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Reconstructing Evolving Tree Structures in
Time Lapse Sequences by Enforcing

Time-Consistency
Przemysław Głowacki, Miguel Amável Pinheiro, Agata Mosinska, Engin Türetken, Daniel Lebrecht,

Raphael Sznitman, Anthony Holtmaat, Jan Kybic, and Pascal Fua, Fellow, IEEE

Abstract—We propose a novel approach to reconstructing curvilinear tree structures evolving over time, such as road
networks in 2D aerial images or neural structures in 3D microscopy stacks acquired in vivo. To enforce temporal consistency,
we simultaneously process all images in a sequence, as opposed to reconstructing structures of interest in each image
independently. We formulate the problem as a Quadratic Mixed Integer Program and demonstrate the additional robustness that
comes from using all available visual clues at once, instead of working frame by frame. Furthermore, when the linear structures
undergo local changes over time, our approach automatically detects them.

Index Terms—Curvilinear networks, tubular structures, curvilinear structures, automated reconstruction, temporal consistency,
integer programming.
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1 INTRODUCTION

R ELIABLY reconstructing networks of curvilinear struc-
tures from images remains an open Computer Vision

problem, even though it has now been studied for more
than 30 years [1], [2]. Furthermore, it has mostly been
addressed in terms of modeling structures that have been
captured at a specific moment in time. However, these
networks, be they made of axons and dendrites seen in
vivo in optical microscopy image stacks [3], blood vessels
in retinal-scans [4], or roads in aerial images taken at long
intervals, evolve over time. In this paper, we therefore
propose an approach to reconstructing such evolving tree
structures while enforcing temporal consistency.

To this end, we first process individual images to find
pixels or voxels that are very likely to be on the centerlines
of linear structures. Finding tree structures in individual im-
ages could then be achieved by minimizing an appropriate
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objective function [5] but would not leverage the fact that
portions of the linear structures are often stable over time.
To exploit this, we find centerline points that correspond to
identical features across time instances and connect these
temporal correspondences by temporal edges. Combining
both types of edges yields a spatio-temporal graph that lets
us incorporate into our objective function terms that enforce
temporal consistency.

Fig. 1 illustrates our approach, which we first introduced
in a conference paper [6] using relatively local consistency
constraints. The ones we use here are much longer range.
We will show that this allows us both to enforce temporal
consistency over the stable parts of the structure and to
reliably detect changes elsewhere.

Even though imposing temporal consistency is well-
known to increase the robustness of video-based object
tracking [7] or 3D body pose estimation [8], [9], we do
not know of any other automated delineation algorithm
besides our own that exploits it early on when working
with time-lapse imagery. A more typical approach is that
of [10] in which dendritic spines are traced individually in
time-lapse images. Only then is spatial and structural infor-
mation between two dendritic structures used to establish
correspondences.

Our contribution is a novel approach to modeling tree
structures over several images simultaneously while enforc-
ing temporal consistency. We will demonstrate its power on
sequences of in vivo two-photon micrographs of neuronal
networks and on road networks that change over time.

2 APPROACH
For many tree structures evolving over time, frame-to-frame
changes tend to be local while the global topology remains
relatively stable. For example, consider the neural network
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Fig. 1. Key algorithmic steps, best viewed in color. (a) Maximum intensity projection of one of three in vivo image-stacks of
a neural network taken at one week intervals. (b) Corresponding tubularity image. (c) Maxima of tubularity selected as graph
nodes in two different stacks. Those shown in green have been determined to correspond to the same location in both, while
those in red or blue appear in only one. (d) Connecting neighboring nodes by high-tubularity paths produces a spatial graph
in each image. High-quality paths are shown as red while low quality ones appear as blue. (e) Connecting the corresponding
vertices across images turns the spatial graphs into a single spatio-temporal one and solving the resulting QMIP problem
yields two temporally consistent trees. (f) The red tree from the first image can be deformed and superposed on the blue tree
in the second one, making the changes highlighted in red easy to detect.

of Fig. 1, which was imaged in vivo over several weeks. The
tips of some branches undergo modifications but the rest
stays mostly the same. To exploit this overall consistency
while allowing some degree of change, we propose the
following approach.

Given N consecutive D-dimensional images I =
{In}Nn=1 featuring evolving tree structures, our goal is to
reconstruct a set of trees in each individual image such that
they collectively form a temporally consistent sequence. By
this, we mean that branches do not appear or disappear
randomly and the topology is preserved from one time
frame to the next. As a starting point, we find corresponding
points across images and use them as nodes of a graph
whose edges connect to nodes within the same image or
to other images. As in [5], the final set of trees can then
be reconstructed by solving a Quadratic Mixed Integer
Program (QMIP) problem.

We now summarize the method of [5] and extend it to
take into account temporal-consistency constraints.

2.1 Reconstruction without Time Consistency

The method of [5] was designed to handle single images.
For a given image I , a local scale-space tubularity measure
is computed for every pixel, in the case of 2D data, or
voxel, in the case of 3D data, using the oriented flux cross-
section trace measure [11]. It expresses how likely it is that
a given spacial position lies on a centerline of a tubular
structure of a specific radius. A set of evenly distributed
sample points X = {xi} is selected by first thresholding the
tubularity image and then iteratively choosing the highest
tubularity point and suppressing its neighborhood until no
non-zero tubularity points are left. A number of tree roots
are also manually annotated by a human operator. A spatial
graph, G = (X , Es), is then built taking the manually
anotated roots and automatically selected sample points as
vertices. Every two vertices that are close to each other are
connected by two oppositely directed edges. For every pair
of consecutive edges eij , ejk ∈ Es in the graph a probability
score pijk is computed to assess how likely it is that the
underlying tubular path is indeed part of the solution.
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The final reconstruction is then obtained by choosing a
subset of edges from the graph G that forms the most likely
set of trees. Formally, the problem is formulated as a QMIP
with binary variables yij indicating whether the edge eij

is part of the solution. A set of constraints adapted from
[12] ensures that the result truly is a set of trees emanating
from the manually annotated root vertices.

2.2 Simultaneous Reconstruction in all Images
When dealing with image sequences depicting the same
region of interest at different times one can process them
image by image using the approach described above.
This, however, ignores constraints arising from temporal
consistency. To account for them, we perform the initial
sampling of tubularity images in all images simultaneously
while trying to match corresponding sample points between
consecutive images. We then create a spatio-temporal graph
comprising all the sample points at all times. For conve-
nience we connect all of them to an imaginary root vertex.
In addition to the spatial edges connecting neighboring
vertices in specific images, we create temporal edges be-
tween matching vertices in consecutive images. Finally,
we reconstruct the trees in all images simultaneously and
enforce time consistency by favoring those whose topology
is similar. Our approach goes through four steps:

1) Find graph nodes in individual images as tubularity
maxima and corresponding nodes in other images, as
in Fig. 1(c).

2) Build a spatio-temporal graph such as the one de-
picted in Fig. 1(d) by linking nodes both within
images when they are close enough and across images
when they match.

3) Minimize a quadratic objective function to find a set
of trees whose local topology is temporally consis-
tent, such as those of Fig. 1(e).

4) Align these trees spatially to identify places where
substantial changes have occurred, as can be seen in
Fig. 1(f).

In the following two sections, we first discuss how
we build our spatio-temporal graphs and then define the
corresponding objective function to be minimized.

3 BUILDING SPATIO-TEMPORAL GRAPHS

The first step in building our spatio-temporal graph is to
find corresponding nodes across images, such as those
shown in Fig. 1(c). We assume that there may be some
non-linear deformation from one image to the next but that
it is smooth.

Finding an Initial Set of Correspondences. We first
use the Scale-Space Distance Transform method of [13] to
compute a tubularity measure in each image independently.

Then, at each successive iteration m, we find the point
xn
m that maximizes the tubularity across all images, where
n refers to the image in which it was found. Since we
expect only relatively small displacements from one image
to the next, we do not model rotations. Instead, for each
one of the remaining images I n̄ ∈ I\In, we compute the

Normalized Cross Correlation (NCC) between a square or
cubic patch centered around xn

m in In and similar patches
in I n̄ centered in the neighborhood of that location. Finally,
we retain the location xn̄

m that yields the largest NCC
value. We keep such correspondences between consecutive
pairs of points {xn′

m ↔ xn′+1
m }1≤n′≤N−1, as illustrated by

Fig. 1(c). Once computed, the tubularity is set to zero in
both the neighborhood of xn

m and that of the corresponding
points. The procedure is then iterated until the tubularity of
the selected point xn

m falls below a threshold.

Enforcing Geometric Consistency. The procedure de-
scribed above only relies on NCC scores computed lo-
cally and does not guarantee that the displacements of
neighboring points are spatially consistent with each other.
To enforce this and remove potential mismatches, we use
a Gaussian Processes Regression (GPR) [14] to remove
correspondences inconsistent with a locally smooth defor-
mation model.

Hence, to find a geometrically consistent set of corre-
spondences Sn between images In and In+1, we first select
from our correspondences a set S0

n = {xn
l ↔ xn+1

l }1≤l≤L
of the L points with the highest average local tubularity. In
the example of Fig. 2 (Iteration #1), the selected xn

l points
are shown in green. We treat S0

n as being a reliable set and
use the GPR to estimate the mean and covariance of the
location of a point xn in In+1. This can be computed as

mS0
n
(xn) = k′Γ−1

S0
n
Xn+1
S0
n

, (1)

σ2
S0
n
(xn) = k(xn,xn) + β−1 − k′Γ−1

S0
n
k ,

where k is a kernel function that implicitly defines a
mapping composed of an affine and a non-linear trans-
formation as in [15], [16], β−1 is a measurement noise
variance, ΓS0

n
is the L × L symmetric matrix with el-

ements Γi,j = k(xn
i ,x

n
j ) + β−1δi,j , k is the vector

[k(xn
1 ,x

n), . . . , k(xn
L,x

n)]T and Xn+1
S0
n

is the L×D matrix
[xn+1

1 , . . . ,xn+1
L ]T .

We then add all correspondences that are consistent with
this GPR to S0

n. A correspondence is considered to be
valid if the Mahalanobis distance between corresponding
points xn+1 and mS0

n
(xn) is small enough. This gives us an

augmented correspondence set S1
n, such as the one depicted

by Fig. 2 (Iteration #2). We then repeat the process using
S1
n to compute the regression of Eq. 1 and iterate until

the set stabilizes, typically after 4 to 5 iterations, as shown
in Fig. 2 (Iteration #3). We do this for each consecutive
image pair. It yields sets of image points Xn = {xn

i } and
of geometrically consistent correspondences Sn.

This procedure is greedy in the sense that it starts with
a set of high-confidence correspondences and progressively
adds new lower-confidence ones. However, recomputing the
GPR at every iteration to eliminate outliers gives it the
necessary robustness.

Building the Graph. We treat points in all the Xn as
nodes of our graph and create two kinds of edges. As
in the single-image case of Section 2.1, the spatial edges
Ens = {en

ij = (xn
i ,x

n
j )} correspond to edges connecting



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Im
ag

e
n

+
1

Im
ag

e
n

Initialization Iteration #1 Iteration #2 Iteration #3
Fig. 2. Establishing correspondences. Initialization. A set of corresponding points with possible inconsistencies is found in
each image using high-tubularity locations and NCC. Iteration #1 A set of corresponding points (shown in green) with the
highest tubularity likelihoods has been selected, which are then used to instantiate a GPR that maps the remaining red points
in image In (top) to the red locations in image In+1 (bottom). The white circles denote the covariances associated to these
locations. The blue points in image In+1 that are close enough to them and correlate well with the original red points in image
In are taken to form new correspondences. Iterations #2 and #3. They are added to the set of correspondences, shown in
green. The process is then repeated.

points within In and consecutive pairs of such edges are
assigned an image-based probability of being part of the
final curvilinear structure. To these, we add temporal edges
Ent = {en,n+1

ij = (xn
i ,x

n+1
j ) | (xn

i ↔ xn+1
j ) ∈ Sn} that

connect nodes in In and In+1 that belong to the set Sn of
geometrically consistent correspondences.

The spatial and temporal edges play very different roles
and we instantiate fewer of the latter than the former. The
spatial ones represent actual paths that are the building
blocks of our final delineations. Missing one may result in a
part of the structures not being modeled. We therefore chose
to make the graph overcomplete to minimize the chances
of this. By contrast, the temporal edges will only be used
to ensure that similar spatial edges in different images can
support each other. Missing one might result in evidence
not being exploited fully but is less likely to have adverse
consequences. It is therefore acceptable to instantiate fewer
to keep computational complexity under control.

The whole procedure is controlled by three parameters:
The size of the neighborhoods used to compute the NCC
and the two thresholds on the minimum acceptable value of
the tubularity value and maximum acceptable Mahalanobis
distance for corresponding vertices. In practice, we take
a constant neighborhood size equal to half the minimum
distance between graph nodes, that is the size of the
suppression neighborhood introduced in Section 2.1. which
is always between 20 and 30 pixels. We take the minimum
acceptable value of the tubularity value in image to be
0.15 times the maximum value in that image and the
Mahalanobis threshold to be 4. We justify these choices
in Section B.2.1 of the appendix.

4 ENFORCING TEMPORAL CONSISTENCY

Given the spatio-temporal graph G introduced in the previ-
ous section, our goal now is to find a subgraph forming a set
of trees that evolve consistently over time. For every image
in the sequence, the locations of the tree roots are provided
by an operator and are added to the set of graph nodes.
An additional imaginary root xr is created and connected
to all these root nodes for all time instants. This way,
reconstructing the trees in all images can be achieved by
finding the most likely arborescence rooted at xr.

4.1 Solving without Time Consistency
Reconstructing the trees of interest means deciding which
edges of the graph G should be part of the final solution. To
this end, we use Bayes theorem and derive an energy model
from probability estimates, as in [5]. Let Y n

ij ∈ {0, 1} be
a binary random variable denoting the presence or absence
of the edge en

ij in the final solution and Y be the set of all
Y n
ij variables. Our goal is to infer the most likely Y .
We could ignore the existence of the temporal edges and

directly use the algorithm of [5]. In this case, computing
the optimal tree would simply amount to solving

y∗ = arg max
y∈Y

P (I,X , Es|Y = y) ,

= arg min
y∈Y

∑
en
ij ,e

n
jk∈Es

wijky
n
ijy

n
jk, (2)

where wijk = − log
pijk

1−pijk
, pijk is the probability of edge

pair (en
ij , e

n
jk) being part of a tubular structure introduced

in Section 2.1, and Y is the set of all Y defining feasible
trees rooted at xr. As time consistency is not enforced, this
amounts to independent reconstructions in all images, as
described in Section 2.1. However, this formulation can also
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be exploited for our purposes first by introducing auxiliary
floating point flow variables and imposing flow constraints
that enforce both spatial connectivity [12], [5] and temporal
consistency, as described below.

4.2 Flow Variables and Spatial Connectivity
Given the spatio-temporal graph G = (X , E) introduced
above, solving the minimization problem of Eq. 2 amounts
to finding a subset E ′s ⊆ Es of edges that form a tree
rooted at node xr that minimizes the objective function.
This implies that there must be exactly one directed path
from xr to every vertex in that solution tree.

To ensure that this is the case, we introduce a set
F = {fmij } of variables called flow variables. Each of those
corresponds to one vertex-edge pair (xm, eij) ∈ X ×Es in
the graph. If vertex xm is not part of the solution tree,
all the flow variables fmij are set to 0. If it is part of the
solution the value of fmij indicates whether the unique path
from the root vertex xr to the target vertex xm traverses
the edge eij or not. If yes it is set to 1 and otherwise to 0.
This way, if the solution is a tree, there is a unit flow from
the root to every target vertex that is part of it.

As shown in [12], the tree connectivity constraints can
therefore be enforced by minimizing the criterion of Eq. 2
subject to∑
xj∈X\{xr}

fmrj ≤ 1, ∀xm ∈ X \ {xr},∑
xj∈X\{xk}

fmjk ≤ 1, ∀xm ∈ X \ {xr}, (3)

∑
xj∈X\{xi,xr}

fmij −
∑

xj∈X\{xi,xm}

fmji = 0,
∀xm ∈ X \ {xr},
∀xi ∈ X \ {xr,xm},

fmij ≤ ynij , ∀eij ∈ E , xm ∈ X \ {xr,xi,xj},
fmim = ynim, ∀eim ∈ E ,
fmij ≥ 0, ∀eij ∈ E , xm ∈ X \ {xr,xi},
ynij ∈ {0, 1}, ∀eij ∈ E

where xr is the imaginary root vertex. During the optimiza-
tion the edge variables are treated as integers and the flow
variables as real numbers. However, in the end the flows
must be equal to zero or one. As shown in [12], explicitly
constraining the edge variables ynij to be either zero or one
achieves this goal and turns our initial integer program into
a QMIP. In practice, the path from the imaginary root to any
vertex xn

r of the spatio-temporal graph cannot pass through
spatial edges corresponding to different times and it is
unnecessary to introduce the corresponding flow variables,
which simplifies the computation.

4.3 Flow Variables and Temporal Consistency
We now turn to enforcing temporal consistency by using
the flow variables introduced in Section 4.2.

In [6], temporal consistency was promoted by penalizing
situations in which an edge connecting two vertices was
included at one time instant but not the next. Here, we
propose a more global approach to achieving this goal by

imposing temporal consistency on the solution’s topology
rather than only on local connections.

More specifically, if two corresponding vertices in con-
secutive images both belong to the solution, they must both
be linked to the imaginary root by a path along which
the flow is always positive and we want to ensure that
these positive flows are assigned to corresponding edges
in the two images. In other words, given a pair of corre-
sponding vertices xnm, x

n+1
m′ and a pair of corresponding

edges enij , e
n+1
i′j′ , we should have either fmij = fm

′

i′j′ = 1 or
fmij = fm

′

i′j′ = 0. In practice, for a given pair of correspond-
ing vertices, it is neither beneficial nor computationally
efficient to include the flow consistency constraints for
every pair of corresponding edges. Imposing it for edges
very distant from the vertex in question might put too much
weight on the consistency term as compared to the image
term. It would also introduce many quadratic terms in the
cost function, which would slow down the computation
considerably. Instead, for a given pair of vertices xnm and
xn+1
m′ we only take into consideration those edges whose

distance from the vertex in question is smaller than a
predefined temporal consistency range parameter r.

We could make this a hard constraint but, since we want
to allow for occasional topology changes, we introduce
a temporal consistency probability parameter q that rep-
resents the probability of this constraint being satisfied.
In Section A of the appendix, we will show that finding
the most probable delineation given this added constraint
amounts to computing

y∗ = arg max
y∈Y

P (I,X , Es|Y = y)P (Y = y|Et) , (4)

= arg min
y∈Y

∑
en
ij ,e

n
jk∈Es

wijky
n
ijy

n
jk

−
∑

(xn
m,xn+1

m′ )∈Et

∑
(en

ij ,e
n+1

i′j′ )∈Ēt

wp

(
2fmij f

m′

i′j′ − fmij − fm
′

i′j′

)
.

where wp = log q
1−q and Ēt is the set of spatial edge pairs

in two consecutive images whose endpoints are both con-
nected by temporal edges in Et. Note that the connectivity
constraints are the same as before and can therefore be
imposed by performing the minimization under the linear
constraints of Eqs. 3, which are also expressed in terms
of the the ynij and fmij variables. The problem therefore
remains a QMIP. Furthermore, this approach unlike our ear-
lier one [6], remains effective even when the sampling step
yields sample points that cannot be assigned corresponding
ones in subsequent time steps.

4.4 Fine alignment
Given the final delineations, the iterative GPR method of
Section 3 can be applied once again for fine alignment
of the delineations. In every pair of consecutive images
In and In+1, we take the retained matching nodes to be
the reliable set of initial matches S0

n. We also sample
additional uniformly distributed points from the paths of
the solution trees and treat them as candidate points for
matching. We then iterate the GPR estimation and matching
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Single [5] Short-range [6] Long-range
Image #1 0.6303 0.3654 0.6345

BR1 Image #2 0.4653 0.3433 0.5178
Image #3 0.5929 0.3374 0.6325
Average BR1 0.5628 0.3487 0.5949

Image #1 0.4964 0.5444 0.4242
BR2 Image #2 0.2437 0.5327 0.5884

Image #3 0.5200 0.5771 0.6766
Average BR2 0.4201 0.5514 0.5631

Image #1 0.7722 0.7903 0.7903
BR3 Image #2 0.6890 0.6890 0.6746

Image #3 0.4761 0.4395 0.9185
Average BR3 0.6458 0.6396 0.7945

Image #1 0.3846 0.6000 0.5940
BR4 Image #2 0.5088 0.5272 0.5677

Image #3 0.5910 0.6118 0.6340
Average BR4 0.4948 0.5797 0.5986

Image #1 0.3713 0.3956 0.3952
BR5 Image #2 0.2439 0.2915 0.3687

Image #3 0.2060 0.2761 0.3134
Average BR5 0.2737 0.3211 0.3591

Image #1 0.2650 0.4630 0.4680
RD1 Image #2 0.3880 0.4000 0.4150

Image #3 0.3240 0.3330 0.4670
Average RD1 0.3257 0.3987 0.4500
Image #1 0.4116 0.5000 0.5380

RD2 Image #2 0.7160 0.6880 0.7210
Image #3 0.2920 0.6110 0.7140
Average RD2 0.4732 0.6000 0.6577

TABLE 1

DIADEM scores [17] for the brain images datasets (denoted
BRi) and road images datasets (denoted RDi). The scores in
the first column were obtained without time-consistency, that
is, by using the method of [5]. The scores in the second and
third columns were obtained by imposing short-range time
consistency as in our earlier method [6] and long-range time
consistency as described in this paper.

until convergence. Points without correspondences are then
detected as potential differences between time instants.

5 RESULTS

We first present the two very different image datasets we
used to test our approach. We then show that enforcing
time-consistency allows us to improve overall performance.
We discuss a third dataset in the appendix.

5.1 Image Datasets
We evaluated our method on 2-photon microscope image
stacks of axons in the brain of a mouse and on aerial images
of the same area taken in different years and seasons.

Brain Structures. We collaborate with neuroscientists
who aim at mapping structural circuit changes in the mouse
brain during the learning processes. To this end they acquire
large-scale 2-photon laser scanning microscopy images of a
sparse set of fluorescently labeled neurons in the neocortex.
Images are taken through a permanently implanted cranial
window, which lets them track specific structures over
months during which the mouse learns new tasks.

We used 3 large image stacks of the same brain area at
three different times. To train the path classifier, we selected
a region from one of the stacks, asked an expert to manually
delineate the structures, and sampled 20000 positive and

20000 negative paths. Five sequences of smaller volumes
that did not overlap the training ones were then selected
from the three image stacks for testing. A single test
sequence consists of three volumes representing roughly
the same brain area, each one taken from a different stack.
We will refer to them as BR1, BR2, BR3, BR4, and BR5.

Urban Roads. We also tested our approach on a road
network delineation task. We used two different sequences
of three aerial images of the same area taken in different
years at different seasons, one in Switzerland and the other
in the USA. As can be seen in the top rows of both
Fig. 4 and 5, the appearance varies substantially from one
to the next due to changing illuminations, different level
of occlusion from trees captured in different seasons, and
new constructions in the case of Fig. 5. For each area, we
picked several regions spanning those varying appearances
to train a single classifier as we did for the brain images.
We then cropped the test images so that they do not overlap
the training ones. We will refer to them as RD1 and RD2
and we provide ground truth delineations in the appendix.

Fig. 3. Axon Delineation. First row. Input images. Second
row. Ground truth. Third row. Delineations without temporal
consistency. Fourth row. Delineations with temporal con-
sistency enforced. The red, green, and blue branches are
much better modeled. Half of the yellow branch is mistakenly
attached to the blue one because, where the two branches
almost cross, the image is extremely blurry. However, this
error would be easier to correct during a post-processsing
state because the topology is at least consistent in all frames.
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2009 2011 2012
Fig. 4. Road delineation. First row. Images acquired in 2009, 2011, and 2012. Second row. Delineations without temporal
consistency. Third row. Delineations with temporal consistency enforced. Note the added road fragments within the overlaid
yellow ellipse.

5.2 Overall Performance

In Table 1, we compare the results of reconstructing the
linear structures independently in each test image of our
datasets as in [5], of imposing short-range temporal con-
straints as in [6], and of imposing long-range constraints
temporal constraints as discussed in this paper. We quantify
the reconstruction accuracy in terms of the DIADEM
metric [17]. It measures the similarity with the ground truth
in a way that is appropriate for trees and ranges from 0.0
to 1.0, with 1.0 being best.

We set the temporal consistency probability and range
parameters q and r introduced in Section 4.3 to 0.75 and
4 in all experiments. When q ≈ 0.5, the consistency term
is dwarfed by the image term and temporal consistency is
not enforced. q ≈ 1.0 prevents any differences between the
delineations at different times and can cause some correctly
delineated branches to be removed entirely, which results
in a very time-consistent but incomplete solution. Similarly,
taking r = 4 proved sufficient to improve robustness with-
out unduly increasing computational complexity. Higher
values tend to overemphasize consistency with the same
results as when using too large a value for q,

We present sample results in Figs. 1, 3, 4, and 5. As can
be seen, imposing temporal consistency results in higher
quality results on average. Furthermore, this allows change
detection as shown in lower left corner of Fig. 1(f) where
a branch seems to have retracted and in the upper right
corner where another seems to have changed orientation.

As shown in Table 1, enforcing local temporal consis-

tency improves the overall quality of the results as we
did in our previous approach [6] and imposing long-range
consistency as we do here improves them even more. Our
algorithm propagates the scores assigned to paths in one
image to similar paths in another one. As a result, the
road segments within the yellow ellipses overlaid in the
bottom rows of Fig. 4 and 5 are found in all images when
temporal consistency is imposed even though some were
ignored when processing the images individually. This is
usually beneficial but can occasionally backfire, as can be
seen within the yellow box overlaid on the bottom rows
of Fig. 5. The road fragment is occluded by overhanging
trees in both the 2002 and 2015 images and only clearly
visible in the 2016 one and imposing temporal consistency
results in its disappearance from the final delineation. This
explains why the DIADEM scores of Table 1 are mostly
higher when enforcing temporal consistency but with a few
exceptions. In other words, our algorithm favors paths that
are assigned good scores in the majority of images and
penalizes the others.

6 CONCLUSION

We have proposed a novel framework for modeling com-
plex curvilinear structures over time. The heart of our
approach lies in finding local and stable structures that
are consistent over time, and which can be used to dis-
ambiguate cases where individual time-instance reconstruc-
tions would fail. These additional time constraints are com-
bined with spatial ones and enforced by a Quadratic Mixed
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2002 2015 2016
Fig. 5. Road delineation. First row. Images acquired in 2002, 2015, and 2016. New houses and roads have been built
between 2002 and 2015. Second row. Tubularity images. Note that the 2016 one is noisier, making delineation more difficult.
Third row. Delineations without temporal consistency. Fourth row. Delineations with temporal consistency enforced. Note the
added road fragments within the overlaid yellow ellipses and the removed one within the overlaid yellow box.

Integer Program. This makes it possible to reconstruct trees
that remain consistent over time.

We have shown that our approach successfully takes
advantage of temporal information to produce more reliable
and accurate reconstructions of tree structures. In addition,
we showed that our approach has the added benefit of
automatically detecting regions where significant topology
change occur in tree structures.
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