
The Disclosure Power of Shared Objects

Peva Blanchard, Rachid Guerraoui, Julien Stainer, and Igor Zablotchi⋆

EPFL

Abstract. Shared objects are the means by which processes gather and
exchange information about the state of a distributed system. Objects
that disclose more information about the system—and thus provide a
more centralized view—are therefore more desirable. In this paper, we
propose the schedule reconstruction (SR) problem as a new metric for
the disclosure power of shared memory objects. In schedule reconstruc-
tion, processes take steps which are interleaved to form a schedule; each
process needs to be able to reconstruct the schedule up to its last step.
We show that objects can be ranked in a hierarchy according to their
ability to solve SR. In this hierarchy, stronger objects can implement
weaker objects via a SR-based universal construction. We identify a con-
nection between SR and consensus and prove that SR is at least as hard
as consensus. Perhaps surprisingly, we show that objects that are pow-
erful in solving consensus—such as compare-and-swap—are not always
powerful in their ability to solve SR.

1 Introduction

Programming a computing system in a centralized way is significantly more
powerful than doing so in a distributed way. The main difficulty of distributed
programming comes from the lack of knowledge that a process has about the
state of the other processes and the overall state of the system. The more in-
formation a process has about the state of the system, the easier it is to write
an algorithm for that process to achieve a task in coordination with the other
processes. In a distributed system, this information can only be obtained by
processes from shared objects. So, intuitively, the more information an object
discloses about the rest of the system, the more appealing it is.

In this paper, we propose the schedule reconstruction (SR) problem as a new
metric for the disclosure power of shared objects. In order to solve SR, processes
in a shared memory system need to be able to accurately identify the interleaving
of steps taken by all processes (the schedule). It is easy to see why objects that
are able to identify the schedule are desirable. Having knowledge of the schedule
basically equates knowing the full system state and thus overcoming the main
difficulty of distributed programming, as mentioned above.

We associate a SR number with each object A, representing the maximum
number of processes of a system in which A can solve SR. The SR number thus
allows us to organize shared objects in a hierarchy, with each level corresponding
to a SR number.
⋆ This work has been supported in part by the European ERC Grant 339539 (AOC)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148028602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

There is a natural connection between disclosure power as measured by the
SR number and synchronization power as measured by the consensus number
(in the sense of [9]). Intuitively, synchronization is a means of restricting the
very large space of executions of a concurrent algorithm, whereas SR is a way
of identifying which one of these possible executions actually occurred. At first
glance, one would expect that objects with a high reconstruction power (high
SR number) should also have a high synchronization power (high consensus
number). We confirm this intuition by showing that SR is at least as hard as
consensus: the SR number of an object is at most its consensus number.

Due to this connection between SR and consensus, intuition might also pre-
dict the inverse relationship to hold true: that objects with a high consensus
number should also possess a high SR number. Surprisingly, this is not always
the case, as we show in this paper. We prove that compare-and-swap, a very
powerful, even universal [9], synchronization primitive, is no more powerful than
simple read-write registers in terms of schedule reconstruction.

An object A’s position in the SR hierarchy is not only related to its ability
to solve the SR problem, but it also determines A’s power to implement other
shared objects. We show that in the SR hierarchy a stronger object A is always
able to implement a weaker object B, by providing a universal construction
based on SR objects. We also show that B is unable to implement A in such a
way that the implementation maintains the same disclosure power as A. In other
words, implementing a stronger object from a weaker one always entails losing
some disclosure power.

To summarize, our contributions are threefold:

– We define the SR problem and the SR number and examine the structure of
the SR hierarchy. We prove that there exists at least one class of objects at
every level of the hierarchy and at least one object with infinite SR number.

– We identify the relationship between SR and consensus. We show that the
former is stronger than the latter and that the consensus number of an object
is an upper bound for its SR number.

– We prove the existence of universal objects in the SR hierarchy by providing
a SR-based universal construction.

The rest of this paper is organized as follows. In Section 2 we specify the
model and define the SR problem and the SR number. In Section 3 we explore
the connection between consensus and SR before examining how the SR hier-
archy is populated in Section 4. In Section 5, we give a universal construction
implementing any shared object from SR objects. We conclude with Section 6.

2 Model and Problem Statement

2.1 Processes

We consider a set of n processes P = {P1, ..., Pn} that communicate through
shared memory using a set of memory access primitives. The processes are exe-
cuting an algorithm A, which consists of a sequence of shared memory accesses

3

and local steps. We assume local steps to be instantaneous and shared memory
steps to be atomic.

An execution of algorithm A by a set of processes P is modeled by a schedule
— a finite or infinite sequence of process identifiers which represents the inter-
leaving of steps taken by the processes. A subschedule of schedule S is a subse-
quence of S. When describing a schedule, we ignore local steps, so a schedule
defines a global total order on the shared memory accesses done by all processes
participating in the execution.

We define S → t, where t ∈ S, the t-prefix of S, to be a subschedule of S
consisting of all steps in S up to and including t.

2.2 Schedule Reconstruction Object

A schedule reconstruction object (or SR object) provides two methods, step and
reconstruct, neither of which takes any arguments. Basically, a call to reconstruct

by a process p returns the schedule up to the last step call by p. The two methods
need to satisfy the following conditions:

– the execution of each call to step performs exactly one global atomic step
and any number of local steps.

– step calls may store local values called observations. These observations may
be used in future reconstruct calls.

– reconstruct may only be implemented using local steps (including examin-
ing the observations gathered by the calling process) and shared memory
accesses that do not modify the state of shared memory (such as reads).

– a call to reconstruct by process p returns the schedule as a mapping from
step numbers to process ids (more precisely, a mapping from {1, 2, ..., s} to
P , where s is the global number of step calls up to and including the last call
to step by p) or an empty mapping if there are no step calls by p preceding
the reconstruct call.

We are interested in wait-free implementations of SR objects that correctly
reconstruct any possible schedule (any interleaving of step calls). We call any
such implementation a SR algorithm.

A class C of objects solves the n-process schedule reconstruction problem
if there exists a SR algorithm A that solves n-process schedule reconstruction
using any number of objects of class C and any number of atomic registers.

We define the schedule reconstruction number (or SR number) of a class C
to be the largest n for which that class solves n-process schedule reconstruction.
If no largest n exists, we say that the SR number of the class is infinite.

3 SR and Consensus

In this section, we first give a short background on the consensus problem, before
establishing the relationship between consensus and SR.

4

3.1 Background

Consensus is a fundamental problem in distributed systems [10]. In its simplest
form, consensus requires a set processes to agree on a value. Despite its simplicity,
this is a difficult problem: it has been shown impossible to solve in asynchronous
message-passing systems [8] and in asynchronous shared memory systems with
only read-write memory [9,13]. In what follows, we consider the problem in the
context of shared memory.

We define the consensus problem more precisely [10]: an algorithm solves con-
sensus if it implements a linearizable [11] wait-free consensus object. A consensus
object has a single method propose that accepts a proposed value and returns a
decided value. Each process calls the propose method of a consensus object at
most once. A correct implementation of a consensus object needs to satisfy the
following properties (besides wait-free termination and linearizability):

Validity if a process decides a value v, then v was proposed by some process
Agreement if a process decides a value v, then no process decides a value v′ ̸= v

In a system of n processes, we say that a class of objects C implements
consensus if there exists an implementation of a consensus object from (any
number of) objects of class C and atomic registers. The consensus number of
a class C is the largest number of processes k for which C implements con-
sensus (if no largest k exists, the consensus number is infinite). The consensus
numbers (CN) of well-known classes have been studied: read-write registers and
snapshot [1,3,5,7] objects have CN 1; queues, stacks, fetch-and-increment, get-
and-set and more generally, read-modify-write objects in Common2 [4] have CN
2; m-assignment registers have CN m; compare-and-swap (among others) has
infinite consensus number.

Another significant notion related to consensus is that of a universal construc-
tion [2,6,9,14]. It has been shown that any object with a sequential specification
can be implemented from consensus objects and registers (such an implementa-
tion is called a universal construction).

Together, the concepts of consensus number and universal construction define
a consensus hierarchy, with one level corresponding to each consensus number.
The consensus hierarchy provides a definitive answer to the crucial question
“Does A implement B in a system of n processes?”, for any two classses A and
B with known consensus numbers. This answer comes from two major results
concerning the hierarchy: a positive one and a negative one. The positive result
stems from the universal construction and states that in a system of n processes,
any object with CN at least n can implement any other object. The negative
result is a direct consequence of the definition of consensus number and states
that in a system of n processes, it is impossible for an object with CN lower than
n to implement an object with CN at least n.

3.2 SR Is at Least as Hard as Consensus

Much like the consensus number, the schedule reconstruction number establishes
a hierarchy on synchronization primitives. In what follows, we explore the struc-

5

ture of the SR hierarchy and highlight similarities with the consensus hierarchy—
it is infinite and populated at every level—as well as differences therewith—the
compare-and-swap primitive is at the bottom of the SR hierarchy, whereas it is
at the top of the consensus hierarchy.

A first interesting observation is that SR is at least as hard as consensus:

Theorem 1. Any class C of objects that solves n-process SR also solves n-
process consensus.

Proof. Let A be an algorithm solving n-process SR using only objects of class
C and atomic registers. Now, consider the consensus protocol in Algorithm 1.
Each process writes its proposed value in a single-writer, multi-reader register.
Then, each of the n processes calls step once and then calls reconstruct. Thus,
every process knows the schedule and is able to decide on the value proposed by
the process which was scheduled first.

1 Shared:
2 sr: a SR object
3 announce[n]: an array of MRSW registers
4

5 propose(value):
6 announce[myId] = value
7 sr.step()
8 schedule = sr.reconstruct ()
9 leader = schedule.get(1)

10 decidedValue = announce[leader]
11 return decidedValue

Algorithm 1: Consensus from SR

As an immediate consequence of the above result, we have the following.

Corollary 1. The SR number of a class C is at most equal to its consensus
number.

4 The SR Hierarchy

We now examine specific classes of objects with respect to their ability to solve
the SR problem.

4.1 Atomic Registers

From Corollary 1, we know that the SR number of atomic registers is at most 1
(since they have consensus number 1). Since the schedule of a 1-process execution
is always equal to the sequence of shared memory steps of the algorithm being
executed, atomic registers trivially solve 1-process SR, meaning that they have
SR number 1.

6

4.2 Fetch-and-increment

Fetch-and-increment objects store an integer value and provide a single method,
getAndIncrement, which increments the value and returns the old value.

Fetch-and-increment objects have consensus number 2. Thus, using Corol-
lary 1, this class has SR number at most 2. We will now show that they have
SR number exactly 2.

Theorem 2. Fetch-and-increment has SR number 2.

Proof. Consider the pseudocode for 2-process SR shown in Algorithm 2. The two
processes share a fetch-and-increment object which initially has value 0. Each
process simply executes a loop calling getAndIncrement on the shared object and
appending the result to a local list of observations.

1 Shared:
2 fai: a fetch -and -increment object ,

initially 0
3

4 Local:
5 obs: a list of integers
6

7 step():
8 val = fai.getAndIncrement ()
9 obs.append(val)

10

11 reconstruct ():
12 // returns the schedule as a mapping from

step numbers to process ids
13 schedule = {}
14

15 for step from 1 to obs.size():
16 schedule.put(obs.get(step), myId)
17

18 stepsCount = obs.lastItem ()
19 for step from 1 to stepsCount:
20 if !schedule.hasKey(step):
21 schedule.put(step , otherId)
22

23 return schedule

Algorithm 2: SR using Fetch-and-increment

This algorithm solves 2-process schedule reconstruction. To see this, note
that the fetch-and-increment object will return consecutive values to the two
processes in the order that they are scheduled. As such, each process will have a
list of observations consisting of strictly increasing values. Any gaps in this list
(non-consecutive values) correspond to steps taken by the other process.

More precisely, consider the observation list of process pi, i ∈ {1, 2} imme-
diately after performing its tth step. It is of the form Oi = {vi1, vi2, ..., vit}, with

7

vi1 < vi2 < ... < vit. Then pi is able to reconstruct the schedule up to its tth

step, as follows: steps Oi of the schedule were performed by pi (itself) and steps
{0, 1, ...vit} \Oi were performed by p1−i (the other process).

4.3 Compare-and-Swap: a Surprising Result

In this section, we show that the SR number of compare-and-swap (CAS) is
(exactly) 1. We know that it is (trivially) at least 1, by the same argument used
for atomic registers. It remains to show that it is also at most 1. We do this
through several intermediate steps.

Definition 1. An invisible step t is a shared memory access performed by a
process p during a call to step such that for any process q ̸= p, the shared (thus
observable) system state is identical before and after p executes t.

Lemma 1. Let A be a SR algorithm for some number n > 1 of processes. Then,
no execution of A contains an invisible step.

Proof. Assume by contradiction that there exists an execution of A which con-
tains for some process p an invisible step t, and let S be the schedule of this
execution. Let S′ be the t-prefix of S and S′′ be S′ \ t. S′ and S′′ are both legal
schedules for A (because they were obtained by removing steps from S) and
since t is an invisible step, S′ and S′′ are indistinguishable for any process q ̸= p.
As such, a reconstruct call by q after t will not be able to decide whether to
include t in the returned schedule, contradicting the assumption that A is a SR
algorithm.

Remark 1. Atomic register reads are invisible steps.

This is because atomic register reads do not modify the observable state of
the system. For the same reason, the following is also true.

Remark 2. Failed CAS operations are invisible steps.

Therefore, an algorithm solving the SR problem may not contain simple
reads, nor may any of its CAS calls fail.

Theorem 3. CAS has SR number at most 1.

Proof. Towards a contradiction, assume that there exists an algorithm A for
2-process SR using only CAS objects and registers. By the third observation
above, we know that A cannot contain any reads. Consider the first step of A
for each process. There are four possibilities, each of which can be denoted by
a tuple (t1, t2), where t1 is the first step of p1 and t2 is the first step of p2, and
t1, t2 ∈ {W,CAS}, where W represents an atomic write and CAS represents a
compare-and-swap operation. We now consider each of the four possibilities.

8

v0

addr

CAS(addr, v0, v1)

Expects v0 ✔
Writes v1 ≠ v0

Expects v1

Schedule 1

p1

p2

CAS(addr, v1, v2)

v0

addr

CAS(addr, v0, v1)

Expects v1 ✘

Schedule 2

p1

p2

CAS(addr, v1, v2)

Fig. 1: Two consecutive CAS operations on the same address. If both operations
succeed in Schedule 1, then the CAS by p2 will fail in Schedule 2, becoming an
invisible step.

1. (W,W). If the two writes occur to different memory locations, then it is
impossible for the processes to determine the order in which they occurred
(they commute). So the two writes must occur to the same memory loca-
tion. Consider two schedules: (1) p1 writes first, then p2 writes and calls
reconstruct and (2) p2 writes and calls reconstruct before p1 takes a step.
The reconstruct calls will not be able to distinguish between the two sched-
ules, because they have no way of knowing whether p1 has already perfored
its write or not.

2. (W,CAS). Immediately after p1 executes its write, it has no information
whether p2 performed its CAS yet or not, thus it cannot reconstruct the
schedule.

3. (CAS,W). This case is symmetric with the (W,CAS) case, so now p2 is
unable to reconstruct the schedule immediately after its first write.

4. (CAS,CAS). Note that both CAS steps have to be successful, otherwise
they would be invisible steps. Also note that both CAS steps need to be
performed on the same memory location (call it addr), otherwise it would
be impossible to determine the order in which they occur. Denote by v0 the
value of addr before any process takes a step.
Consider the schedule in which p1 takes its first step before p2. The CAS by
p1 is successful, so it expects v0. Call v1 the value written by the CAS of p1.
We must have v1 ̸= v0, otherwise the CAS would be an invisible step. Now
the CAS by p2 must also be successful, so it expects to find v1.
Now consider the schedule in which p2 takes the first step, followed by p1.
The CAS by p2 expects v1 ̸= v0, but finds v0, so it fails, thus becoming an
invisible step, a contradiction.

9

4.4 Multiple Atomic Append: Every Level is Populated

An append register is similar to a regular register, except that every write ap-
pends its value to the current value of the register, instead of overwriting it. More
precisely, an append register stores a value v and provides two methods: read,
which returns the current value v, and append, which takes as argument a value
varg and appends it to the current value v (thus updating the current value to
v ·varg). A k-writer append register is an append register from which any number
of processes can read but to which only k processes can append. Interestingly,
append registers have been studied in a Byzantine setting as well [12].

Theorem 4. k-writer append registers have SR number s = k.

Proof. First, we show that s ≥ k. We provide a SR algorithm for k processes
using a shared k-writer append register r (Algorithm 3). At step j, a process
simply appends its process id to r. A reconstruct call by process pi after its jth

step starts by reading r and discarding any values after its last appended value
(since reconstruction only needs to be up to the jth step of pi). What remains
is an encoding of the order in which the processes appended their ids to r, and
thus an encoding of the schedule.

1 Shared:
2 r: k-writer append register
3 Local:
4 myStep: integer , initially 0
5

6 step():
7 myStep += 1
8 itemToAppend = (myID , myStep)
9 r.append(itemToAppend)

10

11 reconstruct ()
12 contents = r.read()
13 schedule = {}
14 for each item in contents:
15 (id, step) = item
16 schedule.put(step , id)
17 if id == myId and step == myStep
18 break
19 return schedule

Algorithm 3: k-SR from k-append registers

It only remains to show that s < k + 1. Assume there exists a SR algorithm
for k + 1 processes using only k-writer append registers and atomic read-write
registers. We consider the first step of the algorithm for each process. Similarly to
the proof of Theorem 3, if some process p reads or writes to a read-write register
as its first step call, p will be unable to reconstruct the schedule right after this
first step. So all processes must access append registers during their first step.

10

Then, because there are k + 1 processes but the append registers only support
k writers, there must exist two processes pi and pj which do not write to the
same append register for their first step. Therefore, pi and pj cannot distinguish
between executions in which the first step of pi takes effect before the first step
of pj and executions in which the first step of pj takes effect before the first step
of pi, a contradiction.

4.5 SWAP3: the Hierarchy is Infinite

We define a new primitive called SWAP3. SWAP3 takes three arguments a, b and c.
It atomically replaces the value of c with the value of b and the value of b with
the value of a.

1 SWAP3(a, b, c):
2 c = b
3 b = a

Algorithm 4: SWAP3 sequential specification

Theorem 5. SWAP3 has SR number ∞.

Proof. Intuitively, an algorithm that solves SR for any number of processes using
SWAP3 works as follows (Algorithm 5). The processes maintain a shared linked
list which encodes the schedule. Each node in the list represents one step by
one process. The processes share a pointer head pointing to first node in the list.
As is usual with linked lists, each node has a next field pointing to the next
node in the list, and the last node points to a special value ⊥. The list encodes
the schedule in reverse order: head points to the most recent step and each step
points to the step that immediately precedes it in the schedule.

head

... ⊥
n

pi

next

2 head = n

 n.next = head1

Fig. 2: Appending a new node to a list with a single SWAP3 call.

A step call by a process pi prepares a new node with its process id and
the current step number (local steps) and appends it to the head of the list (a

11

single global step using SWAP3). As shown in Figure 2, appending a node n to
the list using SWAP3 works by atomically updating the next field of n to point
to head and head to point to n: SWAP3(n, head, n.next). In order to reconstruct
the schedule up to its last global step, a process pi starts from the head of the
list and traverses the list using next pointers until it reaches the ⊥ value: the
schedule is given by the list nodes in reverse order, excluding any steps that may
have been appended after the last step of pi.

1 Structure used:
2 node = (id, next)
3 Shared:
4 head: pointer to node
5

6 step():
7 n = new node
8 n.id = myId
9 SWAP3(n, head , n.next)

10

11 reconstruct ():
12 schedule = {}
13

14 // traverse list up to my last step
15 curNode = head
16 while curNode != ⊥ && curNode.id != myId:
17 curNode = curNode.next
18

19 // return empty schedule if no steps so far
20 if curNode == ⊥:
21 return schedule
22

23 // count steps from my last step to beginning
of execution

24 firstNode = curNode
25 stepCount = 0
26 while curNode != ⊥:
27 stepCount += 1
28 curNode = curNode.next
29

30 // add steps to schedule
31 curNode = firstNode
32 while curNode != ⊥:
33 schedule.put(stepCount , curNode.id)
34 stepCount -= 1
35 curNode = curNode.next
36

37 return schedule

Algorithm 5: SR from SWAP3

12

A different way of seeing that that SWAP3 has SR number ∞ is by noting
that the list encoding the schedule as described above is essentially an ∞-writer
append register.

5 A SR-based Universal Construction

In the previous sections, we have shown that shared objects can be ranked in a
hierarchy according to their ability to solve the SR problem (Table 1). In this
section, we examine the relationships between the levels in this hierarchy, namely
the power of objects at higher levels to implement objects at lower levels.

SR number Object

1 atomic registers, compare-and-swap
2 fetch-and-increment
...

...
k k-writer append register
...

...
∞ SWAP3

Table 1: The SR hierarchy

We give two main results: a positive one and a negative one. The positive
result states that stronger objects (in the SR sense) can implement weaker ob-
jects, whereas the negative result states that weaker objects cannot implement
stronger objects in a way that preserves reconstructibility.

Definition 2. An object A implements an object B if there exists a wait-free
linearizable implementation of B that only uses (any number of) objects of type
A and atomic registers.

Definition 3. An object A k-implements an object B if (1) A implements B
and (2) the implementation performs at most k shared memory accesses per call
to B’s methods.

We begin with the positive result: in a system of n processes, given any object
A with SR number ≥ n and any deterministic object B, A implements B.

By definition of SR number, A can be used to (1-)implement SR objects in
a system of n processes. Thus, it suffices to show that SR objects implement B.

The construction used to implement B from an SR object and atomic regis-
ters is shown in Algorithm 6. Intuitively, processes use the SR object to determine
the order in which their invocations take effect and then use this information to
simulate the execution on local copies of B.

13

The construction works as follows. Each process p keeps a private copy of B.
In order to invoke a method on B, p first announces the method and associated
arguments (if any) in a shared announce array (lines 13–14). Then, p takes a step
on the SR object and reconstructs the schedule (lines 15–16). Next, p applies on
its private copy of B all pending invocations (including its own), in the order
specified by the reconstructed schedule (lines 17–26). Finally, p returns, with the
return value of the last simulated invocation, since the last step of a reconstructed
schedule is always the calling process’s latest step.

1 Shared:
2 sr: a n-SR object
3 announce [1..n][1..∞]: n infinite arrays of registers

where processes announce their invocation arguments
4

5 Local:
6 localB: a copy of B
7 myInvocs: the number of invocations announced by this

process
8 perf: the number of invocations simulated by this process
9 curStep [1..n]: an array of registers , containing the next

step this process need to simulate from each of the
other processes.

10

11 invoc(method , args):
12 myInvocs += 1
13 announce[myId][myInvocs] = (method , args)
14 sr.step()
15 sched = sr.reconstruct ()
16 for step from perf to sched.numSteps ():
17 curProc = sched.get(step)
18 (curMethod , curArgs) = announce[curProc][curStep[

curProc]]
19 curStep[curProc]++
20

21 // perform step on localB
22 retVal = localB.invoc(curMethod , curArgs)
23

24 // update perf
25 perf += 1
26

27 return retVal

Algorithm 6: SR universal construction

We have just shown that in the SR hierarchy, as in the consensus hierarchy,
there exist objects that are universal. Given sufficiently many of them, any object
with a sequential specification can be implemented in a wait-free linearizable way.

14

We now turn to the negative result: in a system of n processes, given any
object A with SR number ≥ n and any object B with SR number < n, B cannot
1-implement A.

Towards a contradiction, assume that B can 1-implement A in a system of
n processes. Since A has SR number ≥ n, there exists an implementation of a
SR object from A and atomic registers. By replacing A in this implementation
with its 1-implementation from B, we will have obtained a valid implementation
of an SR object from B, a contradiction of the fact that B’s SR number is less
than n.

Note that this negative result does not contradict the universality of objects
in the sense of consensus, which states that an object with consensus number
at least n can implement any object in a system of n or less processes. Our
negative result states that objects with lower SR number cannot 1-implement
objects with higher SR number. So, for instance, compare-and-swap has infinite
consensus number, so it can implement any object, but it has SR number 1, so
it cannot implement in a single step any object with SR number larger than 1
(e.g., fetch-and-increment) in a system of 2 or more processes. In other words,
no such object can be implemented from compare-and-swap in such a way that
the implementation has the same SR number as the abstract object.

6 Conclusion

In this paper, we propose the schedule reconstruction problem and the SR num-
ber as a new measure for the disclosure power of objects in shared memory
systems. Objects can be organized in a dense hierarchy where strong objects im-
plement weaker objects via a universal construction based on SR. Furthermore,
we identify a link between SR and consensus and show that SR is at least as
hard as consensus. Finally, we evaluate the SR number of well known objects
and show that universal consensus objects are not always universal SR objects.

In terms of future work, this paper opens two interesting directions, in the
form of alternative measures for the schedule disclosure ability of shared objects.
First, instead of the current formulation of SR, which ranks objects discretely
(an object either can or cannot solve the SR problem for a given number of pro-
cesses), a different SR formulation could rank objects on a continuous scale: given
a number of processes and any number of objects of a certain type, how much in-
formation (in bits) can be recovered about the schedule? Second, we could also
introduce a notion of reconstruction latency. Instead of requiring reconstruct

calls to fully recreate the schedule up to the last preceding step call, we could al-
low a certain number of preceding steps to not be reconstructed. In other words,
for a given number of processes, some object A might not be able to fully solve
SR but still be able to reconstruct the schedule up to some older step call.

15

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. Journal of the ACM (JACM) 40(4) (1993)

2. Afek, Y., Dauber, D., Touitou, D.: Wait-free made fast. STOC 1995
3. Afek, Y., Stupp, G., Touitou, D.: Long-lived and adaptive atomic snapshot and

immediate snapshot. PODC 2000
4. Afek, Y., Weisberger, E., Weisman, H.: A completeness theorem for a class of

synchronization objects. PODC 1993
5. Anderson, J.H.: Composite registers. Distributed Computing 6(3) (1993)
6. Anderson, J.H., Moir, M.: Universal constructions for multi-object operations.

PODC 1995
7. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. PODC

1993
8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. Journal of the ACM (JACM) 32(2) (1985)
9. Herlihy, M.: Wait-free synchronization. ACM Transactions Programming Lan-

guages and Systems 13(1) (1991)
10. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edn. (2012)
11. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems 12(3) (1990)
12. Imbs, D., Rajsbaum, S., Raynal, M., Stainer, J.: Read/write shared memory ab-

straction on top of asynchronous byzantine message-passing systems. Journal of
Parallel and Distributed Computing 93 (2016)

13. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable
asynchronous processors. Advances in Computing Research 4 (1987)

14. Moir, M.: Laziness pays! Using lazy synchronization mechanisms to improve non-
blocking constructions. PODC 2000

	The Disclosure Power of Shared Objects

