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ABSTRACT: Nanoparticle-based magnetic resonance imaging T, negative
agents are of great interest, and much effort is devoted to increasing cell-
loading capability while maintaining low cytotoxicity. Herein, two classes of
mixed-ligand protected magnetic-responsive, bimetallic gold/iron nano-
particles (Au/Fe NPs) synthesized by a two-step method are presented.
Their structure, surface composition, and magnetic properties are
characterized. The two classes of sulfonated Au/Fe NPs, with an average
diameter of 4 nm, have an average atomic ratio of Au to Fe equal to 7 or 8,
which enables the Au/Fe NPs to be superparamagnetic with a blocking
temperature of 56 K and 96 K. Furthermore, preliminary cellular studies
reveal that both Au/Fe NPs show very limited toxicity. MRI phantom
experiments show that r,/r, ratio of Au/Fe NPs is as high as 670, leading to a
66% reduction in T, relaxation time. These nanoparticles provide great
versatility and potential for nanoparticle-based diagnostics and therapeutic applications and as imaging contrast agents.
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Bl INTRODUCTION and Mn**, T| positive agents) have been used for this purpose.”
When prelabeling cells in vitro, the challenge is to induce

Magnetic resonance imaging (MRI) is a powerful diagnostic i - ;
sufficient cellular uptake of the contrast agent without affecting

technique primarily used to visualize fine morphological

features of the human body with spatial resolution down to normal cellular functions. In addition, cells should retain the
the submillimeter range, yielding valuable information on contrast agent for a time sufficient to provide useful
function and metabolism.! However, a limitation of MRI is its information by MRI, which could range from few minutes or
lack of sensitivity to relaxation times between normal and hours for imaging to weeks for cell tracking.
abnormal soft tissue, resulting in low contrast images. With the The efficiency of nanoparticle uptake by cells is directly
introduction of contrast agents in MRI, more specific and clear influenced by the properties of the particle surface.”™” Extensive
images can be obtained, providing ghysicians with sensitive and research has focused on increasing cellular uptake by surface
substantial diagnostic information. modification strategies, such as conjugation of cell-penetrating
More recently, molecular and cellular MRI has been peptides,” combination with transfection agents,” and encapsu-
intensively studied to visualize and track target cells in living lation with dendrimers.'® However, challenges still remain in

organisms, for example, to verify homing or engraftment of
transplanted stem cells.” In order to provide a characteristic
difference in MRI signal intensity, cells must be prelabeled with
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Figure 1. Physicochemical characterization of MPSA:OT Au/Fe NPs and MUS:OT Au/Fe NPs. (a, b) TEM images of MPSA:OT Au/Fe NPs (left,
with high resolution TEM insert, scale bar for HR-TEM insets: 5 nm) and MUS:OT Au/Fe NPs (right). (c, d) XPS data for MPSA:OT Au/Fe NPs
(left) and MUS:OT Au/Fe NPs (right). (e, f) XRD powder diagrams for MPSA:OT Au/Fe NPs (left) and MUS:OT Au/Fe NPs (right). (g, h)
NMR analysis of surface composition of etched NPs, MPSA:OT Au/Fe NPs (left) and MUS:OT Au/Fe NPs (right).

achieving biological functionality as well as low toxicity, water
solubility, and stability in biological media.

Many recent studies report on the synthesis and MRI
potential of Au-coated iron oxide nanoparticles'' and Au/Fe
bimetallic and alloy nanoparticles.'>™'® Both solutions lead to
superparamagnetic nanoparticles with contrast agent capability
that in addition present an exposed, inert, noble metal surface.
The presence of Au provides two main advantages: (i) a well-
known and versatile platform for surface functionalization, the
gold—thiol chemistry, and (ii) gold adds plasmonic features to
the superparamagnetic NPs that can be exploited for multi-
modal imaging, such as contrast for CT (computed
tomography) and SERS (surface enhanced Raman spectrosco-
py) imaging in vivo,"> and photothermal therapy.'’

Our primary motivation is to develop magnetic nanoparticles
that can be used as nontoxic, cell-degradation resistant MRI
contrast agents, e.g., for long-term follow-up studies of
transplanted stem cells or for in vitro and in vivo studies to
follow tumor growth of NP-loaded tumor cells. The magneto-
responsive Au/Fe NPs described in this work combine the
capability of cell internalization shown by mixed-ligand gold
nanoparticles”'®'” with magnetic features.
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A number of different methods have been previously
reported for the pregaration of bimetallic Au/Fe alloy
nanoparticles,"*~">?°7*® core—shell or dumbbell nanopar-
ticles,””** with protocols including thermal decomposition,'>**

pulsed laser deposition,””** microemulsion techniques,'®*'
thermal va1p01rization,32’33 laser-assisted synthesis in solu-
tion,"””" and aqueous reduction by borohydride derivates."*
Chemical reduction of metal ions by sodium borohydrides has
previously been used to prepare nanocrystalline magnetic
materials, nanoalloys, and amorphous metals.***° In this work,
we report a new two-step synthesis to prepare magneto-
responsive gold/iron nanoparticles (Au/Fe NPs) with two
mixed-ligand coatings, either mercaptopropionylsulfonic acid:-
octanethiol (MPSA:OT) or mercaptoundecyl-
sulfonate:octanethiol (MUS:OT). Structural characterization
and elemental analysis demonstrate that the resulting bimetallic
nanoparticles have an average diameter of 4 nm (MPSA:OT,
4.0 + 1.3 nm; MUS:OT, 4.0 &+ 1.0 nm) with an average atomic
ratio of Au to Fe of 7 (MPSA:OT) and 8 (MUS:OT), which
enables Au/Fe NPs to be superparamagnetic at room
temperature, with a blocking temperature of 56 K (MPSA:OT)
and 96 K (MUS:OT), depending on the coating. Their high r,/
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r, ratio demonstrates their capability to be used as MRI T,
contrast agents. Furthermore, we confirm their ability to
penetrate cells and to be accumulated without apparent toxicity
and to be retained in cells after cellular division up to the fourth
generation. This combination of properties demonstrates the
applicability of these nanoparticles as ideal MRI contrast agents.

B RESULTS AND DISCUSSION

Synthesis and Physicochemical Characterization of
Au/Fe Nanoparticles. We present a two-step method, which
employs mild condition and is very easy to scale up. The
synthesis of gold/iron nanoparticles (Au/Fe NPs) is performed
in two steps in order to overcome the difference in the redox
potential of iron and gold, as in most reducing conditions gold
is reduced before iron. Therefore, the iron salts are first reduced
to Fe,0; by quickly adding a mixture of ferric (Fe*") and
ferrous (Fe*") salts into an excess of NaBH, solution.

The reaction is very fast (less than a minute) and allows for
high yields of the precursor iron complex. In the second step,
the Fe precursor is mixed with gold salts and capping ligands
and reduced with NaHB, to produce ligand-shell stabilized Au/
Fe NPs, following a well-established gold nanoparticle synthesis
procedure.*® Our bimetallic Au/Fe-NPs are passivated by a
mixed ligand monolayer composed either by MPSA:OT or by
MUS:OT mixtures. MPSA and MUS are hydrophilic molecules
that phase-separate into patches on the gold surface when
forming mixed ligands monolayer with hydrophobic moieties
like OT.

MPSA:OT Au/Fe NPs are a useful benchmark system to
compare with published reports on Au/Fe alloy nanoparticles
with pure MPSA coating."* Compared to those reports, our
NPs are obtained with a method independent of thermal
decomposition or the presence of an organic surfactant, which
can be difficult to remove and may cause cellular toxicity.””
Moreover, our Au/Fe NPs present a mixed ligand surface that
has proven to be highly biocompatible in similarly prepared
pure gold NPs. Indeed, our group previously investigated gold
nanoparticles coated with an alternate arrangement of hydro-
phobic and longer hydrophilic sulfonated moieties (MUS),
showing in both in vitro and theoretical models a high
capability to penetrate into cells.”"®"”

Transmission electron microscopy (TEM) images reveal that
the average diameter of MPSA:OT Au/Fe NPs is 4.0 + 1.3 nm
(Figure 1a). Similar results are obtained for MUS:OT Au/Fe
NPs (Figure 1b), with a similar size distribution centered at 4.0
+ 1.0 nm. In bright-field mode of TEM, pure gold phases
normally appear much darker than pure iron phases because of
much higher proton number in gold atoms. Therefore, both
Fe/Au core/shell NPs and phase-separated Fe and Au NPs are
showin§ different contrast between the two phases in TEM
images.”® For example, both large scale (Figure 1a) and high-
resolution (Figure 1a, inset) images of MPSA:OT Au/Fe NPs
show homogeneous contrast, as other solid solution of Fe in Au
NPs and alloyed Au/Fe NPs.'* These kinds of peculiar
bimetallic NPs where Fe is homogeneously distributed in the
fcc crystal of gold core allow for the design of small-size
contrast agent NPs (compared to core—shell desi%n) that
maintain plasmonic and magnetic properties.'”'**"***” High-
resolution TEM images also reveal that MPSA:OT Au/Fe NPs
have multiple twinned boundaries of AuFe, single-crystal and
other crystal structures, substantially in a similar fashion as for 4
nm pure Au NPs observed by others.*® These results, in
addition to X-ray powder diffraction (XRD), reveal that the
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nanoparticle core (in both MPSA:OT and MUS:OT Au/Fe
NPs) presents iron oxides, as well as with a slight degree of
alloying with gold, thus supporting the presence in the core of
both iron and gold and the protective effect of the gold lattice
on the iron component.

The iron precursor shows the presence of crystalline iron
oxides (Supporting Information, Table Sla,b) of ~2 nm in size.
MPSA:OT and MUS:OT Au/Fe NP core lattice parameters
(4.0698 and 4.0681 A, respectively, as estimated via Scherrer’s
formula; see Supporting Information Table S1b) show some
relaxation compared to the crystal lattice of pure gold (lattice
constant reported in the literature: 4.0782(5) A 1103140y
This suggests a slight degree of alloying, similar to previous
reports.  “*"**The corresponding peaks of iron and gold,
reported in Figure le and Figure 1f, are analyzed and are in
good agreement with reported values."*™'**"*" The lattice
parameters of bulk Au/Fe alloys have been characterized in a
wide range of compositions, for example, 3.3% Fe (4.0690 A)
and 20% Fe (3.995 A).*' Application of Vegard’s law in this
range allows for an estimation of the iron composition from the
lattice parameter, which results in 10.3% Fe for MPSA:OT Au/
Fe NPs and 12.3% Fe for MUS:OT Au/Fe NPs.

By X-ray photoelectron spectroscopy (XPS), the average
atomic ratio of MPSA:OT Au/Fe NPs is found to be around 7
(14.3% Fe). The value is in agreement (within experimental
error) with the data obtained from XRD analyses and from
EDS (energy dispersive X-ray spectroscopy, as reported in
Supporting Information Figure S2). In this ratio region, Fe
atoms occupy face-centered cubic (fcc) sites of Au atoms.™
Furthermore, the particle surface must be dominated by Au
atoms to avoid Fe oxidation, which is similar to small sized
iron—platinum (FePt) nanoparticles with Pt segregation on the
surface.”®** The presence of gold on the surface of Au/Fe NPs
ensures that they have the same surface properties as pure gold
NPs. It should be pointed out that the ratio of Fe to Au is not
identical for each single NP, and we provide an average number
for the nanoparticle population. Similar results are obtained for
MUS:OT Au/Fe NPs where the average atomic ratio of Au/Fe
is found to be around 8 (12.5% at. Fe), again in the range of fcc
arrangement of Fe and Au atoms.*” In both cases, XPS data
show also the coexistence of S** and >~ oxidation states on the
surface of NPs (Figure 1c,d), which represent the sulfonate
groups of MPSA or MUS, and the thiol groups of MPSA, MUS
or OT, respectively.**

Surface monolayer composition is further confirmed by
NMR. For the composites, two "H NMR peaks of Au/Fe NP
postetching solutions are compared directly (Figure 1g): the
—CHj; peak of OT at 0.90 ppm and the —CH, adjacent to the
sulfonate of MPSA or MUS at 2.95 ppm. The MPSA:OT ratio
is 1.46:1. FTIR results (Supporting Information Figure S3)
support the finding of the coexistence of MPSA and OT on the
surface of Au/Fe NPs. The ligand ratio for MUS:OT Au/Fe
NPs is 1.84:1, as determined by NMR (Figure 1h). The ¢&-
potential of Au/Fe NPs dispersed in water is measured to be
—25 + 1 mV for MPSA:OT NPs and —28 + 4 mV for
MUS:OT NPs; thus they are anionic and exhibit excellent
colloidal stability. Furthermore, the Au/Fe NPs retain the
localized surface plasmon resonance (LSPR) characteristic of
pure Au NPs, as evidenced by a lack of attenuation or shift in
the position of Au/Fe NPs’ plasmon peak (Supporting
Information Figure Slc). This is in agreement with similar
properties of low-iron content, chemically synthesized Au—Fe
alloy NPs,"****>*® which also show insignificant shift in the
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position of LSPR peaks compared to pure gold NPs, as the low
content in Fe does not modify substantially plasmonic
properties. This is also supported by our high resolution
TEM results, as the crystal structure of the Au/Fe NPs does not
point to phase separations of Au and Fe in the NPs core.
Magnetic Properties. Magnetic properties of Au/Fe NPs
are measured using a SQUID magnetometer (Figure 2a,b for
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Figure 2. Magnetic properties of Au/Fe NPs: (a) magnetic hysteresis
loop for MPSA:OT Au/Fe NPs; (b) zero-field-cooled (ZFC) and
field-cooled (FC) for MPSA:OT Au/Fe NPs; (c) magnetic hysteresis
loop for MUS:OT Au/Fe NPs; (d) zero-field-cooled (ZFC) and field-
cooled (FC) for MUS:OT Au/Fe NPs.

MPSA:OT Au/Fe NPs, Figure 2¢,d for MUS:OT Au/Fe NPs).
Magnetic hysteresis loops at different temperatures indicate
that Au/Fe NPs are superparamagnetic at room temperature.
The zero-field-cooled (ZFC) and field-cooled (FC) curves
show the blocking temperatures (T5) of Au/Fe NPs to be 56 K
for MPSA:OT Au/Fe NPs (Figure 2b) and 96 K for MUS:OT
Au/Fe NPs (Figure 2d). As compared to iron and iron oxide
nanoparticles of the same size, these Au/Fe NPs have similar
blocking temperature but a smaller magnetization, which is
mainly contributed by the small Fe portion and its wide
distribution.

The potential for deployment of these NPs as effective
contrast agents in MRI is assessed through phantom experi-
ments and in vitro MRIL The specific relaxivity (r,) and the
ratio r,/r, are the figure-of-merit for T,-weighted contrast
agents, such as iron oxide nanoparticles. The higher is the r,/r,
ratio, the better is the contrast efficiency. To examine the
contrast characteristics of Au/Fe NPs as a MRI contrast agent,
we acquire the T,-weighted images (Figure 3a, MPSA:OT;
Figure 3c, MUS:OT Au/Fe NPs), and T;, T, relaxation times
of the NPs dispersion in water. The measurements are carried
out with a 7.0 T preclinical MRI scanner. The transverse
relaxation rate R,, which is the reciprocal of the T, relaxation
time, is calculated from the MR images of MPSA:OT (Figure
3a) or MUS:OT (Figure 3c) Au/Fe NPs at different
concentrations. Data in Figure 3 show the correlation between
the R;, R, relaxation rate and the concentration of iron in
MPSA:OT (Figure 3b) and MUS:OT (Figure 3d) Au/Fe NPs.
The specific relaxivity (r, ,, mM™' s7') measures the change in
the relaxation rate per unit concentration of iron. In particular,
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Figure 3. MRI properties of Au/Fe NPs. On the left, the magnetic
resonance images of agar phantoms containing (a) water dispersion of
MPSA:OT Au/Fe NPs or (c) of MUS:OT Au/Fe NPs. On the right,
the specific relaxivity of (b) MPSA:OT Au/Fe NPs or (d) of MUS:OT
Au/Fe NPs.

the specific relaxivity r, (mM™' s7') represents the relaxation
rate (R,) enhancements (relative to pure water) of the
nanoparticle suspension as a function of the Fe ion
concentration. Usually, r,, is obtained from the plot using
the equation R, = 1/T,, = (1/T,) + r1,C, where R, , is the
relaxation rate of the aqueous solution of nanoparticles, (T} ,),
is the relaxation time in absence of nanoparticles, and C is the
concentration (mM) of iron.*’

This equation allows for a univocal parameter r to be
extracted and compared among samples. This equation is well
applied to r; of MPSA:OT and both r| and r, of MUS:OT NPs.
However, MPSA:OT Au/Fe NPs show a nonlinear behavior in
the presented Fe concentration range. Our R, data for
MPSA:OT Au/Fe NPs, indeed, span a larger range of Fe
concentrations and follow below 0.4 mM Fe content a linear
regime to reach saturation in the range 0.4—0.8 mM Fe. By
analyzing data with a quadratic polynomial of the kind R, = R,
+ 15,C + 1,C% where R, is the relaxation rate of the aqueous
NP solution, Ry = 1/(T),), is the inverse of the relaxation time
in absence of nanoparticles, and C is the concentration (mM)
of iron, we can explain both behaviors. The high slope in the
linear regime (r,, = 113.9 mM™' s7") is related to the positive
contribution of C until a turning point, highlighted by the
negative r,, value (r,, = —86.3 mM > s™"), is reached at (r,,/2)
7y, = 0.66 mM Fe. Then, the high NP concentration may favor
different exchange rates of the protons that contribute to the
MR signal so that at higher NPs concentration those protons
may have unequal access to the paramagnetic centers.

The phantom experiments in Figure 3a and Figure 3c show
that both nanoparticles induce a hypointense signal in a
concentration-dependent manner on the T,-weighted images.
R, relaxation time increased significantly from 0.49 M to 8.2
uM (6.7 uM for the MUS:OT) Au/Fe NP concentrations. The
contrast of Au/Fe NPs suspensions is shown in the phantom
experiments where a strong reduction of the signal intensity in
T,-weighted images is observed (Figure 3a, Figure 3c). The
absolute value of 7; and r, of Au/Fe NPs is low because of the
small Fe portion and wide distribution. However, the unique
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surface structure of Au/Fe NPs allows dramatic increase of the
ry/r; ratio. This behavior can be explained by the interplay of
two main effects. First, the segmented regions of hydrophilic
—SO;" groups in the NP’s biligand shell may be capable of
trapping Iar§e amounts of “icelike” water,* resulting in a larger
r, relaxivity.” Second, the hydrophobic pure Au layer surface of
the NPs may efficiently block the external water molecules from
interacting with the Fe magnetic core, inducing a large decrease
in the spin—lattice r; relaxivity.”’ The r,/r; ratio value is as high
as 670 (for MPSA:OT Au/Fe NPs: r,,/r;) and leads to a
marked reduction in T, relaxation time, further supporting the
potential of Au/Fe NPs as MRI T, contrast agents. Indeed, the
efficiency parameter r,/r; is above 107 at field of 1.41 T (in the
range of clinically relevant field intensity, 1.5 T), where most
negative contrast agents have a threshold value just above
212132039 (35 compared to commercially available
SPIONs:'>'#**% Endorem, 6.56, and VOSP, 2.35).

Cellular Uptake and Cell Viability. BODIPY-labeled
nanoparticles are used to evaluate and quantify cellular
internalization through a series of fluorescence activated cell
sorting (FACS) and confocal laser scanning microscopy
(CLSM) studies. Figure 4 summarizes the in vitro results for
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Figure 4. Cellular uptake of Au/Fe NPs. FACS measurement of NP
toxicity with increasing NP concentration for MPSA:OT Au/Fe NPs
(a) and MUS:OT Au/Fe NPs (c). CLSM images illustrating cytosolic
NP uptake at 37 °C for MPSA:OT Au/Fe NPs (b) and MUS:OT Au/
Fe NPs (d). NPs were prelabeled with BODIPY (red) for fluorescence
detection. Nuclei were counterstained with Hoechst 33342 (blue).
Larger micrographs for MPSA:OT and MUS:OT Au/Fe NPs loaded
cells are reported in Supporting Information Figure S4.

MPSA:OT and MUS:OT Au/Fe NPs. A dose—response study
is conducted by FACS analysis of cell viability, and the results
are represented in Figure 4a,c (FACS dot plots are reported in
Supporting Information Figures S5 and $6). Propidium iodide
(PI) is a nonpermeant cell dye and is excluded by intact cell
membranes of live cells, while dead or damaged cells allow dye
entry and are stained by PI. Therefore, the percentage of PI
positive, BODIPY positive cells is an indication for NP-induced
cell mortality. The percentage of PI negative, BODIPY-positive
cells reflects the percentage of cells that have uptaken the NPs
without effect on their viability. Cells are viable (viability above
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80%) after the uptake of Au/Fe NPs at tested concentrations.
MUS:OT NPs show a slightly higher toxicity at the highest
tested concentration as compared to the MPSA:OT NPs;
however viability is well above 60% even at high doses (3.28
and 4.92 uM). The highest concentration (4.92 yM), indeed,
represents a high dose of nanomaterial, while at concentration
reasonable for in vivo applications (such as the one used for the
confocal and MRI images, 1.64 4M) viability is above 80% for
all NPs. These data are confirmed by LDH (lactate
dehydrogenase) leakage test (Supporting Information Figure
S7). Cells that lose the integrity of the plasma membrane due
to perforation or necrosis release the cytosolic enzyme LDH in
the medium or extracellular space. For NP concentration
between 0.05 and 0.4 mg/mL (0.4—3.24 uM), we can see that
LDH release at 4 h is equal to or lower than that of the control
at all concentrations. At 24 h, LDH release at the maximum
concentration is about 3 times higher than control. After 48 h
of NPs incubation, LDH release reaches a plateau at 0.1 mg/
mL and above (0.82 yM) with an LDH release that is about 2.5
times higher than control. These results are promising, as a high
cell loading with NPs can be achieved with shorter incubation
time (up to 24 h) while keeping cytotoxicity low.

We also observed that the more hydrophobic MPSA:OT
NPs tend to aggregate with time at very high concentrations.
Possibly, this higher tendency of MPSA:OT NPs to form larger
cluster in medium over time reduces the uptake of smaller
particles, masking toxicity at higher doses, compared to
MUS:OT NPs.

One limitation of FACS analysis is that it does not
discriminate between cellular internalization and adsorption
to the cell surface. For this reason, complementary CLSM
imaging studies are carried out to confirm that the nano-
particles are present into the cytosol. HeLa cells are incubated
with either type of NPs for 4 h at 37 °C. The overlay of the
bright-field and fluorescence images clearly shows that HeLa
cells internalize BODIPY-labeled Au/Fe NPs. We can exclude
that free BODIPY is responsible for the signal, as we ensured
the absence of unbound dye by a test developed by our
laboratory®" (data not shown). The diffuse high fluorescence
intensity signal in the cytosol, for both MPSA:OT and
MUS:OT NPs (see Figure 4b, Figure 4d), indicates the
homogeneous distribution of NPs in contrast to a spotty
appearance typical of when NPs enter solely via endocytosis.
This can be attributed to NP uptake both by endocytosis and
by passive membrane diffusion. By preferring NP entry
passively into the cytosol of the cells over classic active
endocytic mechanisms, the NPs can be protected from (i)
degradation in the metal-dissolving acidic conditions along the
endocytic/lysosomal pathways®> and (i) expulsion from the
cells. Hence, passive uptake is beneficial for long-term follow-up
in applications such as stem cell loading for post-transplant
tracking. Detailed studies on the mechanisms of entry and
uptake are ongoing and will be the subject of a future paper.

MRI Imaging of Au/Fe NPs-Loaded Cells. To assess the
imaging potential of the NPs, MR imaging of cells labeled with
NPs are performed to quantify the T, relaxation time. MRI T),-
weighted images of the cells labeled with nanoparticles showed
an evident hypointensity (Figure Sa) corresponding to a
reduction in T, relaxation time when compared to the control
cells. Magnetic iron-containing nanoparticles such as our Au/Fe
NPs create a local perturbing field that leads to a marked
shortening on proton relaxation time (T, relaxation time) in
MRI process giving a negative signal.47’53
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Figure S. Effectiveness of MPSA:OT Au/Fe NPs as MRI imaging
probe on NPs-loaded cells. (a) MRI imaging of NPs-loaded cells as a
function of NPs concentration (the values refer to the concentration
administered to the cells). (b) CLSM images and quantification of
cytoplasmatic fluorescence signal from BODIPY-labeled MPSA:OT
Au/Fe NPs as a function of dilution upon subsequent cell divisions
and generations. The disappearance of the NPs (fluorescent red
signal) from the cells is due to dilution following cellular division. The
fluorescence signal can be detected up to the fourth generation. (c)
MRI signal as a function of dilution upon cell division in subsequent
generations, with untreated control cells as a reference signal. Error
bars represent one standard deviation from the mean.

Figure Sa shows a reduction in T, relaxation time as the NP
concentration increases after 8 h of incubation. A total
reduction of 66% in T, relaxation time is achieved for the
highest concentration when compared to the control cells.

Monitoring Au/Fe NPs Concentration in Dividing
Cells. In perspective of the potential future use as long-term
or even permanent cell stain, the dependence of NP detection
limit in cell generations is an important parameter. We
therefore followed the NPs signal in subsequent cell divisions.
For both fluorescence and MRI experiments, the number of
cells analyzed is kept constant at each generation step, so to
follow the dilution of the BODIPY-MPSA:OT Au/Fe NPs. We
expect that upon cell division, the internalized NPs are divided
between the mother and the daughter cells, diluting the
fluorescence and MR signals.

166

CLS micrographs (Figure Sb) show that the HeLa cells
retain a significant amount of BODIPY-MPSA:OT Au/Fe NPs
after several generations. These NPs are detected after cell
division up to the fourth generation. It is noteworthy that these
NPs do not affect cell division or metabolism, while the growth
rate is reportedly reduced by other magnetic nanoparticles
agents, 181954

More importantly, these results are confirmed by MRI.
Indeed we were able to detect the NPs in daughter cells, in
similarly prepared samples (Figure Sc). Although fluorescence
is clearly more sensitive to diluted concentrations, our Au/Fe
NPs, compared to untreated cells, continue to show a good
contrast in MRI even upon dilution in subsequent generations.
This fact, together with the findings about the low toxicity and
limited interference with cell viability, supports the use of these
nanoparticles for MRI visualization in vivo. We are indeed
already investigating their usefulness for research on metabolic
activity and differentiation of the transplanted stem cells and for
studies of tumor progression in 3D cell culture of NP-loaded
tumoral cells (manuscripts in preparation).

B CONCLUSIONS

We have described a simple and novel way for synthesizing
stable magnetically responsive bimetallic gold/iron nano-
particles and have demonstrated their high potential as MR
imaging contrast agents with high r,/r| ratio. The presence of
gold as a passivating layer prevents the oxidation of iron,
thereby increasing the stability of the magnetic nanoparticles,
and furthermore offers access to the versatile functionalization
scheme of thiols on gold. The labeling of the Au/Fe NPs with a
biocompatible monolayer and their retention in the cytosol
pave the way for numerous biomedical applications, such as
stem cell tracking by MRI and follow-up of cell therapy. A
significant advantage of this synthesis is that it can be used as
basis to design other nanoparticles by changing certain
parameters. Nanoparticle diameter and magnetic properties
can be tuned by changing the gold to iron ratio, and surface
ligands can be exchanged or conjugated with biomolecules (e.g,,
antibodies, peptides, or proteins) to achieve target-directed
MRI or imaging multimodality. Thus, these nanoparticles and
their synthesis offer great versatility and potential for
nanoparticle-based diagnostics, therapeutic applications, and
imaging contrast agents.

B EXPERIMENTAL PROCEDURES

Synthesis of Gold/Iron Nanoparticles (Au/Fe NPs). A
summary of the nanoparticles used in this study is presented in
Table 1. Magneto-responsive Au/Fe NPs were prepared as
follows. First, iron complexes are synthesized by chemical
reduction before subsequent mixing with gold salts for
preparation of Au/Fe NPs. For the preparation of iron
complexes, a mixture of ferrous and ferric ions (FeCly-6H,0
(1.24 g) and FeCl,-4H,0 (0.64 g) in 4 mL of acidic water) is

Table 1. Descriptions, Abbreviations, and Compositions of
the Nanoparticles Designed for This Study

core type ratio of ligands
nanoparticle (abbreviation) (diameter) (detected ratio)
gold/iron MPSA:OT Au/Fe MPSA:OT 2:1
(MPSA:OT Au/Fe NPs) (40 £ 1.3 nm)  (1.46:1)
gold/iron MUS:OT Au/Fe MUS:OT 2:1
(MUS:OT Au/Fe NPs) (40 + 1.0 nm)  (1.84:1)

DOI: 10.1021/acs.bioconjchem.6b00577
Bioconjugate Chem. 2017, 28, 161-170


http://dx.doi.org/10.1021/acs.bioconjchem.6b00577

Bioconjugate Chemistry

added very quickly, and with vigorous stirring, to a sodium
borohydride (NaBH,) solution in large stoichiometric excess (1
g in 150 mL of ethanol). The reaction is carried out under
nitrogen atmosphere at room temperature. The reaction
solution becomes black, resulting in a fine black precipitate
that is further filtered and washed with ethanol. The final Au/
Fe NPs are prepared by adapting an existing procedure.’ The
prepared iron complex (100 mg) is added to NaBH, solution
(1 gin 150 mL of ethanol) and sonicated for 1 h. The resulting
dispersion is added dropwise (over a period of 1 h) to 0.9
mmol of gold salt (HAuCl,) in 200 mL of ethanol and 0.9
mmol of thiolated ligands. The ligand solution consists of a
mixture in 2:1 molar ratio of sulfonated to hydrophobic thiol,
either MPSA:OT 2:1 or MUS:OT 2:1. The reaction is carried
out under N, atmosphere and stirred for 3 h. The resulting
particles are stored overnight at 4 °C, then collected by
filtration, washed 3 times (by ethanol, methanol, and acetone),
and finally dried under vacuum. The dried black powder can be
attracted by a magnet and redispersed into water (Supporting
Information Figure Slab) for subsequent experiments.

Fluorescent Labeling of Nanoparticles. For the cell
experiments, nanoparticles are labeled with BODIPY 650/665
nm (hereafter referred to as BODIPY) (Invitrogen, OR, USA)
according to the protocol described by Verma et al.’ The
complete removal of free BODIPY after washing the labeled
nanoparticle preparation is assessed according to the protocol
in Andreozzi et al.>!

Nanoparticle Characterization. The absorption spectra of
NP suspensions are recorded on a UV—vis spectrophotometer
(Ultrospec 2100pro, Amersham Bioscience). NP surface charge
is approximated by measuring the { potential using a Zetasizer
Nano ZS (Malvern Instruments, Malvern, U.K.). The results
are expressed as { potential (mV) =+ 1 standard deviation (SD).
NP size is measured by transmission electron microscopy
(TEM). TEM analysis is performed with a Philips/FEI CM300
transmission electron microscope at 300 kV with an energy
dispersive X-ray spectrometer (EDS) attached. X-ray photo-
electron spectroscopy (XPS) spectra are acquired by using
Kratos AXIS Ultra. Fourier transform infrared spectroscopy
(FTIR) spectra are measured on a JACSO FT/IR6320.
Magnetic properties are characterized by using a super-
conducting quantum interference device (SQUID) magneto-
meter (Cryogenic).

"H NMR measurements of ligand composites on the surface
of NPs are carried out on a Bruker Avance 300 spectrometer
operating at a frequency of 400 MHz after washing and etching.
Generally, 30 mg of NPs and 25 mg of potassium cyanide
(KCN) are dissolved in 1 mL of methanol. The solution is
sonicated for 4 h and then left stirring overnight. Afterward the
solution is filtered through a 0.2 ym membrane filter to remove
any gold, iron, and other insoluble components and
subsequently analyzed.

XRD (X-ray Diffraction). The samples are front-loaded as is
into the well of a sample-holder from PANalytical (The
Netherlands) hewn out of a silicon single crystal. Then powder
diagrams are recorded on an MPD PRO system (PANalytical,
The Netherlands) using an automatic divergence slit; at the end
the diagrams are converted to a fixed DS of '/,°. The step-size
is 0.008° in the 26 range 20—100°. The diagrams are then
refined by the Rietveld method with the help of the FullProf
program. The profile of the lines is described by means of a
pseudo-Voigt function. The same parameters are refined for all
samples. Finally, the sizes are computed by means of Scherrer’s
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formula, based on the full widths at half-maximum evaluated by
the FullProf program.

Cell Culture and Imaging. Human cervical carcinoma cells
(HeLa) are grown in Dulbecco’s modified Eagle medium
(Gibco) supplemented with 10% heat inactivated fetal bovine
serum (FBS), L-glutamine (2 mM), 0.1 mM nonessential amino
acids (ThermoFischer Scientific)) 1 mM sodium pyruvate,
penicillin (100 U mL™"), streptomycin (100 ug mL™").
Cultures are incubated at 37 °C, 5% CO, and passaged
regularly when reaching 70—80% confluence.

For CLSM studies, cells are seeded in a u-Slide 8-well Ibidi
plate (Martinsried, Germany) at a density of S X 10* cells per
well and are allowed to adhere overnight. Before cell incubation
with nanoparticles, the medium containing fetal bovine serum
is replaced with serum-free medium to avoid nonspecific
binding of NPs to serum proteins. Cells are then incubated with
1.64 uM NPs for 4 h at 37 °C. After incubation the cells are
washed 3 times with PBS. For fluorescence imaging, NPs
labeled with BODIPY'”"' are added to the cells and the
incubation is performed as above. Nuclei are counterstained
with Hoechst 33342 (Invitrogen, OR, USA), according to the
manufacturer’s instructions. Cellular uptake and internalization
of the fluorescently labeled NPs are visualized and evaluated
with an inverted CLSM (Leica TCS SP2 confocal microscope
equipped with a 63/1.4 NA oil-immersion objective, HCX PL
APO 63X Lbd B, Leica Microsystems) employed for analysis,
using excitation lines at 405 (Hoechst 33342) and 633 nm
(BODIPY (650/665) nm). All images were collected at
identical laser settings, and the basal fluorescence signal in
the red channel of control samples is set as zero reference.
Image] software is used for image analysis.

Cell Viability: FACS Analysis. HeLa cell incubation with
BODIPY-labeled NPs, in the concentration range 0.20—4.92
uM (0.025—0.6 mg/mL; molarity conversion was obtained
according to refs 19 and 55), is performed as described above.
Cells without nanoparticles are used as control. After 4 h of
incubation, S X 10° cells are collected by trypsination and
washed with PBS containing 1% BSA. The staining of nonviable
cells is performed with PI (75 yM in PBS) for S min at room
temperature. The samples are analyzed immediately on a flow
cytometer (FACSCanto II, BD Biosciences) with excitation at
488 nm for PI and an excitation at 633 nm for BODIPY. All
experiments were performed in triplicates.

LDH Release Cytoxocity Test. 4000 cells/well were plated
in 96-well plates. After 24 h, cells were treated with control
solution and MUS:OT Au/Fe NPs at different concentrations
for different times of incubation (4, 24, 48 h). After the
incubation time, the supernatant was removed and the LDH
reagent was added according to the manufacturer’s instructions
(Pierce LDH cytotoxicity assay kit, Thermofisher, Milan, Italy),
and reaction was evaluated via absorbance measurements (490
and 680 nm) with a microplate reader (Tecan Infinite 200). A
background control of NPs without LDH reagent was prepared
to subtract NPs absorbance contribution at the wavelengths
used.

MRI Measurements. MR images are acquired on a BioSpec
70/30 USR (Bruker, Ettlingen, Germany) preclinical MRI
scanner. All measurements are done at room temperature.
Acquisitions are performed on phantoms containing NPs
dispersed in water at different concentrations (from 0.49 to
820 uM).

For in vitro MRI, cells are cultured and incubated with
nanoparticles as described above. Cells are incubated with NPs

DOI: 10.1021/acs.bioconjchem.6b00577
Bioconjugate Chem. 2017, 28, 161-170


http://pubs.acs.org/doi/suppl/10.1021/acs.bioconjchem.6b00577/suppl_file/bc6b00577_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.bioconjchem.6b00577/suppl_file/bc6b00577_si_001.pdf
http://dx.doi.org/10.1021/acs.bioconjchem.6b00577

Bioconjugate Chemistry

in a concentration range of 0.20—4.92 uM for 8 h at 37 °C. 2 X
10° nonlabeled or magnetically labeled cells are collected,
centrifuged, and resuspended in 0.3 mL of 2% agar at
approximately 60 °C and then chilled at 4 °C to allow the
suspensions to solidify for MRI. All experiments were
performed in triplicates. MR images are acquired on a BioSpec
70/30 USR (Bruker, Ettlingen, Germany) preclinical MRI
scanner. The system has a magnetic field strength of 7 T and a
30 cm warm bore diameter. The scanner is equipped with an
actively shielded gradient system with integrated shims set up
to second order. The maximum gradient amplitude is 400 mT/
m. MRI studies are carried out using a transceiver linear
birdcage rf coil having a diameter of 72 mm. Preliminary 3-
orthogonal plane gradient echo tripilot scan is used as a
geometric reference for slice selection. T,-weighted images are
acquired using a rapid acquisition with relaxation enhancement
(RARE) sequence with the following parameters: FOV 8 X 8
cm’, matrix 256 X 256, slice thickness 4 mm, TR = 3500 ms,
TE effective = 40 ms, rare factor = 4, in plane resolution = 312
um?, number of averages (NA) = 1.5 coronal contiguous slices
are acquired in 3 min and 44 s. T}, T,, and T,* relaxation times
are also estimated. For T| we use a RARE sequence 122 1 with
variable TR with the following parameters: FOV 4 X 4 cm?
matrix 64 X 32, TR = (267, 500, 700, 1000, 1500, 2500, 7000,
10000 ms), TE effective = 20 ms, BW 45 kHz, in plane
resolution = 625 X 1250 ym?* NA = 2. Scan time was 18 min
46 s. For T, estimation, we use a multislice multiecho (MSME)
sequence with variable TE. The sequence has the following
parameters: FOV 4 X 4 cm?, matrix 64 X 64, TR = 3500 ms,
echo spacing = 10.5 ms, number of TE images = 20, BW 50
kHz, in plane resolution = 625 X 625 um? NA = 10. Scan time
is 28 min. For T,* estimation a multigradient echo (MGE) is
used with the following parameters: FOV 4 X 4 cm?, matrix 64
X 64, TR = 2500 ms, minimum TE = 2.4, echo spacing = 1.28
ms, number of TE images = 80, flip angle = 30°, BW 50 kHz, in
plane S2 resolution = 625 X 625 um? NA = 10. Scan time is 20
min. For relaxometric studies, 3 axial slices are acquired with a
slice thickness of 7 mm and an interslice distance of 14 mm. T},
T,, and T,* relaxation times are estimated using Paravision 5.1
(Bruker, Ettlingen, Germany).

Monitoring Au/Fe NPs Concentration in Dividing
Cells. HeLa cells are grown until 80% confluence in 10 cm
Petri dishes, then incubated with nanoparticles in serum-free
medium to a final concentration of 0.82 uM for 8 h. Controls
are treated the same way but without the administration of
NPs. Then, of the collected cells, 2 X 10° labeled and
nonlabeled cells each are prepared for MRI analysis; 5 X 10*
labeled and nonlabeled cells are plated in Ibidi round slides for
CLSM imaging, and 2 X 10° labeled and nonlabeled cells are
each recultured in fresh medium containing serum. For MR,
samples are prepared as already described for MRI in vitro
experiment. The duplication time of HeLa cells in culture is
23—24 h. In order to follow the decrease in fluorescence and
hence nanoparticle concentration, the cells are imaged by
CLSM (as described above) and recultured every 24 h until no
fluorescent signal is detected. All experiments were performed
in duplicates, and for each replicate images of 10 different fields
were recorded. All images were collected at identical laser
settings. The quantitative analysis of fluorescent nanoparticle
uptake is performed with MetaMorph 7.7 (2011 Molecular
Devices) as reported.'”
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