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Abstract

A refined two-point model is derived from the drift-reduced Braginskii equa-
tions for the limited tokamak scrape-off layer (SOL) by balancing the parallel
and perpendicular transport of plasma and heat and taking into account the
plasma-neutral interaction. The model estimates the electron temperature
drop along a field line, from a region far from the limiter to the limiter plates.
Self-consistent first-principles turbulence simulations of the SOL plasma in-
cluding its interaction with neutral atoms are performed with the GBS code
and compared to the refined two-point model. The refined two-point model
is shown to be in very good agreement with the turbulence simulation results.

1 Introduction

The level of impurities in the core of a tokamak and the lifetime of the plasma
facing components, two critical issues on the way to fusion energy, depend
on the amount of sputtering of wall material [1]. Sputtering occurs when
ions, accelerated in the sheath, hit the solid wall. The acceleration is directly
related to the electron and ion temperature in front of the divertor or limiter



plates [2]. Therefore, understanding the physical processes that regulate the
plasma temperature in front of the solid walls is of paramount importance.

Predictions of the conditions in front of the solid walls can be obtained
by using three-dimensional simulations of the turbulent dynamics in the
outermost plasma region of a fusion device, the scrape-off layer (SOL). A
number of simulation codes were developed in the past years to carry out
these simulations, such as BOUT++ [3], GBS [4, 5], GRILLIX [6], and
TOKAM3X [7]. However, their development is still ongoing and turbulence
simulations remain computationally very expensive. For this reason, progress
was made in the development of simplified models that describe perpendic-
ular turbulent transport as a diffusive process with diffusion coefficients ob-
tained from fitting experimental data. Widely used transport codes that
use these models are, e.g., SOLEDGE2D-EIRENE [8], SOLPS formerly B2-
EIRENE [9, 10, 11], EMC3-EIRENE [12], and UEDGE [13]. Progress has
been made to include the effect of turbulent fluctuations on neutral dynamics
in these transport codes by adding stochastic fluctuations to plasma density
and temperature, with characteristics similar to SOL turbulence [14]. Fur-
ther simplifications of these transport models lead to the so-called two-point
models [2], which are widely used to obtain fast, although rough, estimates
of plasma parameters in front of the solid walls. Two-point models can be
used to understand basic trends of the parallel transport in the tokamak
SOL. They use assumptions about the perpendicular heat and particle fluxes
and a one-dimensional description of the plasma dynamics along the field
lines to obtain relations between the plasma parameters at the target (the
divertor or limiter plates) and upstream (a location far from the target and
in contact with the core, e.g., close to the X-point, where the divertor legs
begin, or at the low-field side midplane). While a number of two-point mod-
els were developed in the past for different magnetic geometries, varying
in their assumptions and inclusion of different physical processes (see, e.g.,
Refs. [15, 16, 17, 2]), to our knowledge no direct comparison of two-point
models with the results of turbulence codes was carried out. The goal of
the present paper is to perform such a comparison between fluid turbulent
simulation results and two-point models in a rather low temperature regime
(T. = 3 — 15eV), and develop a two-point model that can well represent the
simulation results. A two-point model that successfully predicts features of
self-consistent turbulence simulations has the possibility to guide the decision
about parameters of new simulations or even experiments, while reducing the
number of computationally expensive turbulence simulations.



The comparison between two-point models and simulation results is per-
formed by evaluating the electron temperature drop from the upstream to
the target regions in a very simple magnetic configuration, i.e. a tokamak
with circular magnetic flux surfaces and a toroidal rail limiter on the high-
field side equatorial midplane. In this case, the targets are the lower and
upper sides of the limiter, while the upstream location is at the low-field
side equatorial midplane, halfway between the two targets. Since in the lim-
ited configuration the target location is next to the confined region, a large
fraction of the recycled neutral atoms are ionized inside the last closed flux
surface (LCFS), even in high density plasmas, where the ionization mean free
path is short. The plasma can redistribute itself poloidally in the closed flux
surface region, by moving along the magnetic field lines, and it flows back
out to the SOL also at locations far from the limiter. Therefore, plasma par-
allel flows towards the limiter are important and, contrary to what is often
done for high-density divertor configurations [2], the parallel convective heat
flux cannot be neglected. Therefore, the simplest two-point model in lim-
ited configuration is derived from the balance between perpendicular heat
transport, parallel heat conduction, and parallel heat convection (used as
the basic model where plasma-neutral interactions are not important in [16],
or as a starting point to derive the basic divertor two-point model in [2]).
In the present paper, we compare the predictions of the simplest two-point
model to first-principles turbulence simulations carried out with the GBS
code. Since the comparison is not completely satisfactory, we derive a more
refined two-point model rigorously from the fluid drift-reduced Braginskii
equations, which are coupled to a kinetic equation for neutral atoms. The
comparison of this refined model with the turbulence simulations shows very
good agreement.

The present paper is structured as follows. After the Introduction, in
Sec. 2 we describe a simple two-point model for toroidally limited tokamaks.
Sec. 3 compares the prediction of this model with the SOL turbulence sim-
ulations. In Sec. 4 we develop a more accurate two-point model, which we
compare to the turbulent simulations. A discussion and the conclusions fol-
low in Sec. 5.



2 A simple two-point model for the limited
SOL

In this Section we describe a simple two-point model for an axi-symmetric
tokamak with a toroidal limiter. We consider one flux tube, which spans
along a magnetic field line from one side to the other side of the limiter. We
assume that the limiter is located at the high-field side equatorial midplane.
We label the direction along the flux tube with the coordinate s, which spans
from s = —L at the lower side of the limiter, to s = +L at its upper side,
with the upstream location, s = 0, located at the low-field side equatorial
midplane.

Since in the limited configuration the target location is next to the con-
fined region, a large fraction of the recycled neutral atoms is ionized, even in
high density plasmas, inside the closed flux surface region, where the ionized
particles can redistribute poloidally before they flow back into the SOL. As
a consequence, large plasma flows towards the limiter are present (even far
from the limiter) and the parallel convective heat flux cannot be neglected.
Therefore, the simplest two-point model in limited configuration is derived
from the balance between the heat deposited in the flux tube due to the ra-
dial heat transport, Sg |, the parallel heat conduction, Qconqd, and the parallel
heat convection, Qcone, i.€.

Qcond(s) + Qcom}(s) = AS SQJ_ (S/)dsl- (1>

In Eq. (1) we impose Qcond(0) = Qeonv(0) = 0 because the upstream location,
s =0, is both a symmetry and a stagnation point in this simple model. The
conductive heat flux is modeled by using the Spitzer heat flux coefficient,
Qcond = _X60T85 24t ¢/ds, and the convective heat flux is estimated by taking
the third-order moment of a shifted Maxwellian velocity distribution and
neglecting the fluid kinetic energy contribution as Qcony = ceol' 1., where
Ceo = 5/2, and ' = fSMds is the parallel particle flux, with S, being
the particle source due to radial transport into the flux tube. Assuming Sg
and S,,; constant along the flux tube in a limited geometry (corresponding to
poloidally uniform outflow of plasma and heat), the equation that determines
the electron temperature is

dT.
ds

—Xeng/Q + ce0sSn 1 Te = 55, . (2)



The solution of Eq. (2) requires a boundary condition that we apply at the
magnetic pre-sheath entrance by writing the electron heat flux through the
sheath entrance as @, = v.I'\T¢.,, where the subscript ¢ indicates the target
location, which is the magnetic pre-sheath entrance, and the coefficient ~, ~ 5
is the electron sheath transmission coefficient [2].

Equation (2) can be integrated numerically for a given Sp, and S, by
imposing the sheath boundary condition. An implicit analytical expression
to relate the electron temperature at the target, 7. ;, to its upstream value,
T. ., can also be obtained [16] and evaluated numerically.

The simplest two-point model we describe here, Eq. (2), is often used in
the literature, e.g. as a starting point to derive the simple divertor two-point
model in [2] or as a basic model in regions where plasma-neutral interactions
are not important in [16].

3 Turbulent SOL simulations and compari-
son with the simple two-point model

In this Section we introduce the model that we use to describe plasma tur-
bulence in the tokamak SOL and its interaction with neutrals, by outlining
the basic assumptions of the model and presenting the resulting equations.
(A more complete derivation can be found in Refs. [18, 19].) The electron
temperature drop from the upstream to the target location predicted by this
model, which is implemented in the GBS code [4, 5], is then compared with
the simple two-point model.

Since the plasma in the SOL is rather cold (compared to the core), its
collisionality is often sufficiently high that a fluid model, such as Braginskii’s
model [20], can be used for its description. Moreover, by taking advantage of
the fact that plasma turbulence is elongated along the field lines (k) < k)
and that turbulent timescales are much slower than the ion cyclotron motion
(0/0t < Q.;), the drift reduction can be applied [18]. This leads, together
with quasi-neutrality, to a set of drift-reduced two-fluid Braginskii equations
that describe the dynamics of plasma density, n, generalized vorticity, @,
electron and ion parallel velocities, vj. and vy;, and electron and ion temper-
atures, T, and 7;. In the electrostatic limit these equations are
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with p = n(7. 4+ T;) the total pressure, jj = en(v); — v|e) the parallel current,
K|le and k; the Spitzer heat conduction coefficients, Ej, the effective ionization
energy, and o) = 1.96e*n7,/m., the parallel conductivity, where 7, is the
electron collision time. The generalized vorticity, @ = w+1/eV3 T, is related
to the electrostatic potential by V2 ¢ = w. The following operators are used

— Vje)



VA =b-VA, [A, Ay] = b- (VA x VAy), and C(A) = B/2[V x (b/B)]-VA
with b = B/B. The source terms (S, Sr,, Sr;) mimic the outflow of hot
plasma from the confined region to the SOL, and we interpret their location
as the radial position of the LCFS. The perpendicular diffusive terms D (A)
are included mostly for numerical reasons. The system is closed by a set
of first-principles boundary conditions applied at the magnetic pre-sheath
entrance of the limiter plates, derived and discussed in Ref. [21].

The interaction of the plasma with the neutral atoms, rigorously deduced
from a kinetic description [19], is included through the interaction with the
neutral density, n,, parallel velocity, v,, and temperature, 7. These mo-
ments of the neutral distribution function are obtained from the solution of
the kinetic neutral equation for a mono-atomic neutral species
88.]21 + v % = _Vizfn — Vex (fn - %Tfl) + Vrecfi (9>
where f, and f; are the neutral and ion distribution functions. The ion-
ization, charge-exchange, and recombination processes as well as the elas-
tic electron-neutral collisions are described, respectively, through the use
of Krook operators with collision frequencies defined as v;, = 1e(ve0i,(ve)),
Vrec = ne(”earec(ve»y Vex = ni<viacx(vi)>a and Ven = ne<ve0en(ve)>7 where Oig,
Orec, Ocx, and oe, are the ionization, recombination, charge-exchange, and
elastic electron-neutral cross sections. (The (-) operator denotes the averag-
ing over the Maxwellian electron, or ion, distribution function. We note that
we neglected the electron-neutral collisions in Eq. (9) due to the high elec-
tron to neutral mass ratio [19].) This neutral model has been chosen to be as
simple as possible, while still keeping the main plasma-neutral interactions
with a kinetic neutral description to allow for short and long neutral mean
free path simulations. Although molecular processes become important at
low temperatures, especially for quantitative comparison with experiments,
they are neglected in the current model to facilitate the interpretation and
understanding of the plasma-neutral interaction in the turbulent SOL.

Egs. (3-8) are solved by the GBS code using a second order finite differ-
ence scheme, except for the [A;, As] operators that are discretized by using
the Arakawa scheme [22]. Time integration is carried out with the classical
Runge-Kutta method [23]. The solution of Eq. (9) is obtained in the limit of
Ton < Tturb (Tn is the mean flight time of a neutral atom, 7, is the turbulent
timescale) and 1/kj > Ang (Amfp is the mean free path of the neutrals) by
using the method of characteristics [19].
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To compare the simple two-point model with results from the GBS code,
we consider six simulations, with a toroidal limiter on the high-field equa-
torial midplane, R = 500py, R being the major radius, m;/m. = 400,
2ma = 800pg, a being the minor radius, pss = cs0/Q%i, Qi = €Bo/my,
cso = \/Teo/m;. With Ty = T = 10eV and By = 0.5T, it results R ~ 3lcm
and a ~ 8cm. (We note that with T,y = 10eV we can neglect the recombi-
nation processes, since Ve./v;, & 107°. In our simple atomic neutral model
this assumption holds for T, > 2eV, corresponding to e /vy, S 1072.) The
six simulations are variants of two basic configurations, characterized by two
different plasma densities, which were also used in Ref. [19]. In the low
plasma density configuration, we impose ng = 5 - 101¥m™2, the value of the
density at the LCFS. As a consequence, the resistivity normalized to R/cy
is 7 = Rme/(1.96¢c5om;Te) = 0.02, the dimensionless parallel electron heat
conductivity is Fje = 3.16 x 2T¢7e/(3mecsoR) = 56.0, and the dimensionless
parallel ion heat conductivity is &; = 3.9 x 2T307/(3miceoR) = 1.6. In the
high plasma density configuration, ng = 5-10"m™2, 7 = 0.2, &) = 5.6, and
K| = 0.16 are used. In addition to these two basic simulations, we repeat
both simulations zeroing out the plasma interaction terms with the neutral
atoms. These simulations are labeled as 'no n,,” in the following. For the high
density case, we also carry out a simulation where we change the energy re-
moved by each ionization to include the increased energy loss due to multiple
impact ionizations, labeled as 'E;, = 30eV’ (in the other cases E;, = 13.6eV)
and a simulation labeled "high S7’, where we increase the temperature sources
St. and St by a factor of four and the density source S,, by 30%, which re-
sults in twice the temperature and about the same density as in the basic
high density simulation. (The electron temperature increases at the target
from 3.8eV to 7.2eV and at the low-field side midplane from 6.4eV to 13.8eV
in the closest flux-tube to the core, centered around r — rpcps = 15ps0.)
The computational domain extends for all six simulations from 7.,;, = 0 to
Tmax = 150pso. The source terms S,, S, and Sz, in Eqs. (3-8) are constant
in time, poloidally uniform, and radially Gaussian around ry = 30py with a
width of 5pg.

The comparison with the simple two-point model is performed for five
different flux tubes extending radially over 10pyy centered at r — rpcps =
15,25, 35,45, 55p4. To calculate the particle and heat deposited into each
flux tube, S, and Sg,, we combine the perpendicular drift terms in the
GBS equations (as explained in Sec. 4), and we average them over time and
over the poloidal direction.



simple model

25 +mng=5-10", non, L7
O7’L0=5'1013 4
no =5-10'2, no n, L7
8 ng=>5-10"2 ’
— omng=>5-10", F, =30 ,7
2 21 4ng=5-10" high Sy |4
+ r 4
— » oo
il ’
i o 4
3 o ’
N5\ .’
o /
/7
/7
/7
/7
/7
’ | ‘ ‘
1 1.5 2 2.5

Teu/Ter (GBS)

Figure 1: Comparison of the ratio between the electron temperature at the
upstream and target locations, T, /7., predicted by the simple two-point
model, Eq. (2), (tpm), with the results of a set of GBS simulations. For
each simulation (different colors) we consider five flux tubes of width 10pg
centered at radial locations r — rpcps = 15,25, 35,45, 55p.

The two-point model estimates of the temperature ratio, Ty /75, are
then compared to the temperature ratio in the simulations. The results are
shown in Fig. 1. While the general trend for the different radial locations in
each simulation is captured by the simple two-point model, the agreement
with the turbulent simulations shows relative errors that are up to 50% for
this set of simulations.

4 A refined two-point model for limited SOL

In this Section, we derive a refined two-point model rigorously from the
drift-reduced Braginskii equations for plasma density, Eq. (3), and electron
temperature, Eq. (7). The perpendicular diffusive terms, D,,(n) and Dy, (Ts),
included mostly for numerical reasons, can be neglected, since they are small.
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Figure 2: Time-averaged plasma density balance along the field lines between
the two limiter plates for the high density simulation for a flux tube with a
width of 10ps centered at r — rpcrs = 25p5. The contributions are NL =
—[¢p,n]/B (E x B advection), CU = 2[C(p.) — enC(¢)]/eB (divergence of
diamagnetic and E x B flow due to curvature), PA = —V(nv.) (parallel
advection), DI = D, (n) (perpendicular diffusion), and NN = n,u;, (plasma-
neutral interaction term). The sum in black shows the quasi steady state
balance is almost exact. It does not vanish perfectly because of the finite
time-average and the finite sampling rate of the simulation results.

For typical parameters of limited tokamaks, the SOL plasma temperature is
sufficiently high to neglect recombination processes. Furthermore, we neglect
the terms in the electron temperature equation, Eq. (7), associated with the
difference between parallel electron and neutral velocities since they are small
compared to the other plasma-neutral interaction terms. We also assume
Jj = 0in Eq. (7). The validity of these assumptions is shown in Figs. 2 and
3. By making use of these assumptions, we obtain

0 ~ ~
a—:: + VH(nU”e) =S+ Sn,nn <1O>

oT, I, ~ B
S UV T+ SV = 1 VY (LY L) = Spu + S, (1)

where we combine the perpendicular transport terms (the terms related to
the E x B and diamagnetic drifts as well as the S, and Sz, terms) into
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Figure 3: Time-averaged electron temperature balance for the same case
as in Fig. 2. The contributions are NL = —[¢,T,|/B (E x B advection),
CU = 4T [T.C(n)/n+7C(T:)/2—eC(¢)]/3eB (curvature), PA = —v VT, +
2T,V vje/3 (parallel advection), JP = 0.47T.Vj /en (parallel current term),
DI = D (T.) (perpendicular diffusion), NNy = n,u,(—2E;,/3 — T¢)/n
(plasma-neutral interaction terms that we keep in the analysis), NN, =
N VigMeV)le (Ve — 4V)n/3) /1 — Ny VenMe20)je (Vn — vje) /31 (plasma-neutral in-
teraction terms that we neglect), and PD = KJHGVH(TQS/ 2V”Te) (parallel con-
duction). The sum in black shows the quasi steady state balance is almost
exact. It does not vanish perfectly because of the finite time-average and the
finite sampling rate of the simulation results.

effective perpendicular source terms,
~ 1 2

SnL = - E[¢J n] + E [O(pe) - 6n0<¢)} + S’n (12>
~ 1 AT, | T, 7
St = 0. T+ g [0 + 10 - eClo)| + 50, (13
and we do the same for the plasma-neutral interaction terms:
Sn,nn =N, Vi, (14)
~ Nn 2
STe,nn :Fl/iz (—gEl — Te) . (15)

To obtain an equation for the parallel electron heat flux, we multiply
Eq. (10) by 37./2, and Eq. (11) by 3n/2 and we sum the two resulting
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equations:

30(nl.) 3 3 ’
5% + 5 1eV)(nvge) + 51V Te + nTeVyvpe — QmeVIWTS/zv“T‘J)
(16)
3

~ 3 = 3 = 3 =
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We now time-average Egs. (10) and (16) and, rearranging the terms, we
obtain

V| (nUHe) ~ Spi + Snnn (17)

5
Y <§"veTe) — V) (nTe) = XV (Te5/2V||Te> ~ Sqi = Sun, By, (18)

with S, and Sg, being the time average of S, and 3/2<Te‘§nl + nS’TeL)
respectively, and all quantities appearing in Eqgs. (17-18) being time averaged.
We note that, in agreement with simulation results, the contribution due to
the correlation between fluctuations can be neglected when time-averaging
the parallel transport terms and the neutral-plasma interaction terms (i.e.,
the terms that are the product of two or more fluctuating quantities can
be evaluated as the product of the time-averaged multiplicands). On the
other hand, the fluctuations have to be included in the time-averaging of the
perpendicular turbulent transport terms to obtain S, and Sqi. Moreover,
the coefficient in the parallel Spitzer heat conductivity is defined as x. =
%nft/ie, where ng is the average density in the flux tube.

To derive the electron temperature drop along the field lines from Eq. (18),
we estimate the variation of the parallel electron velocity, plasma density,
and neutral density along the field line. We assume that the parallel velocity
varies linearly between the two limiters, where Bohm boundary conditions

are valid, i.e.
T.+T; 275
V(L) = ey = ¢/ a4 [ 20 (19)
m; my

obtaining therefore

vels) = 5. (20)
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To estimate the density profile, we integrate Eq. (17), that is

['=nyj = /SM + Spnads. (21)

The profile of the plasma density is then n = I'/vj.. The neutral density is
assumed to decay exponentially from the two limiters, i.e.

nn(s) = na(=L) exp[(=s = L) /Aumip] + nn(L) exp (s = L)/ Amp],  (22)

with the decaying scale length given by A, = @.Cs/ (Vi + Vex), Where o is
the reflection coefficient of the neutrals on the limiter [19] (the velocity of the
thermal neutrals from the wall is much smaller and can be neglected when
estimating the effective neutral mean free path). The collision frequencies v;,
and v are evaluated with the electron temperature and plasma density aver-
aged around the target (from the limiter to a distance A, from the limiter).
The target density, n,(£L), is chosen to match the total amount of ioniza-
tion in the considered flux tube. This is an input for an one-dimensional
model, since neutral particles are not bound to flow along a field line and
can move easily across the flux surfaces before being ionized. The ionization
inside each flux tube amounts for about 5% to 20% of the recycled parti-
cles at its ends, depending mainly on plasma density and radial location of
the considered flux tube. The perpendicular source terms, S, and Sg,
are approximated to have a cosine distribution due to the ballooning char-
acter of the perpendicular transport, which is confirmed by the turbulence
simulations.

Finally, to solve (18) for the electron temperature, we impose symme-
try around the upstream location s = 0, where the parallel derivative of T,
vanishes. We also ensure that the velocity profile is self-consistently evalu-
ated with T.(£L) by enforcing that the integral of the parallel electron heat
equation, Eq. (18), along s is satisfied, i.e.

Bm}”eTQ} o 5LT(+L)T.(£L) (23)

L
B / {SQL = S Bis + 01V (nT2) + XV (TYPV) TL) | ds,

—L

which describes the total heat balance in the flux tube.
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Figure 4: Comparison of the ratio between the electron temperature at the
upstream and target locations, Tt /7%, as provided by the refined two-point
model, Eqgs. (17-18), (tpm), with the same set of GBS simulations considered
in Fig. 1 and described in Sec. 3.

With these constraints, for a given density source strength, heat source
strength, and total amount of ionization in the observed flux tube, the re-
fined two-point model, consisting of Eqs. (17,18,20,22), can be solved self-
consistently. We compare its results to the set of simulations described in
Sec. 3 in Fig. 4. The results from the refined two-point model and the simu-
lations show very good agreement.

5 Discussion and conclusions

We test separately the main differences between the simple and the refined
two-point model to determine the reason behind the significantly better
agreement of the latter with the turbulence simulations. We observe that the
shape of the source terms S,,; and Sg, (from constant to a cosine poloidal
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dependence) does not improve significantly the agreement of the simple two-
point model. On the other hand, a significant effect can be observed by
including the plasma-neutral interaction terms. This was also observed by
Tokar et al. [16], where an improved two-point model is described in which
the neutrals are modeled as exponentially decaying from the limiter, simi-
larly to the approach in the present paper, and charge-exchange collisions
are taken into account through a diffusive model. To show the impact of the
plasma-neutral interaction on the two-point model, we repeat the comparison
between simulation results and the simple two-point model, but we include
the plasma-neutral interaction terms (we assume a linear velocity profile to
obtain the density, which is only needed in S,, ,,, ). The results, shown in Fig. 5
(left), reveal that, while the trend shown by the simulations is recovered,
there is still a significant offset from GBS results, which disappears in the
refined model (Fig. 4), where the compressional term, vV (nTe) [Eq. (18)],
originating from the plasma compressibility in the Braginskii equations, is
included.

To investigate the effect of the compressional term, we repeat the com-
parison between simulation results and the refined two-point model, but we
neglect the plasma-neutral interaction term. The result is shown in Fig. 5
(right). While for the simulations with low density and without neutrals we
observe the same level of agreement between turbulence simulation and this
two-point model as in the complete refined two-point model (Fig. 4), the
same is not true for high density simulations, where the neutral mean free
path is short.

From these observations we can draw two conclusions. First, when con-
sidering simulations with short neutral mean free path, it is important to
account for the plasma-neutral interaction terms, and second, throughout
the parameter regime explored in our simulations, the compressional term
has to be taken into account for good quantitative agreement. We note that
for significantly higher temperatures the impact of the compressional term
might be reduced, since the parallel electron heat conductivity, increasing
proportional to T >/ 2, might dominate the heat equation. This has to be
investigated with future simulations.

We can conclude that, by taking into account these two effects, the refined
two-point model that we derived from the drift-reduced Braginskii equations
for the limited tokamak SOL predicts accurately the ratio between upstream
and target electron temperatures along a flux tube given three input param-
eters, namely the particle and heat sources due to perpendicular turbulent

15



simple model with neutrals

refined model without neutrals

357 , 257 _
P +ng=>5-10", no n,
L’ omng =510
3! , ng =5-10'%, no n,
, ’ o ng = 5. 1012
/;:\ Ve /g ol <>’IL[)Z5'1013, FEi, =30
54257 ,/ o, ﬂ,0=5-1013,high ST
Nat , Nad .
- °(%<§ ’ . ,
\: 27 4+ mng=>5-10", no n, \: //
= Y, ong=5-108 = 1.5] e
& ’ ny = 5-10'%, no n, ’
15/8 7 oo =510 .7 £ 3
L’ omg=5-103, B, = 30 L’ °
. no = 5- 10, high Sy o
1 : : : : ‘ 1 : : :
1 1.5 2 25 3 3.5 1 1.5 2 25

Te,u/T’e,,t (GBS)

T‘e,u/Te,l‘ (GBS)

Figure 5: Comparison of the ratio between the electron temperature at the
upstream and target locations, T¢ /7., for two intermediate models between
the refined model (Fig. 4) and the simple model (Fig. 1). On the left, results
from the the simple two-point model (Sec. 2) are shown, where the plasma-
neutral interaction terms have been included to otherwise constant source
terms S, and Sg. On the right, results from the refined model are shown,
where the plasma-neutral interaction terms have been omitted.

transport, and the ionization in the flux tube.

In the present paper, we focus our attention on the electron temperature
drop. We would like to remark that evaluating the same drop for the ion
temperature brings additional difficulties. In fact, using quasi-neutrality to
derive the drift-reduced Braginskii equations, we choose the electron density
equation to evolve the plasma density. Therefore, identifying the parallel and
perpendicular transport terms in the electron heat equation, Eq. (16), which
is a combination of the density and electron temperature equation [Eq. (3)
and Eq. (7)], is straightforward. Applying the same procedure to separate
the parallel and perpendicular dynamics in an ion heat equation requires the
use of the ion density equation, that involves the ion polarization velocity
(see, e.g., [18]), which is more challenging. Furthermore, while neglecting the
plasma current term in the electron equation is a good assumption (the "JP’
term in Fig. 3 is always smaller than several other dominant terms), we have
observed that in the ion temperature balance (not shown) the current term
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can dominate the balance at certain locations. In general, it is difficult to es-
timate the magnitude of the parallel current. Additionally, the complexity of
the plasma-neutral interaction increases for the ions due to charge-exchange
collisions, whose evaluation needs an approximation of the neutral temper-
ature, while the neutral density suffices for the electron equations. On the
other hand, the parallel heat conduction is much smaller for the ions than
for the electrons, and can be neglected in most cases.

To conclude, this paper presents, to our knowledge, the first comparison
between a two-point model including plasma-neutral interactions and tur-
bulence simulations of the tokamak SOL. This comparison has ultimately
allowed us to develop a refined two-point model, which reproduces well the
simulation results. It can be used, in the parameter regime investigated with
our simulations, to approximately predict the outcome of computationally
expensive turbulence simulations, guiding the decision about input parame-
ters of such simulations or experiments. As progress in the development of
three-dimensional turbulence codes evolves, we can foresee improvements of
two-point models in more advanced tokamak exhaust configurations.
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