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Abstract—Permission systems are the main defense that mobile
platforms, such as Android and iOS, offer to users to protect
their private data from prying apps. However, due to the
tension between usability and control, such systems have several
limitations that often force users to overshare sensitive data. We
address some of these limitations with SmarPer, an advanced
permission mechanism for Android. To address the rigidity of
current permission systems and their poor matching of users’
privacy preferences, SmarPer relies on contextual information
and machine learning methods to predict permission decisions
at runtime. Note that the goal of SmarPer is to mimic the
users’ decisions, not to make privacy-preserving decisions per se.
Using our SmarPer implementation, we collected 8,521 runtime
permission decisions from 41 participants in real conditions. With
this unique data set, we show that using an efficient Bayesian
linear regression model results in a mean correct classification
rate of 80% (±3%). This represents a mean relative reduction
of approximately 50% in the number of incorrect decisions
when compared with a user-defined static permission policy,
i.e., the model used in current permission systems. SmarPer also
focuses on the suboptimal trade-off between privacy and utility;
instead of only “allow” or “deny” type of decisions, SmarPer

also offers an “obfuscate” option where users can still obtain
utility by revealing partial information to apps. We implemented
obfuscation techniques in SmarPer for different data types and
evaluated them during our data collection campaign. Our results
show that 73% of the participants found obfuscation useful and
it accounted for almost a third of the total number of decisions.
In short, we are the first to show, using a large dataset of real in
situ permission decisions, that it is possible to learn users’ unique
decision patterns at runtime using contextual information while
supporting data obfuscation; this is an important step towards
automating the management of permissions in smartphones.

I. INTRODUCTION

Smartphones can be considered the most personal comput-

ing devices we have today, due to their popularity and the

increasing amount of personal information they collect. To

control third-party apps’ access to this sensitive information,

mobile platforms such as Android and iOS rely on a permis-

sion system where users can allow or deny apps’ permission

requests. In general, users define an access control policy that

is enforced by the mobile OS at runtime.

1Parts of this work were carried out while Katarzyna Olejnik and Moham-
mad Emtiyaz Khan were working at EPFL and Kévin Huguenin was working
at LAAS-CNRS.

Unfortunately, due to the trade-off between usability (i.e.,

permission management) and the level of control offered (i.e.,

granularity of permissions), current mobile permission systems

have several limitations. For instance, users’ permission deci-

sions represent a static policy, i.e., once a permission decision

is made, it will not change without user intervention (Android

6+ and iOS). This approach assumes that permission decisions

are not context-dependent and rarely change over time. Yet,

researchers have shown evidence of the contrary [1], [2]. For

example, a user might be willing to grant an app access to

her location if she is using it, but she might be reluctant

to do so if the app is in the background. Our user survey

(Section V) confirms this idea: Only 19% of the participants

stated that context is not important to them. The results of

our study also show that users’ decisions are not static—for

similar permission requests, many participants changed their

decision at least once.

To support context-aware permission policies, a simple

approach is to prompt users at runtime to make a decision.

In this way, users will have more contextual information and

a better understanding of the purpose of the request [2].

Android 6+ and iOS support permission decisions at runtime,

but only the first time an app requests a permission. Hence,

the resulting policy only captures a single user’s context.

CyanogenMod [3] and permission tools such as XPrivacy [4]

and LBE Privacy Guard [5] offer users with an “always-ask”

option to indicate what requests should be always prompted

at runtime. This approach enables a better matching of users’

privacy preferences, but it requires a significant effort from the

user. For example, a single app can make tens to hundreds of

sensitive requests per day, even if the user is not interacting

with it [2]. As users have on average close to 95 apps [6] and

each app requires around 5 permissions [7], it is clear that

runtime decisions can overwhelm users or cause habituation to

prompts. Hence, to support context-aware permission policies,

advanced mechanisms are needed to help users with the

overhead introduced by runtime permissions.

Another important limitation of current permission systems

is their sub-optimal trade-off between privacy and utility, as

users can only allow (i.e., no privacy) or deny (i.e., no utility)

access to their private information. As a result, to benefit

from apps’ functionalities, users often have no choice but



to overshare personal information. A better trade-off can be

achieved by providing users with additional decision types,

where sensitive information is only partially revealed to apps

in exchange for some utility, i.e., data obfuscation. For in-

stance, to check the weather forecast, a user could reveal her

approximated location instead of the precise one. In our user

survey (Section V), 73% of the participants reported finding

data obfuscation useful.

To address the aforementioned limitations, we propose

“Smart Permissions” (“SmarPer”), an advanced permission

mechanism for Android with three main goals: context-

aware permissions, automatic decision-making at runtime, and

data obfuscation. SmarPer follows a platform-agnostic design

where apps’ sensitive requests are intercepted at runtime and

users are prompted for a decision, i.e., allow, obfuscate, deny.

By observing users’ responses, SmarPer progressively learns

to predict and make decisions on behalf of users. It should be

noted that the goal of SmarPer is to mimic users’ decisions,

not to make privacy-preserving decisions or to find a balance

between utility and privacy. In other words, if a user makes

poor privacy decisions, SmarPer will do the same.

SmarPer relies on machine learning to predict users’ per-

mission decisions. Instead of using a multi-class classifier ap-

proach, as prior work in this area2 [8], [9], we model the prob-

lem as a linear regression problem, using a one-dimensional

privacy-preference function that outputs the degree of privacy

of each user for each request (allow<obfuscate<deny). Specif-

ically, by using a set of contextual features, we use a Bayesian

linear regression model (BLR) to fit a linear regression to each

users’ decision data. This model has several advantages: It is

lightweight enough for smartphones, and it is well suited for

limited amounts of training data. Also, by training directly in

the smartphone a model per-user, it preserves users’ privacy.

We use an implementation of SmarPer, based on XPri-

vacy [4], to collect at runtime permission decisions from 41

participants3. Each participant used SmarPer (in fully manual

mode) for a period of at least 10 days. Unlike previous

studies [2], [10], ours relies on decision data collected in

real conditions, i.e., participants using SmarPer daily on their

own or loaned devices with their own apps. In total, we

collected 8,521 unique permission decisions, along with 32

raw contextual features per decision (e.g., time, location, app

name, etc.). Using this unique data set, our model achieves

a mean absolute error (MAE) of 0.22 (±0.03)4 and a mean

incorrect classification rate (ICR) of 0.20 (±0.03), i.e., a

mean correct classification rate (CCR) of 80% (±3%). This

represents a mean relative improvement of 55% for the MAE

and 50% for the ICR over a static policy baseline, where

participants manually define permission decisions, i.e., the

model used by current permission systems. Our results show

that it is possible to learn the decision patterns of users with

2Note that prior work uses machine learning to predict users’ static per-
mission configurations instead of runtime permission decisions.

3This user study was approved by our institution’s IRB (ethical committee).
4On a scale from -1 to +1; thus, the maximum value for the MAE is 2.

good accuracy, even when training data is scarce, and that

contextual information is key for such a task.
We also implemented in SmarPer obfuscation techniques

for four data types: location, contacts, storage, and camera.

During our data-collection campaign, we evaluated three of

these techniques with our participants. Our results demonstrate

the importance of obfuscation: Obfuscate accounted for 27%

of the total number of decisions collected and, in our user

survey, 80% of the participants stated that they would like to

obfuscate additional data types. Few users reported compatibil-

ity problems with apps. We believe this is the first evaluation

of obfuscation techniques in smartphones on this scale.
It is important to mention that there are two key parts in the

SmarPer project. First, modeling users’ permission-decision

patterns by using contextual information and data obfusca-

tion. This part requires a user study to collect the decision

data required to assess the potential of our machine learning

approach. Second, evaluating our machine learning approach

in practice (including user perception and the use of SmarPer’s

features), through a new field experiment and user study. In

this paper, we present the results associated with the first part.

We are currently working towards the second part.
Our main contributions are as follows:

• Design and partial implementation of SmarPer. We

present a platform-agnostic design to support context-

aware and automatic decisions at runtime, and data

obfuscation. Our implementation, publicly available as

an open-source project [11], offers runtime collection of

permission decisions and associated contextual features,

and data obfuscation for four data types.

• Unique data set of permission decisions. We collected

8,521 runtime permission decisions and their context

from 41 participants. We believe this is the largest and

most realistic data set of this type. After the approval of

our university’s ethical committee, we made a sanitized

subset of this data set publicly available [11].

• Evaluation of the potential of automatic prediction

techniques for permission decisions. We use an adapted

linear regression model and demonstrate that it achieves

significant performance improvements over two carefully

chosen baselines. Our results show that contextual infor-

mation is key to accurately predict permission decisions.

In addition, we show that a per-user model has better

performance than a one-size-fits-all model, as the former

is able to better capture users’ unique privacy preferences.

• Machine learning framework. We provide a framework

for carefully training and comparing different context-

aware models that predict permission decisions. The

framework’s source code is also available online [11].

• Implementation and evaluation of data obfuscation.

We develop obfuscation techniques for four data types

in SmarPer and evaluate them in our data-collection

campaign. This is one of the first and largest evaluations

of obfuscation in smartphones with real users.

The remainder of this paper proceeds as follows. Section II

highlights related work in the area of mobile permission



systems. Section III presents SmarPer’s design goals and ar-

chitecture. Section IV describes our SmarPer implementation.

Section V explains our data-collection methodology and the

resulting data set. Section VI describes our machine learning

methodology to predict users’ decisions using contextual

information and presents the results of our performance

evaluation. Section VII further discusses our data set and

machine learning results, and the limitations of our study.

Finally, Section VIII presents our concluding remarks and

future research directions.

II. RELATED WORK

Mobile permission systems have several limitations that

cause users [12], [13] and developers [14] difficulty in under-

standing and managing them. Researchers propose different

extensions to current permission models to provide users with

more control and better management [8], [15]–[19]. Yet, most

of these approaches do not support contextual information in

their access control policies (i.e., static policies). The lack

of context-awareness in mobile permission systems has also

been addressed in previous work [1], [2], [20]–[23]. Still, most

of the proposed solutions are not practical for average users,

as they require manually defining context-aware policies for

each (app, permission, inferred context) tuple. In contrast, our

work focuses on the automatic inference of these policies from

users’ decision-making behavior in different contexts. Another

limitation is the lack of decision-granularity i.e., only “allow”

or “deny” decisions. To address this issue, researchers propose

sending fake or obfuscated data to apps [18], [22], [24], [25].

Yet, most of these solutions have not been evaluated with users

in real scenarios. To fill this gap, we implement obfuscation

techniques for different data types in Android and perform one

of the first evaluations of obfuscation with real users.

With the increasing number of apps and data types, another

important area of study is helping users to efficiently manage

permissions. Machine learning has been used to automate

decision-making in other areas such as location-based services

and social networks [26]–[29]. In the area of mobile devices,

researchers propose crowdsourcing [19] and machine learning

to help users manage permissions [8], [9], [30]. For instance,

Lin et al. and Liu et al. identify a small number of “privacy

profiles”, using clustering techniques that could be used to

facilitate static permission configuration for different types of

users [8], [9], [30]. Also, Liu et al. [8] show that a binary

classifier can predict users’ static permission decisions with

high accuracy. These works, however, focus on static permis-

sion policies that do not change over time, i.e., no context-

awareness, and they rely on a one-size-fits-all approach, i.e.,

training a single model with data from all users.

Closer to our work, Wijesekera et al. [2] propose the use of

permission decisions at runtime to provide users with contex-

tual information to make more informed decisions. To reduce a

user’s load, they conclude that a mechanism should infer when

to prompt users or automatically block app requests (note that

this is not exactly the same as predicting users’ decisions).

The authors show how a one-size-fits-all mixed-effects logistic

regression model can be used for this purpose with good

accuracy, using a small data set of users’ decisions collected in

semi-realistic conditions, i.e., 673 decisions from 36 users col-

lected offline during an exit survey. We extend this line of work

in several ways. First, we demonstrate that it is possible to

predict users’ permission decisions with great accuracy, even

when we consider an additional decision type (i.e., obfuscate),

and that contextual information is key for doing so. Second,

we show that a per-user model is significantly more accurate

than a one-size-fits-all model, due to users’ unique privacy

preferences. Third, we provide an experimental framework

and methodology for carefully comparing the performance of

different machine learning algorithms that predict decisions

using contextual information. Fourth, we use a unique and

substantially larger data set of permission decisions per user,

collected in real conditions (i.e., 8,521 decisions from 41 users

collected at runtime in users’ smartphones), and we describe

the many challenges faced when doing so. Fifth, we provide a

design and partial prototype of a mechanism for predicting and

automating permission decisions and propose an approach for

automating permission decisions. Sixth, we design and imple-

ment obfuscation mechanisms in our prototype and evaluated

them with real users.

III. SMARPER

We address two important limitations of the current per-

mission systems: the use of static policies that do not capture

users’ privacy needs in different contexts, and the sub-optimal

trade-off between privacy and utility. We propose SmarPer,

an extension to Android’s permission system that supports

dynamic and automatic decision policies inferred from users’

behavior, and that provides finer-grained decisions, i.e., allow,

obfuscate, and deny. SmarPer provides a feedback loop where

users are initially prompted for permission decisions, and

over time SmarPer learns users’ decisions patterns and makes

decisions on behalf of the users. SmarPer can even adapt to

changes in users’ privacy posture. Note that, though SmarPer

targets Android, its concepts and design are platform-agnostic.

A. Threat Model

We focus on the case of privacy-invasive apps, that access

private data (e.g., location, camera) about users through the

dedicated APIs calls of the mobile OS. We do not address

the cases where the threat comes from the OS itself or from

apps that use native code or security breaches to access private

data. We assume that the considered apps access, in some

cases, more information than they actually need to provide

the features (and the associated quality of service) the users

actually need; this constitutes a privacy threat for the users.

B. Design Goals

SmarPer’s design follows three main goals: Context-aware

permissions, to support dynamic permission policies that

change according to users’ context; Automatic permission

decisions, to predict and make permission decisions at runtime

on behalf of the user and reduce users’ load; and Data
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Fig. 1. SmarPer architecture. Intercepted apps’ requests together with contextual information are used as input to a machine learning model
that predicts a decision. After step 5, a function c() takes as input the decision and other parameters to decide if the decision should be made
automatically or if the user should be prompted. All decisions and contextual information are stored for continually training the model.

obfuscation, to reduce the sensitive information revealed to

apps while maintaining some level of utility.

We also consider the following deployability goals: Effi-

ciency, to support SmarPer in hardware-constrained mobile

devices; Privacy, to guarantee that users’ decisions and contex-

tual information gathered will not compromise users’ privacy;

and Flexibility, to enable users to configure different obfusca-

tion techniques, privacy preferences, and learning rates, and

to correct possible prediction errors.

C. System Flow

Figure 1 shows the general architecture and data flow of

SmarPer. As stated before, SmarPer follows a feedback loop

approach. First, SmarPer intercepts a privacy-sensitive app

request (1), e.g., Android API call for location. The app

name, request type, and parameters in the API call are sent

for processing (2). Information about the current context is

collected from the device (3). This includes information about

the app (e.g., whether it is in the foreground or background),

smartphone state (e.g., whether the screen is locked), and

smartphone’s sensor information (e.g., location provided by

the GPS). For more details, see Section IV-C. All of this

information is processed into a feature vector that is input to

the machine learning model for prediction (4). Given the user’s

past decision and contextual data, the model predicts whether

the user would allow, obfuscate, or deny the request; and it out-

puts the predicted decision, along with other parameters such

as the estimated confidence (e.g., mean and variance) (5). A

function c() take as input the predicted decision and estimated

confidence, as well as other parameters such as current MAE,

prompt rate, and previous decisions, and it determines if the

predicted decision should be used (i.e., automatic decision) or

if the user should be prompted (Figure 2). The function c()
can be adjusted by the user to regulate the number of prompts.

When SmarPer has a decision (manual or automatic), it pre-

pares to respond to the requesting app (6). If the decision calls

for obfuscation, obfuscation is performed on the requested data

before returning it to the app (7), e.g., reducing the precision

of the location. SmarPer then responds to the app with the

requested data (8). Finally, the decision, contextual informa-

tion, and whether the decision was manual or automatic are

recorded in the SmarPer database (9). Optionally, the user can

review recent automatic decisions and correct them if they

are wrong (10). This user feedback is also incorporated in

the model (11 and 12). More specifically, the corresponding

corrected decisions are added to the training set and the model

is updated, possibly with higher weights. The user can set a

parameter to determine the cost-sensitivity, i.e., the user can

express which type of error they are more willing to tolerate

(oversharing or undersharing).

IV. SMARPER IMPLEMENTATION

We implemented a partial version of SmarPer, compatible

with Android 4.0.3 to 5.1.1, to evaluate obfuscation techniques

and to collect permission decisions and their associated con-

textual information. During our field experiment (Section V),

our SmarPer implementation operated in full manual mode:

There were no automatic decisions or learning from users’

behavior, users were always prompted at runtime for deci-

sions. The performance of our machine learning model was

evaluated offline using the data collected (Section VI). Such

an offline machine learning approach, used by other works in

this area [2], [8], [23], enables the use of a larger variety of

machine learning tools and analysis techniques to assess the

potential of SmarPer. We focused on a robust implementation

to avoid interfering with the OS and apps and it is available

as an open-source project under a GPLv3 license [11].

A. Request Interception

Android and other popular mobile platforms do not provide

a native API to mediate apps’ requests, as suggested by Heuser

et al. [17]. Therefore, we took a rooted-device approach to

dynamically intercept apps’ requests, without modifying the

OS; rooting a device is easier than flashing a new firmware,

and there are millions of users with rooted devices [8].

To intercept privacy-sensitive API calls, our implementation

builds on the open-source permission tool XPrivacy v.3.6 [4].

XPrivacy is a module of the Xposed framework [31], a

general framework that lets users install modules to modify the

look and feel of their smartphone. It requires root privileges
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TABLE I
EFFECT OF EACH DECISION TYPE (ALLOW, OBFUSCATE, DENY) ON DIFFERENT DATA TYPES IN SmarPer. WE IMPLEMENTED OBFUSCATION FOR

LOCATION, CONTACTS, STORAGE, AND CAMERA AND EVALUATED THEM IN A FIELD EXPERIMENT WITH REAL USERS.

in order to change the app process executable to add an

additional library (Xposed). This enables developers to hook

Android API calls and execute code before or after API

call execution, to modify OS or apps’ functionalities. All of

these modifications are done in memory [32]. Note that there

is a chance that this request-interception approach could be

bypassed by (malicious) apps to avoid SmarPer; however, such

threats are out of the scope of this work. The main methods

we propose in this work, essentially obfuscating sensitive

data and predicting users’ decisions, are independent from the

underlying request interception technique used.

B. Data Obfuscation

In SmarPer, users can allow, obfuscate, or deny access to

their private data. By using the Xposed framework, we were

able to modify the parameters and return values of sensitive

API calls before or after it executes. The “allow” case is

straightforward: We allow the API call to execute without

modification. For “obfuscate”, we remove some level of detail

from the returned data. For “deny”, we return fake values.

We faced multiple challenges while implementing obfusca-

tion techniques. First, obfuscation is data dependent. Hence,

different techniques must be used for different data types; and

data types can have more than one obfuscation technique. For

instance, for the camera, we can reduce image resolution or

blur people faces. Hence, we envision a community of privacy-

conscious developers implementing obfuscation “plugins” for

SmarPer in the future. Second, the utility of each obfuscation

technique depends on the type of app and use case. For

example, to reduce the risk of unauthorized pictures, a QR

code scanner app can still work if obfuscation only blurs

people faces from images. Note that the privacy implications of

data obfuscation depend on the type of data, the data itself, and

on the background knowledge available to the adversary (e.g.,

a service provider or an ad network). Third, obfuscated data

could cause the app to crash or behave unexpectedly [24]: e.g.,

we noticed that the WhatsApp messenger app will not display

correctly the name of the user’s contacts if we obfuscate

access to the contacts database. Fourth, there is no native

support for obfuscation in mobile platforms. Therefore, to

implement obfuscation techniques, we need to understand the

low-level details of how the OS processes each data type.

We implemented obfuscation techniques for the following four

data types (Table I):

Location: We implemented location obfuscation by discretiz-

ing the Earth into 10km by 10km areas. Instead of returning

the user’s exact location, SmarPer returns the coordinates

of the center of the current area the user is in, as shown

by the green icon in the first row of Table I. The size of

these areas is easily configurable. A more privacy-consistent

solution would use a variable size based on the population

or point-of-interest density. More advanced location privacy-

protection mechanisms (LPPM) could also be considered such

as [33] (optimal grid-based obfuscation) or [34] (differential

privacy/geo-indistinguishability), as static obfuscation, based

on a fixed grid, is known to be vulnerable to attacks [35].

Apps generally ask for the user’s location to tailor some

features to the user’s location, e.g., ads or the current weather.

With this approach, apps can provide the same level of utility

while the user’s privacy increases, as their exact location is

not revealed. For the deny decision, a fixed set of coordinates

are returned. The level of privacy-protection provided by such



data obfuscation techniques can be captured by the (difference

of) accuracy of known inference mechanisms on location data

(e.g., filling the gaps in an obfuscated location trace [36] and

inferring activity preferences [37] and interests [38]).

Contacts: Implementing obfuscation for contacts was particu-

larly difficult. Android stores contact information in a SQLite

database. Apps can query this database to request any informa-

tion they need, as long as they have the READ CONTACTS

permission. With SmarPer, we have access to the actual

queries that apps make to the contacts database, as well as

a Cursor object with the returned data that we can modify

before it is returned to the app. To implement obfuscation, we

filtered out rows from this Cursor that are not names, phone

numbers, postal addresses, or e-mail addresses. Yet, because

apps have great flexibility to query this database, a column

identifying the type of the returned information is not always

present in the Cursor. This means that we might not know

what type of private data we are looking to filter out in the

result. If we have the type information, we filter out rows

that are not names, phone numbers, postal addresses, or e-

mail. Otherwise, we check all the columns containing data in

the returned Cursor with regular expressions for these four

allowed types. For phone number and e-mail we use the stan-

dard Android API calls PhoneNumberUtils.isReallyDialable()

and Patterns.EMAIL ADDRESS. Rows that do not match the

regular expression for name, phone number, postal address, or

e-mail are discarded from the result before it is returned to

the app. For the deny decision, SmarPer simulates an empty

address book by returning an empty Cursor.

Most apps request access to contacts to find user’s friends

already registered in the service. For this purpose, name, phone

number, postal address, or e-mail address should suffice. Users

can enter a variety of other (potentially sensitive) information

about their contacts into the contacts database, such as birth-

days, relationship to the user, and employer. Revealing this

information to an app does not have a clear use case. By

revealing only names, phone numbers, postal addresses, and

e-mail addresses, we maintain utility for the majority of apps

and reduce the amount of sensitive information revealed.

Storage: To implement obfuscation for storage, we restricted

access to the Android Public directories (accessible to all

apps with the READ EXTERNAL STORAGE permission) –

Pictures, Music, Movies, and DCIM (Camera pictures) that,

ironically, actually contain private data. For this purpose,

SmarPer returns a “FileNotFoundException”; this is an excep-

tion that an app should be prepared to handle: It can happen

that these files really do not exist. We also filter out these URIs

from queries made to MediaScanner, a service that keeps track

of all the user’s files on the device. For the deny case, SmarPer

simulates that the external storage is unmounted.

To create a cache on the external storage, some apps request

the WRITE EXTERNAL STORAGE permission (which im-

plicitly includes READ EXTERNAL STORAGE permis-

sion). This functionality is preserved with our obfuscation

technique. However, a curious app which wants to sift through

the user’s photos will not be able to do so. Some apps, how-

ever, need write access to the Public directories, to save new

data there, e.g., photos. If this is the case, the user will need

to allow access to storage to preserve functionality. Evaluating

the privacy protection of such an obfuscation technique, or

more generally the privacy risks of accessing data on users’

SD card, highly depends on the data.

Camera: We obfuscated two aspects of the camera: the camera

preview (i.e., when the user opens the camera but has not

taken a photo yet) and taken photos. For both of these, we

reduce the resolution of the returned image by scaling down

and then scaling back up to the original size. The scaling factor

is configurable. For the deny case, we return a black image.

Apps with access to the camera pose a considerable threat

to user’s privacy: They can take photos without notification,

as long as the camera preview is open. Thus, we distort the

returned images. Yet, it is still possible to scan QR codes.

Therefore, QR code scanner apps maintain their utility and

the user maintains privacy. A more advanced alternative to

blurring the whole image would be to only blur or remove

detected faces or detected text [39] and/or window blind the

image [40]. A potential way to evaluate the privacy protection

of such obfuscation techniques is to evaluate the performance

of a standard library in inferring private attributes (e.g., gender

[41], age,5 ethnicity [42]) of the user, as well as the context

(e.g., emotions,5 activity) from the captured video/photo.

Future data types: In general, obfuscation techniques can be

implemented for most data types. As part of our future work,

we plan to implement obfuscation for other data types such as

microphone data (e.g., filtering out frequencies corresponding

to the human voice) and calendar data (e.g., filtering out

information from events such as location and invited guests).

Note that the implemented obfuscation techniques are some-

what simple and not optimal: They may offer only limited

protection for users’ privacy (depending on the data and on

the background knowledge available) and/or limit the utility

of the app. Yet, they offer more control to the user. They

also are a good starting point for evaluating users’ perception

of obfuscation in realistic and easy-to-understand scenarios.

We believe that obfuscation methods should be designed by

taking into account the specifics of the considered data, how

it is used by different (categories of) mobile apps, and the

privacy implications of the data disclosure, based on research

results in order to determine to which extent users can still be

tracked, identified, or profiled from the disclosed (obfuscated)

data. Designing such techniques is a research problem on its

own (for each type); we leave it to future work together with

the evaluation of the privacy implications of data obfuscation.

C. Contextual Information

For each permission decision, using standard Android API

calls, SmarPer collects the associated contextual information.

Using this information, we selected raw contextual features

that we estimated have an impact on users’ permission de-

cisions. This list is not exhaustive: There could be other

5Microsoft’s Face and Emotion APIs, https://www.microsoft.com/
cognitive-services/. Last visited: Feb. 2017.



Fig. 2. SmarPer permission prompt. The Weather Channel app
requests access to the user’s location. Clicking on the question mark
shows information about the effect of the different decision types.
Below that, we can see the semantic location and decision buttons.

important contextual features. In Section VI, we show a subset

of the most relevant features across all participants.

In total, we selected 32 raw features for our

machine learning analysis (Section VI):

• App information (6): UID, GID, package name, name,

version, and Google Play Store category.

• Foreground app information (3): package name, name,

and activity.

• Request information (4): XPrivacy category, method

name, parameters, whether it is dangerous (i.e., denying

it may break the app).

• Decision information (4): type, current time, time to make

the decision, and whether the decision has been modified

by the user.

• Device status (14): screen in interactive mode, screen

locked, ringer state, headphones plugged, headphone

type, headphones with a mic, battery percent, charging

state, charger type, network connection type, dock state,

latitude, longitude, and location provider.

• Semantic location (1): users are asked to choose a la-

bel for their current geographical location. For usability

purposes, only four labels are used (see Figure 2).

D. Data Collection Considerations

The purpose of our current SmarPer implementation is to

collect at runtime users’ permission decisions (Section V).

We want to collect as many users’ decisions as possible but

not to overwhelm users or cause habituation to the prompts

(Figure 2). Otherwise, we could end up with noisy and unre-

liable data. To address these issues, we added the following

mechanisms to SmarPer:

Prompt rate-limiting: As previous work [2] and our eval-

uation shows, most apps make a large number of requests for

users’ data. Hence, it is not practical to prompt users each

time an app makes a request. To address this problem, we

implemented the following rate-limiting policy for the apps

and data types targeted in our study (Section V). If the user is

using the app (i.e., foreground app), SmarPer does not limit

the number of prompts associated with this app. If the user is

not using with the app (i.e., background app), SmarPer only

permits one prompt every 10 to 20 minutes, sampled uniformly

from that interval. If the rate limit has been exceeded, SmarPer

takes the most recent decision for the same type of request. If

no previous decision exists, SmarPer prompts the user. Also,

SmarPer caches each decision for one hour to avoid prompting

repeatedly for the same type of request. If the user is not

using the smartphone, SmarPer applies the previous decision;

otherwise, SmarPer allows the request. Requests associated

with apps and data types not in our list are always accepted.

Non-interruption policy: For some activities (e.g., typing,

calling, taking a photo), it is better to not interrupt users

with prompts, as it can be problematic and lead to noisy

data. Hence, SmarPer does not interrupt the user in such

situations; instead, it uses the previous decision for the same

type of request. If there is no previous decision, the request

is allowed. SmarPer checks if the user is calling using the

TelephonyManager API or if the user is typing or taking a

picture by intercepting API calls such as InputMethodMan-

ager.showSoftInput(), Camera.open(), and Camera.release().

V. COLLECTING PERMISSION DECISIONS

To support automatic decisions in SmarPer, we need data

on how users make permission decisions at runtime and the

contextual information associated with such decisions. This

data is used to train a machine learning model that captures

the permission-decision patterns of each user (Section VI).

Unfortunately, data sets from previous works do not satisfy

our requirements. For example, they do not include runtime

permission decisions [8], [30]. Other data sets include runtime

decisions but were collected in non-realistic scenarios [2],

[10]. Initially, we considered using the data set from Wije-

sekera et al. [2], as it seemed to match our requirements.

But, we determined it was not appropriate for our goals, as

participants’ decisions were collected offline during an exit

interview (i.e., the context at request time is different from

the one at decision time), and the number of decisions per

participant is limited (i.e., 10-15 decisions per participant)

for training a machine learning model per participant. Hence,

we decided to conduct a data-collection campaign using our

partial SmarPer implementation and build our own data set.

Besides the technical requirements, a key challenge for our

data-collection was to gather, in a limited period of time,

enough data for our machine learning analysis without over-

whelming users with prompts or causing prompt habituation.

Moreover, the data collected can be very sparse [8], given

the great variety of apps, permissions, and contextual infor-

mation available. Hence, besides the mechanisms described in

Section IV, we also decided to collect decisions from only

a subset of apps and data types. We chose a set of popular

apps from the US Google Play Store that belong to different

categories and make requests for at least one of the following

data types: location, contacts, and storage. By using popular

apps, we increased the chance of (1) collecting more decision-

data from each app during the study (i.e., popular apps are

used more often), and (2) having more than one participant



using each app (to facilitate comparisons). This resulted in a

total of 29 apps: Accuweather, Amazon, Candy Crush Soda

Saga, Clash of Clans, Dropbox, Evernote, Facebook, Fitbit,

iHeartRadio, Instagram, Kik, Lyft, Runtastic, Shazam, Skype,

Snapchat, Soundcloud, Star Wars: Galaxy of Heroes, Subway

Surfers, The Weather Channel, TripAdvisor, Twitter, Uber,

Viber, Walmart, Waze, WhatsApp, Wish, and Yelp.

A. Methodology

Here, we describe the steps in our data-collection campaign.

It is important to note that the data collected contains

no personally identifiable information of the participants

and that our study was approved by our institution’s IRB

(i.e., ethical committee). In addition, all the data collected

is securely stored and can only be accessed by authorized

researchers from our institution.

1) Recruitment: We recruited remote and local participants

through posts on online forums and flyers on our campus.

Participants were required to be at least 18 years old, be regular

Android users, be regular users of at least two of the apps

selected for our study, and have reliable cellular and WiFi

Internet connectivity. We offered a $50 gift card as a reward.

2) Setup, Training, and Entry Survey: Both local and

remote participants had access to SmarPer’s training material

(e.g., written instructions and video tutorials) hosted in our

server. Before starting the study, participants had to agree

to our consent form and complete an entry survey. In this

survey, we asked participants some demographic questions

and some questions to estimate their general level of privacy

concerns. We made use of the IUIPC scale [43], as well

as some questions of our own design, adapted to the smart-

phone environment. Remote participants used their personal,

SmarPer-compatible smartphones (i.e., rooted Android 4.0.3-

5.x devices). Local participants had the option of using their

personal devices or using a smartphone provided by us,

notably Motorola Moto G 2nd or 3rd generation devices with

Android 4.4.5. In the latter case, to guarantee normal use

patterns, local participants met with one of our researchers

to set up the loaned device: transfer the participant’s SIM

card and data, and install the participant’s apps. We also asked

participants to treat the loaned smartphones as their personal

devices. This step is thus similar to the one followed by

Wijesekera et al. [2]. In total, we loaned smartphones to 29

participants. We also explained to participants the functioning

of SmarPer, in particular, the effect that the three decision

types have on the targeted data types and their purpose, i.e.,

data minimization.

It is possible that our SmarPer training influenced partici-

pants towards a more privacy-preserving behavior. Such bias

is difficult to avoid when evaluating a privacy mechanism

with real users. We cannot properly evaluate SmarPer without

first explaining concepts such as permission prompts and data

obfuscation. Nevertheless, such bias is unlikely to affect our

analysis, as our goal is not to estimate if SmarPer makes

participants more privacy-conscious. Instead, our goal is to

model participants’ unique privacy preferences when prompted

for permissions in different contexts (even if there is a bias)

and their attitudes towards obfuscation. Our scenario is similar

to the one of runtime permission-prompts in Android 6+ and

iOS, where users are explained first how permission prompts

work and their purpose.

3) Data-collection: Participants agreed to run SmarPer on

their personal or loaned smartphones for at least 10 days. Dur-

ing that period, SmarPer prompted participants for permission

decisions (Figure 2) associated with our selected apps and

data types. The goal was to collect at least 75 decisions per

participant and the contextual information associated with each

decision. If this targeted number of decisions was not reached

after 10 days, participants were encouraged to continue the

study for some additional time until it was reached (to avoid

bias, we did not explicitly ask participants for more decisions).

Every day, the decision data was automatically uploaded to

our server over an encrypted connection. Hence, we were also

able to monitor for problems with SmarPer or if users were not

actively using the smartphone. In the latter case, we contacted

the participants to remind them about the rules.

4) Static Policies and Exit Surveys: At the end of the

data-collection, all participants were required to complete

two additional surveys. In the static policy survey, for each

app monitored during the study, we asked the participant to

define what static decision (i.e., allow, obfuscate, deny) they

would grant to access each of the monitored data types (i.e.,

location, contacts, storage). The purpose of this survey is

to capture how participants would configure permissions on

their personal smartphones by using the interface provided by

current permission systems (e.g., Android 6+). The data from

this survey was used as a baseline in our analysis (Section VI).

In the exit survey, we asked participants about their experi-

ence with SmarPer and their aptitudes towards using automatic

decisions, data obfuscation, and contextual information in

mobile permissions. We conducted supplementary interviews

with selected participants to better understand the reasons

for their decisions during the study. After completing both

surveys and passing the data consistency check (described

next), participants were rewarded with a gift card.

5) Data Quality: We performed different checks to validate

the quality of the data submitted by participants. First, we

checked that participants did not respond to prompts too

rapidly, i.e., at least two seconds elapsed before they chose

their response. The fact that participants had to touch the

screen twice per prompt (Figure 2) reduced the chances of

quick random decisions. Second, we checked the consistency

of the semantic locations reported by the participants, by

comparing the semantic labels with the actual coordinates

recorded at decision time. For example, if a participant re-

ported “home” in two or more geographical locations, it is

likely that the participant provided false information. No users

violated the above conditions significantly enough to warrant

being removed from the study. Third, for each participant, we

removed the first and last five decisions from the data set, as

they were made during the familiarization with SmarPer and

when participants returned the loaned devices, i.e., noisy data.
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Fig. 3. Total number of decisions per participant, including the distribution of the decision types. The difference in the number of decisions
is mostly due to the participant’s behavior, number and type of apps used, and days in the study.

6) Data Preprocessing: We converted some of the raw con-

textual features (Section IV-C) before our machine learning

analysis (Section VI). First, categorical features (e.g., app

name and category) were converted into dummy features [44],

because techniques, such as linear regression, do not work

directly with categorical features. These dummy variables

take the value 0 or 1 to indicate the absence or presence of

some categorical effect. Second, we computed five additional

features based on the raw features collected: whether an app

is in the foreground, day of week, part of day (i.e., morning,

afternoon, evening, night), battery charge percentage, and

day/month/year. We ended up with a total of 37 features.

B. Data Set Details

A total of 47 participants joined our data-collection cam-

paign; 41 completed it successfully. Overall, we collected

around 4.82 million apps’ requests for private information. Of

these, we prompted participants for 8,521 manual permission

decisions. The rest corresponds to requests associated with

apps and data types outside the scope of our study.

1) Demographics: From the 41 participants that completed

the study: 17 (41%) were female; 29 (71%) were in the 18–25

range and 12 (29%) were in the 26–50 range; 12 (29.3%) were

undergraduate students, 23 (56.1%) were graduate students,

3 (7.3%) worked in scientific services, 1 (2.4%) worked in

education, 1 was unemployed, and 1 did not disclose their

occupation. Participants reported being active smartphones

users (1-3 hours/day) and long-term Android users (2-5 years).

In the entry survey, participants scored high on a 5-

point IUIPC scale for control, awareness, and collection of

private information. These results indicate that most of our

participants have a high level of privacy concern. Participants

reported high concern regarding apps accessing their contacts,

camera, or storage. Surprisingly, participants were less con-

cerned about apps accessing their location.

2) Exploratory Analysis: In our final data set, allow, obfus-

cate, and deny account for 42%, 27%, and 31% of the total

number of decisions, respectively, thus showing a balanced

distribution of decision types. Figure 3 shows the total number

of permission decisions per user, including the distribution

of decision types. Participants chose for contacts: 65% allow,

24% obfuscate, and 11% deny; for location: 25% allow, 27%

obfuscate, and 48% deny, and for storage: 35% allow, 31%

obfuscate and 34% deny. We conclude that participants are

more likely to allow contacts and deny location requests. These

results contradict the concern levels reported by participants

in the entry survey (Section V-B1), where they stated to be

more concerned about apps accessing their contacts than their

location (i.e., “privacy paradox” [45]).

In Figure 3 we also notice that some participants were

significantly more active than others. This difference is due

mainly to the participant’s individual behavior, the number and

type of apps used, and the number of days in the study (66%

of the participants completed the data collection in less than

15 days). Participants were prompted a median of 17.3 times

per day and each prompt was completed in a few seconds.

These numbers show the effectiveness of our rate-limiting

mechanisms (Section IV-D). For comparison, participants in

[10] were prompted at least 10 times a day and each prompt

required 2-5 minutes to complete. We observe that the distribu-

tion of decision types varies considerably across participants,

indicating the unique privacy preferences of each user and

hinting at the difficulty of predicting permission decisions.

Figure 4 shows this difference more clearly by depicting the

initial, middle, and last 12 decisions of a subset of participants.

We observe that the distributions are reasonably stable over

time per participant, especially after some initial period where

some participants changed their preferences. Participants are

vertically grouped according to their privacy profile: utility-

concerned (top), somewhat-privacy-concerned (middle), and

privacy-concerned (bottom).
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On average, participants used 4.2(±2.0) apps from our list

of apps. In our data set we have data from 23 apps out of 29

in our list. Note that the fact that participants used a small

number of apps is beneficial for our analysis, as it enabled us

to collect more decision data per used app during the study,

hence reducing data sparsity. Figure 5 shows apps with more

than 10 decisions and more than 1 participant. We can see

that the three most popular apps are WhatsApp, Facebook,

and Skype with 36, 33, and 19 participants, respectively. The

difference in the number of decisions is due not only to the

number of participants per app, but also to the type of app

and how active each participant was. More details about the

number of decisions per app are shown in Table II (Appendix).

VI. DATA ANALYSIS: PREDICTING DECISIONS

In this section, we present the machine learning analysis

of our data set. We describe and compare various methods

for context-aware and automatic permissions. Our goal is to

predict users’ preferred privacy levels for a new permission

prompt, given their past decisions and associated context.

A. Problem Statement

We index users by u and permission requests by i and j.

We denote user u’s decision for the i’th permission request

by yui ∈ {“Allow”, “Obfuscate”, “Deny”}. We denote the

context of the permission request by a feature-vector xui ∈
X ⊂ R

D and the time the request was made by tui. We denote

the user’s past data before time t by Du,t to be the set of all

decision pairs {yui,xui} made at time ti < tu. Our goal is

the following: given a user’s past decisions Du,t, predict the

users’ decision y∗ at a future time given a feature vector x∗.

We focus on two important aspects: (1) we can learn to

predict permission decisions, (2) context helps us to do so.

We also show that, as the amount of data per user increases

(i.e., a higher tu), our predictions improve much faster when

we take context into account.
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B. Baselines

We use the following two baselines. The first baseline is

referred to as the static policy method based on a survey com-

pleted by all participants (Section V-A4). Decisions collected

in this survey are used as fixed predictions for permission

requests. Over time, this method does not learn users’ prefer-

ences and only takes part of the contextual information into

account (i.e., apps’ names and targeted data types). We expect

this method to perform worse than a dynamic method that

learns from users’ behavior. This method approximates the

current permission systems in Android 6+ and iOS.

Our second baseline ignores contextual information but

learns the preference function from past data. We simply

predict the most frequent decision made by the user until time

tu for all the new decisions. This method, although dynamic,

might miss the contextual information associated with some

decisions and might perform worse than a method that takes

the context into account. We call this method ZeroRt, because

it is an extension of the ZeroR classifier [46].

C. Context-Aware Method

We compare our baselines to a method that learns from

users’ behavior and uses contextual information to predict. We

model privacy preferences of the user u by a one-dimensional

privacy-preference function fu : X → R. Given a feature

vector x ∈ X , the value of function fu(x) indicates a degree of

privacy: a higher value indicates higher desire for privacy. The



prediction is made by thresholding the preference function:

yui =







“Deny”, when θ1 < fu(xi)
“Obfuscate”, θ2 < fu(xi) ≤ θ1
“Allow”, fu(xi) ≤ θ2

(1)

where θ1 and θ2 are two real-valued scalars. This is an

example of the Random Utility Model and has been widely

used to model users’ preference functions (see [47]).

We use Bayesian linear regression (BLR) to model the

preference function given the contextual information. The

simplest model is to use a linear function:

fu(x) = β0

u + βT
ux+ ǫui, (2)

where β0

u ∈ R, βu ∈ R
D, and ǫui is the noise. We model both

βu and the noise ǫui as i.i.d. Gaussian random variables.

Using the Bayes rule, we can compute the posterior distri-

bution over predictions. However, the nonlinear function of (1)

complicates this computation because it is not Gaussian. To

simplify the computation, we make the following relaxation

to (1): we fix thresholds6 θ1 = 0.5 and θ2 = −0.5 and

recode the decisions {“Allow”, “Obfuscate”, and “Deny”} as

{−1, 0,+1}. This makes the decision yui Gaussian and then

we can compute the posterior distribution in closed-form by

using the Bayes rule. The BLR model outputs a real-value

ŷ which we threshold at θ1 and θ2 according to (1) to get

the discrete-valued decision. The formulation presented in (1)

and (2) enables us to use nonlinear models for fu by using

Gaussian Process models (GP). By simply changing the kernel

matrix used, we can obtain a variety of nonlinear models

(see Chapter 2 in [48]). This approach is similar to SVM

algorithms, used in previous works [2], [8], with one important

difference: the GP model gives us posterior probabilities for

our predictions, unlike SVM where we need a two-stage

procedure that requires large data to avoid overfitting (see

Chapter 7 in [49]).

We note that our approach, BLR, differs from previous

works that use only two classes “allow” and “deny” [2], [8].

For a two-class problem, the ordering does not matter, but for

our problem it is clear that “obfuscate” requires less privacy

than “deny” but more privacy than “allow”. Therefore, the

choice of a one-dimensional function is justified, although

this approach can be easily extended to a multi-dimensional

function [50]. Another alternative would be to use multi-

class classification (e.g., support-vector machines, classifica-

tion trees), along with a cost-sensitive cost function [51]. Still,

BLR is a reasonable first choice for small data sets, given its

simplicity.

D. Error Measure

To reliably compare methods, we propose the performance

error measure E to evaluate the performance of a method M:

Et
M(D,Dtest) :=

1

U

U
∑

u=1

1

Nu

Nu
∑

i=1

L(yui, ŷui|t) (3)

6In practice, these thresholds should be learned from the data.

where L is a loss function, Dtest is the set of test decisions

yui for users u = 1, . . . , U , D is the set of past decisions and

contextual information Du,t for these users, Nu is the number

test decisions in Du,t, and ŷui|t are predictions computed by

using Du,t and the method M. Note that the error measure

is a random variable which depends on the choice of users

in the test data and the data that contains the past decisions.

This loss function is averaged over many users, therefore it

penalizes methods that do not generalize well to many users

at the same time. This is a better error measure than using

one-leave-out methods that might show a high variance for

different trials, as different users are selected in different runs.

We will use two types of loss functions. The first loss

function is the popular 0-1 loss: L(y, y′) = 1 when y 6= y′

and 0 when y = y′. In this case, E is the standard incorrect

classification rate metric (ICR). However, the 0-1 loss ignores

the ordering between the three categories of the decision y:

e.g., if we predict “allow” for “deny”, then it is more incorrect

than predicting “obfuscate”, as the latter allows some degree

of privacy. We use another loss function called mean-absolute

error (MAE) that reflects these types of errors. We recode the

decisions {“Allow”, “Obfuscate”, “Deny”} as {−1, 0,+1} and

we define the loss as follows: L(y, y′) = |y − y′|.

E. Performance Evaluation Methodology

We developed a machine learning framework to reliably

estimate the error measure for different methods. Our frame-

work uses the standard splitting of the data into training and

testing sets. We randomly select 50% of the participants for

testing (U = 20) to compute an estimate of the error, and the

remaining 21 participants for training to learn the parameters

for the BLR model by maximizing the log-likelihood. Note

that, for baseline and other methods evaluated, there are no

parameters to learn.

On the 20 test participants, we estimate the error measure

as follows. We first form datasets Du,tu for each participant.

As participants have varied number of decisions, we select

a fixed percentage of each participant’s data, e.g., for each

participant, we can select the first 10% of their decisions, that

we denote by tu = 10%, ∀u. We then form the dataset Dtest

by randomly selecting Nu = 20 decisions7 as test decisions

yui for each participant. Using the method M, we compute

predictions ŷ
ui|Dt,u

for all yui ∈ Dtest. We choose only those

decisions as test points that were made after the first half of

the decisions so that the test decisions resemble decisions that

the participant has to make in the far future. We repeat the

above splitting process 50 times with different random seeds

to get 50 different realizations of the error.

For our evaluation, we use features chosen using an additive

approach, also known as Forward Stepwise Selection [52].

We add each of the 37 features (Sections IV-C and V-A6)

in turn, and observe their effect on the model’s performance.

The feature that most improves performance is selected. We

7Some participants do not have more than 75 decisions, hence choosing 20
test decisions (around 30% of their data) allow us to include them.
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Fig. 6. Performance results for the machine learning models evaluated in our study. (a) and (b) show estimates of error measures as a function
of tu which is varied from 10% to 100%. (a) is obtained by using the 0-1 loss and reports ICR, while (b) is obtained by using MAE. In each
plot, thick lines (with markers on them) show the median of the error, while the shaded region behind shows the error between 25th and
75th percentile. Models that consider contextual information have significantly lower error than our context-oblivious baselines. Moreover,
per-user models outperform one-size-fits-all models, i.e., BLR-all and SVM-all. (c) shows the histogram of MAE over test decisions in Dtest

for one random partition and tu = 100%. Context-aware methods make very few mistakes with a loss of 2, which clearly shows that such
methods rarely make the mistake of predicting “allow” for “deny” and vice versa.

repeat the procedure to find the second most important feature,

and so on. We continue this procedure until the performance

remains the same or decreases, as shown in Figure 8 for BLR.

Using this approach, we selected the following seven features

for BLR: method category (i.e., location, contacts, or storage),

method name (i.e., the actual API call), app name, whether the

app was in the foreground, whether denying the request causes

the app to crash, day of month, and battery-level percentage.

Note that the effect on performance of a set of features will

depend on the machine learning model selected. This is not

necessarily the best subset and combination of features for

BLR, as our selection approach was not exhaustive; the best

subset and combination of features may vary across partici-

pants. For BLR, a possible approach is to use regularization

to find the best features, which also helps reducing overfitting.

In our evaluation, we use data from all the participants,

but only for decisions associated with popular apps, i.e., apps

with more than 200 decisions (Figure 5): Facebook, Twitter,

Instagram, WhatsApp, Viber, Skype, Snapchat, The Weather

Channel, and AccuWeather. We do so because we do not have

enough data for the remaining apps to reliably perform our

analysis (see Table II in the Appendix).

Our experimental framework and the models evaluated (see

next section) were implemented by using the Matlab Statistics

and Machine Learning toolbox, and the GPML toolbox [53].

Our code is publicly available in the SmarPer’s website [11].

F. Performance Evaluation Results

In our evaluation, we considered the following models:

static policy, ZeroRt, BLR, Gaussian Process with Squared

Exponential Kernel (GP-SE), decision tree (D. Tree), and 3-

binary support vector machines (SVM) with linear kernel. The

goal was to compare context-oblivious models with different

context-aware models. We also evaluated the training of one-

size-fits-all models (i.e., BLR-all and SVM-all), i.e., training

a single model for all users.

Figure 6 shows estimates of error measures as a function

of tu. We vary tu from 10% to 100% for all test participants.

Figure 6(a) is obtained by using 0-1 loss function and shows

the median of the ICR obtained by the different models

evaluated. The shaded area shows the region between 25th

and 75th percentile. We can observe that both one-size-fits-all

models (i.e., BLR-all and SVM-all) have a significantly higher

error rate than most per-user models; BLR-all performs even

worse than our baselines. These results are consistent with

our observations about Figure 3, participants’ unique privacy

preferences make it difficult to train a one-size-fits-all model

that accurately predicts decisions at runtime. For tu = 100%,

the mean ICR is 0.39 (±0.04) for static policy, 0.30 (±0.03)

for ZeroRt, 0.20 (±0.03) for BLR, and 0.16 (±0.02) for SVM.

We can see that context-aware models obtain a much lower

error-rate than the baselines, which clearly shows the gain

obtained after adding context. Also note that, unlike the static

policy method, all the other per-user models are dynamic and

learn to predict better as the amount of data is increased.

In addition, note that BLR, SVM, GP-SE and D. Tree have

roughly similar performance. Still, BLR can be considered a

safer option, due to its simplicity, i.e., lower risk of overfitting

and computational overhead [54].

Figure 6(b) shows a similar trend for MAE loss. For

tu = 100%, the mean MAE was 0.48 (±0.06) for static policy,

0.39 (±0.04) for ZeroRt, 0.22 (±0.03) for BLR, and 0.19

(±0.03) for SVM. To put these numbers in perspective, note

that the MAE is in the range [0,2]. The gains obtained with our

context-aware methods are even larger here because the MAE

loss function captures the ordering between different types
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Fig. 7. Comparison of the individual performance on 20 participants
for one random partition and tu = 100%. We plot MAE obtained by
the baselines and a SVM versus those obtained by our BLR model.
Each point corresponds to the MAE of a participant estimated using
(3) with Nu = 20 and U = 1. Note that not all the points are visible
due to the plot’s scale. A thin grey line joins the MAEs obtained on
the same participant. A point above the dashed grey line indicates
that the corresponding baseline gives worse performance than our
method, which is the case for most participants. Also, we can see
that SVM and BLR have comparable performances.

of decisions, which is ignored by the 0-1 loss. For example,

MAE penalizes decisions according to the degree of privacy

violation, i.e., predicting “allow” for “deny” has a loss of 2

compared to predicting “obfuscate” which has a loss of 1.

Under 0-1 loss these errors are treated equally with a loss of

1. Thus, MAE is a better measure of the loss for our problem.

Although we believe our results are quite encouraging (more

than 80% of correct predictions for modest training set sizes,

hence lower user burden), the level of user satisfaction for such

values of the performance metric must be evaluated through

dedicated experiments and user studies, which will be carried

out in the second phase of the project.

Furthermore, we show in Figure 6(c) the distribution of

MAE over test decisions in Dtest for one random partition

with tu = 100%, i.e., all the training data. Context-aware

methods such as BLR and SVM have very few mistakes with

a loss of 2, which clearly shows that such methods very rarely

make the mistake of predicting “allow” for “deny” and vice

versa (see Section VII-C for more details about the impact of

such mistakes). Again, there is little difference between the

results for BLR and SVM.

The sensitivity of MAE to different types of decisions is

also reflected in the worse performance of ZeroRt in Figure

6(a) compared to its performance in Figure 6(b). ZeroRt has

many predictions with MAE of 2; they are ignored under the

0-1 loss but not under the MAE loss, which is why ZeroRt

performs worse with the latter. In contrast, our context-aware

methods perform similarly under both loss functions.

Figure 7 compares the individual performances on 20 par-

ticipants for one random partition and tu = 100%. We plot

MAE losses obtained by the baselines and SVM versus those

0.1 0.2 0.3 0.4 0.5 0.6

Mean Absolute Error (MAE)

All Features

A+B+C+D

Foreground (D)

Category (C)

Method (B)

App-Name (A)

ZeroR_t

Static Policy

Fig. 8. Importance of individual contextual features for prediction.
We show box-plots of MAE obtained for 50 different partitions with
tu = 100%. The top two box-plots are for the baselines, and the
next four are for BLR models using only one feature. Even with one
feature containing a single context regarding the app being in the
foreground or background, BLR outperforms the baselines. The last
two box-plots use all four features and all 37 features, respectively,
where we see that BLR with the four features performs slightly better.
For the details of features, see Sections IV-C and V-A6.

obtained by BLR. Each point corresponds to the MAE of a

participant estimated using (3) with Nu = 20 and U = 1.

The MAE of the static policy method, ZeroRt and SVM

methods are shown by crosses, circles, and dots, respectively.

A thin grey line joins the two MAEs obtained on the same

participant. A point above the dashed grey line indicates

that the corresponding baseline gives worse performance than

BLR, which is the case for most participants. Among the

baselines there is no clear winner. Similarly, there is no clear

winner between BLR and SVM. Note that these MAE values

are less stable as they are estimated with only 20 points. For

many participants, standard errors are in the order of 0.1. The

numbers reported in Figure 6 are more stable and reliable

since they are estimated with a large number of test decisions

(20 participants with 20 test decisions each giving us a total

of 400 points). Nevertheless, Figure 7 shows that even across

participants adding context improves the performance.

Also, note that in Figure 7 the variance across participants

is quite high. We can predict some participants very well

(MAE is close to zero), whereas for others MAE could be

as high as 0.7. The aggregate over participants however is

quite satisfactory, e.g., in Figure 6(c) where each participant

is equally represented (each participant contributes 20 test

decisions in the histogram). For the participants we cannot

predict well, possible reasons are that more data is needed or

that they were not consistent in their decisions.

Figure 8 explores the importance of individual features

for prediction. We show box-plots of MAE obtained for 50

different partitions with tu = 100%. The top two box-plots

are for static policy and ZeroRt, respectively. The next four

box-plots show the performance of BLR obtained after adding

only one feature out of the following four features: (A) the

name of the app requesting permission, (B) the method of the



request, i.e., the actual API call, (C) the method category, i.e.,

contacts, location, or storage, and (D) whether the requesting

app was in the foreground. Even with just one feature, we

obtain improvements over the baselines that use (almost) no

contextual information at all. The most striking among these

features is the feature D (regarding the app being in the

foreground or not) which obtains a much lower median error

of 0.25 compared to the baselines. The 7th box-plot shows

the performance obtained with all the 4 features (A+B+C+D)

which achieves a slightly lower and robust MAEs compared

to the last box-plot which shows performance when all 37

features are used. This type of behavior is expected when the

sample-size is small which is the case here.

G. Computational Performance

Our chosen machine learning model, BLR, is simple enough

to run on smartphones. To evaluate its computational perfor-

mance, we used a Motorola Moto G 3rd generation smart-

phone with Android 5.1.1, 7 contextual features, 5-fold cross-

validation, and around 200 decisions from a single participant.

We ported our BLR algorithm to Android using the Efficient

Java Matrix Library (EJML) [55]. With this setup, training

took around 1.32±0.31 s and prediction 50±6 µs, and the CPU

usage was not higher than 50%. These results show that our

approach is feasible in smartphones, particularly if we take into

account that training does not need to happen frequently (e.g.,

a couple of times during the day). Moreover, training can be

done while the smartphone is idly charging to avoid draining

the battery or interfering with apps. In future work, we also

plan to evaluate BLR with sequential updating (i.e., online

learning), by using one rank update of the Cholesky factor

or stochastic gradient descent. Such approach should reduce

training time significantly. In addition, we estimated the

impact on performance of our SmarPer prototype, particularly

the service that collects context information and intercepts

apps’ requests. Using OS and third-party tools, we did not

measure a significant impact on CPU usage from our service.

Regarding battery life, we used Android’s Battery monitor API

to measure if using SmarPer drained the battery faster, but we

did not measure a significant difference on battery life between

a smartphone with and without SmarPer. Moreover, none of

the participants reported problems with battery life.

VII. DISCUSSION

In this section, we present further discussion of the results

obtained in our data-collection and machine learning analysis,

as well as deployment considerations for SmarPer.

A. Amount of Training Data vs Model Complexity

Figures 6(a) and 6(b) show that the MAE and ICR for our

BLR model continue to decrease by the end of the experiment,

i.e., tu = 100%. Thus, the performance of our model can be

further improved with more data. In contrast, for ZeroRt, they

flatten out around tu = 80%, hence, more decision data may

not help improving the performance of ZeroRt.

As there is a wide variance in users’ preferences, it is

recommended to collect data from a sufficiently large number

of users. The number of decisions per user depends on the

type of their preferences as well as on the dimensionality of

the contextual features. A larger amount of training data will

enable the application of advanced machine learning models

that can capture the wide variance in the privacy preferences,

for example, a topic model can represent a user as a mixture of

several types of privacy preferences and is likely to be much

more accurate [56]. In short, the amount of training data and

time required to train an accurate model depend on the user

and their willingness to provide decision data.

In our experiments, we did try several non-linear models

that are based on Gaussian process regression (GP-SE), as

well as a SVM and decision tree models. These models only

marginally improved the performance over a linear model

(Figures 6(a) and 6(b)), suggesting that the amount of data

is perhaps not enough for training more complex models. On

41 users with 8,521 decisions with 37 contextual features, a

linear model worked the best. As a next step, we plan to

collect additional decision data and to evaluate more advanced

machine learning models to improve prediction accuracy.

B. Automating Permission Decisions

We ran several experiments to evaluate how our BLR model

predicts and automates decisions to reduce users’ overhead,

i.e., the number of prompts to answer. For this purpose, we

estimated the confidence of our model on each decision (using

the mean and variance) and defined different thresholds to

decide whether to automate the decision or prompt the user.

However, as stated before, we did not have enough data to

reach concrete conclusions. Moreover, we face the challenge

of determining when the model is accurate enough to start

automating decisions. On the one hand, our model needs as

much decision data as possible to improve its performance, but

on the other hand, once our model starts automating decisions,

it will obtain less decision data.

The simplest approach is to make decision prompts ran-

domly and limit the number of requests per day. In our

experiments, this works reasonably, although we found that

ultimately using all the data gives the best results. This implies

that all of our data are useful for prediction. This also implies

that, in practice, an automatic system might collect a few

responses each day until enough decisions have been collected.

We could follow the approach used in our data collection

phase, i.e., to prompt users a limited number of times per day

to collect data to train our model, and to rely on user-defined

static policies for other requests. To collect enough decisions

per app and reduce the risks of overwhelming the user, we

recommend to start collecting data only for a subset of apps

selected by the user (e.g., most used apps); gradually, other

apps can be added to the system. Another option, is to profit

from the data from similar users to accelerate the learning

process, i.e., user profiles. However, the system first needs to

learn the various types of preferences. Once we have data from

a sufficient number of users and apps, we will be able to map a



new user to a particular profile and start automating decisions

for certain requests instead of relying on static policies. As

mentioned before, our data set does not contain enough users

to identify profiles via clustering.

Using our machine learning framework, we could regularly

train and test our model to monitor its performance (e.g., once

a day). If the MAE is lower than a defined threshold (function

c(), see Section III-C), the decisions are made automatically,

using the learned model. To keep the model updated, we

can follow an exploration-exploitation trade-off [57], where

we prompt the user for more decision data at a rate that is

an increasing function of the current estimation of the MAE

(i.e., the higher the estimated error, the higher the prompt

rate). Thus, the decision on a request would depend both on

the current estimate of the user’s preference and on random

explorations, i.e., the mean can be used to exploit and the

variance to explore. These learning methods are popular in

machine learning and are useful for automating decisions.

The acceptable MAE is a user-dependent value and can

be estimated only via a long-term study and/or interviews. If

the decisions are balanced across allow, obfuscate, and deny,

predicting obfuscate all the time would give an MAE of 0.66.

We could suggest some reasonable values (e.g., 0.20), but the

user must decide which value is acceptable.

Moreover, as discussed in Section III, SmarPer includes

an audit function for correcting incorrect automatic decisions.

Such corrected decisions are added to the training set, po-

tentially with higher weights, to prevent the system from

repeating the same errors. This feature was not evaluated in

our first study, as no automatic decisions were made during the

experiment; but it will be in the second phase of the project. As

for the adoption of the audit feature, we observed during the

study that participants fixed their own incorrect decisions: For

instance, when participants realize that one of their decisions

breaks the app functionality, they clear SmarPer’s decision

cache and restart the app. Such behavior suggests that the

audit feature would be used by users.

Overall, our user survey shows that participants are in-

terested in automatic decisions. For instance, 66% of our

participants reported that they will trust a system that makes

automatic permission decisions on their behalf. In addition,

88% said they would be “very interested” or “interested” to

see a feature like SmarPer in a new version of Android.

The second phase of the SmarPer project, on which we are

currently working, will enable us to evaluate our approach

and the user perception with respect to automating decisions

(accuracy, frequency and adequacy of the prompts, sensitivity

to prediction errors, i.e., determining what is an acceptable

value for the MAE and the user preferences with respect

to undersharing vs. oversharing) and the use of SmarPer’s

features, such as the audit option.

C. Impact of Predicting Permission Decisions

SmarPer’s purpose is to learn and emulate users’ privacy

behaviors. That is, if a user tends to put her privacy at risk by

sharing large amounts of information, the trained model will

do the same. Problems arise if the predicted decision does not

match the user’s intent. First, if the model predicts “allow”,

instead of “deny”, sensitive information will be revealed to

apps, i.e., privacy loss due to oversharing. Second, if the model

predicts “deny”, instead of “allow”, the app will not work as

the user expects, i.e., utility loss due to undersharing. Third, if

the model predicts “obfuscate”, instead of “deny” or “allow”,

some privacy or utility loss occurs, depending on the scenario

(data type), i.e., partial-oversharing or partial-undersharing.

Note that, for all practical purposes, undersharing (and some

partial-undersharing) errors mean that an app will not longer

work because it was denied the permissions required for key

functionality. In some cases, an app could crash or behave

unexpectedly (see Section VII-D). Still, the chance of such

problems is low, now that Android supports disabling per-

missions (Android 6+), as most apps can gracefully handle

denied permissions. In short, SmarPer should be evaluated

with respect to its ability to mimic users’ decisions and to the

types of incorrect predictions.

As Figure 6 shows, BLR and SVM models rarely make large

mistakes predicting “allow” for “deny” and vice versa. More

specifically, BLR has an average per-user of 0.6±0.6% over-

sharing error, 9.4±1.9% partial-oversharing error, 8.8±1.8%

partial-undersharing error, and 0.8±0.5% under-sharing error.

In contrast, static policy (currently deployed approach) has an

average per-user of 7.1±2.6% oversharing error, 17.4±3.0%

partial-oversharing error, 11.5±3.2% partial-undersharing er-

ror, and 2.6±2.0% under-sharing error. As a result, we can see

that, compared with static policy, our approach significantly

reduces the loss of privacy and utility. Also, note that the

errors reported for our approach assume that all the predicted

decisions are automated. In practice, SmarPer will automate

only a subset of the predicted decisions based on the output

of the function c() (Section IIC). Hence, the errors should be

smaller. To reduce these errors further, we can also use cost-

sensitive training [50], where users can configure the kind of

errors to minimize (oversharing/undersharing), as in [28].

D. Data Obfuscation

Obfuscation was well-received by the participants. Over our

whole data set, 29% of decisions were obfuscate decisions.

A similar fraction was observed across data types: Users

obfuscated 25% of requests for contacts, 26% of requests for

location, and 32% of requests for storage. Moreover, in our

exit survey 73% of participants found obfuscation useful and

80% stated that they would like to obfuscate additional data

types. Still, some participants did not find obfuscation useful,

e.g., a few participants chose to always deny or always accept

apps’ requests. Also, a small number of participants reported

that obfuscation caused problems with certain apps, hence they

stopped using this option. It is also possible that, in spite of the

training provided, some participants did not fully understand

the purpose of obfuscation.

In our exit interviews, participants shared some use cases

for obfuscation: “For apps that need location, such as Ac-

cuweather, I was giving obfuscated access most of the time



as I expected the functionality to be fine with coarse grained

location.”–D69. Another participant explained the benefits of

obfuscation: “Even if we don’t want to give all the information

to the application used, we still have to give some, in order to

the application to be useful”–37F. See Table III (Appendix B).

Obfuscation may introduce unexpected behaviors in

apps [24]. In our field test, few participants reported non-

critical issues with obfuscation. For instance, some participants

reported that storage obfuscation interfered with apps that take

or edit photos (e.g., Twitter, Facebook), as they need to access

the pictures folder. Also, participants reported that WhatsApp

was not displaying contact name’s correctly when obfuscation

was chosen for contacts. Coordination with developers and

mobile platform providers is important to reduce these prob-

lems. For example, native APIs could be introduced to handle

obfuscated data types and handle possible runtime exceptions.

E. Privacy Benefits of a Per-User Model

Prior works aggregate permission preferences and related

information from all users to train a one-size-fits-all classi-

fier [2], [8] or to identify privacy profiles via clustering [8],

[9]. However, aggregating this information introduces privacy

risks, as it can be misused to infer sensitive information about

users. In SmarPer, we show that is feasible to train a model

per user directly in the user’s smartphone, i.e., no permission

information is sent to other parties. Note that in the case of

BLR, partial decision data from a subset of users is needed to

learn the model hyperparameters. However, instead of sending

raw decision data to a central location, users can send sufficient

statistics (e.g., expectation of β0

u and βT
u ) to defend against

inference attacks. More advanced models (e.g., SVMs) do not

need this (but might require more data for training).

F. Limitations

There are many challenges associated with predicting and

automating permission decisions at runtime using contextual

information. To provide some guidance to future works in

these area, we present the main limitations of our approach:

• Participant’s bias. Due to the nature of our evalua-

tion, participants might have some bias towards a more

privacy-preserving behavior and, in particular, towards

using obfuscation. Such bias is common in the evaluation

of privacy tools and is difficult to avoid. To reduce it, we

presented in a neutral way the decision options (allow,

obfuscate, deny) to participants during their training.

• Focus on popular apps. To obtain enough decision data

per app for our study, we collected data only from popular

apps. This might have introduced a bias, as participants

are more familiar with these apps and, in some cases, less

willing to deny their requests. Yet, collecting data from

a larger set of apps requires a long-term user study to

collect enough data from less frequently used apps. Also,

techniques to deal with data sparsity will be needed.

• Simplified decision modeling. Our prediction model takes

into account only contextual factors that can be col-

lected by the users’ smartphones. There are probably

other contextual factors that are also important but not

considered in our approach. Moreover, there are non-

contextual factors that are important in privacy decision-

making, e.g., psychological factors [20].

• Data set size. Our data set is not large enough to reli-

ably train advanced machine learning models, to cluster

participants, and to obtain a reliable confidence metric.

Hence, we will carry out a longer-term data collection

campaign with more participants.

• Data quality. We took measures to remove noisy decision

data from our data set (Section V). However, we cannot

fully validate if participants made decisions that correctly

conveyed their intentions. For instance, a participant

might have provided only biased or fake decisions, or

just random decisions. This could explain why some

participants are more difficult to predict.

VIII. CONCLUSION

As the number of apps, data types, and permissions in-

creases in mobile platforms, users are increasingly in need

of better mechanisms to manage permissions. Artificial in-

telligence and machine learning techniques are already being

used for security purposes in mobile platforms such as An-

droid [58]. Therefore, it is logical to use similar techniques to

help users to better control their privacy in mobile devices.

We presented SmarPer, an advanced permission mechanism

for Android, designed to address two important limitations of

current mobile permission systems: the static nature of current

permission policies and the poor trade-off between privacy

and utility. After seeing some initial training decision data

and its corresponding contextual information, SmarPer uses

machine learning to infer users’ permission-decision patterns

at runtime and to automatically respond to future permission

requests (not yet supported). Furthermore, SmarPer offers

“obfuscated” decisions to reduce the information revealed to

apps while still obtaining some utility.

We deployed, under realistic conditions, our SmarPer imple-

mentation to 41 users and collected their permission decisions

and contextual information for around 10 days each. Using

a Bayesian linear regression approach to train a model per

user, we achieved a mean incorrect classification rate (ICR)

of 0.20 (±0.03), which is a mean relative improvement of

50% over a static policy baseline, i.e., the approach used by

current permission systems. Our results show that our model

can learn to predict users’ decisions with good accuracy and

that contextual information is important for such a task.

For future work, we plan to expand our data set of per-

mission decisions to train more advanced models for better

accuracy. Moreover, we will evaluate exploration-exploitation

trade-off methods to automate decisions at runtime to complete

our SmarPer implementation and to move a step closer towards

automatic permission-management in smartphones.
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APPENDIX A

DISTRIBUTION OF DECISIONS PER APP

Table II shows the total number of decisions per app

collected during our study (Section V). For each app, it also

shows the distribution of decisions per data type (i.e., contacts,

location, storage) and for each data type the distribution of the

type of decision (i.e., allow, obfuscate, deny). These numbers

demonstrate the importance of selecting popular apps in our

study to be able to collect enough decision data in the allotted

time; only 9 apps have more than 200 decisions. Hence, for

less popular apps or apps that are used less frequent, we need

longer periods of time to collect enough data (avoiding forcing

participants to generate decisions to reduce bias).

APPENDIX B

EXAMPLE SCENARIOS USED IN PERMISSION DECISIONS

After completing our data collection campaign, we sent

an e-mail to some of the participants with a questionnaire

inquiring about example situations in which they chose a

decision for a particular app and data type. Some of the

answers collected are presented in Table III. These responses

show the trade-off between privacy and usability that users

face when making permission decisions. These responses also

provide an idea of the scenarios or contexts that users consider

when making decisions.



Contacts Location Storage

App Total Count A O D Count A O D Count A O D

WhatsApp 2982 1246 871 257 118 460 103 105 252 1276 765 223 288
Facebook 1821 18 4 13 1 1007 180 186 641 796 171 269 356
The Weather Channel 878 0 0 0 0 311 120 112 79 567 66 170 331
Twitter 569 1 1 0 0 203 23 72 108 365 186 119 60
Viber 556 202 87 93 22 115 61 42 12 239 62 150 27
Skype 431 87 55 16 16 152 13 60 79 192 19 87 86
Instagram 350 0 0 0 0 44 25 6 13 306 103 88 115
AccuWeather 283 0 0 0 0 233 100 109 24 50 5 23 22
Snapchat 205 32 13 5 14 59 1 16 42 114 60 27 27
TripAdvisor 153 0 0 0 0 81 34 29 18 72 21 31 20
Shazam 93 0 0 0 0 50 35 11 4 43 10 30 3
Dropbox 56 0 0 0 0 0 0 0 0 56 11 39 6
Evernote 45 0 0 0 0 7 0 1 6 38 1 30 7
Waze 36 11 0 0 11 13 2 6 5 12 0 7 5
iHeartRadio 24 0 0 0 0 17 0 4 13 7 0 2 5
SoundCloud 16 0 0 0 0 0 0 0 0 16 5 9 2
Runtastic 11 0 0 0 0 5 0 1 4 6 0 2 4
Uber 6 1 0 1 0 4 2 1 1 1 0 1 0
Heroes 2 0 0 0 0 0 0 0 0 2 1 0 1
Subway Surf 2 0 0 0 0 0 0 0 0 2 0 2 0
Wish 1 0 0 0 0 0 0 0 0 1 0 1 0
Yelp 1 0 0 0 0 0 0 0 0 1 0 0 1

TABLE II
DISTRIBUTION OF THE PERMISSION DECISIONS PER APP, TYPE OF DATA (I.E., CONTACTS, LOCATION, STORAGE) AND TYPE OF DECISION (I.E., ALLOW,

OBFUSCATE, DENY).

App Method category Decision Example Situations

WhatsApp Contacts

Allow

(1) “Adding new contacts.”; (2) “Used because otherwise the
names of the contacts within the app were missing, it wasn’t
really convenient otherwise.”

Obfuscate

(1) “I would use the obfuscation of the contacts most of the
times, because it gives the required information to Whatsapp
(phone number for example) while protecting my privacy.”

Deny
(1) “Never, because I thought that without contacts, Whatsapp
is useless.”

WhatsApp Location

Allow
(1) “Only selected when the pop-up was red.” (when it may
cause the app to crash)

Obfuscate (1) “For finding out position of my friends while chatting.”

Deny

(1) “I denied the access unless I wanted to use a feature of the
applications that required my location, like sharing my position
with a friend within WhatsApp.”

WhatsApp Storage

Allow (1) “To upload some picture.”

Obfuscate
(1) “Used most of the times, so that if the app needs to access
some content that is in its folder.”

Deny (1) “When not actively using the app.”

TripAdvisor Location

Allow
(1) “When I wanted to see my exact position relative to a bar
or a restaurant.”

Obfuscate

(1) “When I wanted to see all the restaurants available near my
house, but do not wanted to give the precise location where I
live.”; (2) “When we do not want to give our exact location,
but still need a service depending on our location.”

Deny (1) “When I did not need location services.”

AccuWeather Location Obfuscate
(1) “I used it most of the time as I expected the functionality
to be fine with coarse grained location.”

TABLE III
EXAMPLES OF REPORTED SITUATIONS WHERE PARTICIPANTS MADE A PERMISSION DECISION FOR A PARTICULAR APP AND DATA TYPE.


