics
& Health (GA4GH)41 and the ExAC browser of the Broad Institute42. For example, through the Beacon system
researchers can query a database of genomes for the presence of a specific mutation, whereas researchers using the
ExAC browser can also have information about the alternate allele count and frequency of the queried mutation.

In particular, a user of our system should be able to obtain for all genetic variants in a selected chromosomal range:

• Reference/alternate allele frequencies

• Number of mutated genotypes (i.e., with at least one alternate allele)

• Number/frequency of genotypes that are homozygous with respect to the reference/alternate allele

• Number/frequency of genotypes that are heterozygous (with or without phase information)

4.4 Proposed Solution

Our solution for the privacy-preserving exploration of genomic cohorts consists of three main parts: (i) system initial-
ization where cryptographic keys are generated and the genetic variants in the VCF file are encoded, encrypted and
pushed to the i2b2 server along with de-identified clinical data for secure storage, (ii) user assignment, where access
rights and cryptographic keys are assigned to each new user in the system and (iii) query execution, where the user
builds a new query that is then sent to the i2b2 server and processed in a privacy-preserving way, i.e., without ever
decrypting the data. The query result is then decrypted by the user via the i2b2 Web-client.

System Initialization. The system initialization phase takes place at the clinical research data-warehouse (DWH-RC)
where clinical and genomic data are stored with patients’ pseudonyms and can be accessed only by a group of few
trusted and authorized individuals. The first step consists in setting the parameters of the FV cryptosystem (l, t and q)
according to the desired security level (e.g., 80 bits security) and the maximum number of additions and multiplications
to be supported by the system. In our case, the maximum number of additions should be at least twice the number
of individuals in the database because it corresponds to the maximum number of alleles that could be involved in a
counting query. Multiplication is not needed. For the optimal selection of the FV parameters, we invite the reader to

refer to the original work by Fan and Vercauteren34. Then, a public key p and a secret key s are generated as described
in Section 3.2.

After key generation, the VCF file is parsed and each genotype is encoded following the scheme described either
in Table 1 (for phased genotypes) or in Table 2 (for unphased genotypes). For simplicity, in the rest of the paper
we describe only the encoding for unphased genotypes described in Table 2 (but the encoding in Table 1 is equally
supported by the proposed solution). As the number of potential genotype values is 6 (we are also including no-calls as
they can be used when allele or genotype frequencies are computed), we use three values for genotype encoding: the
first two values indicate the presence of zero, one or two alternate alleles, whereas the third value reports the number
of no-calls in the genotype.

Genotype value Genotype encoding
gt1 gt2 gt3 no call

.|. 0 0 0 2
.|0 0 0 0 1
.|1 1 0 0 1
0|. 0 0 1 1
1|. 0 1 0 1
0|0 0 0 0 0
0|1 1 0 0 0
1|0 0 1 0 0
1|1 0 0 1 0

Table 1: Encoding for phased genotypes

Genotype value Genotype encoding
gt1 gt2 no call

./. 0 0 2
./0 0 1 1
./1 1 0 1
0/0 0 0 0
0/1 1 0 0
1/1 0 1 0

Table 2: Encoding for unphased genotypes

For each individual in the VCF file, consecutive genotypes are packed into 3 sets of polynomials by using the packing
technique described in Section 3.2. Let (gt10, gt20, no call0), (gt11, gt21, no call1), (gt12, gt22, no call2),... be
encoded genotypes where (gt1i, gt2i, no calli) is the encoded genotype for variant i. Then, we can pack at most `
genotypes in three polynomials

gt1j = gt1j` + gt1j`+1x+ gt1j`+2x
2 + · · ·+ gt1(j+1)`−1x

`−1, (4)

gt2j = gt2j` + gt2j`+1x+ gt2j`+2x
2 + · · ·+ gt2(j+1)`−1x

`−1, (5)

no callj = no callj` + no callj`+1x+ no callj`+2x
2 + · · ·+ no call(j+1)`−1x

`−1, (6)

where ` is the polynomial degree and j the ciphertext index. Polynomials gt1j and gt2j are finally encrypted with
the public key p at the DWH-RC to obtain cipher gt1j and cipher gt2j which are pushed to the i2b2 server for
storage along with no callj , patients’ pseudonyms, de-identified clinical data, and p, as shown in Fig.2. Note that
no callj does not need to be encrypted as it does not leak any information on the value of the genotype.

gen_encrypted_genotypes

cipher_gt1 bytea

cipher_gt2 bytea

no_calls bytea

gen_patient_mapping

pid_i2b2 int

patient_group int

Entity

chromosome varchar(3)

position bigint

reference varchar(500)

alternate varchar(500)

gene_name varchar(50)

rs_number varchar(50)

gen_variants

PK cipher_id bigint

PK degree int

gen_encrypted_genotypes

PK cipher_id bigint

PK pid_gen int

gen_patient_mapping

PK pid_gen int

Figure 2: Database scheme for storing encrypted genetic variants at the i2b2 server.

User Assignment. Assignment of a new user also takes place at the DWH-RC. During this phase, for each new user,
the secret key s is randomly divided into two shares s1 and s2 such that s = s1 +s2. The two partial secret keys s1 and
s2 are then sent, for storage, to the i2b2 server and proxy server, respectively. This procedure avoids a single point of
failure in the system: if one of the two servers is compromised, data are still protected because only with the full secret
key s the attacker can successfully decrypt. Note that ideally, to ensure better security, the i2b2 server and the proxy

server should be part of two completely different organizations. Yet, because of the CHUV’s infrastructure these two
servers are within the same network. Nevertheless, they are physically separated, managed by different administrators
and cannot communicate with each other.

Access rights for each new user are also assigned during this phase and stored on the i2b2 server, as shown in Fig.3.
Different users might have different rights to access patients’ private information. Our system provides full customiza-
tion on three different levels of access: (i) query result, (ii) patients’ set, and (iii) variants’ set. For example, a junior
researcher might have access only to perturbed query results, where some noise has been added on the true result to
satisfy the notion of differential privacy, whereas a senior researcher can obtain accurate information. Also, depending
on his specialization or on the IRB-approved study protocol, a researcher might have access only to a given subset of
patients or a given subset of genetic variants. For example, an oncologist might have access only to data of patients
with cancer and might not be allowed to query genetic variants related to other diseases such as diabetes or coronary
artery disease.

We acknowledge that if the i2b2 server is compromised by a honest-but-curious adversary, information on users’ ac-
cess rights could leak because they are stored in the clear. Protecting users’ access rights is not the focus of this project.
Yet, we are planning to address such an issue in future work by exploring even more sophisticated solutions based on
attribute-based somewhat homomorphic encryption (ABSHE)43.

gen_user_roles

role_name varchar(50)

epsilon double precision

gen_filter_range

access_level int

chromosome varchar(3)

start_position bigint

end_position bigint

gen_filter_patient_set

access_level int

patient_group int

gen_noisy_result

query_type varchar(50)

count bigint

result bigint

gen_noisy_result

PK cipher_id bigint

PK degree int

PK access_level int

PK patient_set_id int

gen_user_roles

PK access_level int

Figure 3: Database scheme for storing users’ access rights at the i2b2 server.

Query Execution. The query execution consists of three phases: (i) the query generation at the user-side and (ii) the
query processing at the server-side and (iii) the result decryption at the client-side.

(i) In the query generation, after password-based authentication, the user of our privacy preserving cohort explorer
(i.e., CHUV’s researcher) builds his query in two steps through the i2b2 Web-client. In the first step, he selects
a set of inclusion and exclusion clinical criteria in order to identify the set of patients for which he wants to
explore their genetic data. For example, a researcher might want some aggregate genetic information on some
specific variants for people with cancer who underwent a specific treatment and who had a positive outcome. In
the second step, once the patient set has been identified, the user selects the set of variants of interest and the
summary statistics he wants to obtain from the ones specified in Section 4.3 and finally submits the query.

(ii) During the query processing, the i2b2 server verifies the access rights of the querier and his query definition.
If the verification is successful, the server retrieves from the database the list of ciphertexts containing the
encrypted genotypes of the variants specified by the query. The ciphertexts are then used to homomorphically
compute the summary statistics requested by the user. We designed different secure algorithms for computing
the different summary statistics. For example, the alternate allele frequency for a set of variants can be securely
computed as described in Algorithm 1, where ⊕ represents homomorphic addition. For completeness, we
provide in the Appendix the description of all secure algorithms needed to compute the other summary statistics
outlined in Section 4.3. After computation of encrypted summary statistics, the i2b2 server partially decrypts
them with the first part of the users’ secret key s1 (which is stored in the i2b2 database). In particular, from
a ciphertext c = (c0, c1) we obtain, after partial decryption, a new ciphertext c′ = (c′0, c

′
1), as described in

Section 4.5. Depending on the access level of the user, some noise sampled from the Laplace distribution might
be homomorphically added by the i2b2 server to the result in order to satisfy the notion of differential privacy
and prevent malicious re-identification of patients. Finally, the i2b2 server sends back to the user the encrypted
polynomial c′1 and the coefficients of the encrypted polynomial c′0 corresponding the variants specified by the
query and user’s access level. Note that only the specified coefficients of the encrypted polynomial c′0 are sent
by the server to the user because we do not want him to obtain the summary statistics of all the variants packed
in the same ciphertext, but only the ones he has requested and access to.

(iii) At the user-side, the Web-client fetches the second part of the user’s secret key s2 from the proxy server and
performs the full decryption to obtain the final results of the query, as described in Section 4.5. For performance
reasons, part of the full decryption (i.e., the polynomial multiplication c′1 · s2) could be run at the proxy server.
Note that, by observing only s2 and c′1, the proxy server cannot infer anything about the plaintext.

Algorithm 1: Secure allele frequency computation
Input : Patient set P , variant set V packed into the same ciphertext, set of the number of no calls Np of each patient p ∈ P , and set of encrypted

genotypes Gp of each patient p ∈ P . Gp consists of two ciphertexts as Gp.cipher gt1 and Gp.cipher gt2
Output: Map between the set of variants and the ciphertexts containing the result

1 M ← an empty map // Map of key/value pairs containing encrypted results per set of
variants which can be computed together

2 M.addEntry(V, (Enc(0), 0))
3 for p ∈ P do
4 ones← Set of variants in V whose Np = 1
5 twos← Set of variants in V whose Np = 2
6 M ′ ← an empty map
7 for (key, value) ∈M do
8 if key ∩ twos 6= ∅ then
9 M ′.addEntry(key ∩ twos, value) // Computation for genotype ./.

10 end
11 if key ∩ ones 6= ∅ then
12 M ′.addEntry(key ∩ ones, (value[0]⊕Gp.cipher gt1, value[1] + 1))

// Computation for genotype ./0 and ./1
13 end
14 if key \ (ones ∪ twos) 6= ∅ then
15 M ′.addEntry(key \ (ones ∪ twos), (value[0]⊕Gp.cipher gt1⊕ 2 ·Gp.cipher gt2, value[1] + 2)) // Computation

for genotype 0/0, 0/1 and 1/1
16 end
17 end
18 M ←M ′

19 end
20 return M . value[0]/value[1] will be computed at the client side

4.5 Partial Decryption With FV Scheme

Because the Fan and Vercauteren (FV) secret key s has been split into two shares stored at the i2b2 server and at proxy
server respectively, decryption has to be done in two steps. The original FV cryptosystem does not have a partial
decryption algorithm. Here we described how this additional feature can be easily achieved.

Definition 1 (Partial Key Generation). Let q be the ciphertext modulus, ` be the polynomial degree and s ∈ Zq[x]/(x`+

1) be the secret key34. Then, the partial key set (s0, s1) can be generated as s0
U←− Zq[x]/(x` + 1) and s1 = s− s0.

Definition 2 (Partial Decryption). Let q be the modulus, ` be the polynomial degree, t be the plaintext modulus,
(s0, s1) be the partial key set from Definition 1 and c = (c0, c1) be the ciphertext where c0, c1 ∈ Zq[x]/(x` + 1).
Then, we can define the partial decryption and the full decryption as follows,

Partial Dec(c, s0) = c′ = (c′0, c
′
1) = (c0 + c1 · s0, c1)

Full Dec(c′, s1) = Dec(c′, s1),

where Full Dec(Partial Dec(c, s0), s1) = Dec(c, s).

Proof. We have

Full Dec(Partial Dec(c, s0), s1) =
⌊ t
q

((c0 + c1 · s0 + c1 · s1) mod q)
⌉

mod t

=
⌊ t
q

((c0 + c1 · s) mod q)
⌉

mod t (7)

= Dec(c, s)

By Definition 1, s0 + s1 = s, so Eq.(7) holds. Thus, Full Dec(Partial Dec(c, s0), s1) is equivalent to Dec(c, s).

5 Experiment and results

In this section, we describe how we implemented and deployed our solution in the real operational setting of the
Lausanne University Hospital. We evaluate its performance on real genomic and clinical data.

Figure 4: i2b2 native Web-client.

5.1 Plugin Implementation

We implemented our privacy-preserving solution as a plugin of the i2b2 framework. The i2b2 architecture consists
of two major pieces. The first is the back-end infrastructure (the “Hive”) that is responsible for the security aspects,
the access rights and for managing the underlying data repository. The second piece is the user Web-client: a front-
end application suite of query and mining tools that enables users to ask questions about patients’ data on the i2b2
server. The native version of i2b2 does not include any support neither for privacy-preserving data processing nor for
managing genomic data but it is only focused around cohort identification based mostly on clinical and demographic
data. As shown in Fig.4, after logging in, a user can drag-and-drop search terms from the clinical ontology (1) into the
Venn diagram-like interface (2) to construct his cohort of patients. Yet, i2b2 is easily extensible thanks to its modular
design. As a consequence, we implemented our privacy-preserving plugin as a totally independent module that can be
easily loaded during the setup of i2b2. Our plugin is composed of four main parts: (i) a data importation tool, (ii) a
back-end module for the i2b2 server, (iii) a back-end module for the proxy server, and (iv) a front-end module for the
i2b2 native Web-client.

In the followings, we briefly describe each of these components.

Data Importation Tool. The importation tool is written in C++ and is responsible for the system initialization and
the new user assignment. For the system initialization, it takes as input the VCF file, the access rights policies and
the FV public and secret keys. The tool parses the VCF file, encodes and packs the genotypes into polynomials and
encrypts them by using the FV public key. The final output is a SQL script that can be used to import data in the i2b2
SQL database. For the new user assignment, the importation tool takes as input the new user’s identifier, his access
level and the FV secret key. As output, it generates a SQL script to import into the i2b2 server the new user’s access
level along with the first part of the secret key and into the proxy server the second part of the secret key.

i2b2 Server Module. The i2b2 server back-end module consists of two parts: the “main cell” and the “crypto en-
gine”. The main cell is written in Java and is part of the i2b2 server application. It is responsible for managing the data
repository, handling the queries, computing homomorphic addition of ciphertexts, and, according to the user’s access
rights, adding noise on the computation result to satisfy the notion of differential privacy. The crypto engine is written
in C++ and it is used for the partial decryption at server side. The Java Native Interface (JNI) is used to call function
in the C++ crypto engine from the main cell.

Proxy Server Module. The proxy server back-end module has a similar structure to the i2b2 server module. The main
cell, written in Java, is responsible for managing users’ partial keys stored in the data repository, whereas the crypto
engine is responsible for helping the user with the full decryption by performing polynomial multiplication.

Web-client Module. The Web-client front-end module is written in JavaScript and can be loaded from the native
i2b2 Web-client. It consists of a query builder (Fig.5a), where the user can drag-and-drop a patient set (previously
constructed through the native interface) and type into a search bar a set of genetic variants of interest, and a result
visualizer (Fig.5b), where the user can visualize the results of his current and previous queries. The user is allowed to
enter genetic variants by gene name, dbSNP identifier or chromosomal position and to select the summary statistic he
is interested in.

(a) Query Builder. (b) Result Visualizer.
Figure 5: i2b2 front-end plugin.

5.2 Performance Evaluation

To evaluate the performance of our proposed solution in the real operational setting of the Lausanne University Hos-
pital, we have performed several tests on real cohorts of patients with clinical and genomic data.

Experimental Setup. To show the practicality of our solution, we used only commodity hardware for our experiments.
The i2b2 server module and the proxy server module run on two servers in the CHUV’s research network. Their
configurations are described in Table 3. For both servers, we limited the number of threads to 8. At the user side, we
used an off-the-shelf laptop equipped with Windows 10, intel i7-3517U processor and 10 GB of memory. We ran the
i2b2 Web-client on Firefox 47.0.1.

Data warehouse
i2b2 Server Proxy server

Operating System Ubuntu 14.04 Ubuntu 14.04
Processor Intel Xeon E3-1270 Intel Core i7-620M
Memory 16 GB 4 GB

Maximum Memory Usage for JVM 8 GB 512 MB
Database PostgreSQL 9.4 MySQL 5.6

Table 3: Server Setting

We used the implementation of the FV cryptosystem provided within the NFLlib library by Aguilar-Melchor et al.44.
The NFLlib is an optimized open-source C++ library dedicated to ideal lattice cryptography in the polynomial ring
Zp[x]/(xn+ 1) for n a power of 2. We chose this library because, to the best of our knowledge, it is most efficient one
for computations over polynomials. Indeed, NFLlib uses a mixed NTT-CRT representation to reduce computational
costs: Number-Theoretic Transform (NTT) for polynomials45 and Chinese Remainder Theorem (CRT) for integers.

We used the FV encryption parameters, as reported in Table 4, in order to have 128 bits of security level.

Parameter Value
Polynomial Degree 2048

Ciphertext Modulus 4,611,686,018,326,724,609 (62 bits)
Plaintext Modulus 1,000,000 (20 bits)

Table 4: Encryption Parameters

We used real genomic data coming from the exome sequencing of 392 samples giving a genotyping for 472,845 vari-
ants each. The resulting VCF file contained a total of 185,355,240 unphased genotypes. For clinical data, we used
90,454 clinical records from 134 patients available from the i2b2 demo version46. Patients from the i2b2 demo were
duplicated in order to match the number of patients with genomic records. As a result, we had an initial cohort of 392
individuals with both clinical and genomic data. To test the scalability of our solution, this initial cohort was further
extended by replicating individuals in order to obtain a cohort of 5,000 patients.

Performance Analysis. We assessed the performance of our proposed solution in terms of storage and computational
overheads.

To measure the storage overhead, we compared the initial size of genotypes within the original VCF file with the size of
the encrypted genotypes stored on the i2b2 server. We did not consider the meta-data in the VCF file as this information
is never modified before being stored on the i2b2 server. In general, in a VCF file, a genotype is represented by 4 bytes:
2 bytes for 2 alleles, 1 byte for ‘/’ or ‘|’, and 1 byte for a delimiter. As there were a total of 185,355,240 genotypes in
our VCF file, their corresponding size was 707.07 MB. After encoding, packing and encrypting all genotypes in the
VCF file, we obtained a set of 181,010 ciphertexts whose size is 5.82 GB. This corresponds to a storage overhead of
8x compared to the unencrypted VCF.

To measure the computational overhead, we ran experiments on all the privacy-preserving algorithms for summary
statistics for different sets of variants and different cohort sizes. Experiments were run 100 times for each scenario and
we report the average execution time in the following. We evaluated the different steps of the query execution phase,
described in detail in Section 4.4.

Fig.6a and Fig.6b show the total execution time at the i2b2 server needed to compute the different summary statistics
for increasing cohort sizes and a fixed query including 3,000 genetic variants with and without no-calls. It is easy
to observe how the execution time increases linearly with the number of patients in the cohort and how the presence
of no-calls in the VCF file has a significant impact on performance. Differences between the execution time for
computing homozygous alternate/heterozygous counts/frequencies (yellow and purple curves) and the other summary
statistics are mainly due to the different number of ciphertexts involved in the computation.

The execution time at the i2b2 does not depend only on the number of patients in the cohort but also on the number of
consecutive genetic variants specified in the query, as shown in Fig.7. The differences in execution time between the
different summary statistics depend on genotypes with no-call values. In particular, the computations of the number
of mutations (blue curve) and the number of homozygous alternate/heterozygous (yellow curve) are significantly

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Patients

0

20

40

60

80

100

120

140
E

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
Any Mutation Count
Allele Frequency
Homozygous Alternate/Heterozygous Count
Homozygous Alternate/Heterozygous Frequency
Homozygous Reference Count/Frequency

(a) With no-calls.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Patients

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Any Mutation Count
Allele Frequency
Homozygous Alternate/Heterozygous Count
Homozygous Alternate/Heterozygous Frequency
Homozygous Reference Count/Frequency

(b) Without no-calls.
Figure 6: Total query execution time at i2b2 server per number of patients in the cohort for a query involving 3000
genetic variants.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Variants in Chromosomal Range

0

5

10

15

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Any Mutation Count
Allele Frequency
Homozygous Alternate/Heterozygous Count
Homozygous Alternate/Heterozygous Frequency
Homozygous Reference Count/Frequency

Figure 7: Total execution time at i2b2 server per number of consecutive genetic variants.

influenced only by the existence of genotypes with 1 no-call, whereas the other computations are also influenced by
genotypes with 2 no-calls. Note that in our data we do not have genotypes with 1 no-call. From Fig.8a and Fig.8b
we can observe that most of the computational time at the i2b2 server is due to data retrieval from the database and
homomorphic computations.

Finally, Fig.9a and Fig.9b show the execution time for a full decrpytion of the query results for an increasing number
of consecutive genetic variants for the contribution of the proxy server and the client, respectively. It is easy to observe
that the execution time at the proxy server is similar to the execution time at the i2b2 server for partial decryption as the
number of processed ciphertexts is the same. At the client side, we can observe a different behavior for the execution
time as decryption is done variant-by-variant instead of ciphertext-by-ciphertext. Note that, because of genotypes with
no-call values, the number of ciphertexts including the query results can be different from the number of ciphertexts
including genetic variants.

6 Discussion

In this paper, we have described how we designed, implemented and deployed, for the first time, a secure and privacy-
preserving solution for exploring genomic cohorts in a real operational scenario at the Lausanne University Hospital.
We have thoroughly evaluated the performance of our solution on real data. Results show that in general privacy-
preserving solutions, such as the one proposed in this work, can already be used in medical settings as new efficient

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Variants in Chromosomal Range

0

20

40

60

80

100

120

140
E

xe
cu

tio
n

tim
e

(m
s)

Any Mutation Count
Allele Frequency
Homozygous Alternate/Heterozygous Count
Homozygous Alternate/Heterozygous Frequency
Homozygous Reference Count/Frequency

(a) Partial decryption.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Variants in Chromosomal Range

0

1

2

3

4

5

6

7

8

9

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Any Mutation Count
Allele Frequency
Homozygous Alternate/Heterozygous Count
Homozygous Alternate/Heterozygous Frequency
Homozygous Reference Count/Frequency

(b) Data retrieval and homomorphic computations.
Figure 8: Breakdown of total execution time at i2b2 server per number of consecutive genetic variants.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Variants in Chromosomal Range

0

0.2

0.4

0.6

0.8

1

1.2

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Any Mutation Count
Allele Frequency
Homozygous Alternate/Heterozygous Count
Homozygous Alternate/Heterozygous Frequency
Homozygous Reference Count/Frequency

(a) At proxy server.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Variants in Chromosomal Range

0

0.5

1

1.5

2

2.5

3

3.5

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Any Mutation Count
Allele Frequency
Homozygous Alternate/Heterozygous Count
Homozygous Alternate/Heterozygous Frequency
Homozygous Reference Count/Frequency

(b) At client.
Figure 9: Execution time for full decryption for queries with increasing number of consecutive genetic variants.

enablers. Yet, some important points need to be further discussed.

As it can be easily observed from the results of Fig. 6a and Fig. 6b, the main bottleneck for the execution time
of queries involving specific types of summary statistics (e.g., allele or genotype frequencies) is due to the presence
of genotypes with no-call values. Indeed, because of our encoding that minimizes the storage cost (as required by
CHUV that plans to encrypt thousands of variants for thousands of patients), no-calls have a significant impact on
performance. Yet, some alternative approaches can be used to easily address this issue. A first potential approach
consists in using a different encoding for genotype values, as the one shown in Table 5, which maximizes performance
at the expense of increasing the storage overhead from a factor of 8 to a factor of 20. Another potential approach would
be to perform genotype imputation before the genotype encoding in order to replace no-calls with imputed values at
the expense of a slight decrease in accuracy. This said, it is easy to observe how the first alternative prioritizes
high performance and high accuracy instead of low storage overhead, whereas the second approach ensures high
performance and low storage overhead rather than full accuracy. Note that, by slightly sacrificing performance, our
current solution assigns the highest priority to low storage cost and high accuracy.

Genotype value Genotype encoding
gt1 gt2 gt3 gt4 gt5

./. 0 0 0 0 0
./0 1 0 0 0 0
./1 0 1 0 0 0
0/0 0 0 1 0 0
0/1 0 0 0 1 0
1/1 0 0 0 0 1

Table 5: Genotype encoding optimizing performance.

As it is well-known in the security field, the perfect solution does not exist. It is always a matter of finding the best
trad-offs between protection cost, efficiency, and accuracy of the result. Our proposed solution is general enough to
be fine-tuned according to the requirements.

As initially mentioned in Section 1, the proposed solution addresses a simple use case by providing genomic summary
statistics that can be securely computed only through homomorphic additions. Yet, thanks to the flexibility of the FV
scheme, more complex use cases such as privacy-preserving phenome-wide association studies (PheWAS) or genome-
wide association studies (GWAS) could also be developed on top of our solution. We are planning to explore the
feasibility of more complex use cases in future work. Finally, we want to emphasize that the goal of this paper was
not to discuss the parameters’ values that determine the best privacy and accuracy trade-off when using differential
privacy but to provide the tools that enable privacy-preserving exploration of genetic cohorts. We believe that such a
discussion should be a prerogative of database administrators, end-users and hospitals’ IRBs rather than a part of our
solution.

Acknowledgments

The authors would like to thank Sebastien Rocher and Gianni Benezet, from CHUV’s data-warehouse team, for their
precious and valuable feedback and their support during the deployment phase at CHUV of the proposed solution,
Patrick Zosso from the Informatics Department of CHUV, for his help in setting up the i2b2 and proxy server and,
finally, Carlos Aguilar-Melchor from the University of Toulouse, France, and Marc-Olivier Killijian from CNRS,
Toulouse, France, for their instrumental help with the NFLlib library.

References
1. Service de soutien à la recherche clinique chuv. http://www.chuv.ch/chuv_home/recherche/chuv_

recherche-infos-pratiques/chuv_recherche-infos-pratiques-src.htm.

2. Erlich Yaniv and Narayanan Arvind. Routes for breaching and protecting genetic privacy. Nature Reviews Genetics, 15(6):409–421, 2014.

3. Naveed Muhammad and et al. . Privacy in the Genomic Era. Accepted to ACM Computing Surveys, 2015.

4. Murphy Shawn N, Weber Griffin, Mendis Michael, Gainer Vivian, Chueh Henry C, Churchill Susanne et al. Serving the enterprise and beyond
with informatics for integrating biology and the bedside (i2b2). Journal of the American Medical Informatics Association, 17(2):124–130,
2010.

5. i2b2 installations, . URL https://www.i2b2.org/work/i2b2_installations.html.

6. Homer Nils, Szelinger Szabolcs, Redman Margot, Duggan David, Tembe Waibhav, Muehling Jill et al. Resolving individuals contributing
trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genetics, 4(8), 2008.

7. Shringarpure Suyash S and Bustamante Carlos D. Privacy risks from genomic data-sharing beacons. The American Journal of Human Genetics,
97(5):631–646, 2015.

8. Gymrek Melissa, McGuire Amy L, Golan David, Halperin Eran and Erlich Yaniv. Identifying personal genomes by surname inference. Science,
339(6117):321–324, 2013.

9. Humbert Mathias, Huguenin Kévin, Hugonot Joachim, Ayday Erman and Hubaux Jean-Pierre. De-anonymizing genomic databases using
phenotypic traits. In 15th Privacy Enhancing Technologies Symposium (PETS), 2015.

10. Malin Bradley and Sweeney Latanya. How (not) to protect genomic data privacy in a distributed network: Using trail re-identification to
evaluate and design anonymity protection systems. Journal of Biomedical Informatics, 37(3):179–192, 2004.

http://www.chuv.ch/chuv_home/recherche/chuv_recherche-infos-pratiques/chuv_recherche-infos-pratiques-src.htm
http://www.chuv.ch/chuv_home/recherche/chuv_recherche-infos-pratiques/chuv_recherche-infos-pratiques-src.htm
https://www.i2b2.org/work/i2b2_installations.html

11. Wang Rui, Li Yong Fuga, Wang XiaoFeng, Tang Haixu and Zhou Xiaoyong. Learning your identity and disease from research papers:
Information leaks in genome wide association study. In CCS, pages 534–544, 2009.

12. Zhou Xiaoyong, Peng Bo, Li Yong Fuga, Chen Yangyi, Tang Haixu and Wang XiaoFeng. To release or not to release: Evaluating information
leaks in aggregate human-genome data. In ESORICS, 2011.

13. Canim M., Kantarcioglu M. and Malin B. Secure management of biomedical data with cryptographic hardware. Information Technology in
Biomedicine, IEEE Transactions on, 16(1):166–175, 2012. ISSN 1089-7771.

14. Kamm Liina, Bogdanov Dan, Laur Sven and Vilo Jaak. A new way to protect privacy in large-scale genome-wide association studies. Bioin-
formatics, 2013.

15. Xie Wei, Kantarcioglu Murat, Bush William S., Crawford Dana, Denny Joshua C., Heatherly Raymond et al. SecureMA: protecting participant
privacy in genetic association meta-analysis. Bioinformatics (Oxford, England), 2014.

16. Wang Xiao Shaun, Huang Yan, Zhao Yongan, Tang Haixu, Wang XiaoFeng and Bu Diyue. Efficient genome-wide, privacy-preserving similar
patient query based on private edit distance. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 492–503. ACM, 2015.

17. Kantarcioglu M., Jiang Wei, Liu Ying and Malin B. A cryptographic approach to securely share and query genomic sequences. Information
Technology in Biomedicine, IEEE Transactions on, 12(5):606–617, 2008. ISSN 1089-7771. doi: 10.1109/TITB.2007.908465.

18. Lu Wenjie, Yamada Yoshiji and Sakuma Jun. Efficient secure outsourcing of genome-wide association studies. In Security and Privacy
Workshops (SPW), 2015 IEEE, pages 3–6. IEEE, 2015.

19. Duverle David A, Kawasaki Shohei, Yamada Yoshiji, Sakuma Jun and Tsuda Koji. Privacy-preserving statistical analysis by exact logistic
regression. In Security and Privacy Workshops (SPW), 2015 IEEE, pages 7–16. IEEE, 2015.

20. Wang Shuang, Jiang Xiaoqian, Fox Dov and Ohno-Machado Lucila. Preserving genome privacy in research studies. In Medical Data Privacy
Handbook, pages 425–441. Springer, 2015.

21. Wang Shuang, Zhang Yuchen, Dai Wenrui, Lauter Kristin, Kim Miran, Tang Yuzhe et al. Healer: Homomorphic computation of exact logistic
regression for secure rare disease variants analysis in gwas. Bioinformatics, 32(2):211–218, 2016.

22. Uhlerop Caroline, Slavković Aleksandra and Fienberg Stephen E. Privacy-preserving data sharing for genome-wide association studies. The
Journal of privacy and confidentiality, 5(1):137, 2013.

23. Johnson Aaron and Shmatikov Vitaly. Privacy-preserving data exploration in genome-wide association studies. In KDD, pages 1079–1087,
2013.

24. Yu Fei, Fienberg Stephen E., Slavkovic Aleksandra B. and Uhler Caroline. Scalable privacy-preserving data sharing methodology for genome-
wide association studies. Journal of Biomedical Informatics, 2014.

25. Simmons Sean and Berger Bonnie. One size doesn’t fit all: Measuring individual privacy in aggregate genomic data. In Security and Privacy
Workshops (SPW), 2015 IEEE, pages 41–49. IEEE, 2015.

26. Simmons Sean and Berger Bonnie. Realizing privacy preserving genome-wide association studies. Bioinformatics, 32(9):1293–1300, 2016.

27. Simmons Sean, Sahinalp Cenk and Berger Bonnie. Enabling privacy-preserving gwass in heterogeneous human populations. Cell Systems, 3
(1):54 – 61, 2016.

28. Tramèr Florian, Huang Zhicong, Hubaux Jean-Pierre and Ayday Erman. Differential privacy with bounded priors: Reconciling utility and
privacy in genome-wide association studies. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 1286–1297. ACM, 2015.

29. McLaren Paul J., Raisaro Jean Louis, Aouri Manel, Rotger Margalida, Ayday Erman, Bartha István et al. Privacy-preserving genomic testing
in the clinic: a model using HIV treatment. Genetics in Medicine, 18(8):814–822, aug 2016. ISSN 1098-3600. doi: 10.1038/gim.2015.167.
URL http://www.nature.com/doifinder/10.1038/gim.2015.167.

30. Phillips Lori C, Minovitsky Simon, Ratnere Igor, Dubchak Inna, Kohane I and Murphy SN. Use genomic variants in informatics for integrating
biology and the bedside (i2b2). AMIA Proceedings Library: 48-52 T2011, 2011.

31. Gabetta Matteo, Limongelli Ivan, Rizzo Ettore, Riva Alberto, Segagni Daniele and Bellazzi Riccardo. Bigq: a nosql based framework to handle
genomic variants in i2b2. BMC bioinformatics, 16(1):1, 2015.

32. Murphy Shawn N, Gainer Vivian, Mendis Michael, Churchill Susanne and Kohane Isaac. Strategies for maintaining patient privacy in i2b2.
Journal of the American Medical Informatics Association, 18(Supplement 1):i103–i108, 2011.

33. Gentry Craig. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

34. Fan Junfeng and Vercauteren Frederik. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.
URL http://eprint.iacr.org/2012/144.

http://www.nature.com/doifinder/10.1038/gim.2015.167
http://eprint.iacr.org/2012/144

35. Koblitz Neal. Elliptic curve cryptosystems. Mathematics of computation, 48(177):203–209, 1987.

36. Bos Joppe W., Lauter Kristin E., Loftus Jake and Naehrig Michael. Improved security for a ring-based fully homomorphic encryption scheme.
In Cryptography and Coding - 14th IMA International Conference, IMACC 2013, Oxford, UK, December 17-19, 2013. Proceedings, pages
45–64, 2013.

37. Brakerski Zvika, Gentry Craig and Halevi Shai. Packed ciphertexts in lwe-based homomorphic encryption. In Public-Key Cryptography–PKC
2013, pages 1–13. Springer, 2013.

38. Dwork Cynthia. Differential privacy. Venice, Italy, July 2006. Springer Verlag. URL https://www.microsoft.com/en-us/
research/publication/differential-privacy/.

39. The variant call format specification - vcfv4.3 and bcfv2.2. http://samtools.github.io/hts-specs/VCFv4.3.pdf. Accessed:
2016-08-02.

40. Schlesinger Jennifer. Dark web is fertile ground for stolen medical records. URL http://www.cnbc.com/2016/03/10/
dark-web-is-fertile-ground-for-stolen-medical-records.html.

41. Global Alliance for Genomics and Health . The beacon project. URL https://beacon-network.org/#/.

42. Exac browser. URL http://exac.broadinstitute.org.

43. Namazi Mina, Troncoso-Pastoriza Juan Ramón and Pérez-González Fernando. Dynamic privacy-preserving genomic susceptibility testing. In
Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pages 45–50. ACM, 2016.

44. Aguilar-Melchor Carlos, Barrier Joris, Guelton Serge, Guinet Adrien, Killijian Marc-Olivier and Lepoint Tancrede. Nfllib: Ntt-based fast
lattice library. In Cryptographers’ Track at the RSA Conference, pages 341–356. Springer, 2016.

45. Göttert Norman, Feller Thomas, Schneider Michael, Buchmann Johannes and Huss Sorin. On the design of hardware building blocks for
modern lattice-based encryption schemes. In International Workshop on Cryptographic Hardware and Embedded Systems, pages 512–529.
Springer, 2012.

46. i2b2 software, . URL https://www.i2b2.org/software/index.html.

47. Melchor Carlos Aguilar, Barrier Joris, Guelton Serge, Guinet Adrien, Killijian Marc-Olivier and Lepoint Tancrède. Nfllib: Ntt-based fast lattice
library. In Sako Kazue, editor, Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference 2016, San Francisco,
CA, USA, February 29 - March 4, 2016, Proceedings, volume 9610 of Lecture Notes in Computer Science, pages 341–356. Springer, 2016.
ISBN 978-3-319-29484-1. doi: 10.1007/978-3-319-29485-8 20. URL http://dx.doi.org/10.1007/978-3-319-29485-8_20.

48. Dowlin Nathan, Gilad-Bachrach Ran, Laine Kim, Lauter Kristin, Naehrig Michael and Wernsing John. Manual for using homomorphic en-
cryption for bioinformatics. Technical Report MSR-TR-2015-87, November 2015. URL http://research.microsoft.com/apps/
pubs/default.aspx?id=258435.

7 Appendix

7.1 Homomoprhic Encryption Scheme

In order to choose the best cryptosystem for our solution in terms of storage and computational overheads, we com-
pared three C++ libraries: Elliptic curve ElGamal (EC-ElGamal)35, Fan and Vercauteren (FV) scheme34 with NTT-
based fast lattice library (NFLlib)47, and Simple Encrypted Arithmetic Library (SEAL)48 which is an implementation
of Yet Another Somewhat Homomorphic Encryption (YASHE) scheme36. We compared the performance of these
libraries on a laptop with the i7-3517U processor and 10 GB of RAM. The results are as on Table 6 and Table 7. Based
on this benchmark, we chose the FV scheme with NFLlib for our solution.

EC-ElGamal (Java) FV + NFLlib (C++) SEAL (C++)

No Packing Packing
(n=4096) No Packing Packing

(n=4096)
Ciphertext Size 360 Bytes 128 KB 128 KB 64 KB 64 KB

Number of Required Ciphertext 1 million 1 million 245 1 million 245
Storage Size 343.3 MB 122 GB 30.6 MB 61 GB 15.5 MB

Table 6: Storage requirement to encrypt 1 million variants with 256 bits of security level

https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://www.microsoft.com/en-us/research/publication/differential-privacy/
http://samtools.github.io/hts-specs/VCFv4.3.pdf
http://www.cnbc.com/2016/03/10/dark-web-is-fertile-ground-for-stolen-medical-records.html
http://www.cnbc.com/2016/03/10/dark-web-is-fertile-ground-for-stolen-medical-records.html
https://beacon-network.org/#/
http://exac.broadinstitute.org
https://www.i2b2.org/software/index.html
http://dx.doi.org/10.1007/978-3-319-29485-8_20
http://research.microsoft.com/apps/pubs/default.aspx?id=258435
http://research.microsoft.com/apps/pubs/default.aspx?id=258435

EC-ElGamal FV + NFLlib SEAL
Encryption 4 ms 1 ms 71 ms
Decryption 10 ms 2.5 ms 70 ms

Homomorphic Addition 0.2 ms 0.1 ms 0.2 ms
Homomorphic Multiplication - 18 ms 1286 ms

Table 7: Execution time of each operation

7.2 Secure Algorithms for Computation of Genomic Summary Statistics

In the followings, we describe how summary statistics outlined in Section 4.3 can be securely computed at the i2b2
server by using homomorphic encryption. Differential privacy can then be satisfied by homomorphically adding noise
to the encrypted result.

Algorithm 2: Count any mutation
Input : Patient set P , variant set V which are in the same ciphertext, set of the number of no calls Np of each patient p ∈ P , and set of encrypted

genotypes Gp of each patient p ∈ P . Gp consists of two ciphertexts as Gp.cipher gt1 and Gp.cipher gt2
Output: Map between the set of variants and the result ciphertext

1 M ← an empty map // Map of key/value pairs containing encrypted results per set of
variants which can be computed together

2 M.addEntry(V,Enc(0))
3 for p ∈ P do
4 ones← Set of variants in V whose Np = 1
5 M ′ ← an empty map
6 for (key, value) ∈M do
7 if key ∩ ones 6= ∅ then
8 M ′.addEntry(key ∩ ones, value⊕Gp.cipher gt1)

// Computation for genotype ./0 and ./1
9 end

10 if key \ ones 6= ∅ then
11 M ′.addEntry(key \ ones, value⊕Gp.cipher gt1⊕Gp.cipher gt2)

// Computation for genotype ./., 0/0, 0/1 and 1/1
12 end
13 end
14 M ←M ′

15 end
16 return M

Algorithm 3: Homozygous alternate or heterozygous count
Input : Patient set P , variant set V which are in the same ciphertext, set of the number of no calls Np of each patient p ∈ P , and set of encrypted

genotypes Gp of each patient p ∈ P . Gp consists of two ciphertexts as Gp.cipher gt1 and Gp.cipher gt2
Output: Map between the set of variants and the result ciphertext

1 M ← an empty map // Map of key/value pairs containing encrypted results per set of
variants which can be computed together

2 M.addEntry(V,Enc(0))
3 for p ∈ P do
4 ones← Set of variants in V whose Np = 1
5 M ′ ← an empty map
6 for (key, value) ∈M do
7 if key ∩ ones 6= ∅ then
8 M ′.addEntry(key ∩ ones, value) // Computation for genotype ./0 and ./1
9 end

10 if key \ ones 6= ∅ then
11 M ′.addEntry(key \ ones, value⊕Gp.cipher gt2) . cipher gt1 instead of cipher gt2 for heterozygous

// Computation for genotype ./., 0/0, 0/1 and 1/1
12 end
13 end
14 M ←M ′

15 end
16 return M

Algorithm 4: Homozygous alternate or heterozygous frequency
Input : Patient set P , variant set V which are in the same ciphertext, set of the number of no calls Np of each patient p ∈ P , and set of encrypted

genotypes Gp of each patient p ∈ P . Gp consists of two ciphertexts as Gp.cipher gt1 and Gp.cipher gt2
Output: Map between the set of variants and the result ciphertext

1 M ← an empty map // Map of key/value pairs containing encrypted results per set of
variants which can be computed together

2 M.addEntry(V, (Enc(0), 0))
3 for p ∈ P do
4 zeros← Set of variants in V whose Np = 0
5 M ′ ← an empty map
6 for (key, value) ∈M do
7 if key \ zeros 6= ∅ then
8 M ′.addEntry(key \ zeros, value) // Computation for genotype ./., ./0 and ./1
9 end

10 if key ∩ zeros 6= ∅ then
11 M ′.addEntry(key ∩ zeros, (value[0]⊕Gp.cipher gt2, value[1] + 1)

// Computation for genotype 0/0, 0/1 and 1/1
12 . cipher gt1 instead of cipher gt2 for heterozygous
13 end
14 end
15 M ←M ′

16 end
17 return M . value[0]/value[1] will be computed at the client side

Algorithm 5: Homozygous reference count or frequency
Input : Patient set P , variant set V which are in the same ciphertext, set of the number of no calls Np of each patient p ∈ P , and set of encrypted

genotypes Gp of each patient p ∈ P . Gp consists of two ciphertexts as Gp.cipher gt1 and Gp.cipher gt2
Output: Map between the set of variants and the result ciphertext

1 M ← an empty map // Map of key/value pairs containing encrypted results per set of
variants which can be computed together

2 M.addEntry(V, (Enc(0), 0))
3 for p ∈ P do
4 zeros← Set of variants in V whose Np = 0
5 M ′ ← an empty map
6 for (key, value) ∈M do
7 if key \ zeros 6= ∅ then
8 M ′.addEntry(key \ zeros, value) // Computation for genotype ./., ./0 and ./1
9 end

10 if key ∩ zeros 6= ∅ then
11 M ′.addEntry(key ∩ zeros, (value[0]⊕Gp.cipher gt1⊕Gp.cipher gt2, value[1] + 1))

// Computation for genotype 0/0, 0/1 and 1/1
12 end
13 end
14 M ←M ′

15 end
16 for (key, value) ∈M do
17 value[0]← Enc(value[1] + value[1]x+ value[1]x2 + · · ·+ value[1]x`−1)⊕−value[0]
18 end
19 return M . value[0]/value[1] will be computed at the client side for the homozygous reference frequency

	Introduction
	Related Work
	Preliminaries
	Notation
	Cryptographic Background
	Genomic Background

	Methodology
	System Model
	Threat Model
	Functional Requirements
	Proposed Solution
	Partial Decryption With FV Scheme

	Experiment and results
	Plugin Implementation
	Performance Evaluation

	Discussion
	Appendix
	Homomoprhic Encryption Scheme
	Secure Algorithms for Computation of Genomic Summary Statistics

