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Abstract

Metaprogramming is a technique that consists in writing programs that treat other
programs as data. This paradigm of software development contributes to a multitude of
approaches that improve programmer productivity, including code generation, program
analysis and domain-specific languages. Many programming languages and runtime
systems provide support for metaprogramming.

Programming platforms often distinguish the notions of compile-time and runtime
metaprogramming, depending on the phase of the program lifecycle when metaprograms
execute. It is common for different lifecycle phases to be hosted in different environ-
ments, so it is also common for different kinds of metaprogramming to provide different
capabilities to metaprogrammers.

In this dissertation, we present an exploration of the idea of unifying compile-time and
runtime metaprogramming in Scala. We focus on the practical aspect of the exploration;
most of the described designs are available as popular software products, and some of
them have become part of the standard distribution of Scala.

First, guided by the motivation to consolidate disparate metaprogramming techniques
available in earlier versions of Scala, we introduce scala.reflect, a unified metaprogram-
ming framework that uses a language model derived from the Scala compiler to run
metaprograms both at compile time and at runtime.

Secondly, armed by the newfound metaprogramming powers, we describe Scala macros,
a language-integrated compile-time metaprogramming facility based on scala.reflect.
Thanks to the comprehensive nature of scala.reflect, macros are able to work with both
syntactic and semantic information about Scala programs, enabling a wide range of
previously impractical or impossible use cases.

Finally, based on our experience and user feedback, we identify key strengths and
weaknesses of scala.reflect and macros. We propose scala.meta, a new unified metapro-
gramming framework, and inline/meta, a new macro system based on scala.meta, that
take the best from their predecessors and address the most important problems.

Keywords: Programming Languages, Compilers, Metaprogramming, Reflection, Macros.
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Astratto

Metaprogrammazione ¢ la tecnica che consiste nel creare programmi che trattano gli
altri programmi come dati. Questo paradigma di sviluppo software contribuisce alla
multitudine di approcci che migliorano la produttivita di programmatore, compresi la
generazione di codici, i procedimenti automatizzati di analisi del software, e i linguaggi
specifici di dominio. Molti linguaggi di programmazione e sistemi a tempo di esecuzione

consentono la metaprogrammazione.

Le piattaforme software spesso fanno distinzione tra le nozioni di metaprogrammazione a
tempo di compilazione e a tempo di esecuzione, a seconda della fase del ciclo di vita del
software quando sono eseguiti i metaprogrammi. E normale che cicli di vita diversi siano
presentati in ambienti diversi, ed ¢ altresi normale che diversi tipi di metaprogrammazione
forniscano capacitd diverse ai metaprogrammatori.

In questa dissertazione presentiamo la ricerca dell’idea di unire la metaprogrammazione
a tempo di compilazione e a tempo di esecuzione in Scala. Particolare risalto viene dato
all’aspetto pratico della ricerca: la maggior parte dei descritti design sono disponibili
come popolari prodotti software, ed alcuni di loro sono parte integrante della distribuzione
standard di Scala.

Innanzitutto, guidati dalla motivazione di consolidare le tecniche disparate di metapro-
grammazione disponibili in versioni precedenti di Scala, introduciamo scala.reflect, un
framework unificato di metaprogrammazione che usa il modello di linguaggio derivato
dal compilatore Scala per eseguire i metaprogrammi sia a tempo di compilazione, sia a

tempo di esecuzione.

Secondariamente, muniti delle nuove capacita fornite dalla metaprogrammaszione, de-
scriviamo le macroistruzioni, un’infrastruttura di metaprogrammazione a tempo di
compilazione integrata al linguaggio, basata su scala.reflect. Grazie alla natura esau-
stiva di scala.reflect, le macroistruzioni possono adoperare sia informazioni sintattiche,
sia semantiche sui programmi Scala, consentendo una vasta gamma di casi d’uso che
precedentemente erano impraticabili o impossibili.

Infine, basati sulla nostra esperienza e commenti degli utenti, abbiamo identificato i punti
di forza e deboli di scala.reflect e macros. Proponiamo scala.meta, un nuovo framework



Astratto

unificato di metaprogrammazione, e inline/meta, un nuovo sistema di macroistruzioni
basato su scala.meta, che unisce gli elementi migliori dei suoi predecessori, risolvendone
allo stesso tempo le pecche piu evidenti.

Parole chiave: linguaggi di programmazione, compilatori, metaprogrammazione, rifles-
sione, macroistruzione
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Il Introduction

1.1 Background

Scala has a strong tradition of metaprogramming. In addition to runtime reflection
available out of the box on the Java Virtual Machine, its main target platform, Scala has
always featured additional metaprogramming facilities of its own.

Since its very beginnings, the Scala compiler could persist a limited subset of its symbol
table and syntax trees in a form designed to be loaded and analyzed using functionality
provided in the standard distribution. As Scala grew in features and popularity, the
demand for metaprogramming also grew, and the scope of metaprogramming organically
expanded to include compiler plugins and limited type persistence.

These early metaprogramming capabilities were developed independently from each other
and, as a result, ended up being limited and incompatible. For example, even though a
combination of symbol table, AST and type persistence theoretically enables introspection
of the entire language, in reality these persistence mechanisms were implemented by
separate subsystems of the compiler and used incompatible data structures.

Later on, prompted by the ideas of my predecessor Gilles Dubochet, the Scala compiler
went through a series of internal refactorings that reconciled the differences between
the previously available metaprogramming facilities. We modified all these facilities to
use compiler internals as their API, and then changed the compiler itself to be able to
transparently launch and operate at runtime. This marked the birth of scala.reflect - a
unified metaprogramming framework that works both at compile time and at runtime.

Scala.reflect became part of the standard distribution and made several important
advancements. First, it enabled macros - compile-time metaprograms that are executed
inside the compiler. Secondly, it provided a way to perform runtime reflection in terms
of Scala features, as opposed to a limited view exposed by the JVM. Being fit for these
quite different tasks has become possible thanks to the unified nature of scala.reflect.
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Scala.reflect made a profound impact on metaprogramming in Scala. The power and
novelty of its API catalyzed metaprogramming research in the Scala ecosystem and
enabled many practical use cases that were previously out of reach or required significant
amounts of boilerplate. At the time of writing, dozens of influential open-source projects in
the Scala community use scala.reflect, including: Akka, Algebird, Breeze, Circe, Finagle,
Monocle, Pickling, Play, Sbt, Scala.js, ScalaTest, Scalding, Shapeless, Simulacrum, Slick,
Spark, Specs2, Spire, Spray and others.

Below, I will provide a first-person account of unification that happened in Scala metapro-
gramming and its effects on the ecosystem. We will see what worked, what did not and
what directions were taken by further evolution of metaprogramming in Scala.

1.2 Target audience

We hope that this dissertation will be useful to programming language enthusiasts and
compiler hackers looking to enrich their languages with metaprogramming facilities.

First and foremost, this dissertation is designed as an experience report of developing and
evolving a language-integrated metaprogramming framework. We will highlight original
motivations, document practical experiences and provide actionable insights.

1.3 Preliminaries

This dissertation is markedly Scala-centric. We will talk about metaprogramming Scala,
which is done in Scala using tools designed and implemented in Scala. We believe that
our results are applicable to other programming languages, but understanding them fully
will require some knowledge of Scala.

We will introduce more advanced aspects of Scala and its infrastructure where necessary,
but being comfortable with the basics of the language is required for reading the disser-
tation. Luckily, most readers should find Scala code familiar, because it uses ubiquitous
C-style syntax and shares many language features with Java. For further information on
distinctive Scala features such as case classes, objects, traits and others, we recommend
“Programming in Scala” which currently has its first edition freely available online [88].

The main platform supported by Scala is the Java Virtual Machine [76]. While there
exist compiler backends that can produce JavaScript [34] and native code [105], the
JVM is by far the most popular platform for Scala programs. Therefore, readers may
find this dissertation occasionally using terminology specific to the JVM. Concretely, we
will be talking about class files, classpaths and classloaders to denote units of software
distribution, configurations that specify locations of class files and entities that define
execution environments by supervising loading of class files [73].



1.4. Terminology

Finally, we will often refer to developer tools used the Scala ecosystem. The most
important of such tools is the Scala compiler [43], also called scalac. The work
described in this dissertation began early in the development cycle of the Scala compiler
2.10.0, and the currently available stable release is 2.11.8.

scalac has long been the only Scala compiler. However, over the last several years,
several alternative compilers have emerged. The most influential of them is Dotty [42],
a next generation compiler for Scala developed by Martin Odersky, the creator of the
language, and his research group at EPFL.

There are three IDEs available for Scala: a Scala plugin for IntelliJ IDEA [65] (referred
to as just IntelliJ), a Scala plugin for Eclipse [99], and ENSIME [44], a headless server
that provides semantic information about Scala programs to text editors such as Emacs,
Vim, Sublime Text and Atom. Under the covers, Eclipse and ENSIME use the Scala
compiler running in a special mode, whereas IntelliJ features their own implementation
of a compiler frontend.

Other tools mentioned in this dissertation are the Scala REPL [43] (referred to as just
REPL), which we will be frequently using to run code examples, sbt [74], the most
popular Scala build tool, and scaladoc [43], the Scala documentation tool.

1.4 Terminology

In this dissertation, we assume that readers have a background in programming languages
and compilers, so we will be freely using the terminology from that area of knowledge.

Additionally, in order to concisely refer to certain notions, we will also utilize more
specialized language. In section 1.3, we introduced some Scala jargon, and in this section,
we follow up with metaprogramming terminology.

A metaprogramming framework (also, a metaprogramming library) is a collection of
data structures and operations that allow to write metaprograms, i.e. programs that
manipulate other programs as data. For example, scala.reflect which is developed and
described in this dissertation is a metaprogramming framework, because it contains
classes like Tree, Symbol, Type and others that represent Scala programs as data and
exposes operations like prettyprinting, name resolution, typechecking and others that
can manipulate this data.

We say that metaprogramming frameworks provide the ability to reflect programs, i.e.
reify program elements as data structures that can be introspected by metaprograms. For
instance, scala.reflect provides facilities to reflect Scala programs. These facilities include
the ability to reify definitions written in the source code as instances of class Symbol.
Metaprograms can call methods like Symbol . info to introspect these definitions.
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In the context of this dissertation, environment means an environment where metapro-
grams are executed. For example, a compiler run defines a compile-time environment,
and a JVM instance defines a runtime environment. There are many other environments,
e.g. code editors and code analysis tools, but in this work we will almost exclusively on
compile-time and runtime environments.

A language model consists of data structures, such as abstract syntax trees, symbols
or types, that are used by a metaprogramming framework to represent fragments of
language syntax, concepts from the language specification, etc. For instance, the language
model of scala.reflect consists of classes like Tree, Symbol, Type and others.

We can call a language model portable if it can be used to represent programs in multiple
environments. For example, the language model of scala.reflect is portable, because it
uses the same collection of data structures to represent Scala programs both at compile
time and at runtime.

A language element, language artifact, reflection artifact or just artifact is one of the
data structures constituting the language model. Occasionally, we will overload these
terms to also mean instances of these data structures. For example, class Tree is an
element of the scala.reflect language model. Additionally, trees, i.e. instances of class
Tree, are also elements of that language model.

A mirror is an entity that can reflect an environment into reflection artifacts. For instance,
a scala.reflect Mirror is a mirror, because it reflects an environment into a symbol table,
i.e. a collection of symbols that represents definitions in that environment. The notion
of mirrors used in this dissertation is inspired by the notion of mirrors introduced by
Gilad Bracha and David Ungar in [7].

A unified metaprogramming framework is a metaprogramming framework that uses the
same language model to reflect both compile-time and runtime environments. In such a
framework, the same API can be used to write compile-time and runtime metaprograms,
and same metaprograms can be run both at compile time and at runtime. For example,
scala.reflect is a unified metaprogramming framework. In his dissertation [35], Gilles
Dubochet pondered over unified metaprogramming in the context of domain-specific
programming, and his initial ideas were a major source of inspiration for our work.

1.5 Thesis statement

A metaprogramming framework that unifies compile-time and runtime reflection in a
statically-typed programming language is feasible and useful. A portable language model
that naturally arises from unification fosters reuse of metaprogramming idioms across
a multitude of environments. Such a common vocabulary of idioms can simplify and
stimulate development of code analysis and generation tools.
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1.6 Contributions

This dissertation describes design, implementation and applications of unified metapro-
gramming frameworks based on the examples of scala.reflect, Scala macros and their
emerging successors. Concretely, the contributions of this dissertation are the following;:

e Scala.reflect, a unified metaprogramming framework that distills the language
model of the Scala compiler. We describe the architecture that allows the imple-
mentation of the framework to reuse the existing compiler codebase and validate
this architecture by demonstrating compile-time and runtime implementations of
scala.reflect that have been shipped with Scala 2.10 (chapter 3).

e Def macros, a language-integrated compile-time metaprogramming facility based
on scala.reflect that expands applications of specially-defined methods. We describe
the design of def macros that has become part of Scala 2.10 and highlight the
importance and the consequences of its tight integration with the infrastructure
behind regular methods (chapter 4).

e Exploration of the design space of Scala macros. Similarly to how we did with def
macros and regular methods, we integrate compile-time metaprogramming with
other language features. We discuss several extensions to the macro system that
gained popularity in the community, including pattern macros, type macros and
macro annotations (chapter 5).

e Validation of utility of Scala macros. Through a number of real-world case studies,
we show how macros can be used to implement code generation, program analysis
and domain-specific languages (chapter 6).

e Survey of problems in developer tools caused by Scala macros. Disregarding tool
support in the initial implementation of macros was our biggest design mistake,
so we document this experience and hope that our account will prevent similar
mishaps in other programming languages (chapter 7).

e Scala.meta, a unified metaprogramming framework that is created from scratch to
ensure interoperability with developer tools. We describe how our experience with
scala.reflect led to creation of a minimalistic implementation-independent language
model whose prototypes have been able to reach and surpass the functionality
provided by scala.reflect (chapter 8).

e Inline/meta, a new macro system that takes the best from the design of its
predecessor - its smooth integration into the language - and reimplements it on top
of scala.meta to improve user experience and tool support (chapter 9).












Y4 Ad hoc metaprogramming

In this chapter, we provide a survey of some of the metaprogramming techniques available
in the Scala standard distribution before unification, briefly describing JVM reflection
(section 2.1), Scala signatures (section 2.2), on-demain reification (section 2.3) and
compiler plugins (section 2.4). The work of designing and implementing this functionality
was done before my time at EPFL, so credit for the techniques described below goes to
their respective authors.

2.1 JVM reflection

The oldest way of doing metaprogramming in Scala is by utilizing runtime reflection
capabilities of the JVM. These capabilities are provided by runtime classes, i.e. instances
of the class java.lang.Class defined in the Java Development Kit, and are available
in Scala since day one.

In Scala, there are two ways to obtain runtime classes. First, there is the standard
classO0f [T] method that returns a runtime class corresponding to the type argument
passed to this method. Secondly, all values in Scala have a getClass method inherited
from Any, the top type of the Scala type system. This method returns a runtime class
underlying the given object.

scala> class Point(val x: Int, val y: Int) {
| override def toString = s"Point($x, $y)"
(s

defined class Point

scala> val staticClass = classOf[Point]
staticClass: Class[Point] = class Point

scala> val point = new Point (40, 2)
point: Point = Point (40, 2)
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scala> val dynamicClass = point.getClass
dynamicClass: Class[_ <: Point] = class Point

As we can see, class0f provides a runtime class of a statically known type, therefore
staticClass is typed as Class[Point]. By contrast, Any.getClass obtains a run-
time class of a dynamic object, so dynamicClass is typed as Class[_ <: Point],
since an object of type Point can actually be one of the subclasses of Point.

With runtime classes - instances of Class - it is possible to introspect the structure of
the program being executed, i.e. enumerate fields, methods and constructors declared in
classes, and get runtime representations for them. Moreover, using these representations,
metaprogrammers can alter the state of the program, i.e. get and set values of fields,
invoke methods and constructors, etc.

For details, we refer the interested reader to the specification of the Java Development
Kit [91], and here we will limit ourselves to a simple illustration. In the example below,
we ask a runtime class of Point for the list of declared fields, then obtain a field that
corresponds to Point.x and set its value in a given object.

scala> class0f [Point].getDeclaredFields
res2: Array[java.lang.reflect.Field] =
Array(private final int Point.x, private final int Point.y)

scala> val fieldX = class0f[Point].getDeclaredField("x"
fieldX: java.lang.reflect.Field = private final int Point.x

scala> fieldX.setAccessible(true)

scala> point
res4: Point = Point (40, 2)

scala> fieldX.set(point, 42)

scala> point
res6: Point = Point (42, 2)

While almost the entire example is fairly straightforward, the call to setAccessible
sticks out like a sore thumb. Without this call, Field. set fails with an exception saying
“class can not access a member of class Point with modifiers private final”, which is a
surprise, because we expect val x in class Point(val x: Int, ...) to be public.

This experience highlights the problem with using JVM reflection in Scala programs.
Runtime classes reflect the structure of the program as seen by the JVM (or its emulation
layer on other target platforms), not as it was originally written.

10
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Even though Scala programs compile down to JVM class files, the semantics of Scala
is significantly richer than what is supported by the JVM. Vals/vars, objects, traits,
implicits, higher-kinded types - this is just a small subset of features that are present in
Scala, but do not have direct analogues on the JVM.

As a result, the Scala compiler has to either encode such features with what is available
on the target platform or to erase these features altogether. Encoded features, e.g. vals
and objects, can be introspected with JVM reflection and then reverse-engineered like
we did with setAccessible. Erased features, e.g. implicits and higher-kinded types,
are available only in their JVM-compatible form, which most of the time cannot be
reconstructed.

Below we can see how class Point(val x: Int, val y: Int) is compiled on the
JVM. This output is obtained by running the Scala compiler on this snippet of code
to produce the Point.class class file and then executing the javap utility from the
standard distribution of the JVM to decompiles that class file into textual form.

public class Point {
private final int x;

private final int y;

public int xQ);

Code:
0: aload_O
1: getfield #14 // Field z:I

4. ireturn

public int yQ;

Code:
0: aload_0
1: getfield #18 // Field y:I

4: ireturn
public Point(int, int);

0: aload_O

1: iload_1

2: putfield #14 // Field z:1I

5: aload_0

6: iload_2

7: putfield #18 // Field y:I

10: aload_O

11: invokespecial #23 // Method java/lang/Object.<init>:()V
14: return

11
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Note how each val parameter of the primary constructor was turned into a triplet
that consists of a constructor parameter, a private underlying field and a public getter
method. With this knowledge in mind, we should no longer be surprised that that the
field Point .x loaded by JVM reflection turned out to be private.

From the discussion above, we can see that JVM reflection is easily available, but
insufficient for introspecting Scala programs. Many language features of Scala can not
be mapped directly on JVM features and therefore have to be encoded or erased, which
makes which makes the representation of a Scala program as viewed by JVM reflection
unfaithful and quite divergent from what the programmer actually wrote.

2.2 Scala signatures

In order to support separate compilation, the Scala compiler has to store information
about definitions and their signatures. Due to the reasons mentioned in section 2.1,
encoding definitions with JVM-compliant metadata is not going to work, so there
clearly has to be a backchannel that deals with features unsupported by the JVM. This
backchannel is called Scala signatures, and is available in Scala since the earliest versions.

For every top-level definition, the Scala compiler serializes a fragment of its internal
symbol table that represents this definition and all globally-accessible definitions inside
it (vals, vars, type members, methods, constructors, nested classes, traits and objects,
etc). Serialized payload, also called a Scala signature, is then stored in the class file
corresponding to that top-level definition in the format that depends on the version of
the Scala compiler.

Below we can see a fragment of the ouput of the javap utility run in verbose mode
on the class file produced by compiling class Point(val x: Int, val y: Int).
Unlike normal mode of javap that prints just the definitions in the given class file and
maybe their bytecode, as shown in section 2.1, verbose mode exposes internal structural
parts of the class file.

Classfile /Users/xeno_by/Projects/2118/sandbox/Point.class
Last modified Jul 14, 2016; size 805 bytes
MD5 checksum 75£38596a547216ffd8cba4e39£94b0f
Compiled from "Point.scala'
public class Point
SourceFile: "Point.scala"
RuntimeVisibleAnnotations:
0: #6(#7=s#8)
ScalaInlinelInfo: length = 0x13
01 00 00 03 00 13 00 14 00 00 09 00 OC 00 00 OB
00 0C 00
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ScalaSig: length = 0x3
05 00 00
minor version: O
major version: 50
flags: ACC_PUBLIC, ACC_SUPER
Constant pool:

#1 = UtfS8 Point

#2 = Class #1 // Point

#3 = Utf8 java/lang/0Object

#4 = Class #3 //  java/lang/0Object

#5 = Utf8 Point.scala

#6 = Utf8 Lscala/reflect/ScalaSignature;

#7 = Utf8 bytes

#8 = Utfs8 F1A'\t)k\boix\t1!A=K6H/ MA\t)i)loYim...

javap demonstrates that the class file contains the ScalaSig custom attribute, whose
bytes signify the major and the minor version of the format (i.e. 5.0), as well a mysterious
runtime-visible annotation represented by #6 (#7=s#8). Knowing the convention that
#N stands for the N-th entry in the constant pool of the class file, also printed by javap,
we can decipher that this annotation is called scala.reflect.ScalaSignature and
it has an argument called bytes with what looks to be binary payload. Deserializing this
payload will yield the list of members defined in Point as seen by the Scala compiler.

Instead of loading Scala signatures, obtaining the binary payload and manually deserializ-
ing it, one can also use the scalap utility from the standard distribution, available since
Scala 1.0. This utility deserializes the signatures on its own and then prettyprints them
to the console, which represents a significant user experience improvement in comparison
with decoding the binaries manually. This was such a popular technique back in the day
that even now some applications still launch scalap programmatically and then parse
its output to do introspection.

Below we can see the output of scalap for the class file produced by compiling the
class Point. Note how unlike javap, it can merge underlying fields and associated
getters into vals. Nonetheless, the correlation between the parameters of the primary
constructor and the accompanying vals remains implicit. This is the artifact of how the
Scala compiler internally represents constructors and has to be manually taken care of
by metaprogrammers.

class Point extends scala.AnyRef {
val x: scala.Int = { /* compiled code */ }
val y: scala.Int = { /* compiled code */ }
def this(x: scala.Int, y: scala.Int) = { /* compiled code */ }

13
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Scala signatures are an internal, implementation-dependent mechanism to perform
introspection. There is no specification of the format, no third-party implementation
that reads or writes these signatures and everything there can change at the discretion
of the compiler developers. Nonetheless, for a long time, using Scala signatures was the
only way to reliably reflect the structure of Scala programs.

2.3 On-demand reification

In addition to automatically reifying the definition structure - in the form of both JVM-
compliant metadata (section 2.1) and Scala signatures (section 2.2) - the Scala compiler
is capable of selective reification of its trees and types. Exact ways of doing that have
changed as Scala evolved, and in this section we will outline the earliest, pre-unification
approaches. Since the goal of this chapter is to provide a brief overview, we will avoid
details and will focus on simple examples revealing the main idea.

Tree reification in earlier versions of Scala (from v1.4 to v2.9) was based on type-directed
code lifting. The Scala standard library used to include the magic type scala.reflect
.Code [T] that stood for a statically typed code snippet wrapping an abstract syntax
tree of type scala.reflect.Tree. These trees also carried symbols - data structures
that provide information about resolved identifiers including their full names, types, etc.

class Code[T](val tree: Tree)

abstract class Tree
case class Ident(sym: Symbol) extends Tree
case class Select(qual: Tree, sym: Symbol) extends Tree

abstract class Symbol { def tpe: Type; ... }
abstract class LocalSymbol extends Symbol
abstract class GlobalSymbol(val fullname: String) extends Symbol

abstract class Type
case class SingleType(pre: Type, sym: Symbol) extends Type
case class PrefixedType(pre: Type, sym: Symbol) extends Type

Whenever the programmer was providing an expression of a regular type where an
expression of type Code [T] was expected, the compiler would automatically transform
that expression to an equivalent instance of Code. In the REPL session below, we can see
how a simple lambda expression gets transformed into a corresponding AST wrapped in
Code[Int => Int]. Note that, in addition to the syntax of the lambda, the compiler
also reifies the fact that x is a local value and remembers the full name of its type.
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scala> val id: scala.reflect.Code[Int => Int] = x => x
id: scala.reflect.Code[Int => Int] = scala.reflect.Code@147147e4

scala> id.tree

res0: scala.reflect.Tree = Function(
List(LocalValue(NoSymbol,x,PrefixedType(...,Class(scala.Int)))),
Ident (LocalValue (NoSymbol,x,PrefixedType(...,Class(scala.Int)))))

Type reification in earlier versions of Scala (from v2.7 to v2.9) was based on automatic
synthesis of arguments for implicit parameters of the magic type scala.reflect.
Manifest [T] from the Scala standard library. Unlike Code that wrapped an intro-
spectable abstract syntax tree, Manifest was an opaque token that did not expose a
possibility to inspect the exact representation of their underlying types

The listing below provides a simplified view of manifests and supporting infrastructure -
the actual implementation also supports optional derivation, some basic reflective APIs
as well as the capability to obtain runtime classes of the underlying types [35].

trait Manifest [T]

object Manifest {
def singleTypelT <: AnyRef](value: AnyRef): Manifest[T] =
def classTypel[T] (
prefix: Manifest[_],
clazz: Predef.Class[_],
args: Manifest[_J]*): Manifest[T] =

}

Whenever the compiler was expecting an implicit argument of type Manifest [T] and
none was provided by the programmer, it would synthesize that argument using its
internal representation of type T. Using the analogy between implicits and typeclasses
[89], one may view this as a mechanism for automatic derivation of local instances of the
Manifest typeclass.

In the REPL session below, we call the manifest0f method without providing an
implicit argument of type Manifest [T], and the compiler then synthesizes one for us.
We can see that the compiler uses the information provided by type inference, i.e. the fact
that in this method call T is instantiated to List [Int], to generate a correct manifest.

scala> def manifestOf [T](x: T) (implicit m: Manifest[T]) = m
manifestOf: [T](x: T)(implicit m: Manifest[T])Manifest[T]

scala> manifestOf (List(1, 2, 3))

// The compiler generates an equivalent of:
// manifestOf (List(1, 2, 3))(
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//  Manifest.classType(classOf[List],
// Manifest.classType(classOf[Int])))
resO: Manifest[List[Int]] = scala.collection.immutable.List[Int]

Tree and type reification provided an interesting way to sidestep the limitations of JVM
reflection and Scala signatures, but they never grew into a coherent metaprogramming
API. Note how they use completely incompatible representations (Type vs Manifest
) even though there is a possibility for reuse (SingleType and PrefixedType vs
Manifest.singleType and Manifest.classType).

2.4 Compiler plugins

Instead of asking the Scala compiler to save fragments of its internal state and then
putting these fragments together at runtime, metaprogrammers can run their programs
directly in the Scala compiler, i.e. at compile time, enjoying unfettered access to program
representation.

Compiler plugins [112] are user-defined libraries that introduce additional compiler phases
into the standard compilation pipeline. Some compiler plugins can modify other aspects
of the Scala compiler, but those that add new phases are the most common. Thanks to
the compiler plugin architecture, it becomes possible to publish compiler modifications
as simple compiler flags without needing to change the standard distribution. This
functionality is available since v2.6.

In the listing below, inspired by [112], we can see an implementation of a very simple
compiler plugin that checks programs for divisions by literal zero. This compiler plugin
registers a new compiler phase divbyzero that is inserted into the compilation pipeline.
For every compilation unit in the program, the new phase recursively traverses its abstract
syntax tree, detects undesirable code patterns and produces compilation errors if such
patterns are found.

import scala.tools.nsc

import nsc.Global

import nsc.Phase

import nsc.plugins.Plugin

import nsc.plugins.PluginComponent

class DivByZero(val global: Global) extends Plugin {
import global. _

val name = "divbyzero"
val description = "checks for division by zero"
val components = List[PluginComponent] (Component)
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private object Component extends PluginComponent {
val global: DivByZero.this.global.type = DivByZero.this.global
val runsAfter = List("refchecks")
val phaseName = DivByZero.this.name
def newPhase(_prev: Phase) = new DivByZeroPhase(_prev)

class DivByZeroPhase(prev: Phase) extends StdPhase(prev) {
override def name = DivByZero.this.name
def apply(unit: CompilationUnit) {
val intType = rootMirror.getRequiredClass("scala.Int").tpe
unit.body.foreach {
case Apply(
Select(qual, nme.DIV),
List(zero @ Literal(Constant(0))))
if qual.tpe <:< intType =>
unit.error(zero.pos, "division by zero")
case _ =>
// ignore other code patterns

}
}

Compiler phases, like DivByZeroPhase that we just defined, are written against compiler
internals. scala.tools.nsc.Global referenced on line 2 is the Scala compiler itself,
so import global._ on line 8 imports all its internal data structures and functionality
working with these data structures.

CompilationUnit used to get the AST of a given compilation unit, rootMirror used
to obtain a representation of type Int, as well as most of the APIs used in the listing -
they all come from compiler internals. Explaining the entirety of compiler internals is
beyond the scope of this dissertation, so we will not go into details here. Suffice it to say
that unit.body.foreach (line 24) goes through every subtree of a tree representing
a given compilation unit and matches that subtree against a pattern that represents a
division (line 26) of a value of type Int (line 28) by a literal zero (line 27).

Just like Scala signatures (section 2.2), compiler internals lack comprehensive documen-
tation and official compatibility guarantees. If compiler developers decide to change
the AST representation of the x/0 pattern or an API to obtain types by fully-qualified
names, the DivByZero compiler plugin will stop working.
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2.5 Conclusion

Metaprogramming techniques described in this chapter are pretty ad hoc in the sense that
they appeared as solutions to specific problems encountered during evolution of Scala,
without much effort dedicated to interoperability with solutions to similar problems.

First, Scala signatures were introduced to store signatures of compilation units, because
JVM class files could not accommodate the entirety of Scala language features. Scala
signatures persisted some compiler state, but not more than necessary for achieving the
original goal of supporting separate compilation, and they did not have any public API,
because again that was not necessary for the goal at hand.

Then, in order to experiment with providing better DSL support, Scala 1.4 gained
the ability to perform selective tree reification via Code. Similarly to Scala signatures,
abstract syntax trees used by that feature also persisted some compiler state, including
symbols that represented definitions and types that represented their signatures. However,
unlike Scala signatures, experimental DSLs that were using Code did not need to represent
the entire language, so trees and their symbols ended up being limited and, therefore,
not reusable in Scala signatures.

Afterwards, compiler plugins in Scala 2.6 solved another pertinent problem of allowing
compiler extensions to simplify experiments with the Scala compiler. Both Scala signa-
tures and Code were crippled by being useful only to their particular domains, so it was
very seductive to use compiler internals as the data model and call it a day.

Finally, when the need had come to selectively overcome type erasure of the JVM around
Scala 2.7/2.8, both types from Code and types from compiler internals were an overkill
for the use cases at hand. As a result, manifests ended up using yet another data model
for persisting types. Unfortunately, by the time when use cases started demanding
a richer model and non-trivial reflective operations (e.g. subtyping checks), the data
structures were already set in stone by existing users and could not be changed.

As we can see from this historic summary, usecase-driven evolution of metaprogramming
up until Scala 2.9 has led to introduction of two groups of metaprogramming facilities
in the standard distribution: 1) limited language features that support usecase-specific
subsets of the language and are incompatible with each other, 2) undocumented and
volatile compiler internals that support the entire language. Both of these approaches
have obvious technical downsides.

In this dissertation, we explore creation of metaprogramming APIs from first principles.
Instead of coming up with partial data models that fit particular use cases, we design a
data model that describes the entire language. With this model at hand, we accommodate
as many use cases as possible, ending up with a unified metaprogramming framework.
In chapter 3 and chapter 8, we present two systems implemented in this spirit.
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Scala.reflect is a unified metaprogramming framework that exposes a curated subset of
Scala compiler internals as its public API. It is available as an experimental library in
the standard distribution since v2.10.

The main innovation of scala.reflect is a detailed language model (section 3.2) that allows
for a rich set of operations (section 3.5) available both at compile time and at runtime.
With scala.reflect, it has become possible to subsume most of the metaprogramming
facilities available in previous versions of Scala (chapter 2), sharing metaprogramming
idioms and even complete metaprograms between environments. Only compiler plugins
(section 2.4) that have a long tradition of working with the entirety of compiler internals
escaped subsumption.

The most important use case for scala.reflect is macros (chapter 4 and chapter 5), which
make it possible to author compile-time metaprograms using a rich and stable API and
then seamlessly distribute such metaprograms in regular Scala libraries.

In this chapter, we provide a comprehensive overview of scala.reflect. In section 3.1,
we introduce the most important concepts on a real-world example. In section 3.2 and
section 3.3, we present the underlying language model. We follow up with supported
environments in section 3.4 and conclude by outlining available operations enabled by
the language model in section 3.5.

Scala.reflect was a massive undertaking, and it would not have happened without a joint
effort of the Scala compiler team. The initial design of scala.reflect was developed and
proposed by Gilles Dubochet and Martin Odersky. The initial implementation was done
by Martin Odersky and Paul Phillips. Together with Martin Odersky, Jason Zaugg, Paul
Phillips, Adriaan Moors and many other compiler hackers, we shipped scala.reflect, and
I became its maintainer. During my tenure, I had an honor to receive contributions
from many open-source enthusiasts including Denys Shabalin, Andrew Markii, Simon
Ochsenreither, Dominik Gruntz, Vladimir Nikolaev and others.
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3.1 Intuition

In this section, we will take a tour of scala.reflect. First, we will start with the architecture,
overviewing code organization patterns (subsection 3.1.1). Afterwards, we will take
an example of a metaprogram written using scala.reflect, explaining how it works
(subsection 3.1.2) and how it can be executed in different environments (subsection 3.1.3,
subsection 3.1.4 and subsection 3.1.5). During the tour, we will intentionally limit
ourselves to basic comments about scala.reflect APIs, because the details are covered
further in this chapter.

3.1.1 High-level architecture

The main design goal of scala.reflect was to expose compiler internals in a public metapro-
gramming framework. In theory, this looks like a great way to build a comprehensive API.
After all, the compiler already has a powerful language model and a set of operations to
go with it. In practice, however, this presents a significant engineering challenge.

Even in pre-scala.reflect days, the compiler was already exceeding 100k lines of code. As
a result, publishing them in their entirety was out of the question, because even with
extensive documentation, understanding such a metaprogramming API would be too
hard to be practical. Additionally, publishing everything would turn compiler internals
into an API, significantly complicating development of new functionality.

Therefore, we decided to expose only the core data structures and operations of compiler
internals, encapsulating implementation details behind a public API. In order to ship
scala.reflect within a reasonable timeframe, we had to minimize the amount of changes
to the compiler required to accommodate this API, and that led to peculiar decisions
regarding the design of scala.reflect.

To be more concrete, let us consider an excerpt of the sources of the Scala compiler
from the period that preceded unification. The listing below is somewhat adapted
for illustrative purposes, but the high-level architecture is depicted exactly as it is
implemented in the original code.

class Global(var settings: Settings, var reporter: Reporter)
extends SymbolTable {
def compile(filenames: List[String]) { ... }

abstract class SymbolTable extends Trees
with Symbols
with Names
with
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trait Trees {
self: SymbolTable =>

var nodeCount = 0

abstract class Tree {
val id = nodeCount
nodeCount += 1

def symbol: Symbol = null
def symbol_=(sym: Symbol): Unit = { ... }

// a couple dozen additional methods

3

case class Ident(name: Name) extends Tree

¥

Global is the class that implements the Scala compiler. The scalac script provided
with the standard distribution instantiates Global and calls compile on the files passed
on the command line, launching the compilation pipeline.

Internally, Global extends SymbolTable, which is built according to the cake pattern,
a way of organizing code in which a complicated module, i.e. a cake (in this case,
SymbolTable), is modelled as a mixin of traits, i.e. slices (in this case, Trees, Symbols,
Names, etc).

Slices of the cake can be made interdependent via self-type annotations. An example of
a self-type annotation can be found on on line 13. It says that any object of type Trees
must also be of type SymbolTable. This means that inside the definition of Trees, we
can utilize all data structures from SymbolTable, e.g. Symbol that comes in handy on
lines 21-22 and Name that is used on line 29. (Definitions of Symbol and Name are not
provided in the listing, but, as one may guess, these definitions are located in other slices
of the cake - Symbols and Names respectively).

From this listing, it becomes clear that creating a public metaprogramming API for
compiler internals is far more complicated than simply moving some data structures
from the compiler to a public package and creating interfaces that describe a curated
set of operations. Unfortunately, even the data structures used in the compiler are too
complicated to be published as is.
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For example, it is highly unlikely that users of scala.reflect will often make use of the
fact that every tree has a unique id, so Tree. id should better be left out of a public
metaprogramming API. Also, even if Tree.id were acceptable as a public API, it relies
on nodeCount (line 15), compiler-specific mutable state, that can not be moved outside
the compiler. Both problems are quite pervasive and apply to a significant number of
other data structures.

While one can imagine a compiler refactoring that would streamline data structures and
encapsulate mutable state, it is virtually impossible to pull off such a refactoring in the
Scala compiler, an actively developed project with numerous industrial users. Potential
loss of development time and risk of regressions are very hard to justify. Therefore, we
had to create public interfaces for the data structures.

While creating public interfaces, we again had to avoid significant changes to the compiler
codebase, which invalidated a straightforward object-oriented approach summarized in
the listing below.

package scala.reflect.api {
trait TreelApi {
def symbol: SymbolApi
def symbol_=(sym: SymbolApi): Unit

package scala.tools.nsc.symtab {
trait Trees {
self: SymbolTable =>

abstract class Tree extends TreeApi {
def symbol: Symbol = null

def symbol_=(sym: Symbol): Unit = { ... }
def symbol_=(sym: SymbolApi): Unit = {
sym match {
case sym: Symbol => symbol_=(sym)
case _ => sys.error("incompatible symbol " + sym)
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In this example, we limit the API surface to trees with two methods: the symbol getter
that contains a reflection artifact in an output position (line 3) and the symbol_= setter
that contains a reflection artifact in an input position (line 4).

Compiler internals contain similar methods, but reflection artifacts in those methods
have more specific types, which leads to a problem. It is okay to implement a less specific
getter (line 3) with a more specific getter (line 14). However, it is not okay to implement
a setter that takes a less specific parameter (line 4) with a setter that takes a more
specific parameter (line 16). Indeed, the parameter of the less specific setter can be
created in a different instance of SymbolTable, while the more specific setter works only
with symbols from the same SymbolTable.

While the listing above provides a workaround for the problem using method overloading,
the situation is unsatisfying for multiple reasons. First, this workaround shows that our
API is lacking - it does not statically prevent mixing artifacts from different instances of
SymbolTable. Secondly, even if we assume that we are fine mixup errors manifesting at
runtime not at compile time, the workaround complicates compiler internals. Introducing
an overload is not guaranteed to be a source-compatible change, because of effects that
it can have on type inference, method signature erasure, eta expansion, named /default
parameters, etc. These problems can be worked around with more tricks, but this quickly
overflows the acceptable complexity budget for compiler changes.

In his dissertation [35], Dubochet explains how to create a specially crafted interface to
compiler internals that hides most implementation details and requires minimal changes
to the existing compiler codebase to accommodate it. This design utilizes abstract type
members to represent data structures and then makes use of Scala’s support for object
construction and deconstruction via apply and unapply methods. Below we can see a
simplified fragment of the scala.reflect.api package that puts this idea into practice
and defines an API for our running example.

abstract class Universe extends Trees
with Symbols
with Names

trait Trees {
self: Universe =>

type Tree >: Null <: TreeApi
trait TreeApi {

def symbol: Symbol

def symbol_=(sym: Symbol): Unit
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type Ident >: Null <: Tree with IdentApi
trait IdentApi extends TreelApi {
def name: Name

¥

val Ident: IdentExtractor
abstract class IdentExtractor {

def apply(name: Name): Ident

def unapply(ident: Ident): Option[Name]
}

}

The scala.reflect.api.Universe class is the gateway into the scala.reflect API.
Much like compiler internals, it is also based on the cake pattern. As we will also see in
subsection 3.1.5, cakes beget cakes, and scala.reflect has not been able to escape this fate.

Inside the slices of the Universe cake, we specify abstract elements or the language
model, e.g. Tree, Symbol and Name as abstract types (see line 9 for the Tree type).
Concrete elements, e.g. Ident, are specified as pairs of definitions that include an
abstract type (see line 16 for the Ident type) and an abstract val (see line 21 for the
Ident val). The former allows users of the language model to refer to the type of Ident,
while the latter allows to instantiate and pattern match on instances of Ident as shown
in the listing below.

val universe: Universe =
import universe._

val ident = Ident(TermName("x"))
println("printing Ident(TermName(" + ident.name.toString + "))"
printTree (ident)

def printTree(tree: Tree) = tree match {
case Ident(name) => println(name.toString)

3

Let us go through the example, keeping note of how common language idioms map
onto the proposed design. First, we create an identifier by calling Ident (Name ("x")).
According to the rules of desugaring in Scala, this invocation translates into Ident.
apply (Name ("x")), going through the abstract val and its Extractor interface.

Afterwards, we take the created identifier and call ident .name. That works because the
type returned by Ident.apply is the abstract type Ident whose upper bound includes
a member called name via its Api interface.
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Then, we pass the identifier to printTree, whose parameter is typed as Tree, another
abstract type. That works, too, again because of the upper bound of Ident that in
addition to IdentApi includes Tree.

Finally, we pattern match identifiers via case Ident (name), which, again by the rules
of desugaring in Scala, is equivalent to Ident.unapply (tree). Since the result type
of Ident .unapply says Option[Name], it means that the result of a successful match
is a single value of type Name.

This way of organizing the scala.reflect API may look very strange. Instead of declar-
ing Ident as a one-liner case class Ident(name: Name) extends Tree, we go
through the trouble of emulating the case class with ten times more code that, addition-
ally, uses advanced language features. However, the trouble is arguably worth it, because
the changeset required for the compiler to adopt such an API is fairly minimal.

abstract class SymbolTable extends Universe
with Trees
with Symbols
with Names
with

trait Trees {
self: SymbolTable =>

abstract class Tree extends TreeApi {
def symbol: Symbol = null
def symbol_=(sym: Symbol): Unit = { ... }

3

case class Ident(name: Name) extends Tree with IdentApi
object Ident extends IdentExtractor

}

For every abstract class that we publish in the language model, we add the corresponding
Api to its list of parents. For every concrete class, we additionally define a companion
and add the corresponding Extractor to its list of parents. Then we take SymbolTable
and add Universe to its parent list. And, without changing any existing methods or
adding more definitions to compiler internals, we are done.

By the virtue of having the same name as abstract types in the API cake and conforming
to their Api interfaces, classes in the internal cake implement those abstract types. This
means that all occurrences of these types in the API cake are going to automatically
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mean their concrete implementations when viewed from the internal cake. This is how
symbol and symbol_= on lines 11-12 implement their counterparts in the API without
running into the problem with described above.

The same goes for companion objects of concrete classes like Ident that implement
the abstract vals from the API cake. Because of virtual dispatch, Ident.apply and
Ident.unapply in the code that uses scala.reflect API, are going to be redirected to the
apply and unapply methods automatically generated by the case class infrastructure
in scala.reflect implementation.

To put it in a nutshell, there is a good reason why the scala.reflect API is imported from
universes instead of being available on the top level. The main design goal of exposing
Scala compiler internals in a public metaprogramming API, combined with the necessity
to avoid high-impact refactorings in the compiler, pretty much dictated this architecture
as the only viable choice.

3.1.2 Example: the isimmutable metaprogram

We call a value immutable if it cannot be modified and all its fields themselves have
immutable types. In this section, we will use scala.reflect to define a method called
isImmutable that checks whether a given type is immutable, i.e. whether all its values
are guaranteed to be immutable.

For example, the immutability check on class C(x: Int) will fail, because someone
can create the subclass of C and add mutable state to that subclass. Continuing our
example, if we add final to the definition of class C, the immutability check will succeed,
because now values of type C must be instances of class C, and the only field of that class
is immutable and has primitive type.

Strictly speaking, even immutable fields can be modified by JVM reflection as demon-
strated in section 2.1, which means that isImmutable can only really succeed on
primitives. However, such use of JVM reflection is strongly discouraged in the Scala
community, therefore, without the loss of usefulness of our immutability check, we will
assume that immutable fields are allowed.

def isImmutable(t: Type): Boolean = {
val cache =
scala.collection.mutable.Map[Type, Boolean] ().
withEquality(_ =:= _)
def uncached(t: Type): Boolean = {
t match {
case AnnotatedType(annots, t) =>
cached (t)
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case ExistentialType(defns, t) =>
cached (t)
case RefinedType(parents, defns) =>
parents.exists (cached)
case _: SingletonType =>
cached(t.widen)
case TypeRef(_, sym, args) if sym == definitions.ArrayClass =>
false
case TypeRef(_, sym: ClassSymbol, args) =>
if (sym.isFinal || sym.isModuleClass) {
val fieldTypes =
t.members.collect {
case s: TermSymbol if !s.isMethod =>
if (s.isVar) return false
s.typeSignatureln(t)
}
fieldTypes.forall (cached)
} else {
false
}
case TypeRef(_, sym: TypeSymbol, args) =>
val TypeBounds(_, hi) = sym.typeSignature.finalResultType
cached (hi.substituteTypes(sym.typeParams, args))
case _ =>
sys.error ("unsupported type: " + t)

}

def cached(t: Type) = {
cache.getOrElseUpdate(t, { cache(t) = true; uncached(t) })
}

cached (t)
}

The happy path of our algorithm happens on lines 18-29. First, we check whether the
given type refers to a final class or to an object (objects are singletons, so they are
implicitly final). Because of the way how compiler internals are organized, these are two
different checks: isFinal and isModuleClass respectively.

Afterwards, we go through all members of the type, which are represented by data
structures called symbols (see subsection 3.2.3 for details). While iterating through
members, we only look into those that define terms, skipping methods (because methods
do not define state), terminating execution on var and recursively checking types of vals
and nested objects.
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Now let us get into nitty-gritty details. In our experience, metaprogramming in Scala
makes comprehensive handling of corner cases unusually hard. The language model is
quite sizeable, so it takes a while to ensure that all possibilities are covered. isImmutable
is no exception - its full code is almost four times bigger than its happy path.

First, we create the infrastructure to avoid infinite recursion (lines 38-40). We memoize
recursive calls in a custom map (lines 2-4) that accounts for the fact that comparing
types for equality need a special equality check (=:= as opposed to the standard ==
typically used in Scala). In order to handle circular dependencies, i.e. situations when a
class A has a field of type B and a class B has a field of type A, we postulate everything
be immutable unless proven otherwise (cache(t) = true on line 39).

Afterwards, we go through all flavors of types that are supported by Scala, and make
sure that our algorithm works correctly on them.

On lines 7-32, we handle types that classify values. Along with such types, the scala.reflect
language model also features others, e.g. MethodType (a type that encodes method signa-
tures and contains information about parameters and return types) and WildcardType
(a type that encodes an unknown type during type inference). Immutability check
does not make sense for types that do not classify values, so we just error out when
encountering them (lines 33-34).

Annotated types (T @annotation) and existential types (T forSome { ... }) are
trivially unwrapped and processed recursively.

Refined types (T with U { ... }) are immutable as long as any parent is immutable.
If, for such type, one of the parents is immutable (i.e. final), this means that there
can not exist any class, apart from such parent, whose instances conform to such type.
Therefore, the refined type is either equivalent to that parent (if the parent conforms to
the type) or is uninhabited. In both cases, the immutability check succeeds (lines 12-13).

Singleton types (x.type, this.type and 42.type) are immutable if and only if the
type of the singleton is immutable. In order to check the underlying type, we call
Type.widen and then recur (lines 14-15).

Finally, there are typerefs, which represent references to type definitions (foo.bar.
Baz and Foo#Bar), possibly applied to type arguments. There are two fundamental
possibilities here. The type definition can be: 1) a class, a trait or a module (lines 16-29),
or 2) a type member or a type parameter (lines 30-32).

The first case is already handled by the happy path, except for value types and arrays.
These special types are modelled as classes, but are not represented as classes at runtime.
Since these types are final and have no fields, they will be deemed immutable. That is
correct for primitives, but wrong for arrays, so we hardcode arrays on lines 16-17.
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The second case should have been part of the happy path, but, due to an unfortunate
peculiarity of compiler internals, typeSignatureIn sometimes fails to work correctly
for members of such types.

Luckily, the workaround is quite simple conceptually. Without loss of generality, we can
replace a type that refers to a type member or type parameter with its upper bound and
then check that upper bound recursively. Unfortunately, implementing this idea also
requires knowledge of compiler internals (lines 31-32).

This analysis covers the full spectrum of Scala types, completing the implementation of
isImmutable. As we will see in later sections, isImmutable can run both at compile
time and at runtime using facilities provided by the standard distribution of Scala.

3.1.3 Compile-time execution

In the listing below, we define a trait Immutable [T] and a macro materialize [T]
that generates a value of type Immutable [T] if its type argument is immutable and
fails with an error otherwise.

Since our goal in this section is to highlight the most important aspects of scala.reflect,
below we only provide a brief description of how the macro works. We refer curious
readers to chapter 4 for a full explanation of underlying mechanisms.

import scala.language.experimental.macros
import scala.reflect.macros.blackbox.Context

trait Immutable[T]
object Immutable {
implicit def materialize[T]: Immutable[T] = macro Macros.impl[T]

}

object Macros {
def impl[T](c: Context) (implicit tag: c.WeakTypeTagl[T]) = {
import c.universe._

def isImmutable(t: Type): Boolean = {
// source code taken from subsection 3.1.2

val t = tag.tpe
if (isImmutable(t)) q"null"
else c.abort(c.enclosingPosition, t + " is not immutable")
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On line 6, Immutable.materialize [T] defines a macro, i.e. a facade for the metapro-
gram Macros.impl [T] (line 10) that will run inside the compiler every time the type-
checker encounters a call to materialize. Since macros are an experimental language
feature, they require a special import (line 1).

The metaprogram impl takes a compiler context (line 2) that, among other things, wraps
universe, a compile-time implementation of scala.reflect provided by the Scala compiler.
Therefore, importing c.universe._ on line 11 brings the entire scala.reflect API in
scope, providing definitions like Type, ClassSymbol, TypeSymbol and others necessary
for isImmutable to operate (lines 13-15).

In addition to the context, impl receives a type tag (line 10) that wraps the representation
of the type argument of the corresponding call to materialize. After unwrapping the
type tag on line 17, we check it for immutability.

If the immutability check succeeds, macro expansion succeeds by producing a trivial
instance of Immutable on line 18. Since Immutable is just a marker, and there are no
methods to call on it, we return null to avoid runtime performance costs of instantiating
and then garbage collecting dummy instances of Immutable. q"null" used here is a
quasiquote, a notation to create abstract syntax trees from snippets of Scala code (refer
to subsection 3.3.2 to learn more about quasiquotes).

If the immutatibility check fails, macro expansion fails by calling c.abort on line 19,
which will result in a compilation error. This error will be positioned at the callsite of the
macro, specified by c.enclosingPosition, and will provide a helpful error message.
The capability to produce domain-specific errors has proven to be one of the strong
points of macros.

Let us put the materialize macro to good use. Suppose we have a slow algorithm
compute that takes an input configuration and then runs for a while, probably launching
new threads running in parallel with the main program.

trait Config {
def paraml: Parameter

¥

def compute(c: Config) = { ... }

Now, we want to make sure that, while the algorithm is running, noone can modify its
configuration from a different thread. In order to guarantee that, we require callers to
provide an evidence that the configuration is immutable.

def compute[C <: Configl(c: C)(implicit ev: Immutable([C]) = { ... }
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Thanks to the mechanism of implicits [89], whenever the programmer does not provide
the evidence manually (which is typical, because writing evidences by hand is very
tedious), the compiler will insert the call to the materialize macro that will validate
the fact that the static type of the configuration is immutable by running isImmutable.
If the immutability check fails, a compile-time error will be issued by the macro.

final case class MyConfig(paraml: Parameter) extends Config

val myConfig: MyConfig = obtainConfig()

compute (myConfig)

// equivalent to: compute(myConfig)(Immutable.materialize[MyConfigl)

The technique of programmatic generation of implicit arguments that we explored in
this toy example is actually very useful in practice. Its main applications lie in the area
of generic programming [84], and it powers several macros that are cornerstone to the
state of the art in the open-source Scala community. This and other popular use cases
for macros are discussed in chapter 6.

3.1.4 Runtime execution

In this section, we continue the example from subsection 3.1.3 with an additional
restriction that compute no longer knows static types of its input configurations. For
example, let us imagine that configurations are now dynamically deserialized from binary
payload. In such situation, we can still make use of isImmutable as demonstrated in
the listing below.

def compute(c: Config) = {
import scala.reflect.runtime.universe. _

def isImmutable(t: Type): Boolean = {
// source code taken from subsection 3.1.2

val mirror = runtimeMirror(c.getClass.getClassLoader)
val t = mirror.classSymbol(c.getClass).toType
if (!isImmutable(t)) sys.error(t + " is not immutable")

¥

In the scala.reflect.runtime package, scala.reflect provides a runtime implemen-
tation of the scala.reflect API, capable of running on top of JVM reflection. This
implementation can launch a big chunk of the Scala compiler at runtime and then use it
to expose scala.reflect-compatible functionality.
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Much like in subsection 3.1.3, where we imported c.universe._ and gained access to
the scala.reflect API at compile time, on line 2 we import scala.reflect.runtime.
universe._ and become able to use the very same scala.reflect API, but at runtime.

There are minor differences between the functionality available during compilation and
at runtime. On the one hand, c.abort and some other macro APIs (section 4.5) only
make sense within a compiler environment. On the other hand, runtime reflection
relies on runtime classes (section 2.1) that may be unavailable during compilation.
Nonetheless, most scala.reflect APIs, including types and symbols that are necessary to
run isImmutable are independent of an environment.

Now, when we know how to execute isImmutable at runtime, let us figure out how to
obtain a scala.reflect type from a given config object in order to get the immutability
check going.

When isImmutable was running inside the compiler, the entire environment was working
in terms of scala.reflect, because scala.reflect is based on compiler internals. At runtime,
introspection happens in terms of the JVM object model, so we need to adapt it to the
scala.reflect way.

In order to do that, on line 9, we create a scala.reflect mirror based on a class loader,
which is an entity that encapsulates a JVM environment. Afterwards, on line 10, we use
this mirror to convert the JVM type of the config to a scala.reflect type.

Unfortunately for our use case, Scala and therefore scala.reflect use a type system that is
much richer than the type system of the JVM. The only types available for introspection
on the JVM are primitives, generic arrays, as well as non-generic classes and interfaces.
As a result, the type extracted from the config object is going to be imprecise, with the
most important problem of lacking potential type arguments that are erased at runtime.
In the listing below, we illustrate this principle on a series of examples in a REPL session.

scala> final class Metadata { ... }
defined class Metadata

scala> final class MyConfig[T] (payload: T, metadata: List[Metadatal)
defined class MyConfig

scala> val ¢ = new MyConfig(42, Nil)
c: MyConfig[Int] = MyConfig@784cOb8

scala> c.getClass
resO: Class[_ <: MyConfig[Int]] = class MyConfig

scala> import scala.reflect.runtime.universe. _
import scala.reflect.runtime.universe._
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scala> val mirror = runtimeMirror(c.getClass.getClassLoader)
mirror: Mirror =

scala> val t = mirror.classSymbol(c.getClass).toType
t: Type = MyConfig

scala> t.member (TermName ("payload")).typeSignatureIn(t)
res2: Type = => T

scala> t.member (TermName ("metadata")).typeSignatureIn(t)
res3: Type = scala.List[Metadatal

As it can be seen on lines 10-11, even though the Scala type of the config is MyConfig[
Int], its JVM type is just MyConfig. Therefore, after we go back from a JVM type to
the Scala type on lines 16-17, the resulting Scala type is also just MyConfig.

Consequently, on lines 22-23, the type of c.payload is calculated as => T, meaning “a
getter that returns a T” where T is the type parameter of MyConfig. As a result, the
immutability check for the config will fail, because in the general case T can be anything,
including a mutable type.

On the bright side, once we get into the realm of Scala types, we can continue operating
in terms of Scala types thanks to Scala signatures (section 2.2). Therefore, on lines
25-26, the type of c.metadata, which does not depend on T, is actually precise, saying
scala.List[Metadatal].

Type erasure of the JVM can be selectively overcome with type tags by applying manual
annotations on case-by-case basis. In the short example below, we explain the basics of
this approach. For more details, refer to subsection 3.3.3.

scala> import scala.reflect.runtime.universe.TypeTag
import scala.reflect.runtime.universe.TypeTag

scala> final case class MyConfig[T] (payload: T) (
| implicit val tag: TypeTag[MyConfig[T]])
defined class MyConfig

scala> val c¢ = new MyConfig(42)

// equivalent to:

// new MyConfig(42) (scala.reflect.api.materializeTypeTag/[...])
c: MyConfig[Int] = MyConfig(42)

scala> c.getClass
resO: Class[_ <: MyConfig[Int]] = class MyConfig
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scala> val t = c.tag.tpe
t: Type = MyConfig[Int]

scala> t.member (TermName ("payload")).typeSignatureIn(t)
resl: Type = => Int

In order to retain the static type of the config, we add an implicit TypeTag parameter
wrapping the corresponding type. In the spirit of the technique of implicit materialization,
implicit arguments for this parameter can be derived by the compiler, remembering the
original scala.reflect type. As we can see on lines 16-20, the type obtained from the
config now correctly has a type argument and its payload is now correctly typed as an
Int. This precision comes at a price of additional memory pressure created by a new
field in MyConfig and instances of TypeTag and additional code generated for every
instantiation of MyConfig, but sometimes better introspection capabilities may be more

important than the imposed performance penalty.

This wraps up the overview of scala.reflect on the JVM. Even though there is an abstrac-
tion gap between the theoretical language model of Scala and the actual environment
of the JVM, scala.reflect does its best to bridge this gap. Information obtained from
dynamic values may be incomplete because of type erasure mandated by the JVM, but
static program structure is available with full fidelity.

Apart from the JVM, Scala also supports other platforms, namely, JavaScript and native
code. We have not implemented scala.reflect for them and doubt that it will ever be
possible to do that (subsection 3.4.5 and subsection 3.4.6), which means that running
isImmutable in those environments is most likely out of the question.

As a result of limited support of scala.reflect on the JVM and non-existent support for
other environments, there is a strong tendency in the Scala community to attempt to
avoid runtime introspection in favor of compile-time metaprogramming. Therefore, the
main part of the value proposition of the scala.reflect framework comes from enabling

macros (chapter 4 and section 5.3).

3.1.5 Sharing metaprograms

Sharing metaprograms was stated as one of the goals for a unified metaprogramming
API, however until now (in subsection 3.1.3 and subsection 3.1.4) we have not really
shared any metaprograms. What we did was copy and paste isImmutable between

environments, achieving duplication not sharing.

In this section, we finally discuss how to write scala.reflect metaprograms that can be called
from different independent environments. In the listing below, we take isImmutable
from subsection 3.1.2 and apply several small changes.
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import scala.reflect.api.Universe

def isImmutable(u: Universe) (t: u.Type): Boolean = {
import u._

// the rest of the code taken from subsection 3.1.2

}

First, we add a new parameter of type Universe to the signature of isImmutable.
Afterwards, we change the type of the original parameter from Type to u.Type, because
as we have learned in subsection 3.1.1, elements of the scala.reflect language model
are defined inside universes as opposed to being independent top-level classes. Finally,
we import u._ to bring necessary APIs like Type, TypeSymbol and ClassSymbol in
scope in the body of the method.

This presents is an interesting asymmetry between how the scala.reflect API is consumed
from inside and from outside the universe cakes. Inside a universe (see examples from
subsection 3.1.1), all data structures and operations are available without qualification.
Outside a universe, i.e. in user metaprograms, we have to carry a universe around and
explicitly qualify reflection artifacts, which becomes a significant notational inconvenience.

In order to work around the necessity to pass universes around, users of scala.reflect
typically create their own mini-cakes parameterized by a universe that is then imported
into a scope shared by multiple helpers. Here is how an example from subsection 3.1.3
can be rewritten using this technique.

// the rest of the code taken from subsection 3.1.2

object Macros {
def impl[T](c: Context) (implicit tag: c.WeakTypeTagl[T]) = {
import c.universe. _
val helpers = new Helpers(c.universe)
import helpers._

val t = tag.tpe

if (isImmutable(t)) q"null"
else c.abort(c.enclosingPosition, t + " is not immutable")

class Helpers(u: Universe) {
import u._

def isImmutable(t: Type): Boolean = {
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b

// can add more helpers to the Helpers class

// and mone of them would need to declare a universe of their own
}

This looks like an acceptable workaround, because the cost of adding a universe parameter
and then importing it is paid only once per a library of helpers than can then be made
arbitrarily big. Unfortunately, the use of this particular helper class is going to produce
the following compilation error:

Macros.scala:10: error: type mismatch;
found : c.universe.Type
required: helpers.u.Type
if (isImmutable(t)) q"null"

This error is emitted because the Scala compiler can not remember the fact that helpers
was created from c.universe. This happens because the compiler infers type Helpers
for helpers on line 6, and that type does not carry any indication of where helpers.u
comes from. For a brief period of time, we considered tightening the typechecker to
keep this kind of information around. However, such a change may potentially lead to
non-obvious breakages in existing code, so in the end we decided against it.

As a result, metaprogrammers have to manually let the typechecker know about the type
of helpers, which should be Helpers { val u: c.universe.type }. This is quite
a mouthful, so we have come up with a workaround that completely avoids the need to
spell out the right type and forces the typechecker to infer something analogous instead.

object Macros {
def impl[T](c: Context) (implicit tag: c.WeakTypeTaglT]) = {
val helpers = new Helpers[c.universe.typel] (c.universe)
import helpers._

}
class Helpers[U <: Universe] (u: U) {

}

Here, the type of helpers ends up being Helpers [c.universe.typel, which means
that helpers.uis c.universe.type, as necessary to satisfy the typechecker. We have
to explicitly specify the type argument of the constructor of Helpers on line 3, because
otherwise the compiler will again infer a non-specific type for it, defeating the whole
purpose of the workaround.

36



3.2. Language model

This notational inconvenience associated with the particular way how scala.reflect is
organized may not seem like a serious problem, but in practice it has proven to be very
significant.

In Scala 2.10, when we added macros to the language, associated metaprograms could
only be defined as methods similar to Macros.impl from the examples above. As
a result, metaprogrammers had to work their way through understanding the error
messages and writing necessary boilerplate to help out the compiler. Before the release,
we wrote documentation explaining the issue and the workaround, and called it a day.

However, shortly afterwards we faced overwhelming user feedback that forced us to
reconsider. For one, understanding the issue and the workaround requires pretty good
command of the Scala language, so our solution was suboptimal from the educational
point of view. Moreover, the workaround feels suboptimal in the sense that it requires
boilerplate that can not be abstracted away and has to be repeated almost verbatim for
every declared macro.

Therefore, in Scala 2.11, we introduced another way to write macro-compatible metapro-
grams. On a very high level, it allows macros to directly reference methods inside
Helpers-like classes, avoiding the necessity for the workaround. Additional details on
this language feature can be found in subsection 4.3.4.

As we can see from the discussion above, scala.reflect can indeed share metaprograms
between environments, qualifying for the requirements of a unified metaprogramming
framework. Unfortunately, architectural peculiarities explained in subsection 3.1.1 make
such sharing unsatisfyingly verbose.

3.2 Language model

Now that we have become familiar with the organization of scala.reflect (subsection 3.1.1)
and have seen the three main data structures of scala.reflect - trees, symbols and types -
working together (subsection 3.1.2), we proceed to the more detailed part of the overview
of the scala.reflect framework.

In this section, we will see how scala.reflect represents Scala programs using its language
model. Our goal here will not be to provide a comprehensive list of data structures,
but to outline the most important ones and highlight their relations with each other.
Moreover, for the sake of clarity, we will not be covering operations available for the
elements of the model, leaving that to section 3.5.
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3.2.1 Overview

The language model of scala.reflect is based on compiler internals of scalac, so one of
the best ways to understand the details of scala.reflect is to observe the Scala compiler
at work and try to understand what is happening. To that end, we will now compile a
simple Scala program with private compiler flags that ask scalac to print its state to
console after certain phases of the compiler pipeline.

Here is the program that we type in a file and save to disk as Test.scala. Despite
being seemingly trivial, it illustrates plenty of peculiarities in how the Scala compiler

represents and processes programs.

object Test {
// create a list and compute its head
val xs = List(42)
val head: Int = xs.head
println((xs, head))
X

In order to compel scalac to print snapshots of its abstract syntax trees, we use
-Xprint:parser and -Xprint:typer. The -Yshow-trees-compact and -Yshow-
trees-stringified flags tell the compiler that we are interested in both stringified,
i.e. prettyprinted, and compact raw representations of the ASTs. Finally, —uniqid make
the compiler highlight trees that carry symbols. We could also use -Xprint-types to
print types of typechecked ASTs, but then we would get overwhelmed.

$ scalac -Xprint:parser -Xprint:typer -uniqid\
> -Yshow-trees-compact -Yshow-trees-stringified Test.scala

The first part of the printout demonstrates abstract syntax trees after the parser phase.
At that point, the Scala compiler has just parsed the source files and has not yet started
typechecking. Below we see a prettyprinted representation of Test.scala which is
followed by a nested sequence of data constructors detailing the underlying AST nodes.

[[syntax trees at end of parser]]// Scala source: Test.scala
package <empty> {
object Test extends scala#24.AnyRef {
def <init>() = {
super.<init>Q);
O
3
val xs = List(42);
val head: Int = xs.head;
println(scala#24.Tuple2(xs, head))
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PackageDef (Ident (TermName ("<empty>")), List(

ModuleDef (Modifiers (), TermName("Test"), Template(
List(Select (Ident(scala#24), TypeName("AnyRef"))),
noSelfType,

List(
DefDef (
Modifiers(), termNames.CONSTRUCTOR,
List(), List(List()), TypeTree(),
Block(List (pendingSuperCall), Literal(Constant(())))),

ValDef (

Modifiers(), TermName("xs"),

TypeTree (),

Apply(Ident (TermName ("List")), List(Literal(Constant(42))))),
ValDef (

Modifiers(), TermName("head"),
Ident (TypeName ("Int")),
Select (Ident (TermName("xs")), TermName("head"))),

Apply (
Ident (TermName ("println")),
List (Apply(
Select (Ident(scala#24), TermName("Tuple2")),
List(Ident (TermName("xs")), Ident(TermName("head")))))))

))))

One peculiarity of compiler internals that immediately catches the eye is that the Scala
compiler aggressively desugars programs into a normalized representation. Concretely,
even in this simple program, scalac: 1) drops original comments and formatting, 2)
wraps Test in a synthetic package (line 2), 3) makes Test inherit from AnyRef (line 3),
3) creates a synthetic constructor for Test (lines 4-7), 4) transforms a tuple literal into
a synthetic call to Tuple2 (line 10).

In the detailed part of the printout, we can see many different AST nodes, including
PackageDef, ModuleDef, Template and others. Some fragments of the printout,
namely Modifiers(...), TermName(...) and TypeName (.. .), are actually auxiliary
data structures that are not ASTs. For example, names are cached objects that come
from internal name pools that are introduced to improve compiler performance.

In addition to trees, the code above also includes symbols. We can see scala#24
appearing several times in both prettyprinted and raw representations of the program,
and the # part of it indicates that we have a tree that carries a symbol. In a nutshell,
symbols are unique identifiers that scalac uses to establish bindings. In this case,
scalac uses symbols to make sure that the synthetic identifier scala references the
standard scala package regardless of the definitions that the programmer has in scope.
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The second part of the printout shows the result of the typer phase. This phase is
the last phase of the Scala compiler frontend, so by the time it finishes, all trees are
attributed and ready to enter the pipeline that will progressively lower them and emit
executable code.

[[syntax trees at end of typerl]// Scala source: Test.scala
package <empty>#4 {
object Test#7854 extends scala#24.AnyRef#2765 {
def <init>#7942(): Test#7855.type = {
Test#7855. super.<init>#3112();
O
s

private[this] val xs#7944: List#8198[Int#1850] =
immutable#5861.this.List#8199.apply#9078[Int#1850] (42);

<stable> <accessor> def xs#7943: List#8198[Int#1850] =
Test#7855.this.xs#7944;

private[this] val head#7946: Int#1850 =
Test#7855.this.xs#7943.head#19914;

<stable> <accessor> def head#7945: Int#1850 =
Test#7855.this.head#7946;

scala#25.this.Predef#2088.println#7621(

scala#24.Tuple2#2649.apply#20019[List#8198 [Int#1850], Int#1850] (

Test#7855.this.xs#7943, Test#7855.this.head#7945))

The compiler has done quite some work in the frontend. The code has been heavily
transformed, so we had to reformat the prettyprinted output and to completely hide the
raw representation of the resulting trees in order to stay readable.

Again, it immediately catches the eye that the frontend has performed further desugaring.
In this case, it is: 1) transformation of vals into pairs of a private underlying field /
public getter (lines 44-47, 49-52), 2) full qualification of references (e.g. List has become
immutable#5861.this.List#8199 on line 45), 3) inference of unspecified types (e.g.
the type of xs on line 44), 4) transformation of some applications to apply calls (lines
45 and 55).

Another significant change that happened to original code is attribution. All eligible
trees, i.e. definitions and references, now carry symbols, which means that all bindings
in the the code are now resolved and reified. For example, we see that all references
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to Int say Int#1850, which means that all of them refer to the same definition (the
printout does not say exactly which Int is that, but additional compiler flags can elicit
that information).

Moreover, even though the printout does not show that, all trees also carry types
computed for them by the typechecker. We could ask the compiler to print those as well
via -Xprint-types, but the result would be unreadable, which is why we will show
only a small fragment of the printout with ~-Xprint-types enabled. Below we can find
a manually formatted fragment of the detailed printout for List (42), in which the
{ ... } parts indicate types of the corresponding AST nodes, with the type of List
abbreviated for clarity.

immutable#5861.this {scala#25.collection#2744.immutable#5861.typel}

.List#8199 {...immutable#5861.List#8197.typel}
.apply#9078 {[A#9079] (xs#9080: A#9079*)List#8198[A#9079]}
[Int#1850] {(xs#12731: Int#1850%)List#8198[Int#1850]}
(42) {Int#1850(42)}

{List#8198[Int#1850]}

Here we can see that every single tree has got an associated type. Even method references,
such as List.apply, have types, even though they are not even values according to the
Scala language specification. Another important observation that we can make is that
types, much like trees, carry symbols to indicate resolved bindings.

To sum it up, there are two layers of information available about code in scalac. The
first layer is syntactic, where we can only see shapes of abstract syntax trees, without
knowing what they mean. The second layer is semantic, where we can additionally ask
trees for underlying symbols and types to understand their meaning. As we have seen
earlier, scala.reflect exposes both, providing a rich model of Scala programs.

The most prominent peculiarity of compiler internals and, by extension, of scala.reflect
is pervasive desugaring. In order to be able to effectively use the language model,
the metaprogrammer has to be aware of desugarings performed both during parsing
and during typechecking. Unfortunately, some of these desugarings are irreversible, so
oftentimes there is a tradeoff between using a detailed desugared representation and a
lacking faithful representation.

3.2.2 Trees

In scala.reflect, abstract syntax trees are implemented as case classes that inherit from
the abstract class Tree that provides common functionality. In the public API, these
implementations are exposed via a laborious encoding that involves a combination of
abstract type members and abstract vals (subsection 3.1.1), so for the sake of simplicity
here we will discuss their internal representation.
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In the listing below, we can see a simplified excerpt of Trees.scala, the source file that
defines the majority of abstract syntax trees of the Scala compiler. All APIs shown in
the listing are exposed in scala.reflect.

abstract class Tree extends Product {

def pos: Position = { ... }

def setPos(pos: Position): this.type = { ... %}
def tpe: Type = { ... }

def setType(tp: Type): this.type = { ... }

def symbol: Symbol = { ... }

def setSymbol(sym: Symbol): this.type = { ... }

3

case class PackageDef (
pid: RefTree, stats: List[Tree]) extends

case class ModuleDef (
mods: Modifiers, name: TermName, impl: Template) extends

case class Template(
parents: List[Treel], self: ValDef, body: List[Tree]) extends

Syntactic information. There are several dozen AST nodes in the Scala compiler, but
they all are defined along the same lines. An AST node is a case class, whose children
are encoded in immutable fields. AST nodes do not have links to parents, which requires
metaprogrammer to maintain the parent structure manually.

Not all language features have dedicated AST nodes. Some features are encoded with a
combination of simpler AST nodes (in our example, we saw that happen to tuple literals).
Some features are represented via data structures like Modifiers that are separate
from the AST hierarchy. Finally, some features are dropped altogether (in our example,
that would be comments and formatting). This simplification and homogenization of
language features is done for coding convenience because the same AST model is shared
across almost the entire compilation pipeline. As a result, most scala.reflect trees are not
roundtrippable, i.e. prettyprinting and parsing are not inverse of each other.

Using scala.reflect, it is possible to create ASTs that violate language syntax and/or
typing rules. Data constructors are rarely strongly typed, inheritance hierarchy is open,
there is no MetaML-like typing discipline [118]. This design decision is motivated by the
fact that the same AST has to encode both high-level and low-level idioms at different
stages of compilation.
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Positions. Trees can carry positions that link them to particular locations in the
corresponding source files. By default, all trees have empty positions, but they can be
set via Tree.setPos either in the standard parser or manually by metaprogrammers.
Below we can see an simplified fragment of position API exposed in scala.reflect.

trait Position {
def source: File

def start: Int
def point: Int
def end: Int

def line: Int
def column: Int

3

Positions can be either offset positions (in which case the offset is encoded in point)
or range positions (in which case the range is encoded in start and end, with point
representing location of the caret for error messages). Unless the Scala compiler runs
in a special IDE-compatible mode, it only provides offset positions in order to save on

memory footprint.

Positions can be used as an approximate indication of the origin of a tree, but they are
generally unreliable, because there is no one-to-one correspondence between positions and
trees. Some language constructs are desugared and then multiple ASTs have the same
position. Some language constructs are not represented by AST nodes and then no ASTs
have certain positions. In these cases, manual effort is required to correlate positions
and elements of Scala syntax, and sometimes this effort amounts to reimplementing

significant parts of the parser.

Semantic information. As we have seen in section 3.2, scala.reflect trees can also
carry symbols and types to represent semantic information. We will get to the details of
these data structures later in this chapter. Here we note that both Tree.symbol and
Tree.tpe are mutable for performance reasons.

3.2.3 Symbols

Every universe has a symbol table that represents the collection of definitions known to
it. This collection can be populated in various different ways (hardcoded, loaded from a
classpath, etc), it can be set in stone or it can evolve over time - but nonetheless it is
always there. Typically, the task of populating a symbol table or a fragment thereof is
dedicated to a mirror (section 3.4).
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Symbol table are composed of symbols, i.e. unique identifiers that carry additional
metadata. Identity of symbols is based on referential equality, and names take no part in
it, which allows to model shadowing, overloading, etc. In order to find out whether a
given reference points to a given definition or whether two references mean the same,
one compares their associated symbols. This only works within the same universe -
correlation of artifacts between different universes is undefined.

Much like trees, symbols are publicly exposed via a combination of advanced Scala
features (subsection 3.1.1), so, in order to keep things simple, here we will discuss their
internal implementations. The code below represents a simplified extract from Symbols.
scala, the source file that defines symbols of the Scala compiler. Some private members
have been renamed for simplicity.

abstract class Symbol(ownerO: Symbol, posO: Position, nameO: Name) {

def owner: Symbol = { ... }
def owner_=(owner: Symbol): Unit = { ... }
def pos: Position = { ... }
def setPos(pos: Position): this.type = { ... %}
def name: Name = { ... }
def name_=(n: Name): Unit = { ... }
def info: Type = { ... }
def setInfo(info: Type): this.type = { ... }
}
abstract class TypeSymbol (ownerO: Symbol, posO: Position, ...)

extends Symbol (ownerO, posO, nameO) with TypeSymbolApi {

}

class ClassSymbol (owner0O: Symbol, posO: Position, name0O: TypeName)
extends TypeSymbol (ownerO, posO, nameO) with ClassSymbolApi {

}

The symbol table. Symbols are organized in a tree based on the notion of ownership
(represented Tree.owner). For example, a method parameter is owned by the containing
method, which itself is owned by a containing class and so on. This tree grows from
_root_, the root package. This means that in fact a symbol table is tree, but the
name “symbol table” has become pervasive among the Scala compiler developers and the
metaprogramming community, so we are going to use it anyway.
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3.2. Language model

Every symbol that potentially owns other symbols, e.g. a package that can contain
classes or a class that can contain methods, has an associated signature (represented by
Symbol.info) that, among other things, contains a mutable collection of its children.
The children collection is mutable, because implementing an immutable symbol graph
with owner/child loops would be impractical. Such collections are also usually lazy so
that the compiler does not have to load all its dependencies into its symbol table at once.

scala> :power

Power mode enabled. :phase is at typer.

import scala.tools.nsc._, intp.global._, definitions._
Try :help or completions for vals._ and power._

scala> class Test { def plus(x: Int, y: Int) = x + y }
defined class Test

scala> val test = symbolOf[Test]
test: TypeSymbol = class Test

scala> test.info
resO0: Type =
AnyRef {
def <init>(): Test
def plus(x: Int,y: Int): Int
¥

scala> test.info.decls.tolist
resl: List[Symbol] = List(constructor Test, method plus)

scala> val plus = res0(1)
plus: Symbol = method plus

scala> plus.info
res2: Type = (x: Int, y: Int)Int

scala> plus.owner
res3: Symbol = class Test

scala> resl == test
res4: Boolean = true

scala> plus.owner.owner
res5: Symbol = object $iw

The REPL printout above illustrates the structure of the symbol table. First, we obtain
a symbol that corresponds to the freshly defined class Test using the symbol0f API
(lines 9-10). This is the starting point of the exploration.
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Then, we load the signature of test and observe that it contains a list of symbols
that represents the definitions in class Test (lines 12-20). After getting to one of those
symbols (lines 22-23), we observe that its signature also contains a list of children symbols
(lines 25-26).

We conclude the exploration by getting back to test via Symbol.owner (lines 28-29),
making sure that we end up where we started (lines 31-32). Naturally, test also has an
owner (lines 34-35), which in this case is a synthetic object that REPL creates to wrap
the code being executed.

Conceptually, the outlined notion of a symbol table is quite simple, but compiler internals
complicate the situation. First, the symbol table is not just a tree (with respect to
Symbol.owner), but is actually a forest. This happens because it is possible to use the
scala.reflect API to create symbols that do not have an owner.

Moreover, there exist symbols that are not included in the children collection of their
owners. For example, symbols of local variables are owned by their enclosing methods, but
signatures of those methods only include type and term parameters, not local variables.

Despite these limitations, symbols are the only official way to traverse the definition
structure of the program in scala.reflect. Most of the time, it works well, but some
scenarios encounter significant problems. For example, because of the fact that signatures
do not contain local variables, it is impossible to go through all definitions in the program
using the symbol table alone.

Correlation with abstract syntax trees. As we can see, scala.reflect offers two
different views of Scala programs. One view consists of a collection of abstract syntax
trees that represent the program and all its dependencies (we will call it the tree view).
Another view represents a subset of the first view where symbols and their signatures
capture a subset of the structure of definitions (we will call it the symbol view).

If we run scalac with another private flag, ~Yshow-syms, we will see how both views
of the program evolve phase after phase. The printout below has been manually edited
for readability reasons.

$ scalac -Xprint:parser -Xprint:typer -uniqid -Yshow-syms Test.scala
[[syntax trees at end of parser]] // Test.scala
// see earlier printouts in section 3.2

[[symbol layout at end of parser]]
package scala#24 (final)

[[syntax trees at end of typerl] // Test.scala
// see earlier printouts in section 3.2
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[[symbol layout at end of typer]]
constructor Object#3112
object Test#7854
object Test#7855
constructor Test#7942
value <local Test>#7947
value head#7945 (<stable> <accessor>)
value head#7946 (private <local>)
value xs#7943 (<stable> <accessor>)
value xs#7944 (private <local>)
package <empty>#4 (final <static>)
package scala#25 (final)
class Int#1850 (final abstract)
method apply#20019 (case <synthetic>)
method head#19914
method println#7621
object Predef#2088
object Tuple2#2649 (<synthetic>)
package immutable#5861 (final)
class List#8198 (sealed abstract)
method apply#9078 (override)
object List#8199
type AnyRef#2765
package scala#24 (final)

We can see that immediately after parser, the tree view includes an unattributed AST
of the only source file of the program. The symbol view only contains a single symbol for
the scala package, because that symbol was used by the parser to perform the tuple
desugaring.

As the compilation progresses, the symbol view gets populated by the symbols that were
discovered while processing the ASTs of the program. For example, after typer, the
symbol view is much richer, now including the definitions introduced in the program and
the definitions referenced from the program.

From these two observations, we can conclude that the tree and symbol views can be
inconsistent with each other. After parser, the tree view is significantly richer than the
symbol view. After typer, however, the symbol view becomes more populated, because
it loads definitions of dependencies from their class files.

This inconsistency is intentional. In the JVM world, ASTs are not persisted in class files.
Therefore, without using additional mechanisms to bundle sources together with binaries,
getting access to ASTs of the classpath is impossible. As a result, the developers of the
Scala compiler decided to introduce the symbol table as a complementary view of the
program structure.
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For metaprogrammers who use scala.reflect to generate new code, this presents an signifi-
cant complication, because they oftentimes need to make sure that the synthetic trees
that they produce are consistent with the symbol table of the compiler. Unfortunately,
the compiler does not have any mechanisms built in to help out with that, so detecting
and fixing inconsistencies requires deep knowledge of compiler internals. Documenting
this knowledge is outside the scope of this dissertation, but we refer curious readers to

[14] for more information.

3.2.4 Types

Types are probably the simplest among the foundational data structures of scala.reflect.
Unlike trees, they are much more modest in number (there is barely two dozen different
types in the Scala compiler). Unlike symbols, they are not arranged in any complicated

graph structure.

Below we can see a simplified excerpt of Types.scala, the source file that defines types
of the Scala compiler. All APIs shown in the listing are exposed in scala.reflect.

abstract class Type {
def termSymbol: Symbol {
def typeSymbol: Symbol {.
def <:<(that: Type): Boolean
def =:=(that: Type): Boolean

A m

}

case class SingleType(pre: Type, sym: Symbol) extends
case class TypeRef (pre: Type, sym: Symbol, args: List[Typel) extends

We observe that, unlike trees and symbols, types are immutable. Trees have mutable
attributes, symbols have mutable signatures, but the only mutable fields that types have
are private caches. Types are created much more commonly than trees and symbols, so
they are aggressively cached and, consequently, can not be mutable.

There are uncanny parallels than can be drawn between how trees and types are modelled
in scala.reflect. Both of them implement elements of the language model, both of them
represent bindings with symbols, both of them sometimes need to be traversed recursively.

Nonetheless, trees and types are implemented via different case class hierarchies. The
rationale behind this decision is the fact that not all types can be represented with
syntax (e.g. symbol signatures or intermediate type variables created by type inference).
As a result, this leads to code duplication in various pieces of the metaprogramming
infrastructure that deal with trees and types.
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3.2. Language model

In the language model, types serve three major roles: 1) specifying types of ASTs, 2)
specifying signatures of symbols, 3) modelling type system concepts. Let us see how each
of these roles is carried out.

Specifying types of ASTs. As illustrated by our running example, all attributed trees
have types associated with them. According to subsection 3.2.2, one can use Tree.tpe
to access the type of a given tree.

In the REPL printout below, we explore this aspect of the scala.reflect API. In order
to conveniently work with trees, we use the q"..." notation that creates ASTs from
Scala-like code snippets (subsection 3.3.2). In order to attribute trees, we use the typed
method available in the power mode of the REPL.

scala> :power

Power mode enabled. :phase is at typer.

import scala.tools.nsc._, intp.global._, definitioms._
Try :help or completions for vals._ and power._

scala> val list = q"List(42)"
list: Tree = List(42)

scala> list.tpe
resO: Type = null

scala> val tlist = typed(list)
tlist: Tree = immutable.this.List.apply[Int] (42)

scala> tlist.tpe
resl: Type = List[Int]

scala> showRaw(tlist.tpe, printIds = true)

res2: String = TypeRef (
ThisType(scala.collection.immutable#5861),
scala.collection.immutable.List#15177,
List (TypeRef (ThisType(scala#25), scala.Int#1850, List())))

On lines 6-7, we create a tree that corresponds to List (42). By default, trees created
by quasiquotes are unattributed, so 1ist.tpe returns null (lines 9-10). Typechecking
produces an attributed tree (lines 12-13) which has a correct type associated with it (line
14-15).

Using the showRaw API, we can inspect the structure of the resulting TypeRef, observing
that it has a reference to the class symbol List and a type argument which is itself a
TypeRef. The first part of a TypeRef is important for modelling references to nested
types, but in our case, where both List and Int are top-level types, it trivially points
to the owner of the underlying symbol.

49



0 O U W

T o T e
© 0 O ULk W N = O ©
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Specifying signatures of symbols. Most symbols in scala.reflect have signatures that
are stored in Symbol. info. These signatures are also modelled with types. In the REPL
printout below, we can see a few examples, where class signatures are represented with
ClassInfoType and method signatures are represented with MethodType.

scala> class Test { def plus(x: Int, y: Int) = x + y }
defined class Test

scala> val test = symbolOf [Test]
test: TypeSymbol = class Test

scala> showRaw(test.info)

resO: String = ClassInfoType(
List (TypeRef (ThisType (scala#25), TypeName ("AnyRef")#2765, List())),
Scope (termNames .CONSTRUCTOR#218701, TermName ("plus")#218702),
Test#218699)

scala> val plus = test.info.member (TermName("plus"))
plus: Symbol = method plus

scala> showRaw(plus.info)

resl: String = MethodType (
List(TermName ("x")#218704, TermName("y")#218705),
TypeRef (ThisType (scala#25), scala.Int#1850, List()))

Modelling type system concepts. Types are also used by the compiler internally to
perform typechecking, implicit search, type inference, etc. Therefore, type encapsulate
common notions of the Scala type system. For example, Type . <:< represents a subtype
check, Type.members returns a list of members with respect to linearization, Type.
widen converts from singleton types to their underlying types, and so on.

3.3 Notations

The language model described in section 3.2 forms the backbone of scala.reflect, but
working directly with its data structures is not always very convenient. For instance, as
we have seen above, it is not uncommon for relatively simple code snippets to explode into
deeply nested abstract syntax trees. That is why scala.reflect includes several DSL-like
facilities to simplify manipulation of the underlying data structures.

A very popular approach to notations is quoting, in which language syntax put in a
special context is used as a DSL that produces a corresponding element of the language
model. Quasiquoting provides an additional capability to enrich quotes with holes, i.e.
locations where other artifacts can be inserted. All notations described in this section
are based on the notion of quasiquoting.
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3.3.1 Reify

In addition to Tree, which does not have a static type, scala.reflect supports Expr [T],
which represents a statically-typed wrapper over Tree.

Below we can see a simplified definition of Expr. There we can see Expr.tree that
exposes the wrapped tree, as well as two magic methods Expr.splice and Expr.value.
The former will be used later in this chapter, and the latter is important for advanced
aspects of our macro system (subsection 4.3.1).

trait Expr[+T] {
def tree: Tree
def splice: T
val value: T

¥

Exprs can be created either manually, by wrapping abstract syntax trees and accompa-
nying type tags (subsection 3.3.3) in a statically-typed shell, or automatically, by calling
the reify method provided by scala.reflect. The manual approach is tedious and can
subvert static guarantees, so it is discouraged.

reify is a magic method that takes a well-typed expression of type T and produces an
equivalent Expr [T]. Reify was inspired by on-demand tree reification via Code [T] from
section 2.3 and was initially using the same infrastructure that used to implement Code
in the previous versions of Scala.

Syntactic aspect. The main purpose of reify is reproducing the syntactic structure of
a given expression for runtime introspection. Of course, this works within the boundaries
supported by the language model. For example, reify performs desugarings and does not
save comments and formatting.

scala> import scala.reflect.runtime.universe. _
import scala.reflect.runtime.universe._

scala> val list42 = reify(List(42) /* list of forty-two */)
list42: Expr[List[Int]] = Expr[List[Int]](List.apply(42))

scala> list42.tree
resO: Tree = List.apply(42)

scala> showRaw(list42.tree)

res2: String = Apply(
Select(Ident(scala.collection.immutable.List), TermName("apply")),
List(Literal(Constant (42))))
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In order to experiment with the functionality provided by reify and exprs, we import a
runtime universe on lines 1-2, which makes it possible to make use of the entire spectrum
of scala.reflect APIs.

Afterwards, we create an expr that corresponds to List (42), a part of our running
example from section 3.2. We can see that much like the internal representation used by
the Scala compiler after typer, the expr looks desugared (line 8), which is unsurprising
given that the underlying technology the same.

Composition of exprs, i.e. composition of underlying trees, is achieved via Expr.splice.
Whenever, an expr is spliced into an argument of a reify call, the call to splice is
dropped and its expr is inserted into the result. Since Expr.splice is statically typed,
it is impossible to create syntactically or semantically invalid trees with reify unless the
programmer intentionally subverts static types of exprs using asInstance0Of or passes

a nonsensical tree in a manually created expr.

scala> reify {
| val xs = list42.splice
| val head = xs.head
| println((xs, head))
| 3
resl: Expr[Unit] = Expr[Unit]({
val xs = List.apply(42);
val head = xs.head;
Predef.println(Tuple2.apply(xs, head))
b

Semantic aspect. Reify not only saves syntactic information about the tree representing
its argument, but also remembers some semantic information. Apart from the type of the
entire expression, reify does not retain types, but it does retain symbols of free variables.
Note how in the listing below reify has the symbols for Int, x and List, but not for y,
which is defined locally.

scala> {

| val x = 42
| reify {
| val y: Int
| List (y)
|
|

]
~

}
}
res2: Expr[List[Int]]
Expr[List [Int]] ({
val y: Int = x;
List.apply(y)
b
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scala> showRaw(res3.tree, printIds = true, printTypes = true)
res3: String = Block(List(
ValDef (
Modifiers(), TermName("y"), Ident(scala.Int#391),
Ident (TermName ("x")#10175))),

Apply(
Select (
Ident (scala.collection.immutable.List#2340),
TermName ("apply")),
List (Ident (TermName("y")))))

In order to understand how this works, let us consider reify as a serializer for attributed
syntax trees of scala.reflect. This intuition explains how reify operates, and why it is so
selective about the attributes that it stores.

As explained in section 2.2, scalac saves the top-level part of its symbol table in JVM
class files produced during compilation of Scala programs. Afterwards, the runtime
universe loads the saved part of the symbol table at runtime (subsection 3.4.4), and
reified trees can look up the correct symbols.

Below we can see a simplified fragment of code generated for reify (List (42)). In that
snippet, u and m stand for a universe and a mirror used to instantiate the corresponding
expr. Note how the compiler emits a call to Mirror.staticModule (section 3.5) using
a fully-qualified name in order to look up a symbol for List in the symbol table of the
runtime universe.

u.Apply(
u.Select (
u.Ident(m.staticModule("scala.collection.immutable.List")),
u.TermName ("apply")),
List(u.Literal(u.Constant (42))))

Unfortunately, even though scalac saves the information about top-level definitions
and their members, it does not save local definitions in order to reduce class file size.
This makes it impossible to reliably refer to local symbols in a runtime universe, which
explains why reify does not persist references to such symbols.

However, the compiler does a special trick for local symbols that are free in the reified
expression. As a best effort solution, reify creates a special kind of symbol that only
remembers a few simple facts about the free variable.

Here is a simplified fragment of code generated for reify (List (x)), where x is an
integer free variable defined locally. Note how newFreeTerm takes both “x” and x,
capturing both the compile-time and runtime aspects of the free variable. As a result,
users of the expr can obtain both the type and the value of x.
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val free$xl = u.internal.reificationSupport.newFreeTerm("x", x, ...)
free$xl.setInfo(m.staticClass("scala.Int").asType.toType)
u.Apply(

u.Select(

u.Ident(m.staticModule("scala.collection.immutable.List")),
u.TermName ("apply")),
List(u.Ident (free$x1)))

This reasoning also explains why reify does not store types of reified subtrees. These
types may reference local symbols defined inside the argument of reify, and those symbols
are out of the question.

Notation. As a notation for syntax trees, reify works pretty well for simple snippets of
code, but unfortunately it does not scale well to the metaprogramming style prevalent in
the Scala community.

Practical evaluation of reify as the notation powering Scala macros (chapter 4) has found
several significant limitations. Concretely, reify:

e Imposes additional typing discipline. Exprs are more heavyweight to pass around
than plain syntax trees, because they are statically typed. As a result, metaprograms
that use reify are more verbose than their counterparts that work with trees.

e Can only express well-typed snippets of code. As the size of a metaprogram grows,
it becomes increasingly important to modularize - both the metaprogram and
the trees that it manipulates. Reify prevents modularization, because it makes it
impossible to pull apart definitions and references to these definitions into separate
quotes.

e Provides limited composability. While string composition is too permissive, allowing
too many locations to insert code snippets into, reify allows too few. Among others,
it is impossible to splice definitions if they are supposed to be referenced, it is
impossible to splice dynamically computed references, it is impossible to splice lists
of trees, etc.

e Can only support construction. Method calls can not be used in pattern position in
Scala, which means that reify can only be used to construct, but not to deconstruct
syntax trees.

To put it in a nutshell, we initially planned that reify will be scala.reflect’s notation
of choice for abstract syntax trees. However, based on user feedback, we realized that
reify is insufficient for practical applications of scala.reflect. As a result, shortly after
the initial release of scala.reflect, we started working on a new notation to replace reify.
Results of our work can be found in subsection 3.3.2.
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3.3.2 Quasiquotes

Quasiquotes are custom string interpolators [114] that construct and deconstruct abstract
syntax trees according to string templates. In comparison with reify (subsection 3.3.1),
quasiquotes are much more flexible and can also be used in pattern matches. As a result,
quasiquotes are now the go-to notation for tree manipulations in scala.reflect.

As part of his master studies, Denys Shabalin implemented a prototype of quasiquotes
and then shipped this implementation in Scala 2.11. Below we provide a brief overview
of Denys’s contributions, leaving the full story to [103] and [104].

Syntactic aspect. Quasiquotes feature a family of interpolators that cover five syntactic
categories: statements, types, cases, patterns and enumerators. Some syntactic elements
(e.g. import clauses, import selectors and modifiers) do not have dedicated trees, so they
can not be expressed with quasiquotes.

scala> import scala.reflect.runtime.universe. _
import scala.reflect.runtime.universe._

scala> q"List(42)"
resO: Tree = List(42)

scala> tq"List[Int]"
resl: Tree = List[Int]

scala> cq"List(x) => x"
res2: CaseDef = case List((x @ _)) => x

scala> pq"List(x)"
res3: Tree = List((x @ _))

scala> fq"x <- List(42)"
res4: Tree = ‘<-‘((x @ _), List(42))

Composition of trees is expressed via built-in functionality of string interpolation. It is
possible to insert both single trees (unquoting, line 7 below) and multiple trees (unquote
splicing, line 4 below) into bigger trees.

scala> val args = List(q"42")
args: List[Literal] = List (42)

scala> val 1list42 = q"List(..$args)"
list42: Tree = List(42)

scala> q"println($list4d2)"
res5: Tree = println(List (42))
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scala> q"class $list42"
<console>:38: error: Name expected but Tree found
q"class $list42"

scala> q"val weird: $list42 = 777"
res7: ValDef = val weird: List(42) = $qgmark$gmark$qmark

Since quasiquotes are custom string interpolators, they can restrict the locations that
allow unquoting and splicing according to the Scala grammar. This validation happens
at compile time. For example, an attempt to insert a tree into a location that expects a
name on line 10 results in a compilation error on lines 11-13.

Since quasiquotes are just a notation for syntax trees, unlike reify which comes with a
dedicated datatype, safety guarantees are limited to what is provided by the underlying
AST. For instance, in scala.reflect it is possible for a result of composition of two trees
to be nonsensical according to Scala grammar (lines 15-16), so scala.reflect quasiquotes
have the same property.

String interpolation also supports pattern matching, so quasiquotes can be used to
deconstruct syntax trees. This is one the main improvements over reify (subsection 3.3.1),
which provided no way to improve pattern matching experience. This was one of the
main reasons why the introduction of quasiquotes was enthusiastically welcomed by the
Scala community.

scala> val 1list42 = q"List(42)"
list42: Tree = List(42)

scala> val g"$fn(..$args)" = list4d2
fn: Tree = List
args: List[Tree] = List(42)

Unquoting and unquote splicing are type-directed. By providing instances of Liftable
and Unliftable typeclasses for given types, users can insert and extract values of those
types, even if they are not syntax trees. Lifting and unlifting enable a convenient notation
to convert between simple data structures (lists, maps, etc) and trees. Scala.reflect
provides instances of Liftable and Unliftable for primitives and popular standard
library types such as tuples, collections and others.

scala> implicit def 1iftInt[T <: Int]: Liftable[T] =
| Liftable {
| v => Literal(Constant(v))

| X
liftInt: [T <: Int]=> Liftable[T]
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scala> q"${42}"
res8: Tree = 42

scala> implicit def unliftInt: Unliftable[Int] =
| Unliftable {
| case Literal(Constant(v: Int)) => v

|}
unliftInt: Unliftable[Int]

scala> val q"${fortyTwo: Int}" = resl
fortyTwo: Int = 42

Semantic aspect. Quasiquotes deliberately allow ill-typed code snippets. As a result, it
is unclear how to attach semantic information to trees created with quasiquotes, because
quoted code does not have semantic information in the first place. We have made several
attempts at this conundrum.

We tried to typecheck speculatively and then, in case of success, attach semantic in-
formation to the result. This ran into two difficulties. First, because of desugarings,
scala.reflect makes it really hard to correlate untyped and typed trees, which meant that
reliably attaching semantic information after a successful typecheck was very difficult.
Secondly, this design creates ample opportunities for confusion. Minor changes or typos
in quoted snippets may lead to major impact on the result.

We tried to perform name resolution without doing full-blown typechecking and then save
semantic information about established bindings. Unfortunately, it turned out that in
Scala name resolution can not be performed without typechecking. Scala allows wildcard
imports from arbitrary terms (e.g. as explained in subsection 3.1.1, the omnipresent
import scala.reflect.runtime.universe._ is an import from a regular value),
so name resolution needs the result of typechecking such terms in order to proceed.

As a result, at the time of writing, trees created with quasiquotes do not contain any
semantic information. Recent research into semantic quasiquotes by Lionel Parreaux
[92] may provide ways to remedy the situation, but at the moment such functionality is
not available in the standard distribution of the language. Nonetheless, based on our
experience with reify (subsection 3.3.1), we consider the resulting gain in flexibility to be

worth giving up static guarantees.

From the discussion above, we can see that quasiquotes have been a major improvement
over reify in the areas of modularity, flexibility and pattern matching. The only downside
of quasiquotes is the lack of semantic information, but that has not prevented quasiquotes
from becoming the AST notation of choice in scala.reflect.
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3.3.3 TypeTags

TypeTag is a magic typeclass whose instances wrap a scala.reflect Type representing
their type parameter. The main use case for type tags is carrying representations of type
parameters to metaprograms executed at compile time (subsection 4.3.2).

Much like exprs (subsection 3.3.1), type tags can be created either manually, by wrapping
an underlying type in a statically-typed shell, or automatically, by relying on automatic
derivation of TypeTag instances provided by scala.reflect. The manual approach is
tedious and can subvert static guarantees, so it is discouraged.

When an instance of TypeTag is required, and there is none in scope, the Scala compiler
generates one on the fly. In this section, we will call this process materialization, and later
in the dissertation, we will see how it generalizes to arbitrary type classes (section 6.1).

scala> import scala.reflect.runtime.universe. _
import scala.reflect.runtime.universe._

scala> def tagl[T](implicit t: TypeTaglT]) =t
tag: [T](implicit t: TypeTagl[T])TypeTagl[T]

scala> tagl[List[Int]]
resO: TypeTagl[List[Int]] = TypeTaglscala.List[Int]]

scala> res0O.tpe
resl: Type = scala.List[Int]

Type tags give rise to a convenient notation to express scala.reflect types. The typeQOf
oneliner function requests a type tag and them immediately unwraps it, returning an
underlying type.

scala> def typeOf[T](implicit tag: TypeTaglT]) = tag.tpe
typeOf: [T](implicit tag: TypeTagl[T])Type

scala> typeOf [List[Int]]
res2: Type = scala.List[Int]

Scala.reflect provides two kinds of type tags: WeakTypeTag and TypeTag. The former
can reify all types, whereas the latter only reifies types that do not contain references
to untagged type parameters and abstract type members and produces a static error
otherwise. This distinction is helpful to make sure that chains of generic methods correctly
propagate tags across the call graph.

scala> def generic[T: TypeTagl(x: T) = implicitly[TypeTaglT]].tpe
generic: [T](x: T)(implicit evidence$1l: TypeTagl[T]) Type
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scala> def goodForwarder[T: TypeTag]l(x: T) = generic(x)
goodForwarder: [T](x: T)(implicit evidence$l: TypeTagl[T])Type

scala> goodForwarder (List (42))
res7: Type = List[Int]

scala> def badForwarder[T](x: T) = generic(x)
<console>:39: error: No TypeTag available for T
def badForwarder[T](x: T) = generic(x)

Unlike with exprs (subsection 3.3.1) which require a magic function to express composition,
composition of type tags happens automatically inside the implementation of type tag
materialization.

When materializing a type tag, the compiler traverses its structural parts and performs
recursive lookup of TypeTag instances for them. This means that if there is already
a type tag in a scope, it will be automatically picked up by any materializations that
involve the associated type. Such composition is guaranteed to be well-typed if the
metaprogrammer does not lie about static types of type tags using asInstance0f or
manual type tag creation.

scala> def listTagl[T] (implicit t: TypeTaglT]) = taglList[T]]
listTag: [T](implicit t: TypeTagl[T])TypeTag[List[T]]

scala> listTag[Int]
res3: TypeTagl[List[Int]] = TypeTaglscala.List[Int]]

scala> res2.tpe
res4: Type = scala.List[Int]

Type tags preserve semantic information using a similar strategy to reify, with free
variables persisted via symbols. Unfortunately, unlike reify that can avoid persisting
local symbols, type tags do not have this luxury, because types consist of symbols
(subsection 3.2.4). While simple types that refer to global definitions work like reify,
more complicated types that involve refinements and existentials must preserve local
symbols because of the way how they are encoded in compiler internals.

As a result, the implementation of type tags has to serialize an approximation of the
relevant section of the symbol table, leading to partially correct results or even in spurious
compilation failures. This is a big conceptual flaw of the current implementation that can
not be fixed without a significant upgrade to how the Scala compiler serializes its symbol
table, and that is highly unlikely given how risky this change will be in a production
compiler.
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As a notation for types, type tags are similar to reify. Since they work only for statically-
typed code, their composability is limited and so is their ability to construct types whose
shape is not known in advance.

Moreover, analogously to reify, type tags can not be used to take types apart. While the
former shortcoming manifests itself much more rarely than the problem with reify (the
structure of types is typically much simpler than the structure of trees, so composition is
needed more rarely), the latter is a serious problem.

To put it in a nutshell, type tags are a useful tool, since they can often simplify code that
manipulates types. Unfortunately, their area of applicability is limited, because they do
not work well with compound and existential types, and they do not support pattern
matching. Since scala.reflect types must contain semantic information, improving on type
tags is very challenging, and our improvement entailed designing a new metaprogramming
framework (chapter 8) that represents types with their syntax (section 8.2), and therefore
can use quasiquotes to manipulate types (section 8.3).

3.3.4 Hygiene

The notion of hygiene has been widely popularized by the Lisp community. A code
generator is called hygienic if it avoids name clashes between regular and generated code.

As numerous experience reports show, hygiene is of great importance to code generation,
because name clashes are often non-obvious and lack of hygiene might manifest itself
in subtle ways. However, sometimes it may be practically useful to violate hygiene and
establish bindings across reflection artifacts, so facilities to work around hygiene may be
beneficial.

Hygiene is especially useful for quoted notations, because code in quotes looks similar to
regular code. This similarity suggests an intuition about lexical scoping that may not
hold, because quotes may be deconstructed, may be inserted into other quotes, etc.

In this chapter, we adapt the notion of hygiene to fit the context of a metaprogramming
framework whose functionality goes beyond code generation.

We say that a particular facility for composition of code snippets of a particular kind is
hygienic if it prevents the following two kinds of name capture without explicit effort
from a metaprogrammer: (A) when a definition in an enclosing snippet binds a reference
in an inserted snippet, (B) when a definition in an inserted snippet binds a reference in
an enclosing snippet.

We say that a particular kind of code snippets is hygienic if all possible facilities for their
composition are hygienic.
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Statically-typed notations. The simplest way to avoid bindings between different code
snippets is to establish bindings in advance, upon snippet creation. This can be achieved
when code snippets are well-typed, which is guaranteed for reify (subsection 3.3.1) and
type tags (subsection 3.3.3).

We observe that exprs created by reify are hygienic. Exprs can only be created and
composed via reify, and during that composition neither (A) nor (B) are possible.
Bindings to free variables can not get corrupted, because they are saved in symbols
during reification. Bindings to local variables can not get corrupted, because: 1) reify can
not take exprs apart, 2) splices are expressions not statements, so they can not introduce
new variables into the scope where they are inserted.

We observe that type tags created by materialization are hygienic. Type tags can only be
created and composed via materialization, and that makes both (A) and (B) impossible.
Since materialization saves symbols for all bindings, bindings can not get corrupted.

Hygiene in exprs and type tags can be subverted, because they can manually created
from naked trees and types. This style of metaprogramming lacks static guarantees
provided by reify and materialization, so it is typically discouraged.

Untyped notations. Quasiquotes (subsection 3.3.2) allow ill-typed code snippets by
design, so for them establishing bindings in advance is impossible. As a result, at the
moment quasiquotes are unhygienic.

Bringing hygiene to quasiquotes is an important element of future work. In this area, it is
conventional to look for inspiration in hygienic macro systems of Lisp-family programming
languages [69, 70, 40, 24, 51, 50].

In his dissertation [101], Denys Shabalin applied the hygiene algorithm based on renamings
[51] to a simple Scala-like language. Scaling these results to full Scala seems to be a
promising direction for future research.

Another interesting direction is to consider the hygiene algorithm based on sets of
scopes [50] that has been recently developed as a successor for [51]. This new algorithm
has already been successfully used [31] in Sweet.js [32]. Tim Disney, the author of
Sweet.js, reports that the implementation of hygiene based on sets of scopes is “mostly
understandable” and faster.
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3.4 Environments

In scala.reflect, environments are represented with universes (subsection 3.1.1). For every
supported environment, there is a special subclass of scala.reflect.api.Universe
that provides an implementation of the abstract language model for this particular

environment.

Universe is a massive class which at the moment of writing inherits from twenty traits.
Split over these traits are several hundred public APIs, so implementing a universe is a
very challenging task.

abstract class Universe extends Symbols
with Types
with FlagSets
with Scopes
with Names
with Trees
with Constants
with Annotations
with Positions
with Exprs
with TypeTags
with ImplicitTags
with StandardDefinitions
with StandardNames
with StandardLiftables
with Mirrors
with Printers
with Liftables
with Quasiquotes
with Internals

While a universe provides an infrastructure for the language model and implements
operations that work with elements of the model, it does not know how to populate a
symbol table (subsection 3.2.3) that corresponds to a particular environment. This is
the job for a dedicated entity called Mirror.

Below we can find a simplified definition of Mirror from scala.reflect that captures the
essence of mirrors in the scala.reflect framework. There we can see that a mirror links
to an enclosing universe and provides a symbol that corresponds to the root package
of Scala programs (_root_). From there, using symbol signatures, we can reach all
top-level definitions and all their members. Unfortunately, because of the way how
compiler internals implement symbol tables, mirrors cannot help with looking up local
symbols (subsection 3.2.3).
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abstract class Mirror {
val universe: Universe
val RootPackage: universe.ModuleSymbol

Every universe is accompanied with one or more mirrors. There is always a rootMirror
that reflects the foundational definitions from the standard library, as well as zero or
more additional mirrors. Additional mirrors are necessary if an environment can define
subenvironments that correspond to different classpaths. In that case, such mirrors are
obtained in an implementation-specific way.

trait Mirrors {
self: Universe =>

type Mirror >: Null <: scala.reflect.api.Mirror
val rootMirror: Mirror

}

In this chapter, we will discuss how the metaprogramming API provided by Universe
and Mirror is implemented for different environments. We will find out the peculiarities
of how particular environments implement the unified API and will outline platform-
dependent extensions.

3.4.1 Scala compiler

Metaprograms that run against the Scala compiler are executed in the inversion-of-
control style, i.e. instead of a programmer instantiating a universe and running their
metaprograms against that universe, a programmer registers their metaprograms to
executed inside the compiler.

The Scala compiler exposes three kinds of extension points: 1) compiler plugins that can
register custom phases to run after normal phases (section 2.4), 2) typer plugins that can
register callbacks invoked at specific points of the internal implementation of the typer
phase (outside of the scope of the dissertation), 3) macros that run when the typechecker
encounters usages of specially defined methods, types, annotations, etc. (chapter 4 and
chapter 5). At the time of writing, only macros are written against scala.reflect, whereas
other extensions - compiler and typer plugins - utilize the entirety of compiler internals.

The Scala compiler, i.e. scala.tools.nsc.Global, is a scala.reflect universe. This is
unsurprising, since scala.reflect has been created by extracting and refining the function-
ality of compiler internals (subsection 3.1.1).
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There is just one mirror, i.e. a root mirror, associated with the Scala compiler. It reflects
the combination of the classpath of the compilation and the sourcepath constituting the
underlying compilation run.

Since language models of scala.reflect and compiler internals are so similar, execution of
scala.reflect metaprograms inside the Scala compiler is trivial. As long as metaprograms
conform to the expectations of compiler internals, e.g. utilize correct desugarings
(section 3.2) and keep the symbol table in sync with generated code (subsection 3.2.3),
everything works well. Since the Scala compiler can oftentimes be very picky, familiarity
with compiler internals is required for effective use of scala.reflect.

3.4.2 Dotty

Dotty [42] is a research platform for new language concepts and compiler technologies for
Scala, designed to eventually succeed the Scala compiler. Dotty has not yet shipped, but
it can already compile the standard library and is rapidly approaching an initial release.

The focus of Dotty is mainly on simplification. It removes extraneous syntax (e.g. no
XML literals), and tries to boil down Scala’s types into a smaller set of more fundamental
constructors. The theory behind these constructors is researched in DOT [2], a calculus
for dependent object types.

Dotty features a brand new implementation of Scala, including an independent frontend
and a compilation pipeline that is significantly different from the Scala compiler.

Therefore, Dotty needs an integration layer to adapt its internal functionality to the API
required by Universe. Unfortunately, developing such a layer seems infeasible. Huge
API surface, overcomplicated language model, undocumented invariants - this all makes
implementing Universe look like an insurmountable task.

As a result, Dotty does not support and does not plan to support scala.reflect. Instead,
we created scala.meta, a new metaprogramming framework designed to enable third-party
implementations (chapter 8) and are relying on it to make it possible for macros and
other important metaprograms to run on Dotty.

3.4.3 IDEs

There are three major IDEs in the Scala community: IntelliJ [65], Eclipse [99] and
ENSIME [44].

Eclipse and ENSIME internally use the presentation compiler, i.e. an instance of a
slightly modified Scala compiler that runs in a daemon mode. Most of the information
from subsection 3.4.1 applies here, except for the fact that the presentation compiler is
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particularly capricious. Because of its continuous nature and the necessity to handle
incomplete programs, the presentation compiler has additional undocumented expec-
tations on how metaprograms should communicate with it. As a result, some macros
that run correctly in the Scala compiler, can terminate with errors when executed in the
presentation compiler.

IntelliJ features its own frontend for Scala, developed independently from the Scala com-
piler. Therefore, much like Dotty, IntelliJ struggles with running scala.reflect metapro-
grams. After an unsuccessful attempt to remedy the situation, we decided to forgo support
for scala.reflect in IntelliJ and instead focus on support for scala.meta (section 8.4).

3.4.4 JVM

scala.reflect.runtime.universe.JavaUniverse is a scala.reflect universe that
uses JVM reflection (section 2.1) to implement the scala.reflect API. Unlike the Scala
compiler, which uses the compilation classpath to populate its symbol table, a runtime
universe fills in its symbol table using JVM class loaders.

There is a singleton instance of JavaUniverse called scala.reflect.runtime.
universe. The root mirror of this universe is automatically created from the class loader
that contains the standard library, whereas other mirrors can be created on demand by
passing a class loader to JavaUniverse.runtimeMirror.

This creates an interesting arrangement in which there exists a singleton universe with a
singleton symbol table that is shared between multiple mirrors. Every mirror has its own
copy of package symbols including root packages (signatures of these symbols contain
information about definitions residing in packages, so we can not share these symbols),
whereas other top-level symbols are shared if they correspond to the same class. This
ties symbol identity to class identity established by class loaders.

The implementation the runtime universe shares a significant chunk of code with the
Scala compiler. When we were extracting the scala.reflect API from compiler internals
(subsection 3.1.1), we modularized a sizeable part of the Scala compiler that handles
classpath management and other common functionality (loading of Scala signatures, type
system abstractions, etc) into a separate module, and we used that module to build the
runtime universe.

The differences between the Scala compiler and the runtime universe are caused by the
decision to use class loaders instead of classpaths.

First, unlike classpaths, class loaders do not provide access to classfiles, so we had to
replace the logic of class file parsing implemented in the compiler with the logic that
does the same based on the java.lang.Class API provided by the JVM. This worked,
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because in both cases the majority of metadata is encoded in binary Scala signatures
(section 2.2), and decoding Scala signatures does not require any special APIs.

Secondly, unlike classpaths, class loaders do not allow eager enumeration of package
contents. This makes it impossible to reliably list members of language model elements
that stand for packages. In practice, this is less of a problem that it may seem (because
it is still possible to resolve fully-qualified names), but nevertheless it remains a glaring
hole in introspective capabilities of the runtime universe.

The main implementation challenge came from thread safety. Historically, the Scala
compiler has never been thread-safe, because key elements of its language model, e.g.
symbol signatures (subsection 3.2.3), were always mutable. However, this has not been a
problem, because compile-time metaprograms are run in an inversion-of-control style,
with the compiler launching them in singlethreaded mode.

Runtime metaprograms can be launched in multithreaded mode, so for runtime universes
the lack of thread safety has become an issue. We made several attempts at fixing data
races, introducing thread-local variables, using lock-free programming and fine-grained
locks - all without much progress. The only approach that ended up being practical was
a global lock that the runtime universe has to acquire whenever it performs a potentially
side-effecting operation. This is clearly unsatisfying.

To put it in a nutshell, we have been able to reuse the codebase of the Scala compiler to
deliver a universe that can execute scala.reflect metaprograms at runtime. Unfortunately,
the limitations of the underlying technologies (inability to enumerate definitions in class
loaders and thread-unsafety of the Scala compiler) have negatively affected usability of
the runtime universe.

3.4.5 JavaScript

JVM is the main target platform for Scala, but it is not the only one. In the last several
years, Scala.js [34] has gained a lot of traction.

Even though Scala.js is impressively compatible with Scala, faithfully mapping pretty
advanced features like method overloading and mixin composition, its support for runtime
reflection is very limited. The primary reason for that is the presence of a whole-program
optimizer that features global reachability and dead code elimination, aggressive inlining,
class hierarchy analysis, stack allocation, and other compile-time optimizations. As it
works, the Scala.js optimizer can significantly change the shape of the program, removing
methods and entire classes if they end up being unused.

The only pieces of JVM reflection (section 2.1) supported in Scala.js are a few methods
that are needed to implement core functionality of the standard library. There exists
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a Scala.js linker plugin [33] that provides additional functionality like the ability to
instantiate classes and objects by fully-qualified names, but its targets need to be
specified explicitly, otherwise the functionality will be unavailable.

This makes it impractical to implement a Scala.js universe for scala.reflect. Instead, the
focus of the Scala.js community was to phase out usage of idioms that require runtime
reflection and instead do compile-time metaprogramming (chapter 4 and chapter 5).

3.4.6 Native

Scala Native [105] is an emerging LLVM-based backend for the Scala compiler that
transforms Scala sources into native code. Its internal architecture is quite similar
to Scala.js, with heavy focus on whole-program optimizations and minimal reflection
facilities. This makes it impractical to implement a Scala Native universe for scala.reflect.

3.5 Operations

In this section, we perform a practical exploration of the operations supported by the
scala.reflect API. In the REPL session below, we will see examples of using the most
common functionality of the framework.

We start the exploration with a wildcard import from the runtime universe. This is the
easiest way to get acquainted with scala.reflect, building intuitions that can be reused
when doing compile-time metaprogramming with macros (chapter 4 and chapter 5).

scala> import scala.reflect.runtime.universe. _
import scala.reflect.runtime.universe._

scala> val mirror = runtimeMirror(getClass.getClassLoader)
mirror: Mirror =

In addition to the functionality provided by Universe, we will also be using several
extensions implemented in a standalone module called ToolBox. Toolboxes are only
available for a runtime universe, but their APIs are also available in Context that is
provided to compile-time metaprograms (section 4.5).

scala> import scala.tools.reflect.ToolBox
import scala.tools.reflect.ToolBox

scala> val tb = mirror.mkToolBox ()
tb: ToolBox[universe.type] =

Trees. There are three ways to obtain trees: 1) parse a code snippet expressed as a
string, 2) use quasiquotes (subsection 3.3.2), 3) receive a tree from the environment.
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scala> val someString = "List(42)"
someString: String = List(42)

scala> tb.parse(someString)
res0: Tree = List(42)

scala> q"List(42)"
resl: Tree = List (42)

scala> tq"List[Int]"
res2: Tree = List[Int]

Trees can be prettyprinted with: 1) toString, which produces a string representation
of the tree in a Scala-like notation, 2) show, which is similar to toString, but provides
several flags to control printing of underlying symbols, types, etc, 3) showRaw, which
exposes the case class structure of the underlying tree and supports flags similar to show.

None of these facilities can generate compilable Scala code, because of the desugarings
that the Scala compiler performs on abstract syntax trees (subsection 3.2.2).

Note how in the example below the Scala compiler internally models the nullary primary
constructor of class C with a synthetic method called <init>. Desugarings like this sig-
nificantly complicate prettyprinting. This has led to the development of 4) the showCode
prettyprinter that does its best to strip off some of the most invasive desugarings.

scala> show(q"class C")
res3: String =
class C extends scala.AnyRef {
def <init>() = {
super.<init>();

O
+

scala> showRaw(q"class C")
res4: String = ClassDef(
Modifiers(), TypeName("C"), List(),
Template (
List(Select(Ident(scala), TypeName("AnyRef"))),
noSelfType,
List(
DefDef (
Modifiers(), termNames.CONSTRUCTOR,
List(), List(List()), TypeTree(),
Block(List (pendingSuperCall), Literal(Constant(())))))))
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scala> showCode(q"class C")
resb: String = class C

As explained in section 3.2, abstract syntax trees can be unattributed or attributed.
Unattributed trees are obtained from quasiquotes and parsing. Attributed trees are
received from the environment (e.g. arguments of def macros are typechecked as per
section 4.4) or created by calling typecheck on unattributed trees.

scala> val 1list42 = q"List(42)"
list42: Tree = List (42)

scala> list42.symbol
resb5: Symbol = <none>

scala> list42.tpe
res6: Type = null

scala> val tlist42 = tb.typecheck(list42)
tlist42: Tree = immutable.this.List.apply[Int] (42)

scala> tlist42.symbol
res7: Symbol = method apply

scala> tlist42.tpe
res8: Type = List[Int]

It is possible to destructure attributed trees and mix the obtained parts with unattributed
trees. This oftentimes happens when a macro author takes apart macro arguments and
throws them together with synthetic code. Expertise in compiler internals is required to
ensure that the Scala compiler treats these partially attributed trees correctly [14].

Symbols. There are three ways to obtain symbols: 1) load them from a mirror using
helper methods like staticClass and symbolOf, 2) traverse the symbol table via
Symbol. info, 3) extract them from attributed trees.

scala> mirror.staticClass("scala.collection.immutable.List")
res9: ClassSymbol = class List

scala> val list = mirror.symbolOf[List[_]]
list: TypeSymbol = type List

scala> val map = list.info.member (TermName ("map")).asMethod
map: MethodSymbol = method map

scala> tlist42.symbol
res9: Symbol = method apply
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Traversing the symbol table is not limited to just the owner/child relation. Using methods
like ClassSymbol.baseClasses and Symbol.overrides, it is possible to explore
other relations between symbols. For example, in the printout below, we can see that
List .map overrides eponymous methods in TraversableLike, GenTraversableLike
and FilterMonadic

scala> map.overrides
res10: List[Symbol] = List(method map, method map, method map)

scala> res9.map(_.owner)

resll: List[Symbol] = List(
trait Traversablelike,
trait GenTraversablelLike,
trait FilterMonadic)

Symbols can answer a lot of questions about the corresponding definitions. The most
common questions involve: 1) testing for binary properties, 2) obtaining signatures or
parts of signatures.

scala> map.isImplicit
resl2: Boolean = false

scala> map.isPrivate
resl1l3: Boolean = false

scala> map.info
resl4: Type = [B, That](f: A => B) (implicit bf:
scala.collection.generic.CanBuildFrom[List [A],B,That])That

scala> map.typeParams
res15: List[Symbol] = List(type B, type That)

scala> map.paramlLists
res16: List[List[Symbol]] = List(List(value f), List(value bf))

Types. There are three ways to obtain types: 1) use helper methods like Mirror.
type0f, 2) extract then from attributed trees, 3) receive types from the environment
(e.g. a macro impl can access type arguments of the macro application that is currently
being expanded). The last approach is environment-specific, so here we will illustrate
only the first two.

scala> val listint = typeOf [List[Int]]
listint: Type = scala.List[Int]

scala> tlist42.tpe
resl7: Type = List[Int]
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Types can be used to enumerate members. Scala.reflect exposes Type.decls to list
members defined in that exact type and Type.members to enumerate all membes
including inherited ones. These methods have singular equivalents that take a TermName
or a TypeName indicating the name of a particular member.

scala> listint.members

resl18: MemberScope = Scopes(method writeReplace, method toStream,
method stringPrefix, method foldRight, method reverse,

method foreach, method span, method dropWhile, ...)

scala> val map = listint.member (TermName ("map"))
map: Symbol = method map

An important quirk of scala.reflect is that fact that results of Type .members and the
like forget about the types they were obtained from. This happens because symbols
are singletons, so scala.reflect returns the same map regardless of whether it has been
obtained from List [Int], List [String] or by traversing the members of List.

scala> typeOf [List[Int]].member (TermName ("map"))
resl9: reflect.runtime.universe.Symbol = method map

scala> typeOf [List[String]].member (TermName ("map"))
res20: reflect.runtime.universe.Symbol = method map

scala> res4l == res4?2
res21: Boolean = true

This leads to a confusing situation when the result of tpe.member (...) .info forgets
about the type arguments provided by tpe. A dedicated scala.reflect API, Symbol.
infoln, works around this inconvenience of the language model.

scala> map.info
res22: Type = [B, That](f: A => B) (implicit bf:
scala.collection.generic.CanBuildFrom[List[A],B,That]) That

scala> map.infoIn(typeOf [List[Int]])
res23: Type = [B, That](f: Int => B) (implicit bf:
scala.collection.generic.CanBuildFrom[List [Int],B,That])That

Finally, types can be used to explore the type system of Scala. For example, Type.<:<
checks subtyping, 1ub and glb compute least upper and greatest lower bounds, etc.

scala> typeOf [List[Int]] <:< typeOf[List[Any]]
res24: Boolean = true

scala> lub(List(typeOf[List[Int]], typeOf[List[Anyl]l))
res25: Type = scala.List[Any]
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3.6 Conclusion

Scala.reflect was a breakthrough. When we released it in Scala 2.10, we addressed three
long-standing issues with metaprogramming in Scala: 1) absence of a documented way
to reliably introspect program structure at runtime (section 2.1 and section 2.2), 2)
incompleteness of information provided by Code and Manifest (section 2.3), 3) high
barrier to entry to compile-time metaprogramming (section 2.4).

By taking Scala compiler internals as a baseline and trimming them down to a public API
using the design described by Gilles Dubochet [35] (subsection 3.1.1), we implemented a
unified metaprogramming API that is available both at compile time and at runtime.

Thanks to this powerful API, we have been able to deliver new ways to metaprogram
both at compile time and at runtime. Even though runtime metaprogramming has
major usability problems because of the limitations of the underlying platforms (subsec-
tion 3.1.4 and subsection 3.4.4), compile-time metaprogramming via macros (chapter 4
and chapter 5) became quite popular in the community.

Unfortunately, this powerful API came at a price. Since the Scala compiler was not
written with programmability in mind, using its internals in a public API created several
long-standing issues.

First, we had to subject metaprogrammers to occasionally bizarre idioms of the compiler
codebase. What was fine for a highly specialized group of compiler developers, ended up
being obscure to other Scala programmers, and we had to spend a lot of time providing
guidance to early adopters.

We have seen examples of this problem in subsection 3.1.2, where we had to work around
an idiosynchrasy of compiler internals in order to check immutability of type members
and type parameters. Another example is the fact that during parsing and typechecking
compiler internals throw away semantically-insignificant information about programs.
Formatting, comments and even entire code snippets disappear as code moves through
the compilation pipeline (section 3.2).

Secondly, the architecture of scala.reflect, dictated by the desire to minimize the impact
on the compiler, required its users to understand and respect its unconventional ways of
organizing code as described in subsection 3.1.1 and subsection 3.1.5.

We suffered from that as well, having to patch several advanced language features just to
make the architecture work. Scala.reflect was one of the first active users of dependent
method types, also released in Scala 2.10, so we spent a significant amount of time
discovering and fixing bugs there. Another experience worth mentioning is a series of
improvements to scaladoc, the Scala documentation tool, that could recognize the way
how scala.reflect API encodes data structures and emit acceptable documentation for
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them - a significant project whose sole motivation was scala.reflect. Also, despite our
efforts, some language features like isInstance0f and companionship still do not work
correctly with scala.reflect.

Thirdly, an API derived from compiler internals has proven to be very unfriendly to
other tools. Hundreds of methods on the API surface and poorly documented invariants
expected from the data structures made it virtually impossible for third parties to
implement scala.reflect. Even at the time of writing, scala.reflect metaprograms still can
not be executed outside the Scala compiler (chapter 7).

In chapter 8, we describe scala.meta - our next attempt at a metaprogramming toolkit
for Scala that we are building based on our experiences with scala.reflect. Taking note
of the most successful parts of scala.reflect and being aware of the perils of publishing
compiler internals, we have embarked on a journey to develop a better metaprogramming
experience for the Scala ecosystem.
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Def macros are methods whose applications are expanded at compile time. During
expansion, the metaprogram associated with the macro transforms the abstract syntax tree
representing the macro application into another abstract syntax tree. Such metaprograms
operate with a context, which exposes the code to be expanded and a mirror that reflects
the program to be compiled.

This functionality is available in Scala as an experimental language feature since v2.10,
building on top of functionality provided by scala.reflect (chapter 3).

In this chapter, we discuss the design of def macros. We start with a quick tour of the
macro system (section 4.1, section 4.2), describe the details of the underlying language
features (section 4.3), discuss the macro expansion pipeline (section 4.4) and outline the
available APIs (section 4.5). We pay special attention to feature interaction, because
only in synergy with other features def macros achieve their full potential (section 4.6).

Subsequent chapters talk about further exploration of compile-time metaprogramming
in Scala. Several extensions that apply this notion to other aspects of the language are
discussed in chapter 5. The most important use cases of Scala macros are explained in
chapter 6. Issues with accommodating macros in existing developer tools are outlined in
chapter 7. Based on our experience with def macros and their extensions, in chapter 8
and chapter 9, we propose a new metaprogramming framework and a new macro system
based that take the best from their predecessors and address pertinent design issues.

Def macros were born from my personal passion, but they would not have been possible
without the advice and help of Martin Odersky and joint work with Denys Shabalin, Jan
Christopher Vogt, Stefan Zeiger, Adriaan Moors, Paul Phillips and other open-source
contributors. Our early adopters - Jason Zaugg, Miles Sabin, Travis Brown and many
other brave souls - have also greatly influenced the design.
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4.1 Motivation

Def macros were inspired by macros in Nemerle [111], which are themselves in part
inspired by Template Haskell [108] and Scheme [41]. This provided a fruitful ground of
ideas that we then cultivated to achieve idiomatic look-and-feel and avoid unfortunate
feature interactions. As a result, we ended up with the following design goals.

1) Minimize the impact on the language surface. At the time when we were designing
def macros, the language had already been around for almost a decade. Therefore, it
was a good idea to limit the number of new features to an absolute minimum in order
to keep the complexity of the language under control. Making macros look like regular
methods was very fitting into this theme.

2) Avoid language fragmentation. In order to prevent def macros from splitting the lan-
guage into macro-based dialects, we decided that macro arguments and macro expansions
must be well-typed. This made it impossible for macro writers to change language syntax
and allowed macro users to reason about macros using type signatures.

3) Allow running arbitrary logic during compilation. While there are systems that limit
metaprograms to a non-Turing-complete language or to a set of moderated operations of
a Turing-complete language, we have opted to use the least restrictive design to increase
adoption and expressivity.

4) Provide access to both syntactic and semantic information about the program. While
there are systems that only allow syntactic transformations of underlying programs,
access to semantics allowed macros to make use of the Scala type system, which was
always at the heart of idiomatic Scala experience.

A notable omission from this list of design goals is tool support, which was an honest
oversight. We were aware that def macros were partially or fully incompatible with some
developer tools (chapter 7), but considered this to be less important that the value that
macros can provide. As it turned out, incompatibility with tools was a severe problem
that in some scenarios outright prevented adoption. Moreover, it ended up being so
challenging that, even at present time, there is no comprehensive tool support for macros.
We believe that tool support should have been a crucial design goal from day one.

Another unfortunate omission is hygiene. This was a conscious decision dictated by the
need to minimize the conceptual and implementational cost of def macros. Back then,
we thought that reify (subsection 3.3.1) was going to be the most frequently used facility
to manipulate code snippets. Since reify is hygienic, we did not feel that a dedicated
mechanism for hygiene was worth the extra complexity. In reality, it was reify that was
not worth it, as it could not handle most of the code manipulation tasks. With reify
being phased out, macro writers have to manually take care of hygiene (subsection 3.3.4).
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4.2 Intuition

In this section, we will walk through writing and using a def macro that implements a
subset of functionality expected of language-integrated queries. Without going into much
detail about the underlying mechanisms, we will observe the components of our macro
system on a high level.

Language-integrated query (LINQ) is a technique that achieves smooth integration of
database queries with programming languages. A common approach to LINQ, popularized
by .NET Framework 3.5, consists in representing datasources by collection-like library
types and then allowing user to write queries as series of calls to these types using familiar
higher-order methods like map, filter and others.

We will now develop a sketch of a database access library built in the spirit of LINQ. In
this sketch, we will intentionally forgo the practicalities of building a LINQ library (e.g.
mapping from classes to datasources, design of internal ASTs, error reporting, etc.) in
order to clearly illustrate the role played by macros.

Below we define a trait Query [T] that encapsulates a query returning a collection of
objects of type T. Next to it, we define its children Table and Select that represent
particular types of queries. Table stands for a datasource that knows about the
underlying type (in this sketch, we use type tags (subsection 3.3.3) for this purpose).
Select models a restricted subset of SQL SELECT statements via a simple Node AST.

trait Queryl[T]
case class Table[T: TypeTagl() extends Query[T]
case class Select[T, Ul(q: Query[T], fn: Node[U]) extends Query[U]

trait Node[T]
case class Ref[T](name: String) extends Nodel[T]

object Database {
def executel[T](q: Query[T]): List[T] = { ... %}
}

In this model, a SQL query string "SELECT name FROM users" is represented as
Select(Table[User] (), Ref[String] ("name")). Queries like the one just men-
tioned can be run via Database.execute that translates them into SQL, sends the
SQL to the database, receives the response and finally translates it to data objects. In

this chapter, we will assume such implementation as a given.

The key aspect of a LINQ facility is a convenient notation for queries. Arguably, none
of the aforementioned ways to write queries can be called convenient. SQL, as any
string-based representation, is prone to syntax errors, type errors and injections. Explicit
instantiation of Query objects is very verbose, and still does not address all type errors.
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In this sketch, we define a LINQ API in the form of methods that mirror the collection
API from the standard library. We would like our users to be able to encode queries in
intuitively looking, statically typed calls to this API, e.g. users.map(u => u.name),
and then have our library translate these calls into calls to Query constructors.

object Query {
implicit class QueryApil[T](q: Query[T]) {
def map[U]l(fn: T => U): Query[U]l = { ... }
}
}

case class User(name: String)

val users = Table[User] ()

users.map(u => u.name)

// translated to: Select(users, Ref[String]("name"))

Among other ways, the desired effect can be achieved with compile-time metaprogramming.
A metaprogram that runs at compile time can detect all calls to Query.map and rewrite
them to invocations of Select with parameters of map transformed to corresponding
instances of Node. This is exactly what we are going to do in our sketch.

import scala.language.experimental.macros

object Query {
implicit class QueryApil[T](q: Query([T]) {
def map[U](fn: T => U): Query[U] = macro QueryMacros.map
}
+

QueryApi.map is called a macro def. Since macros are experimental, in order to define
a macro def, it is required to either have import scala.language.experimental.
macros in the lexical scope of the definition or to enable the corresponding setting in
compiler flags. This is only necessary to define a macro def, not to use it.

Macro defs look like normal methods in the sense that they can have term parameters, type
parameters and return types. Just like regular methods, macro defs can be declared either
inside or outside of classes, can be monomorphic or polymorphic, and can participate
in type inference and implicit search (an example of the latter we have already seen in
subsection 3.1.3). Refer to subsection 4.6.1 for a detailed account of differences between

macro defs and regular defs.

Bodies of macro defs have an unusual syntax. The body of a macro def starts with the
conditional keyword macro and is followed by a possibly qualified identifier that refers
to a macro impl, an associated metaprogram run by the compiler when it encounters
corresponding macro applications. Macro impls are defined as shown below.
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import scala.reflect.macros.blackbox.Context

object QueryMacros {
def map(c: Context) (fn: c.Tree): c.Tree = {
import c.universe._

}
}

Macro impls take a compiler context that represents the entry point into the macro
API. The macro API consists of a general-purpose metaprogramming toolkit provided
by scala.reflect (chapter 3) and several specialized facilities exclusive to macro expansion
(section 4.5). A typical first line of a macro impl is import c.universe._ that makes
the entire scala.reflect API available to the metaprogrammer.

In addition to the compiler context, for every term parameter of a macro def, its macro
impl takes a term parameter that carries a representation of the corresponding argument
of the macro application. As described in section 4.3, macro impls can also get ahold of
representation of type arguments, but this functionality is unnecessary for this example.

A macro impl returns an abstract syntax tree, and this AST replaces the original macro
application in the compilation pipeline. This is how we are going to perform the LINQ
translation of calls to Query .map.

import scala.reflect.macros.blackbox.Context

object QueryMacros {
def map(c: Context)(fn: c.Tree): c.Tree = {
import c.universe._

// c.prefiz looks like:
// Query.QueryApi [<T>] (<prefiz>)
val q"$_.$_[$_]1($prefix)" = c.prefix

val node: Tree = fn match {
case q"($param) => $body" =>
body match {
case q"$qual.$_" if qual.symbol == param.symbol =>
val field = body.symbol.name.decodedName.toString
q"Ref [${body.tpe}] ($field)"

q"Select ($prefix, $node)"
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In the listing above, we handle several challenges of macro writing. First, we get ahold of
the prefix of the application, i.e. the users part of users.map(u => u.name). Unlike
macro arguments, prefixes are not mapped onto parameters of macro impls, so we need
to use the dedicated c.prefix API (section 4.5) on line 9.

The next challenge is to extract the prefix from the macro application. Since Query.map
is an extension method, the actual prefix is going to be QueryApi (users), not users,
therefore we need to apply some non-trivial effort.

One way of getting to the query is to access the corresponding field of the implicit class,
doing something like QueryApi (users) .q. Unfortunately, this is out of the question,
because q is private, and we cannot make it public without adding an extension method
called q to Query.

Another way of achieving the desired result is to take apart the abstract syntax tree
representing QueryApi (users), extracting users as the argument of the application.
It looks like quasiquotes (subsection 3.3.2), which are supposed to provide a convenient
WYSIWYG interface to deconstructing Scala code, are going to be a perfect fit.

Unfortunately for macro writers, the Scala compiler heavily desugars code during compi-
lation, so even the modest QueryApi (users) will get to the macro impl in the form
of Query.QueryApi [User] (users). Therefore the naive q"$_($query) " quasiquote
is not going to work, and we need to apply additional effort. With a bit of knowledge
about compiler internals, we take care of this on line 9.

The final challenge is code generation. The pattern match on lines 11-18 transforms the
user-provided lambda expression into an equivalent Node. Since our sketch only supports
Ref, we only support simple lambdas that select a field from a parameter. Finally, on
line 20, we produce the macro expansion that has the desired shape.

Note how the ability of def macros to access types dramatically improves user experience
in comparison with purely syntactic translation. First, even before Query.map gets to
expand, the compiler typechecks its argument, making sure that queries are well-typed.
Secondly, we have the way to reliably check the shape of the supported lambda. The
symbol comparison on line 14 makes sure that the qualifier of field selection refers
precisely to the parameter of the lambda and not to something else accidentally having
the same name. Finally, we use information about the type of the body on line 16 in
order to figure our the mandatory type parameter of Ref.

Also note another piece of knowledge about compiler internals that was essential to robust
operation of the macro. On line 15, we can not simply call symbol.name.toString,
because the Scala compiler internally mangles non-alphanumeric names. If the parameter
of the lambda has such a name, a simple toString will produce unsatisfying results,
which is why we have to call Name .decodedName first.
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Before we conclude, let us highlight a very common metaprogramming mistake that we
have just made in QueryMacros.map. Def macros are unhygienic, which means that
they do not prevent inadvertent name capture, i.e. scenarios like the following.

val Select = "hijacked!"
users.map(u => u.name)

// error: too many arguments for
// method apply: (index: Int)Char in class StringOps
// users.map (u => u.name)

/7 -

If the macro user accidentally defines a term called Select or Ref, our macro is going
to stop working with what looks like a nonsensical error message. Because principled
tool support was not among the design goals of our macro system, a macro user getting
this error is mostly helpless apart from trying to use internal compiler options that print
all macro expansions and then going through the resulting wall of text (section 7.2).

One reliable approach to prevent hygiene errors is to use fully-qualified names for external
references and to generate unique names for local variables. A somewhat more concise, but
potentially much more laborious approach is to explicitly assign symbols (subsection 3.2.3)
to references and definitions emitted in macro expansions. This approach often requires
extensive knowledge of compiler internals, so it is less frequent in the wild. Common to
both of these approaches is that they require explicit attention from metaprogrammers
and failures to apply them typically go unnoticed. This is the price to pay for not
complicating the compiler with a dedicated mechanism that supports hygiene.

In this section, we wrote a simple macro that implements a sketch of a LINQ transfor-
mation. Because applications of def macros are indistinguishable from regular method
applications, we were able to transparently expose this transformation to the users. What
typically requires dedicated language support in languages like C# or F#, we achieved
in a standalone library without any changes to the compiler. Moreover, thanks to def
macros being integrated with the type system, our LINQ facility is statically typed.

Unfortunately, even in this simple macro we encountered situations where knowledge
of compiler internals (the desugaring of the QueryApi application, the fact that non-
alphanumeric names are encoded) was essential. We also ran into problems with tool
support and hygiene, which demonstrates how important they are to a macro system.
These are all common criticisms of def macros, but we believe that they do not invalidate
the design per se, just the part that relies on scala.reflect as its metaprogramming API. In
chapter 9, we will outline our plan to develop a better macro system based on scala.meta
which will be devoid of many of these problems.
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Chapter 4. Def macros

4.3 Macro defs and macro impls

Def macros are split into two parts: 1) macro defs that provide type signatures for
arguments and expansions, 2) macro impls that provide metaprograms to run against
representations of term and type arguments of macro applications. These two parts are
linked together via a macro impl reference, i.e. the language construct that constitutes
the body of a macro def.

In the listing below, we can see an abridged code example from section 4.2. QueryApi.
map on line 6 is a macro def. Its body contains a macro impl reference that refers to a
macro impl QueryMacros.map on line 11.

import scala.language.experimental.macros
import scala.reflect.macros.blackbox.Context

object Query {
implicit class QueryApil[T](q: Queryl([T]) {
def map[U](fn: T => U): Query[U] = macro QueryMacros.map
}
}

object QueryMacros {
def map(c: Context)(fn: c.Tree): c.Tree = {

}
}

Macro defs look like regular methods except for their special bodies. They have regular
signatures, they can be defined in regular locations, and they can have most of the regular
modifiers. Refer to subsection 4.6.1 for a detailed discussion of how macro defs can be
defined and what restrictions such definitions have in comparison to regular methods.

Macro impls are regular methods that can contain arbitrary Scala code and can call into
arbitrary code. There is a restriction that requires macro impls to be public, static and
non-overloaded, but it is introduced for implementation convenience - to make it easier
for the macro engine to call into macro impls.

Macro defs and macro impls must be compatible with each other according to the rules
specified in subsection 4.3.1 and subsection 4.3.2. In a nutshell, for every term parameter
of a macro def, its macro impl must have a corresponding parameter of type Tree or
Expr from the scala.reflect API (subsection 3.2.2). Also, for every type argument of a
macro impl reference, its macro impl must have a corresponding type parameter as well
as an optional implicit parameter of type TypeTag (subsection 3.2.4). Finally, return
types have to correspond as well, much like term parameters.
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The listing below gives some examples of how compatibility works. In the provided code,
all pairs of eponymous macro defs and macro impls are compatible.

object Query {
implicit class QueryApil[T](q: Query[T]) {
def mapl[U](fn: T => U): Query[U] = macro QueryMacros.mapl
def map2[U] (fn: > U): Query[U] macro QueryMacros.map2[T]
def map3[U] (fn: > U): Query[U] macro QueryMacros.map3[T, U]
def map4[U] (fn: > U): Query[U] macro QueryMacros.map4[T, U]

o L B |
Il
1]

object QueryMacros {
def mapl

(c: Context)(fn: c.Tree): c.Tree = 777
def map2[T: c.WeakTypeTag]

(c: Context)(fn: c.Tree): c.Tree = 777
def map3[T: c.WeakTypeTag, U: c.WeakTypeTag]

(c: Context)(fn: c.Tree): c.Tree = 777

def map4[T, Ul
(c: Context) (fn: c.Expr[T => U]): c.Expr[Query[U]] = 777

4.3.1 Term parameters

The first parameter of a macro impl must be a context that provides access to macro
APIs. A context is a wrapper over the compile-time scala.reflect universe. In addition
to the standard scala.reflect API, contexts also expose some additional functionality
that only makes sense in macros (e.g. Context.prefix or Context.abort) and is
therefore not included in the general-purpose part of scala.reflect (section 4.5).

Afterwards, for every parameter of a macro def, a macro impl must have a parameter that
will hold an abstract syntax tree of a corresponding argument of a macro application.
These parameters can be either exprs or trees. During macro expansion, the macro engine
will automatically destructure the macro application and will create the corresponding
arguments for the macro impl.

The ability for macro impls to work with exprs is legacy functionality inherited from
the initial release of def macros. Back then, the only supported notation for abstract
syntax trees was reify (subsection 3.3.1), and it could only work with statically typed
trees, i.e. exprs. Therefore, we pretty much had to make macro impls take exprs as
parameters and return exprs for consistency, because otherwise macro writers would not
be able to use reify. These days, the overwhelming majority of metaprogrammers uses
quasiquotes (subsection 3.3.2) that can work with plain trees. Therefore, we made macro
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impl signatures more lightweight allowing trees as parameter types and return types, but
kept exprs for backward compatibility reasons.

The prefix of the macro application, i.e. the equivalent of this for def macros, is not
represented as an explicit parameter of a macro def, so we also do not represent it with a
parameter of a macro impl. Instead, there is a dedicated macro API - Context.prefix -
that provides the corresponding expr. An equivalent tree can be obtained by unwrapping
that expr using Expr.tree.

In order to avoid confusion, we require strict correspondence between the parameters
of macro defs and macro impls. For every parameter of a macro def, there must be a
parameter with the same name in a macro impl (except for compiler-generated parameters
synthesized for some language features, in which case the macro impl is free to choose
any name). Additionally, the types of corresponding parameters of macro defs and macro
impls must correspond to each other.

The concept of parameter type correspondence is an important part of the macro
typechecking algorithm. Since macro impls can take exprs, we need to make sure that
parameter types of macro defs correspond to static types of those exprs. For example, if
a macro impl takes a parameter x: c.Expr[Int], then the macro def should have a
corresponding parameter x: Int.

However, implementing this concept turned out to be tricky. Intuitively, it seems sufficient
to unwrap the Expr in macro impl parameter types and compare the result with the
corresponding macro def parameter type, but it is not so simple. The scopes of macro
defs and corresponding macro impls are different, so simple type equality does not work.

As a result, our parameter type correspondence algorithm not only checks that the
structure of the given types is the same after unwrapping the macro impl parameter
type, but also has three special rules to accommodate potential differences in scoping:

1) Type arguments of a macro impl reference correspond to the type parameters of a
macro impl. This makes it possible for macro impls to refer to types that are local to
the scope of their correspondent macro defs.

2) this type of the enclosing class of a macro def corresponds to c.PrefixType of the
macro impl, where c is the context parameter. Even though usages of this rule can be
expressed in terms of the previous rule, it makes referring to types defined within an
enclosing class - a situation that arises when using cake pattern - much easier.

3) For a macro def parameter pd and a macro impl parameter pi, pd.U corresponds to
pi.value.U. Whenever pd is T, pi is supposed to be Expr [T], therefore a path-dependent
type pd.U refers to the same definition as pi.value.U (subsection 3.3.1). This makes it
possible for macro impls to correspond to macro defs that have dependent method types.
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4.3. Macro defs and macro impls

In the listing below, we provide a sketch of how one can could have reimplemented
the standard reify from the scala.reflect framework. The code showcases a simplified
MyUniverse cake (line 10) as well as its MyExprs slice that introduces MyExpr [T]
(line 4). Inside MyUniverse, we define reify as a macro def (line 13) and then try to
write an expr-based signature for its macro impl (line 17).

import scala.language.experimental.macros
import scala.reflect.macros.blackbox.Context

trait MyExprs {
self: MyUniverse =>

trait MyExpr([T] { ... }
}

trait MyUniverse extends MyExprs
with ... {

def reify[T](expr: T): MyExpr[T] = macro MyUniverseMacros.reify[T]
}

object MyUniverseMacros {

def reifyl[T]
(c: Context{ type PrefixType = MyUniverse })
(expr: c.Expr[T]):
c.Exprlc.prefix.value.MyExpr([T]] = { ... }
}

The monster of a signature on lines 17-20 takes care of the correspondence between the
macro def and the macro impl. The main challenge is expressing the path dependence of
the result type of reify on the type of the prefix of the macro application. In order to
achieve that, we capture the type of the prefix on line 18 (rule 2) and then use the type
of the prefix in c.prefix.value on line 19 (rule 3).

As we can see, the desire to statically type parameters of macro impls leads to signif-
icant complications. In theory, exprs and reify provide additional guarantees about
metaprograms. In practice, however, the benefit of these additional guarantees is by far
overshadowed by the complexity of the correspondence rules and the insufficiency of the
functionality provided by reify (subsection 3.3.1).

Therefore, the overwhelming majority of macro impls nowadays are written using trees.
This trivializes the term parameter correspondence rules, simplifying lives of metapro-
grammers and lowering barriers to entry.
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Chapter 4. Def macros

4.3.2 Type parameters

In addition to getting access to term arguments of macro applications, macro impls can
also get ahold of representations of types associated with macro applications. Typically,
metaprogrammers are interested in type arguments of macro applications, but there are
also ways to obtain other types such as type arguments of enclosing classes and traits.

For every type argument of a macro impl reference, a macro impl must have a type
parameter. During macro expansion, such a type parameter stands for its corresponding
type argument of the macro impl reference, in which the usages of macro def type
parameters, enclosing class type parameters, etc are replaced with their instantiations in
the corresponding macro application.

Whenever a metaprogrammer is interested in inspecting the type underlying a given type
parameter, they declare an implicit type tag (subsection 3.3.3) for that type parameter.
During macro expansion, the compiler will automatically compute relevant types and
pass them into the macro impl wrapped in a type tag.

If in our running example of a LINQ macro (section 4.2), we wanted to explore the types
T and U associated with Query.map, we would declare macro impl as follows.

import scala.language.experimental.macros
import scala.reflect.macros.blackbox.Context

object Query {
implicit class QueryApi[T](q: Query([T]) {
def map[U](fn: T => U): Query[U] = macro QueryMacros.map[T, U]
}
}

object QueryMacros {
def map[T, U](c: Context)(fn: c.Tree)
(implicit T: c.WeakTypeTagl[T], U: c.WeakTypeTagl[U]): c.Tree = {

val typeOfT T.tpe

val typeOfU U.tpe

// do something with typeOfT and typeOlfU
/o

3

Now, during an example macro expansion of users.map(u => u.name), in the body of
the macro impl, type0fT will be a type that represents User, and type0£fU will represent
String. Note how the macro engine is capable of figuring out the representation of T
from the type of users which is Query [T].
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In order to make the notation more concise, in practice metaprogrammers typically
declare implicit parameters via context bounds, e.g. def map[T: c.WeakTypeTag, U

c.WeakTypeTag] (...) = .... In that case, implicit parameters can be accessed
via implicitly[c.WeakTypeTagl...]] or via weakTypeOf [...], a helper function
defined in scala.reflect that obtains an implicit type tags and unwraps it.

Type tags may seem like quite a roundabout way of accessing types, and indeed they are.
However, much like exprs, type tags are here for backward compatibility reasons. The
thing is that reify, because of its statically typed nature, cannot work with plain types
and requires statically typed type tags. Back in the day, when reify was supposed to
become the main way of manipulating code in macros, we decided to use type tags, not
types in the signatures of macro impls.

Unlike with exprs, we have not implemented a simpler way of obtaining types in macro
impls. However, this is planned for the future macro system described in chapter 9.

4.3.3 Separate compilation

For implementation convenience, we require that macro applications and their corre-
sponding macro impls are defined in different compilation runs. This is the consequence
of us not having a reliable technology to interpret or JIT-compile abstract syntax trees.

At the time of writing, the only way for the compiler to invoke a macro impl is via JVM
reflection of precompiled bytecode. If a macro application is compiled together with
its underlying macro impl, there is no bytecode for that macro impl yet, which, for the
current macro engine, makes macro expansion impossible.

Note that this restriction does not mean that macro defs and their applications must be
compiled separately. If a macro impl comes from a different compilation run, then users
can utilize corresponding macro defs in the same compilation run where they are defined.
Consequently, our macro system can define of macro-generating macros.

Nonetheless, the separate compilation restriction visibly affected the Scala ecosystem. A
common situation when this limitation proves seriously inconvenient is when authors of
a project want to define domain-specific helper macros to be used in their project. In
order to do that, they are forced to split the project into two parts: 1) macro definitions
and their transitive dependencies from the original project, 2) the rest of the original
project that depends on the first part and uses macros defined there.

Luckily, this limitation does not hurt other macro-based workflows. There is no problem
for regular users to depend on third-party libraries that use macros, because third-
party libraries are by definition precompiled. Also, there is no need to create separate
projects just to test macros, because all build systems in the Scala ecosystem already
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Chapter 4. Def macros

compile projects and their tests separately. Finally, every command in the Scala REPL
is processed in a separate compilation run, which makes it possible to develop macros in
an interactive fashion.

We definitely want to lift the separate compilation restriction, but the technology is not
there yet. Hopefully, as scala.meta matures, we will be able to solve this problem once
and for all, removing this limitation of our macro system.

4.3.4 Split or merge?

The split between macro defs and macro impls was quite a controversial decision during
the early design phase. Let us revisit the example from section 4.2 once again taking
note of the syntactic shell of the metaprogram.

import scala.language.experimental.macros
import scala.reflect.macros.blackbox.Context

object Query {
implicit class QueryApil[T](q: Queryl[T]) {
def map[U]l(fn: T => U): Query[U] = macro QueryMacros.map
}
}

object QueryMacros {
def map(c: Context)(fn: c.Tree): c.Tree = {
import c.universe._

}

A clearly more concise design decision would be to unify the currently disparate macro
defs and macro impls, producing something syntactically similar to the code snippet
provided in the listing below.

import scala.language.experimental.macros
import scala.reflect.macros.blackbox.Context

object Query {
implicit class QueryApil[T](q: Query[T]) {
def map[U] (fn: T => U): Query[U] = macro {
import c.universe._
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Our reasons to go for the split were as follows. First, def macros were first of their
kind in production Scala. While previous approaches to compile-time metaprogramming
featured advanced techniques like type-level computations and compiler plugins, macros
were meant to be widely accessible. Therefore, there were concerns that the unusual
behavior of lexical scoping in macro bodies (e.g. the fact that on lines 7-8 fn is a tree,
not a function) will be too confusing for the users.

Secondly, all macro APIs are exposed via a context. Since the context is not explicitly
written down in the more concise design, macro writers would have to conjure it from
somewhere. Of course, hardcoding the context to be called c like on line 7 is unacceptable.
One possibility would be to magically add the context to implicit scope, but that again
was deemed to be potentially confusing.

Several years later, Scala users have become pretty familiar with macros, and now we
think that the time is right to finally cut the boilerplate. In the new macro system that
we are working on, macro defs and macro impls are no longer separated, resulting in a
more lightweight look-and-feel (chapter 9).

In the meanwhile, in order to avoid the boilerplate of writing import c.universe._
again and again when defining multiple macros, metaprogrammers can define macro
impls in macro bundles, a feature that is available in the standard distribution since
v2.11. Below we can see our running LINQ example that has been expanded to include
additional functionality that supported filter and modified to host macro impls in the
QueryMacros bundle.

1 import scala.language.experimental.macros

2 1import scala.reflect.macros.blackbox.Context

3

4 object Query {

5 implicit class QueryApil[T](q: Query[T]) {

6 def map[U](fn: T => U): Query[U] = macro QueryMacros.map
7

8 def filter(fn: T => Boolean): Query[T] = macro QueryMacros.filter
9 }

10 %

11

12 class QueryMacros(c: Context) {

13 import c.universe. _

14

15 val q"$_.$_[$_]1($prefix)" = c.prefix

16

17 def map(fn: Tree): Tree = {

18 q"Select ($prefix, ${toNode(fn)})"

19 }
20
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def filter(fn: Tree): Tree = {
q"Filter ($prefix, ${toNode(fn)})"
}

private def toNode(fn: Tree): Tree = {

}
}

In the listing above, we can observe that macro bundles allow to extract a significant
portion of boilerplate caused by the split of macro defs and macro impls. Moreover, note
how easily we have been able to define and use helpers. As explained in subsection 3.1.5,
this is quite involved in the world without macro bundles.

To put it in a nutshell, the decision to split macro defs and macro impls was not an easy
one. Prior to introduction of def macros, Scala users did not have much experience with
similar functionality, and we decided to be on the safe side, introducing a more verbose,
but more straightforward syntax. In practice, users were quite quick to get familiar with
the new concepts, and we ended up under pressure to make the syntax more lightweight.
We have partially addressed the concerns via macro bundles, and now plan to fix the
problem for good in the new macro system described in chapter 9.

4.4 Macro expansion

Macro expansion is part of typechecking. Originally, this was just an implementation
detail of the initial prototype of macros, but later we have discovered macros that must
expand in typechecker.

Def macros are split into two groups based on how they interact with typechecking.
Whitebox macros not only perform tree rewriting, but can also influence implicit search
and type inference as described below. Blackbox macros only do tree rewriting, so the
typechecker can view them as black boxes, which is how they got their name.

The property of a macro being whitebox or blackbox is called boxity and is expressed in
the signature of its macro impl as described in section 4.5. Boxity is recognized by the
Scala compiler since v2.11. In Scala 2.10, all macros behave like whitebox macros.

Expansion of whitebox and blackbox macros works very similarly. Unless stated otherwise,
the description of the expansion pipeline applies to both kinds of def macros, regardless
of their boxity. We will explicitly highlight the situations when boxity changes how
things work inside the typechecker.
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4.4. Macro expansion

4.4.1 Expansion pipeline

The typechecker performs macro expansion when it encounters applications of macro defs.
This can happen both when these applications are written manually by the programmer,
and when they are synthesized by the compiler, e.g. inserted as implicit arguments or
implicit conversions.

Sometimes, the compiler does speculative typechecking, e.g. to figure out whether a
certain desugaring is applicable or not. Such situations also trigger macro expansion,
with the notable exception of implicit search. When a macro application is typechecked
in the capacity of an implicit candidate, its treatment depends on its boxity as described
in subsection 4.4.2.

When the typechecker encounters a given method application, it starts an involved
implementation-defined process that consists in typechecking the method reference,
optional overload resolution, typechecking the arguments, optional inference of implicit
arguments and optional inference of type arguments. Macro expansion usually happens
only after all these steps are finished so that the macro impl can work with a consistent
and comprehensive representation of the macro application.

Blackbox macros always work like this. Whitebox macros can also be expanded when
type inference gets stuck and cannot infer some or all of the type arguments for the
macro application as explained in subsection 4.4.3.

As a result of the decision to typecheck the method reference and its arguments before
macro expansion, expansions work from inside out. This means that enclosing macro
applications always expand after enclosed macro applications that may be present in
their prefixes or arguments. Consequently, macro expansions always see their prefixes
and arguments fully expanded.

During macro expansion, a macro application is destructured and the macro engine
obtains term and type arguments for the corresponding macro impl according to the
rules described in subsection 4.3.1 and subsection 4.3.2. Together with the context that
wraps a compile-time mirror and provides some additional functionality as described in
section 4.5, these arguments are passed to the macro impl.

A full name of the macro impl is obtained from the macro def and is then used to
dynamically load the enclosing class using JVM reflection facilities (the Scala compiler
executes on the JVM, so we also use the JVM to run macro impls). After the class is
loaded, the compiler invokes the method that contains the compiled bytecode of the
macro impl. Despite being one of the original design goals, unrestricted code execution
can have adverse effects, e.g. slowdowns or freezes of the compiler, so this is something
that we may improve in the future.
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All macro expansions in the same compilation run share the same JVM class loader,
which means that they share global mutable state. Controlling the scope of side effects
while simultaneously providing a way for macros to communicate with each other is
another important element of our future work.

A macro impl invocation can finish in three possible ways: 1) normal return that carries
a macro expansion, 2) an intentional abort via c.abort as described in section 4.5, 3)
an unhandled exception. In the first case, expansion continues. Otherwise, a compilation
error is emitted and expansion terminates.

Upon successful completion of a macro impl invocation, the resulting macro expansion
undergoes a typecheck against the return type of the macro def to ensure that it is safe to
integrate into the program being compiled. This typecheck can lead to recursive macro
expansions, which can overflow compiler stack if the recursion goes too deep or does not
terminate. This is an obvious robustness hole that we would like to address in the future.

Typecheck errors in the expansion become full-fledged compilation errors. This means
that macro users can sometimes receive errors in terms of generated code, which may
lead to usability problems. This is discussed in more detail in section 7.2.

Finally, a macro expansion that has successfully passed the typecheck replaces the macro
application in the compiler AST. Further typechecking and subsequent compiler phases
will work on the macro expansion instead of the original macro application.

If the macro expansion has a type that is more specific than the type of the original
macro application, it creates a tricky situation. On the one hand, there is a temptation
to use the more specific type, e.g. for return type inference of an enclosing method
or for type argument inference of an enclosing method call. On the other hand, such
macro expansions go beyond what the macro def signature advertises, which may create
problems with code comprehension and IDE support (while macro applications that have
the advertised type can be treated as regular method applications by the IDEs, macro
application that refine the advertised type require dedicated IDE support for def macros).

This situation was the original motivation for the split between whitebox and blackbox
macros. We decided that for whitebox macros the typechecker is allowed to make use
of more specific type of macro expansions. However, blackbox expansions must have
the exact type that is advertised by their corresponding macro def. Internally, this is
implemented by automatically upcasting macro expansions to advertised return types.

To put it in a nutshell, macro expansion in our design is a complicated process tightly
coupled with typechecking. On the one hand, this significantly complicates reasoning
about macro expansion. On the other hand, this enables unique techniques, and at
the time of writing one of such techniques is a cornerstone of the open-source Scala
community (subsection 6.1.4).
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4.4.2 Effects on implicit search

Implicit search is a subsystem of the typechecker that is activated when a method
application lacks implicit arguments or when an implicit conversion is required to coerce
a term to its expected type.

When starting implicit search, the typechecker creates a list of implicit candidates, i.e.
implicit vals and defs that are available in scope. Next, these candidates are speculatively
typechecked in an implementation-defined order to validate the fact that they fit the
parameters of the search. Finally, the remaining candidates are compared with each
other according to the implicit ranking algorithm, and the best one is selected as the
search result. If no candidates are applicable, or there are multiple applicable candidates
with the same rank, implicit search returns an error.

Since implicit search involves typechecking, it can be affected by macro expansion. In Scala
2.10, we allowed macro expansion during validation of implicit candidates. Therefore,
implicit macros were able to dynamically influence implicit search. For example, an
implicit macro could decide that it is unfit for a certain implicit search and call abort
(section 4.5), terminating macro expansion with an error and therefore removing itself
from the list of implicit candidates for this particular implicit search.

We have found that such macro-based shenanigans significantly complicate implicit search,
which was already pretty complicated prior to introduction of macros. Understanding
the scope of available implicits, keeping track of nested implicit searches and backtracks -
that was already hard without the necessity to take macro expansions into account.

Therefore, since Scala 2.11, only whitebox macros are expanded during implicit search.
Blackbox macros participate in implicit search only with their signatures, just like regular
methods, and their expansion happens only after implicit search selects them.

4.4.3 Effects on type inference

When an application of a polymorphic method is missing type arguments - regardless of
whether this method is a regular def or a macro def - the typechecker tries to infer the
missing arguments. We refer curious readers to [94] for details about Scala type inference,
and here we provide just a brief overview.

During type inference, the typechecker collects constraints on missing type arguments
from bounds of type parameters, from types of term arguments, and even from results of
implicit search (type inference works together with implicit search because Scala supports
an analogue of functional dependencies [59]). One can view these constraints as a system
of inequalities where unknown type arguments are represented as type variables and
order is imposed by the subtyping relation.
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After collecting constraints, the typechecker starts a step-by-step process that, on each
step, tries to apply a certain transformation to inequalities, creating an equivalent, yet
supposedly simpler system of inequalities. The goal of type inference is to transform the
original inequalities to equalities that represent a unique solution of the original system.

Most of the time, type inference succeeds. In that case, missing type arguments are
inferred to the types represented by the solution.

However, sometimes type inference fails. For example, when a type parameter T is
phantom, i.e. unused in the term parameters of the method, its only entry in the system
of inequalities will be L <: T <: U, where L and U are its lower and upper bound
respectively. If L !'= U, this inequality does not have a unique solution, and that means
a failure of type inference.

When type inference fails, i.e. when it is unable to take any more transformation steps
and its working state still contains some inequalities, the typechecker breaks the stalemate.
It takes all yet uninferred type arguments, i.e. those whose variables are still represented
by inequalities, and forcibly minimizes them, i.e. equates them to their lower bounds.
This produces a result where some type arguments are inferred precisely, and some are
replaced with seemingly arbitrary types. For instance, unconstrained type parameters
are inferred to Nothing, which is a common source of confusion for Scala beginners.

Ever since def macros were introduced, we have been wondering how to use them to
allow library authors to customize type inference. After many failed attempts, we found
a solution.

If type inference for a macro application gets stuck, the typechecker snapshots its current
system of inequalities and produces a partial solution. This solution includes all type
arguments that have already been inferred as well as synthetic types that stand for yet
uninferred type arguments and are bounded according to the corresponding inequalities.
Afterwards, the typechecker performs macro expansion using the partial solution as type
arguments for the macro application.

Since macro applications that get this special treatment from the typechecker cannot
be viewed as black boxes, partial type inference is only enabled for whitebox macros.
Blackbox macros, much like regular methods, have their uninferred type arguments
forcibly minimized as described above.

Despite looking quite exotic, this trick plays a key role in the technique of implicit
materialization. In subsection 6.1.4, we will see how whitebox implicit macros using this
technique can make the typechecker infer unusually precise types, enabling advanced
type-level programming.
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4.5 Macro APIs

Macro APIs are encapsulated in the context parameter of macro impls (section 4.3). Since
Scala 2.11, macro contexts can be declared as scala.reflect.macros.blackbox.
Context or as scala.reflect.macros.whitebox.Context. In Scala 2.10, there is
only scala.reflect.macros.Context that is equivalent to the whitebox context.

The distinction between the context types is used to indicate boxity of the macro impl
(section 4.4). There is also an API difference between blackbox and whitebox contexts,
but it consists of compiler internals that are outside of the scope of this dissertation.

The main part of the macro APIs comes from Context.universe and Context.
mirror that expose a scala.reflect universe and mirror corresponding to the current
compilation run (chapter 3). However, there are also select bits of functionality that are

unique to macros and will be covered below.

First, there are Context.macroApplication and Context.prefix. The former
captures the macro application being expanded, and the latter contains the prefix of the
macro application. As we have seen in section 4.2, these APIs complement the obvious
way of obtaining arguments of macro applications via parameters of macro impls.

Secondly, contexts support emission of diagnostic messages. It is possible to prematurely
terminate macro expansion with a custom error via Context.abort, and it is also
possible to emit diagnostics of various severities and continue execution (however the
latter functionality is much less popular in the community, probably because of the
complexity associated with gracefully continuing execution after something went wrong).
All such APIs take a position, so that the compiler can correlate a message with a location
in the code. This is a powerful way of producing domain-specific error messages.

Thirdly, there are possibilities to tap into compiler internals. Our macro APIs have
evolved organically, so now they feature advanced and dangerous functionality, e.g. low-
level symbol table manipulation routines that can be used to work around the limitations
of the scala.reflect language model. When we will start from scratch in chapter 9, it is
likely that none of these APIs will exist, but at the moment we are forced to retain them
for backward compatibility.

4.6 Feature interaction

Def macros were designed to become part of an already mature language with an almost
ten-year history. A very important consideration was their interaction with existing
features of Scala. Uncovering these interactions was akin to a gold rush, with our team
and early adopters digging everywhere and every now and then uncovering nuggets of
novel techniques. Refer to chapter 6 to learn more about the most successful ideas.
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4.6.1 Macro defs

One of the first things that we did when working on def macros was going through
existing flavors of methods. For every such case, we tried to change the corresponding
regular method into a macro def and considered what is going to happen.

Metadata. Most definitions in Scala, excluding only packages and package objects,
allow user-defined annotations that can be read at compile time and/or runtime. Macro
defs are no exception. Thanks to their ability to attach custom compile-time metadata
to definitions, annotations have been used to share information in situations that involve
interplay between macros (section 6.2, [106]).

Modularity. Scala has a rich set of features that allows to manage scope and accessibility
of its definitions. All these features work as usual with macro defs. Much like with
regular defs, it is possible to define macro defs both in local scope and in member scope
of an enclosing definition. If necessary, macro defs can also be private and protected.

Inheritance. One of the key characteristics of regular defs is dynamic dispatch. Scala
supports the usual mix of features that support dynamic dispatch: subclassing, overriding,
abstractness and finality. Additionally, there is a less mainstream notion of mixin
composition and the associated concepts of linearization and abstract override.

Def macros expand at compile time, which means that dynamic dispatch is out of the
question, and so are some of the features that make sense only for dynamically dispatched
methods. In particular, this means that macro defs cannot be abstract (there is no
syntactic possibility for this anyway) and cannot override abstract methods.

Interaction of def macros and overriding has been controversial for quite a while. On
the one hand, one can imagine situations when it may seem desirable for a macro def
to override a regular method. For instance, authors of a collection library may want to
provide an optimized implementation of Range . foreach that overrides the inherited
iterator-based implementation of Seq.foreach with a much simpler loop over the range
boundaries. Towards that end, one may declare Range . foreach as a macro def that
overrides Seq.foreach which is a regular def.

On the other hand, while overriding may solve the problem in simple cases when the
type of the object is known statically, it does not help if the exact type is only known at
runtime. This means that such optimizations are going to be unreliable.

In order to let the community figure out the story of macro-based optimizations, we
allowed macros defs to override both regular defs and other macros defs. Unfortunately,
this capability does not have much adoption, so we plan to prohibit the new version of
macros to participate in overriding (subsection 9.3.1).
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Implicits. Depending on the signature, a regular implicit def can serve either as a default
value for accordingly-typed implicit parameters or as a conversion between otherwise
incompatible types. Both these roles of implicit defs can benefit from compile-time
metaprogramming, so we allowed macros defs to be implicit, too. The technique of
implicit materialization enabled by implicit macros represents one of the most important
use case of def macros at the time of writing (section 6.1).

Constructors. At the time of writing, it is impossible to define a constructor as a def
macro. Nonetheless, it is conceivable to want to do so for consistency, because object
instantiation is one of the few language constructs that cannot be enriched by macros.

Some time ago, we have proposed a Scala compiler patch that implements support for
declaring secondary constructors as macros in the context of [124]. Such macros would
expand into calls to other constructors of the underlying class or just regular code. The
patch was rejected during code review, because the potential for changing the meaning
of new was deemed undesirable.

Signatures. Macro defs have exactly the same signature elements as regular defs - name,
optional type parameters, optional term parameters, optional return type.

There are no theoretical limitations on the parameters of macro defs (even though
declaring a macro def parameter to be by-name does not make any difference in behavior
as per subsection 4.6.2, it still makes sense). However, in practice, we disallow macro
defs that have default parameters. We did not have time to implement this functionality
for the initial release of def macros, and a follow-up patch that introduced it got rejected
during code review because of a disagreement that involves compiler internals.

There is, however, a restriction on return type inference. Regular defs can have their
return type inferred from the type of their body. Naturally, since macro defs have an
unusual body, the usual algorithm is no longer applicable for inferring their return types.

In the initial version of def macros that required macro impls to take and return exprs,
we used to infer macro def return types from return types of their corresponding macro
impls. For instance, if a macro impl returns Expr [Query [U]], then we could infer the
return type of the corresponding macro def as Query [U].

Now when we allow macro impls to return plain trees, return type inference for macro
defs is no longer possible in general case. Therefore, we marked this feature as deprecated
and do not plan to support it in our future macro system (chapter 9).

Overloading. Like regular defs, macro defs can be overloaded - both with regular defs
and other macro defs. This works well, because overload resolution happens before macro
expansion as described in section 4.4.
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Additionally, since no bytecode is emitted for macro defs (due to def macros only working
at compile time), there is no restriction that macro defs must have their erased signature
different from erased signatures of other methods.

Types. When it comes to nesting, Scala does not have many limitations. Terms can be
nested in types, types can be nested in terms, and a similar story is true for definitions.
As a result, some advanced types, namely compound types and existential types, can
contain definitions. While existentials can only define abstract vals and abstract types,
compound types may include any kind of abstract members.

During a spontaneous discussion with community members, we discovered that the
internal compiler structure that represents definitions of compound types can also hold
macro defs. By the virtue of using scala.reflect, macros can tap into compiler internals
and emit unconventional compound types that contain macro defs. Users of such strange
compound types can call those macro defs and trigger macro expansion as if these macro
defs were declared in regular classes. This possibility sounds very obscure, but we have
been able to successfully use it as a key component in emulation of type providers
(section 6.2).

From the discussion above, we can see that macro defs are a relatively seamless extension
to regular defs. The differences are: 1) restrictions on overriding, because macro defs do
not exist at runtime, 2) almost non-existent return type inference, because macro defs
have unusual bodies, 3) inability to be secondary constructors or have default parameters,
because macro defs did not initially support this functionality, and our follow-up patches
were rejected.

4.6.2 Macro applications

The same analysis that we applied to macro defs can be applied to macro applications. If
we go through all flavors of method applications and contexts where method applications
can be used, trying to replace usages of regular methods with usages of macros, we obtain
the following results.

Fully-specified applications. If a macro application has all type arguments and all
term argument lists specified according to the signature of the macro def, then the
compiler expands it by calling the corresponding macro impl with these arguments as
described in subsection 4.4.1.

Missing type arguments. When a macro application does not have type arguments,
and the corresponding macro def does, type inference kicks in before macro expansion
happens. Refer to subsection 4.4.3 for a detailed explanation of how type inference works
for macro applications.
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Partial applications. Regular defs can be partially applied, i.e. can have their
applications contain less term argument lists than their corresponding defs. Macro defs
also support partial application, but with some restrictions.

Missing implicit arguments lists are discussed below. Missing empty argument lists are
appended automatically, exactly like for regular defs. Other cases of partial application
involve missing arguments that cannot be inferred. For regular defs, this is handled by
eta expansion which converts a partial application into a function object that can be
provided with remaining arguments at runtime. However, since def macros expand at
compile time, eta expansion for them is prohibited.

Missing implicit arguments. Before macro expansion happens, the compiler makes
sure that the macro application has its implicit arguments figured out. If implicit
arguments were not specified explicitly, the typechecker launches implicit search to infer
them. There are no restriction on where these implicit arguments come from - both
regular vals, regular defs and macro defs are allowed.

Missing default arguments. Unlike regular defs, macro defs cannot have default
parameters (subsection 4.6.1), so macro applications cannot have default arguments.

Named arguments. Since named and default arguments are implemented by the same
subsystem of the typechecker, the fact that default arguments are unsupported also
outlaws named arguments.

Vararg arguments. Macro applications can have zero or more arguments corresponding
to the same vararg parameter of the macro def. In that case, according to subsection 4.3.1,
the macro impl must also have a vararg parameter. The macro engine wraps every vararg
argument individually, and then passes the collection of these arguments to the vararg
parameter of the macro impl.

By-name arguments. We allow by-name parameters for macro defs, and treat their
corresponding arguments as if the by-name modifier was missing. It is the responsibility
of the macro writer to respect the evaluation strategy in the macro expansion.

Structural types. When the prefix is a method application has a structural type, and
the method is declared only in the refinement of that type, such an application cannot
be compiled in a conventional way on the JVM. In this situation, the Scala compiler
emits bytecode that uses JVM reflection to dynamically lookup and invoke the required
method at runtime. Since such bytecode typically leads to a significant performance
degradation, the compiler requires such applications to be enabled by a special built-in
import or a dedicated compiler flag. To the contrast, macro applications are expanded
at compile time, so invoking macros on structural types is allowed without any special
requirements.
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Desugarings. An interesting peculiarity of Scala is that a significant number of its
language features, e.g. assignment, pattern matching, for comprehension, string interpo-
lation and others, are oftentimes desugared into method applications. As a result, these
features can be transparently enriched by macros. This simple idea has many important
implications as described in chapter 6.

As we can see, macro applications almost seamlessly integrate with the existing infras-
tructure of method applications. The differences are: 1) special treatment of whitebox
macros by the type inference algorithm, because macro expansion can manipulate type
inference, 2) almost non-existent partial application, because macro applications expand
at compile time, 3) lack of support for named and default arguments, because macro
defs did not initially support this functionality, and our follow-up patches were rejected.

4.6.3 Java interop

An important feature of Scala is bidirectional interoperability with Java. The main target
platform of Scala is the JVM, and the Scala compiler emits bytecode that is very close
to the what the Java compiler would emit for idioms that have correspondence in Java.

As a result, Scala programs can easily use libraries written in Java (call methods, extend
classes and interfaces, etc - as if they were written in Scala). Java programs can also
use libraries written in Scala (of course, Scala features like implicit inference will not
be available, so the corresponding Java code is more verbose). This is very important
practically, because there are popular libraries written in Scala (Akka, Play, Spark, etc)
that are also used by Java programmers.

Def macros are one of the rare exceptions to the Java compatibility guideline. Since they
operate in terms of a Scala language model, they cannot be realistically supported in a
Java compiler. As a result, def macros cannot be used in Java programs.

4.7 Conclusion

Def macros have revolutionized metaprogramming in Scala. Prior to the introduction of
macros in Scala 2.10, compile-time metaprogramming with out of the box functionality
was either about limited and baroque type-level programming or about comprehensive
but unstable and hard to distribute compiler plugins. Def macros have been able to
improve upon both, featuring a powerful reflection API and a way to transparently
package and distribute compile-time metaprograms.

Even before their public release, def macros have found passionate adopters among the
authors of popular libraries. Shortly afterwards, they have widely spread in the Scala
community, creating new language idioms and enabling novel use cases (chapter 6).
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Def macros owe much of their success to similarity with regular methods (section 4.6).
Outside of the context of macros, many existing Scala features are desugared to method
calls — either to calls to methods with special names like apply and unapply, or to
methods with special meaning like implicits. Def macros make it possible to retain similar
user interface and semantics for these existing Scala features, while also gaining code
generation and compile-time programmability powers provided by macros.

Another important factor that contributed to the popularity of def macros is the ease of
distribution. Most of the functionality enabled by macros was within reach of compiler
plugins, albeit in a more verbose way. However, enabling a compiler plugin requires a
custom compiler flag, while enabling a def macro does not require any manual configura-
tion. As a result, macro users do not even need to know that they are customizing their
compiler, which represents a crucial improvement in user experience.

Scala.reflect (chapter 3) has played a paramount role in making def macros possible. A
rich metaprogramming API was essential for usefulness of def macros, but something
like that would typically require significant time to design and implement. In our case,
such an API was readily available in the form of scala.reflect.

Ironically, scala.reflect also plays a paramount role in the majority of complaints about
macros. Overcomplicated API, bizarre coding idioms, lack of hygiene, as well as subpar
tool support - these are all direct consequences of using scala.reflect as the underlying
metaprogramming framework.

Learning from our experience with def macros, we have set out to build a better macro
system that will feature a concise language interface and will be powered by a simple yet
comprehensive API supported by third-party developer tools. Central to this new macro
system is a new metaprogramming framework called scala.meta (chapter 8), which is not
part of the standard distribution, but already shows promise as a potential successor to
scala.reflect. In chapter 9, we outline the proposed design, and explain how it improves
upon def macros.
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5] Extensions

In Scala, a language with rich syntax and static types, program transformations distinguish
syntactic categories of terms, patterns, types, definitions and several others.

With def macros desribed in chapter 4, we brought compile-time metaprogramming to
the term level. Usefulness of def macros illustrated in chapter 6 has encouraged us to
continue experiments with metaprogramming in other linguistic contexts.

In this chapter, we will discuss the results of our most successful experiments. We start
with pattern macros in section 5.1, proceed with type macros in section 5.2 and conclude
with macro annotations in section 5.3. Not all these experiments ended up in standard
distribution like def macros, but all of them influenced the community and the design of
future versions of Scala.

Chronologically, these experiments took place before the inception of scala.meta (chap-
ter 8), so in this chapter we will write metaprograms in terms of scala.reflect (chapter 3).
Nevertheless, macro flavors that will be discussed here do not depend on a particular
metaprogramming framework, and can be reimplemented on top of scala.meta.

5.1 Pattern macros

Pattern macros are macros that expand patterns to patterns, much like def macros
(chapter 4) that expand terms to terms. An approximation of pattern macros can be
implemented using def macros since Scala 2.11.

In this section, we provide a motivating example that can benefit from pattern macros
(subsection 5.1.1) and discuss how to achieve macro expansion in pattern position using
def macros (subsection 5.1.2).
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Chapter 5. Extensions

5.1.1 Motivation

The listing below defines a console application that tries to parse its first argument as a
Scala version using a regular expression. Depending on the result of the attempt, the
application either prints out the structural parts of the Scala version (its epoch, major
and minor components) or reports an error.

case class Regex(pattern: String) {
def unapplySeq(scrutinee: String): Option[Seq[String]] = {
import java.util.regex._
val p = Pattern.compile(pattern)
val m = p.matcher(scrutinee)
if (m.matches) Some(l.to(m.groupCount) .map(m.group))
else None

3

object Test {
def main(args: Array[String]): Unit = {
val ScalaVersion = Regex ("""~ (\d{1}H)\.(\d{1,2H)\.C.+)g$""")
args (0) match {
case ScalaVersion(epoch, major, minor) =>
println((epoch, major, minor))
case _ =>
println("not a valid Scala version!")

}

In order to parse the input, the application creates a regex on line 13 and uses it as a
pattern on line 15 to extract structural parts of a Scala version. In case you are wondering
about the particular regex used for this purpose, its last group cannot be a number,
because it has to accommodate versions like 1.4.0+3, 2.9.0-1 and 2.9.1-1-RC1.

ScalaVersion can be used as a pattern because its type defines a magic method
unapplySeq that returns Option[Seq[String]]. The value returned from unapplySeq
can be either Some (Seq (. ..)), which indicates a successful match and wraps its results,
or None, which indicates a failed match. If we knew the number of results statically, we
could define a magic method unapply, whose signature would then wrap a statically-sized
collection of results.

More concretely, the Scala compiler will lower the pattern match on lines 14-19 into the
following low-level code, which is adapted from a diagnostic compiler printout. In the
printout below, note the two synthetic variables x1 and o7 introduced by the pattern
matcher, as well as several named labels (case5, case6 and matchEnd4) that do not
have surface syntax, but are present in the intermediate representation of the compiler.
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val x1: String = args.apply(0);
case5(){
val o7: Option[Seq[Stringl] = ScalaVersion.unapplySeq(x1l);
if (o7.isEmpty.unary_!)
if (o7.get.!=(null).&&(o7.get.lengthCompare(3).==(0)))
{
val epoch: String = o7.get.apply(0);
val major: String o7.get.apply(1);
val minor: String = o7.get.apply(2);
matchEnd4 (println((epoch, major, minor)))
}
else
case6 ()
else
case6 ()

3
case6(){
matchEnd4 (println("not a valid Scala version!"))
s
matchEnd4 (x: Unit){
X

}

To put it in a nutshell, defining magic methods unapply and unapplySeq, which are
collectively called extractors, allows Scala programmers to customize the default behavior
of pattern matching.

Unfortunately, extractors sometimes lack precision. For example, in the compiler printout
above, epoch, major and minor are all strings, even though we know that both major
and minor can be represented as integers. Matching these groups into variables of type
Int may be beneficial for user experience, and that is what we will be trying to achieve

in this section.

5.1.2 Pattern expansion via def macros

Without introducing new language features and using only def macros, we will now write
an macro-based extractor that computes precise types for groups captured by Regex.

Before we proceed with developing a def macro that performs pattern expansion, let
us note that control flow in patterns is inverted in comparison with control flow in
terms. In method calls, we pass in arguments and get back the output that represents
the entire call. In extractor patterns, we pass in a scrutinee that represents the entire
pattern and get back a collection of outputs that represent subpatterns. For example,
even though the pattern says ScalaVersion(epoch, major, minor), its lowering is
ScalaVersion.unapplySeq(x1), and parts are extracted from the result of the call.
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Chapter 5. Extensions

Therefore, the macro extractor that we are about to write will not have access to the
subpatterns of the ScalaVersion pattern, but will instead see a dummy like x1 that
represents the scrutinee.

import scala.language.experimental.macros
import scala.reflect.macros.whitebox.Context

class Regex[T] (pattern: T) {
def unapply(scrutinee: String): Any = macro RegexMacros.unapply

}

object Regex {
def apply(pattern: String): Any = macro RegexMacros.apply
}

class RegexMacros(val c: Context) {
import c.universe._
import definitions._

def apply(pattern: c.Tree): c.Tree = {
pattern match {
case Literal(constant @ Constant(pattern: String)) =>
val T = c.internal.constantType (constant)
q"new Regex[$T] ($pattern)”
case _ =>

c.abort(c.enclosingPosition, "only literal patterns supported")

In order to communicate the regex between the term that creates a pattern to the pattern
that uses it, we parameterize Regex with a constant type.

Constant types are a special flavor of singleton types that are inhabited by a single value
defined by the underlying constant. Constant types are typically used as phantom type
parameters that carry metadata to be used for compile-time metaprogramming, e.g. in
type-level computations or macros.

Even though there is no surface syntax for constant types, these types are internally
supported by the Scala compiler. This means that macros based on scala.reflect can
create values that involve constant types (line 19), and then, by the virtue of type
inference, these types can propagate through the program.

scala> val ScalaVersion = Regex ("""~ (\d{1}H)\.(\d{1,2H)\.(C.+$""")
ScalaVersion: Regex[String ("~ (\\d{1})\\.(\\d{1,2O\\.(.H)$")] =
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Once regexes have precise types that carry patterns used to create them, we can finally
write the unapply macro that will compute precise types for extracted groups.

25 e

26 def unapply(scrutinee: c.Tree): c.Tree = {

27 val pattern = c.prefix.tree.tpe.widen match {

28 case TypeRef(_, _, List(ConstantType(Constant(s: String)))) => s
29 case _ => c.abort(c.enclosingPosition, "unsupported regex")
30 }

31

32 val types = {

33

34 }

35

36 val resultType = {

37 if (types.isEmpty) typeOf[Booleanl]

38 else {

39 val packedResults = {

40 if (types.length == 1) types(0)

41 else appliedType(TupleClass(types.length), types)
42 }

43 appliedType (typeOf [Option[_]], packedResults)

44 }

45 }

46

47 val success = {

48 if (types.isEmpty) q"true"

49 else {

50 val rawResults = 1.to(types.size).map(i => q"m.group($i)")
51 val results = rawResults.zip(types).map{ case (res, tpe) =>
52 if (tpe =:= typeOf[Int]) q"$res.toInt"

53 else if (tpe =:= typeOf [Stringl) q"$res"

54 else sys.error("unsupported pattern type: " + tpe)
95 }

56 q"Some ((..$results))"

57 }

58 }

59

60 val fail = {

61 if (types.isEmpty) q"false"

62 else gq"None"

63 }

64

65 q"""

66 new {

67 def unapply(scrutinee: String): $resultType = {

68 import java.util.regex._
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val p = Pattern.compile($pattern)
val m = p.matcher(scrutinee)
if (m.matches) $success else $fail

}
}.unapply($scrutinee)

}
}

First, we obtain the underlying regex from the phantom type argument of the pattern
(lines 27-30). In order to do that, we get the prefix of the macro application, which
represents the ScalaVersion part of ScalaVersion.unapply(x1), and then take
apart its type. The necessity to call Type.widen on the type of the prefix is one of the
pieces of arcane knowledge about compiler internals.

Afterwards, we compute the types of the groups defined by the regex (lines 32-34). For
brevity, we do not include the implementation of this logic in the listing.

Having the types at hand, we can calculate the signature of the unapply method. The
shape of the return type of unapply varies depending on the number of extracted values.
Zero values are represented by Boolean that indicates whether there was a match or
not. One value is represented by Option[T] that wraps the extracted value. Multiple
values are represented by Option[(T1, T2, ...)] that wraps an appropriately-sized
tuple packing the extracted values. This logic is captured on lines 36-45.

This brings our macro, just like most other pattern macros, into the whitebox category.
It is an error to use a blackbox macro in pattern position.

Lines 47-63 generate success and failure cases for the matcher according to the unapply
contract explained above. On lines 52-53, we implement the main purpose of the macro -
conversion of matched groups to precise types.

Finally, we assemble the expansion that exposes match results with types computed
in the macro (lines 65-74). Note how we expand ScalaVersion.unapply(x1) into
<new matcher>.unapply(x1) instead of simply emitting the match results. Just like
the trick with Type.widen on line 27, this is yet another internal implementation detail.

For simplicity, we have not gone into practicalities that would have to be handled in a
real-world implementation. First, both apply and unapply are unhygienic. In order for
them to be robust, all references to global definitions must be fully qualified and all local
definitions must have unique names. Secondly, the implementation is inefficient, because
it creates a tuple that the pattern matcher takes apart shortly afterwards. This can be
taken care of with name-based pattern matching. Finally, it would be useful to hide
the constructor of Regex. Regexes created outside of Regex.apply are unlikely to be
parameterized with a precise constant type, so they will not be usable in Regex .unapply.
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The diagnostic compiler printout provided below (adapted from real compiler output)
demonstrates that our prototype achieves its goal, producing patterns that have precise
types computed at compile time.

val x1: String = args.apply(0);
case50){
val o7: Option[(Int, Int, String)] = {

+;
if (o7.isEmpty.unary_!)
if (o7.get.!=(null) .&&(o7.get.lengthCompare(3).==(0)))
{
val epoch: Int o7.get._1;
val major: Int o7.get._2;
val minor: String = o7.get._3;
matchEnd4 (println((epoch, major, minor)))
}
else
case6 ()
else
case6()

+s;
case6(){
matchEnd4 (println("not a valid Scala version!"))
};
matchEnd4 (x: Unit){
X

5.1.3 Conclusion

Using only def macros, we have been able to perform macro expansion in pattern position,
obtaining programmatic compile-time control over pattern matching.

The unapply macro (subsection 5.1.2) is a great example of how def macros interact
with other language features (here, with extractors and constant types) in order to bring
compile-time metaprogramming to unexpected domains.

An unpleasant limitation of this approach to customizing pattern matching is the inability
to inspect and change subpatterns, which is inconsistent with the functionality provided
by def macros. Strictly speaking, we do not expand patterns to patterns, but instead
expand extractor calls to extractor calls as part of the implementation-specific desugaring
process performed for patterns by the Scala compiler. Since the macro-enabled part of
the desugaring of extractor patterns does not involve subpatterns, macros like unapply
cannot obtain or influence them.
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One way to fix this limitation would be to implement pattern macros as a separate
compile-time metaproramming facility distinct from def macros. Such pattern macros
would receive subpatterns as arguments and then produce a resulting pattern upon macro

expansion.

Unfortunately, this design requires non-trivial changes in the macro engine. First, much
like control flow, typechecking of patterns is also inverted in comparison with typechecking
of terms. Unlike method arguments which are typed before the enclosing method call,
subpatterns are typed after the enclosing extractor call. This means that subpatterns, as
seen inside the hypothetical pattern macros, would be untyped, which is a noticeable
departure from def macros. Secondly, Scala’s pattern matcher works in a very specific
way that is hard to customize, so implementing pattern macros would require a major

engineering effort.

Faced with significant complications, we decided to temporarily suspend the investigation
of a dedicated design for pattern macros. This remaining an interesting challenge for
future work.

5.2 Type macros

Type macros are macros that expand types to types, much like def macros (chapter 4)
that expand terms to terms. Unlike pattern macros, type macros cannot be emulated
by existing language features, so we implemented them as a dedicated feature in an
experimental fork of Scala 2.10 called “Macro Paradise v1” [11].

In this chapter, we outline an important use case that can benefit from type macros
(subsection 5.2.1) and demonstrate how to achieve it (subsection 5.2.2).

5.2.1 Motivation

Type providers [116] originate from the F# community and provide a mechanism for
compile-time generation of statically-typed wrappers for datasources.

Along with LINQ), type providers have proven to be one of the foundational facilities
to simplify data access, so one of our goals with macros has been to provide analogous
functionality for the Scala ecosystem.

After tackling LINQ (section 4.2), we moved our focus to type providers and found that
macro expansion on the type level seems to be a good fit. Expanding type applications
to types in order to generate top-level definitions was the main motivation for developing
type macros.
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5.2.2 Type expansion

Below we define a type macro H2Db that generates case classes representing tables in an
H2 database and provides CRUD functionality for the underlying tables.

import scala.language.experimental.macros
import scala.reflect.macros.Context

object TypeProviders {
type H2Db(url: String) = macro TypeProviderMacros.h2db
}

object TypeProviderMacros {
def h2db(c: Context)(url: c.Tree): c.Tree = { ... %}
b

object Test {
def main(args: Array[Stringl): Unit = {
import TypeProviders. _
object Db extends H2Db("coffees")

val brazilian = Db.Coffees.insert("Brazilian", 99.0)
Db.Coffees.update(brazilian.copy(price = 100.0))
println(Db.Coffees.all)
}
}

Type macros are a hybrid of def macros and type members. On the one hand, type
macros are split into macro types and macro impls, with macro types being very similar
to macro defs and macro impls being the same as regular macro impls (section 4.3).

Note how the H2Db macro type has a term parameter unlike a regular type and like a
macro def (line 5), and how it is applied to a term argument exactly like a macro def
(line 15). The only two differences between macro types and macro defs is that macro
types cannot have return types, because they do not expand into terms, and that macro
types cannot be implicit, because implicit does not make sense for types.

On the other hand, type macros belong to the namespace of types and, as such, they can
only be used in type positions and can only override other types and type macros.

In the listing above, macro expansion happens when the compiler encounters an applica-
tion of a macro type on line 15. As a result, analogously to def macros, that application
is typechecked, the macro impl is looked up and called, and so on.

The only difference with the def macro expansion pipeline (section 4.4) is the way how
macro expansions are typechecked. Since type macros expand into types, their macro
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expansions are typechecked as types. Moreover, even though we validate def macro
expansions against the return type of their macro def, we do not do that for type macros.
Since kinds in Scala are only capable of checking arities of type constructors and their
parameters, which does not seem particularly useful for type macro expansions, we
decided to to skip the validation step for type macros.

After H2Db ("coffees") expands, the compiler replaces it with its expansion, and for
all intents and purposes the compiler considers that Db subclasses the type produced by
the macro expansion. In our running example, this means that users of Db can refer to
synthetic definitions like Coffees that have been generated by the type macro.

def h2db(c: Context)(url: c.Tree): c.Tree = {
import c.universe._
import definitions._
import java.sql._
import JdbcHelpers. _

val connString = url match {
case Literal(Constant(url: String)) =>

case _ =>
c.abort(c.enclosingPosition, "only literal urls supported")

val tableDefs = {
Class.forName("org.h2.Driver")
val conn = DriverManager.getConnection(connString, "sa", "")
try {
val tablesq = conn.list("show tables")
val tables = tablesq.map(row => row("table_name").to[String]l)

tables.flatMap (tbl => {
val schemaq = conn.list(show columns from " + tbl)
val schema = schemaq.map(row => {
val columnName = row("column_name").to[String]
val scalaName = TermName (columnName.toLowerCase)
val scalaType = {
val tpe = row("type").to[String]
if (tpe.startsWith("INTEGER")) typeOf [Int]
else if (tpe.startsWith("VARCHAR")) typeOf [String]
else if (tpe.startsWith("DOUBLE")) typeOf [Double]

else c.abort(c.enclosingPosition, "unsupported type: " + tpe)

b
scalaName -> scalaType

b
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36 val dtoName = TypeName (tbl.toLowerCase.capitalize.dropRight (1))
37 val dtoFields = schema.map{ case (n, t) => gq"val $n: $t" }
38 val dtoClass = qg'"case class $dtoName(..$dtoFields)"

39

40 val tableName = TermName(tbl.toLowerCase.capitalize)

41 val insertParams = dtoFields.filter(f => f.name.toString != "id")
42 val tableObject = gq"""

43 object $tableName {

44 def all: List[$dtoName] = { ... }

45 def insert(..$insertParams): $dtoName = { ... }

46 def update(dto: $dtoName) = { }

47 def remove(dto: $dtoName) = { ... }

48 }

49 nnn

50

51 List(dtoClass, tableObject)

52 1))

53 } finally {

54 conn.close()

55 }

56 }

57

58 val pkgName = c.enclosingPackage.pid.toString

59 val className = c.freshName(TypeName ("Db"))

60 c.introduceTopLevel (pkgName, q"class $className { ..$tableDefs 1}")
61 Select(c.enclosingPackage.pid, className)

62 %

Similarly to previous examples of macros, we forgo practicalities for brevity. First, we
omit the code that creates a database connection string from the argument of the type
macro (line 9). Moreover, we do not take any measures to improve the performance of
the macro by connection pooling, caching expansion results, etc. Additionally, we use
a naive approach to configuration, hardcoding database credentials (line 16) and name
mapping rules (lines 25, 36, 40 and 41). Finally, we are not concerned with hygiene.

On a very high level, the h2db macro impl connects to a database at compile time
(line 16), generates a synthetic base class that contains the definitions representing
the database (lines 17-55), inserts the synthetic class into the current package via the
newly introduced Context.introduceTopLevel API (line 60) and then expands into
a reference to that synthetic class (line 61).

From the discussion above, we can see that type macros can implement functionality
similar to type providers. While our running example does not support lazy and/or
erased code generation, similar behavior can be achieved with additional help from def

macros as described in section 6.2.
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5.2.3 Conclusion

Type macros brought the notion of macro expansion to the type level. Thanks to them,
it has become possible to implement eager type providers, making a significant step
ahead in the data access story in Scala. Unfortunately, along with new possibilities, type
macros also created new complications.

The most controversial addition to the macro system was the idea of non-local expansion.
While def macros can only change their applications by rewriting them into something
else, type macros, in addition to local rewritings, can also create top-level definitions via

introduceTopLevel.

introduceTopLevel has provided a long-requested functionality of generating defini-
tions that can be used outside macro expansions. However, metaprogrammers have
quickly discovered that introduceTopLevel is dangerous. Top-level scope is a re-
source shared between the typechecker and user metaprograms, so mutating it with
introduceTopLevel can lead to compilation order problems. For example, if one file
in a compilation run relies on definitions created by a macro expansion performed in
another file, compiling the former before the latter may lead to unexpected compilation

eIrrors.

Moreover, our tooling ecosystem turned out to be unexpectedly incompatible with the
notion of programmatically generated top-level definitions. One of the most spectacular
incompatibilities was associated with sbt, the most popular Scala build tool, which
insisted on going into infinite recompilation loops when type macros were involved.
Because of the particular way how sbt implemented detection of dependencies, we have
not ever been able to patch it to fully support synthetic top-level definitions.

Additionally to the difficulties associated with introduceTopLevel, type macros have
made a noticeable impact on the complexity budget of the language and the macro engine.
In order for type macros to be practically useful, they required additional infrastructure
that can, among other things: share state between expansions, perform caching of
expansions, enable lazy expansion in order to model huge schemas, and provide access to
resources of the project.

On these grounds, our Scala compiler patch that implements support for type macros
was rejected, and we tried to salvage the underlying ideas in our future experiments. The
most successful of these experiments are macro annotations that provide a principled
way of generating top-level definitions (section 5.3).
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5.3 Macro annotations

Macro annotations are macros that expand definitions to definitions, much like def macros
(chapter 4) that expand terms to terms. We implemented macro annotations in a popular
compiler plugin called “Macro Paradise v2” [12] available since Scala 2.10.

In this section, we explain the motivation behind macro annotations (subsection 5.3.1)
and illustrate how macro annotations perform definition expansion (subsection 5.3.2).
Additionally, we discuss to what degree macro annotations can introspect other definitions
in the enclosing program (subsection 5.3.3, subsection 5.3.4).

5.3.1 Motivation

The main motivation for developing macro annotations was support for boilerplate
generation that involves top-level definitions.

Even though both def macros and type macros can achieve similar functionality, they
are not general enough. Def macros can expose local definitions with the help from
structural types, but that approach uses fringe Scala features and has practical limitations
(section 6.2). Type macros can make modules inherit from synthetic traits created
by introduceTopLevel, indirectly introducing top-level definitions into the affected
modules (subsection 5.2.2). However, this approach can only create new definitions, but
not rewrite or even see existing ones.

Languages of the .NET platform typically support attributes that annotate definitions
and provide static metadata for their annottees. Nemerle extends this notion by making
it possible for specially defined attributes to transform annotated definitions. In the
example below, taken from [110], Proxy is a macro attribute that enumerates the list of
methods in the interface IMath and, for every such method, generates a forwarder that
calls this method on math.

// Remote "Prozy Object”

class MathProxy : IMath

{
// the stubs implementing IMath by calling
// math.* are automatically generated
[Proxy (IMath)]
math; // object of type Math

this ()
{
math = ObtainExternalReferenceToMath ();

}

117



© 00~ O U W

DO RO DO DD = = = b e s e e
W O OO Ui WD —=O

Chapter 5. Extensions

Inspired by Nemerle, we have taken the existing concept of Scala annotations and
provided a way for metaprogrammers to define them in a special way in order to obtain
definition-transforming macros.

5.3.2 Definition expansion

In the listing below, we can see a definition of the h2db macro annotation that is
observationally equivalent to the H2Db type macro developed in subsection 5.2.2.

import scala.language.experimental.macros
import scala.reflect.macros.Context
import scala.annotation.StaticAnnotation

class h2db(url: String) extends StaticAnnotation {
def macroTransform(annottees: Any*): Any =
macro H2DbMacros.macroTransform

}

object H2DbMacros {
def macroTransform(c: Context) (annottees: c.Treex*): c.Tree = {
}

3

object Test {
def main(args: Array[String]): Unit = {
@h2db("coffees") object Db
val brazilian = Db.Coffees.insert("Brazilian", 99.0)
Db.Coffees.update(brazilian.copy(price = 100.0))
println(Db.Coffees.all)

3

Macro annotations are subclasses of the StaticAnnotation trait from the standard
library that define a macro with the magic name macroTransform (line 5-7). The macro
impl that corresponds to that macro def takes a synthetic block of code that wraps the
annottees and returns a synthetic block of code that wraps the expansion (line 11-13).

This way of defining macro annotations involves quite a lot of boilerplate, but it was
dictated by our desire to retrofit macro annotations onto the existing infrastructure of
def macros. The future version of macro annotations (chapter 9) will have a much more
lightweight syntax.

Macro annotations can be applied to definitions that allow annotations, which currently
includes all Scala definitions except packages and package objects. When applied to
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traits and classes, macro expansion involves not just the annottees themselves, but also
their companion objects if they exist. Therefore, implementations of macro annotations
(e.g. the one on lines 11-13) take a collection of definitions instead of a single definition.
Analogously, expansions of traits and classes can return not just the rewritten annottees,
but can also create or rewrite their companion objects.

Expansion pipeline for macro annotations reuses the standard expansion pipeline imple-
mented for def macros (subsection 4.4.1), but overrides it in several key points.

First, unlike def macros, which expand during typechecking, macro annotations expand
before typechecking. As a result, macro annotations take untyped definitions and expand
them into untyped definitions, which gives them freedom to change type signatures of
their annottees (e.g. add or remove parameters to annotated methods, add or remove
members to annotated classes, etc). Consequently, unlike def macros, macro annotations
expand outside-in.

The untyped nature of macro annotations brings additional flexibility, but it also reduces
the set of tools available to the metaprogrammer, because untyped trees do not know
what their identifiers resolve to, do not know about their types, etc.

Secondly, again unlike def macros, resulting expansions are not typechecked right away,
because that would be too early for the compilation pipeline. Eventually, at a later
point in time when the pipeline reaches the typechecking step, these expansions get
typechecked and possible errors in them are reported to the users.

Finally, there are certain rules that govern the shape of allowed expansions. Top-level
definitions can only expand into eponymous top-level definitions, e.g. it is not allowed
for @ann class C to expand into class D. This restriction is in place in order to
prevent compilation order issues as explained in subsection 5.3.4. To the contrast, nested
definitions (i.e. class/trait/object members or local definitions) can expand into anything,
including multiple definitions or nothing at all.

def macroTransform(c: Context) (annottees: c.Treex*x): c.Tree = {
import c.universe._

val connString = c.macroApplication match {
case q"new h2db(${url: String}) .macroTransform(..$_)" =>

case _ =>
c.abort(c.enclosingPosition, "only literal urls supported")

val tableDefs = {
// source code taken from subsection 5.2.2
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14 }

15

16 val annotteesl = annottees match {

17 case Seq(ModuleDef (mods, name, Template(parents, self, body))) =>
18 val bodyl = body ++ tableDefs

19 Seq(ModuleDef (mods, name, Template(parents, self, bodyl)))
20 case _ =>

21 c.abort(c.enclosingPosition, "unsupported annottee")

22 }

23

24 Block(annotteesl, Literal(Constant(())))

25 %}

In the implementation of the h2db macro annotation, we reuse most of the logic that
we developed for the H2Db type macro (subsection 5.2.2), only changing the shell of the
metaprogram that delivers the generated definitions.

The first change in comparison with H2Db affects how the macro obtains its configuration.
In the case of type macros, url is the parameter of the macro type, so it is trivially
available as a parameter of the macro impl. In the case of macro annotations, in order to
reuse the existing def macro infrastructure, we model macro expansions via expansions of
the corresponding macroTransform def macros. Our implementation creates synthetic
invocations that look like new h2db(<url>) .macroTransform(<object ...>) and
feeds them into the standard expansion pipeline. As a result, arguments of macro
annotations are only available via Context.prefix or Context.macroApplication

as shown on line 5.

The second change in comparison with H2Db affects how generated definitions are returned
in the macro expansion. We can observe that on lines 16-24. First, macroTransform
matches the list of annottees, expecting a single object on line 17 (objects are internally
called ModuleDefs in the Scala compiler parlance). After obtaining the annottee, it
takes the generated table defs and inserts them into the body of the annottee on line
19. Finally, it wraps the transformed object in a block on line 24 according to the
convention that macro annotations have to follow.

To put it in a nutshell, macro annotations can generate and/or rewrite top-level def-
initions in a relatively straightforward way. This successfully fills the compile-time
metaprogramming niche uncovered by def macros and type macros.

5.3.3 Enabling semantic APIs

One of the key design decisions behind macro annotations was making their expansions
untyped. More precisely, neither annottees nor expansions of macro annotations are
typechecked in the macro annotation expansion pipeline.
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On the one hand, this increased flexibility of macro annotations and made them useful
to design extremely concise DSLs and prototype new language features.

In the listing below, we can see the @enum macro annotation sketched by Simon Ochsen-
reither that provides a concise notation for defining the enumeration representing days of
week. Note that if object Day was typechecked prior to the expansion of @enum, this
notation would not work well, because it is unlikely that the identifiers in the body of
the object would typecheck.

@enum

object Day {
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

3

On the other hand, the decision to be untyped created a complication for macro annota-
tions that want to obtain type information about certain parts of their annottees.

For example, one may want to write a macro annotation @async that goes through
the list of methods of a given class, trait or object and generates their asynchronous
versions that wrap execution in futures. In order to avoid creating asynchronous versions
of pre-existing asynchronous methods, such a macro would need a way to determine
whether a method returns Future [T] or not. Since Scala has renaming imports and
return type inference, simply inspecting the syntax of the return type trees is not good
enough to achieve robustness.

Q@async

object Server {
def longRunningOperationl() = { . }
def longRunningOperation2() = { . }

In order to support both untyped and typed use cases, we expose the Context.
typecheck API in macro annotations. On a very high level, this method takes an
abstract syntax tree and then typechecks it in the context of the current macro expansion,
producing a typed tree that supports semantic APIs.

As a result, metaprogrammers have a choice. If they want to have completely untyped
annottees, they do nothing. If they want the annottees partially typechecked, they call
Context.typecheck on the trees they are curious about.
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5.3.4 Ensuring consistent compilation results

introduceTopLevel was frequently criticized for its ability to introduce compilation

order problems.

With introduceTopLevel, it was not uncommon for inexperienced metaprogrammers
to use it to define top-level definitions and then to refer to these definitions elsewhere in
the program. Naturally, this only works if the macro expansion introducing the definition
happens before the typechecker gets to a reference to the definition. In other words, this
requires the compiler to typecheck the file with the macro application before the file with
the reference to the synthetic definition.

There is no language-integrated way to guarantee that a given file will be typechecked
before another file. In order to obtain such a guarantee, programmers have to manually
configure their build tools to pass files to the Scala compiler in the correct order. This is
a very brittle workflow, so it is strongly discouraged in the community.

introduceTopLevel only works well in macros like H2Db (subsection 5.2.2), where it
creates a definition with an obscure unique name that is only used in the enclosing macro
expansion. As a result, even though introduceTopLevel can be useful, it is not very
good as an API, because it gives metaprogrammers room for error.

In a sense, macro annotations are similar to introduceTopLevel, because both can
introduce definitions that are visible to the entire compilation run. Therefore, when
designing macro annotations, we developed them to completely prevent possibilities for
compilation order problems.

Concretely, our goal was to avoid two kinds of situations that can lead to unexpected
behavior when developing and using macro annotations.

The first situation involves spuriously invalid references, when a reference in one file
incorrectly considers that a definition generated by a macro annotation in another file
does not exist. In the example below, class A depends on class BB generated in a different
file by a macro annotation that changes names of its annottees by repeating them twice.
We want such a program to either consistently succeed or consistently fail compilation,
regardless of the compilation order.

// A.scala
class A extends BB

// B.scala
@double class B

The second situation involves spuriously valid references, when a reference in one file
incorrectly considers that a definition deleted by a macro annotation in another file does
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exist. In the example below, class A from A.scala refers to class B from B.scala, but
that reference is invalid, because class B gets deleted by the macro expansion. We want
such a program to consistently fail compilation with a legible error, regardless of the
compilation order.

// A.scala
class A extends B

// B.scala
@double class B

Additionally, our design space was limited by the architecture of the compiler. Just like
in other projects described in this dissertation, our goal was to ship macro annotations
with the Scala compiler, so our implementation had to work within the available compiler
framework.

Within the scalac frontend, definitions can be in one of the following four states:
unattributed, entered, completed and typechecked. After parsing, all definitions are
unattributed. Afterwards, as the compilation proceeds, definitions are entered, i.e.
assigned newly created symbols which are then added to the internal symbol table of
the compiler. Such newly created symbols do not know their signatures yet - they just
know how to compute them on demand. Further in the future, when their signatures
are required, definitions are completed, i.e. have their signatures computed. Finally,
definitions are typechecked, i.e. have their trees attributed by the typechecker.

To put it shortly, the frontend of the Scala compiler consists of three phases: parser,
namer and typer, each of which sequentially processes source files in the order they were
provided to the compiler. The parser phase parses all source files into abstract syntax
trees. Then, the namer phase enters all top-level definitions in all source files. Finally, the
typer phase goes through the source files from top to bottom and recursively typechecks
their abstract syntax trees. Typechecking may trigger completion of other definitions,
which may trigger entering new symbols, and so on. Eventually, typer finishes going
through the source files, at which point all definitions should be typechecked.

In this architecture, expansion of macro annotations can happen either upon entering or
upon completion. During typechecking, the signature of the definition is already finalized,
which means that typechecking cannot accommodate general-case macro annotations.
Let us explore the available opportunities.

Expand on enter. In this case, the first situation is going to work well. Even though
B in the first situation is going to expand into BB, that expansion happens on enter.
Since completion can be triggered only after all definitions in scope have been entered,
regardless of the compilation order, completion for A will successfully see an entry for BB
in the symbol table, as desired by the design requirements.
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Moreover, in the second situation, by the time when A starts completing, B will have
already been renamed by the enclosing macro annotation, again regardless of the compi-
lation order. Therefore, name resolution for B will result in a compilation error, which is
the desired behavior.

However, when we expand on enter, we have problems with typecheck. Typechecking
includes name resolution, therefore our macro annotations can trigger name resolution
during expansion, i.e. during enter. As a result, typechecks may see inconsistent state
of the symbol table. For example, if in the first situation we compile B.scala before
A.scala and the @double macro annotation tries to typecheck something that involves
A, that typecheck will result in a spurious failure. This happens because expansion of
@double triggers upon enter on B, and by that time A will not have been entered yet.

Expand on complete. In this case, the first situation is not going to work consistently.
If A.scala is compiled before B. scala, A will complete before B completes, which means
that by that time @double will not have expanded yet and BB will not exist, resulting in
a compilation failure. If we change the compilation order, then macro expansion happens
before completion of A, and compilation succeeds.

Regardless of problems with the first situation, the second situation is still going to
consistently fail compilation. If A.scala is compiled before B. scala, completion of A
is going to typecheck a reference to B, which will succeed and then try to complete B.
This recursive completion will trigger macro expansion that will rename B and invalidate
the completion and failing the compilation. If B.scala is complied before A.scala,
then typechecking a reference to B will fail in the first place, again correctly failing

compilation.

Unfortunately, typecheck is still problematic. The issue is that even though typecheck
sees a full snapshot of the symbol table at the moment of expansion, such snapshot may
change between macro expansions. As a result, changes in expansion order (which may
be caused by changes in compilation order) may cause changes in expansions.

To put it in a nutshell, bringing typecheck into the mix presents a very challenging
design problem. None of the available expansion schemes work well with allowing macro
annotations to typecheck their annottees.

When designing the first version of macro annotations, we were very determined to
ship typecheck. As a result, we had to work out some compromises, and our current
expansion scheme represents a hybrid solution.

For top-level definitions, we expand on complete, ruling out the first situation by
prohibiting expansions that add or remove definitions. This restriction fixes the problem
with typecheck, because it guarantees that the top-level slice of the symbol table does
not change during macro expansion.
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For nested definitions, we expand on enter, allowing unrestricted macro expansions for
maximum flexibility. In order to make typecheck independent from expansion order,
we prohibit it from seeing definitions on the same level of nesting. In short, we avoid
problems with soundness by creating a limitation in typecheck.

From the discussion above, we can see that expansions of macro annotations were designed
to not depend on compilation order. However, this was not easy to achieve. In order
to accommodate semantic APIs without sacrificing consistent expansions, we had to
introduce several arbitrarily-looking restrictions.

5.3.5 Revisiting the separate compilation restriction

Since macro annotations reuse the def macro infrastructure, they inherit its separate
compilation restriction. Concretely, usages of macro annotations and the underlying
macro impls must come from different compilation runs, because otherwise the macro
engine will not be able to execute macro impls during macro expansion (subsection 4.3.3).

However, in addition to this restriction, macro annotations need another one. Unlike
in the situation with def macros, usages of macro annotations and definitions of macro
annotations must be compiled separately. Consequently, macro annotations cannot
generate other macro annotations to be expanded in the same compilation run.

This restriction originates from the observation that name resolution is required to expand
macro annotations. Indeed, when the Scala compiler sees code like @ann class A, it
must understand that @ann is a macro annotation and for that it needs to resolve ann.

Now, note that we can view name resolution as a mini-typecheck, which means that
it has the same restrictions with respect to the expansion scheme as discussed in sub-
section 5.3.4. Therefore, since our current scheme involves expand on enter, we cannot

reliably resolve names of macro annotations.

Luckily, if we require that macro annotations must be precompiled, the conundrum gets
resolved. Expand on enter only affects definitions that come from the same compilation
run, so by ignoring such definitions we sidestep the problem.

To put it in a nutshell, the separate compilation restriction imposed on macro annotations
is much more harsh than the analogous restriction on def macros. Even if it would be
possible to solve the latter by, for example, interpreting macro impls, solving the former
will also require a redesign of the macro annotation expansion scheme.
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5.3.6 Conclusion

Macro annotations provide a robust way to generate top-level definitions. This capability
comes in handy when experimenting with new language features and scrapping the
boilerplate associated with hard-to-abstract coding idioms.

In comparison with type macros (section 5.2) that were previously playing a similar

role in the Scala macro ecosystem, macro annotations: 1) have a much narrower focus,
which makes them more tractable, 2) apply not just to classes, traits and objects, but to
arbitrary definitions, which makes them more universal, 3) do not need an additional
introduceTopLevel API, which makes them more maintainable.

Even though macro annotations have not yet been included into the Scala compiler, they
are a popular approach to boilerplate generation. At the moment of writing, the Macro
Paradise plugin that implements macro annotations clocks more than twenty thousand
downloads per month.

Our biggest technical challenge came from the desire to both allow unrestricted expansions
of definitions and enable semantic APIs during these expansions. In our experiments
with expansion schemes for macro annotations within the current compiler architecture,
no scheme could simultaneously provide: a) independence of macro expansions from
compilation order, b) arbitrary shapes of definitions-to-definitions expansions, c¢) ability
to call semantic APIs.

In the current implementation of macro annotations, we decided that it is important to
expose semantic APIs, but for that we had to sacrifice simplicity of expansions. Therefore,
in our new macro system (chapter 9) we are planning to restrict the functionality of
macro annotations to syntactic APIs, turning semantic APIs into an exclusive feature of
def macros.
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Macros (chapter 4 and chapter 5) have tapped into the latent demand for language-
integrated compile-time metaprogramming in the Scala community. Even before macros
were released as part of the standard distribution, authors of some of the top open-source
libraries started experimenting with them, discovering new idioms and using them in
their projects. Nowadays, macros have established themselves as a tool of choice for many
scenarios involving code generation, program analysis and domain-specific languages.

In this chapter, we document some of the use cases where Scala macros have made a
significant impact, either enabling new idioms or providing non-trivial improvements to

existing approaches in Scala.

We start with materialization (section 6.1), a novel technique that enables programmable
derivation of typeclass instances. In section 6.2, we discuss how Scala macros can be
used to achieve functionality similar to F# type providers [116]. In section 6.3, we
continue with how macros influence type-level programming in Scala. Finally, the chapter
concludes with the impact of Scala macros on the DSL story, both for internal (section 6.4)
and external (section 6.5) domain-specific languages.

Many of the ideas and techniques described below have been born and refined in col-
laboration with the members of the Scala community: Aggelos Biboudis, Travis Brown,
Paul Butcher, Olivier Chafik, Alois Cochard, Mathias Doenitz, Dominik Gruntz, Philipp
Haller, Li Haoyi, Mark Harrah, Lars Hupel, Vojin Jovanovic, Grzegorz Kossakowski,
Evgeny Kotelnikov, Roland Kuhn, Heather Miller, Andrew Markii, Adriaan Moors,
Alexander Myltsev, George Leontiev, Alexander Nemish, Simon Ochsenreither, Mar-
tin Odersky, Erik Osheim, Dmitry Petrashko, Paul Phillips, Michael Pilquist, Hubert
Plociniczak, Aleksandar Prokopec, Johannes Rudolph, Miles Sabin, Tobias Schlatter,
Leonard Schneider, Denys Shabalin, Amir Shaikhha, Nick Stanchenko, Nicolas Stucki,
Tom Switzer, Eric Torreborre, Vlad Ureche, Bill Venners, Jan Christopher Vogt, Pascal
Voitot, Adam Warski, Jason Zaugg, Stefan Zeiger and many others.

127



Chapter 6. Case studies

6.1 Materialization

Materialization is a technique that uses implicit def macros (chapter 4) to generate
arguments for methods that take implicit parameters. Since implicit parameters can be
used to encode typeclasses [89], materialization can be used to programmatically derive
typeclass instances, enabling datatype-generic programming [84]. Another common use
case for implicit parameters is encoding type-level computations in a manner similar to
functional dependencies [59], and macros can contribute to this area as well.

Initial experiments with materialization were attempted by Miles Sabin even before the
official release of def macros [96], but the technology for that has arrived only with Scala
2.10.2. Among the pioneers of materialization were Miles Sabin [97], Lars Hupel [63], and
the initial scala/pickling team consisting of Heather Miller, Philipp Haller and Eugene
Burmako [81]. Applications of materialization to data-type generic programming are
further described in [83].

6.1.1 Essence of materialization

The example below defines the Showable typeclass, which abstracts over a prettyprinting
strategy. The accompanying show method takes two parameters: an explicit one, the
target, and an implicit one, which carries the instance of Showable.

trait Showable[T] {
def show(x: T): String
}

def show[T](x: T)(implicit ev: Showable[T]) = ev.show(x)

After being declared like that, show can be called with only the target provided, and the
Scala compiler will try to infer the corresponding typeclass instance from the scope of the
call site based on the type of the target. If there is a matching implicit value in scope, it
will be inferred and compilation will succeed, otherwise a compilation error will occur.

implicit object IntShowable { def show(x: Int) = x.toString }
show (42) // "42"
show("42") // compilation error

One of the well-known problems with typeclasses, in general and in particular in Scala,
is that instance definitions for similar types are frequently very similar, which leads to
proliferation of boilerplate code. For example, for a lot of objects prettyprinting means
printing the name of their class and the names and values of the fields. Even though this
and similar recipes are very concise, in practice it is rarely possible to implement them
concisely, so the programmer is forced to repeat themselves over and over again, like in
the listing provided below.
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case class C(x: Int)

implicit def cShowable = new Showable[C] {
def show(c: C) = "C(" + c.x + ")"

}

case class D(x: Int)

implicit def dShowable = new Showable[D] {
def show(d: D) = "D(" + d.x + ")"

}

If we are targeting the JVM, such repetition can usually be abstracted away with runtime
reflection (subsection 3.1.4), but runtime reflection oftentimes is either too imprecise
because of erasure or too slow because of the overhead it imposes.

With def macros (chapter 4) it becomes possible to completely eliminate the boilerplate
without compromising platform-independence, static precision and performance.

trait Showable[T] {
def show(x: T): String

object Showable {
implicit def materialize[T]: Showable[T] = macro

¥

Instead of declaring multiple instances, the programmer defines a single materialize
macro in the companion object of the Showable typeclass.

According to Scala implicit resolution rules, members of companion objects are used
for fallback implicit lookups, which means that in cases when the programmer does
not provide an explicit instance of Showable and when one cannot be found in scope,
the materializer will be called. Upon being invoked, the materializer can acquire a
representation of T as described in subsection 4.3.2 and generate the appropriate instance
of the Showable typeclass. This represents the essence of materialization.

6.1.2 Integration with vanilla implicits

A nice thing about implicit macros is that they seamlessly meld into the pre-existing
infrastructure of implicit search. Such standard features of Scala implicits as multi-
parametricity and overlapping instances are available to implicit macros without any
special effort from the programmer.

For example, it is possible to define a non-macro prettyprinter for lists of prettyprintable
elements and have it transparently integrated with the macro-based materializer as shown
in the listing below.
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case class Point(x: Int, y: Int)

implicit def listShowable[T](implicit ev: Showable[T]) =
new Showable[List[T]] {
def show(x: List[T]) = {
x.map (ev.show) .mkString("List(", ", ", ")")
}

show(List (Point (40, 2))) // prints: List(Point (40, 2))

In this case, the resulting typeclass instance for Showable [List[Point]] will be
composed from an autogenerated instance for Point and a call to the manually written
listShowable. Importantly, since implicits declared in companion objects have the
lowest priority of all definitions in the implicit scope, user-defined typeclass instances
will always have priority over the default materializer.

Integration with vanilla implicits is typical to materialization libraries. Usually, such
libraries feature a low-priority catch-all materializer along with several higher-priority
manually defined instances that cover corner cases, i.e. primitives or types special to the
domain (lists, other collections, etc).

6.1.3 Tying the knot

An important aspect of materialization is dealing with recursion. Usually, materializers
enumerate the fields of the type, for which the typeclass instance is generated, and then
recursively process these fields.

case class Employee(name: String, company: Company)
case class Company(name: String)

val employee: Employee = { ... }
show (employee)

For example, materialization of the Showable [Employee] instance that will be produced
by Showable.materialize may look as follows:

show (employee) (
new Showable[Employee] {
def show(x: Employee) = (
"Employee (" + show(x.name) + ", " + show(x.company) + ")"

)
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Due to the fact that expansions of def macros are immediately typechecked, materi-
alization will cause recursive implicit lookups of Showable [String] and Showable [
Company]. Of those, the former will most probably be defined manually by the library
author as explained in subsection 6.1.2, whereas the latter will again be handled by the

materialization macro.

Since types in Scala can be mutually recursive, it is important to ensure that the
materialization infrastructure is resilient to cycles in the materialization graph both at
compile time, i.e. when generating instances, and at runtime, i.e. when executing the
generated instances.

In order to prevent infinite recursion at compile time, one needs to “tie the knot”,
shortcircuiting implicit searches of already generated instances to themselves. Here is
one way of approaching this:

show (employee) ({
implicit object ShowableEmployee$l extends Showable[Employee] {
def show(x: Employee) = (
"Employee(" + show(x.name) + ", " + show(x.company) + ")"
)
}
ShowableEmployee$1
b

In the example above, instead of generating an anonymous instance of the Showable trait,
the macro emits a block that defines a freshly-named object implementing Showable

and immediately returns that object. Since the defined object is implicit, it will
satisfy potential future implicit searches of Showable [Employee], avoiding triggering

materialize again and again.

In order to prevent infinite recursion at runtime, materialization infrastructure typically
needs to be enriched with a cache that keeps track of already processed objects. For
example, in the case of prettyprinting, such cache could detect objects that have already
been prettyprinted and emit some shortcut representation for them. Refer to [83] for a
more detailed analysis of dealing with cycles in runtime object graphs.

6.1.4 Fundep materialization

Fundep materialization is an extension of materialization (subsection 6.1.1), in which
generated typeclass instances are used to express functional dependencies between type
parameters, guiding type inference in a domain-specific fashion. Compiler support for
fundep materialization was initially added during the development cycle of Scala 2.11.0
and was later backported to Scala 2.10.5.
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For a motivating example, let us consider a simplified excerpt from Shapeless, a popular
generic programming library for Scala [98], developed by Miles Sabin and contribu-
tors. Among its foundational data structures, Shapeless defines HLists, inspired by an
eponymous Haskell library [68].

sealed trait HList

final case class ::[+H, +T](head: H, tail: T) extends HList {
def ::[H](head: H) = new ::(head, this)

}

sealed trait HNil extends HList {
def ::[H](head: H) = new ::(head, this)

}

final case object HNil extends HNil

type HPerson = String :: String :: HNil
val hperson: HPerson = "John" :: "Smith" :: HNil

In the listing above, we can see that hlists, much like regular lists, are modelled as a
disjunction of a cons and a nil. Unlike regular lists, hlists can contain elements of different
types and keep track of these types.

Thanks to their regular structure, hlists lend themselves well to being used in type-level
computations. For example, here is how one can define a serialization facility that works
with arbitrary hlists.

def serialize[T](x: T)(implicit ev: Serializer[T]): Payload =
ev.serialize(x)

trait Serializer[T] {
def serialize(x: T): Payload
b

object Serializer {
implicit val string: Serializer[String] =
new Serializer[String] { def serialize(x: String) = ... }

implicit val hnil: Serializer [HNil] =
new Serializer[HNil] { def serialize(x: HNil) = Payload.empty }

implicit def hlist[H, T <: HList]
(implicit shead: Serializer[H],

stail: Serializer[T]): Serializer[H :: T] =
new Serializer[H :: T] {
def serialize(x: H :: T) =

shead.serialize(x.head) + stail.serialize(x.tail)
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Much like regular lists can be processed using pattern matching, type-level lists represented
by hlists can be processed using pattern matching encoded in implicit search rules. For
example, if one calls serialize (hperson), implicit search will recursively go through
the components of HPerson and produce hlist (string, hlist(string, hnil)).

Unfortunately for this elegant serialization solution, real-world data in Scala is usually
represented with different kind of data structures, e.g. case classes, which do not have
the regular type-level structure of hlists.

In order to provide infrastructure to combat this incompatibility, Shapeless provides the
Generic typeclass that embodies a bidirectional conversion between regular datatypes
and hlists. Below we can see its simplified version.

trait Generic[T, R] {
def to(t: T): R
def from(r: R): T

case class Person(first: String, last: String)
type HPerson = String :: String :: HNil

implicit val personGeneric = new Generic[Person, HPerson] {
def to(t: Person) = t.first :: t.last :: HNil
def from(r: HPerson) = Person(r.head, r.tail.head)

}

Now, if we define instances of Generic for all case classes that we want to serialize, we
can have a generic serializer that takes care of all those case classes at once. Note that
this serializer only uses Generic.to, but if we were to implement a deserializer, that
one would also need Generic.from.

implicit def serializer[T, R]
(implicit generic: Generic[T, R],
hlistSerializer: Serializer[R]): Serializer[T] = {

new Serializer[T] {
def serialize(x: T) = {
val repr = generic.to(x)
hlistSerializer.serialize(repr)

}

val person = Person("John", "Smith")
serialize (person)
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It is important to note how the typechecker handles a call to serializer which arises
when the typechecker performs implicit search for serialize (person).

Initially, type inference only knows that T = Person, because the parent implicit search
is looking for Serializer [Person]. Afterwards, when the typechecker starts looking up
implicit arguments for the call to serializer, type inference starts learning additional
information about the other, yet uninferred types.

When looking up an implicit value for generic of type Generic [Person, 7], where ?

signifies an uninferred type, the typechecker finds only one implicit, i.e. personGeneric,

that satisfies this signature. From the type of this implicit, which is Generic [Person,
HPerson], type inference concludes that R = HPerson.

Afterwards, when searching for an implicit value for hlistSerializer, the typechecker
uses the information obtained during the previous round of implicit search, and looks for
an implicit of type Serializer [HPerson]. As discussed above, this will successfully
terminate with hlist (string, hlist(string, hnil)).

To sum it up, by strategically defining instances of Generic to be non-overlapping,
programmers can express the functional dependency from T to R, and then the typechecker
can make use of it during type inference.

Fundep materialization allows programmers to avoid manually setting up implicits that
express the functional dependency, allowing to dynamically generate the corresponding
typeclass instances. This way, the type-level computation encoded by the functional
dependency can be performed programmatically.

import scala.language.experimental.macros
import scala.reflect.macros.whitebox.Context

object Generic {
implicit def materialize[T, R]: Gemeric[T, R] = {
macro GenericMacros.materialize[T]
}
}

class GenericMacros(c: Context) {
import c.universe._

def materialize[T] (implicit tag: WeakTypeTagl[T]): Tree = {
val T = tag.tpe
val R = computeRepr (T)
q"new Generic[$T, $R] { ... }"
}
}

134



6.1. Materialization

When the typechecker searches for an implicit value of type Generic[Person, 7]
and is unable to find one in lexical scope, it will look through the implicits defined in
companion objects of the fragments of the type, including Generic.

As outlined in subsection 4.4.3, when not all type arguments of Generic.materialize
can be inferred (and in this case, we can only infer T = Person, the macro engine will
expand the materializer anyway. Inside the corresponding macro impl, we can introspect
the list of fields of the inferred type argument and use it to compute its hlist-based
analogue.

The fact that the materializer expands into value of type Generic [Person, HPerson]
allow the type inferencer to proceed further, concluding that R = HPerson, which, as
explained above, it can use in further type-level computations.

As we can see from the discussion above, fundep materialization provides a framework to
encode type-level computations that cannot otherwise be expressed in the Scala type
system without requiring significant amounts of boilerplate. This technique has been
successfully used for even more complex domains in Shapeless and other libraries in the
Scala ecosystem.

6.1.5 Conclusion

Materialization is probably the most distinctive feature of Scala macros. Transparently
enriching the mechanism of implicits, which are capable of expressing both term-level
and type-level computations, materializers are very versatile.

There are two major use cases for materialization. First, materializers can program-
matically derive instances of typeclasses, which enables datatype-generic programming.
Secondly, materializers can encapsulate type-level computations expressed in terms of
the scala.reflect APT and hook them into the Scala compiler.

One downside of materialization is that repeated invocations of materializers on the same
type parameter result in repeatedly generated expansions. Modulo the potential presence
of scope-specific implicit values that can potentially change the direction of recursive
materializations, these expansions will most likely duplicate each other. This peculiarity
of materialization can adversely affect compilation performance, resulting code size and
runtime performance. Addressing this shortcoming is an important component of our
future work.
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6.2 Type providers

Type providers [116] are a strongly-typed type-bridging mechanism that enables information-
rich programming in F#. A type provider is a compile-time facility that is capable of
generating definitions and their implementations based on static parameters describing
datasources.

In the example below taken from [116], the programmer uses the OData type provider,
supplying it with a URL pointing to the data schema, creating a strongly-typed repre-
sentation of the datasource, which is then used to write a strongly-typed query.

type NetFlix = 0ODataService<"...">
let netflix = NetFlix.GetDataContext ()
let avatarTitles =
query { for t in netflix.Titles do
where (t.Name.Contains "Avatar")
sortBy t.Name take 100 }

An important feature of type providers is that they generate datasource representations
lazily, providing types and their members only when explicitly requested by the compiler.
This becomes crucial when creating strongly-typed wrappers for entities of the datasource
schema is either redundant (from performance and/or reflection standpoints) or infeasible
(authors of [116] mention cases where eagerly generated bytecode is too large for the
limits of a .NET process).

Moreover, type providers can be configured to have their generated types erased, i.e.
replaced by a base class in resulting bytecode. This reduces the size of executable binaries
without sacrificing type safety at compile time.

In this section, we describe to what extent Scala macros can be used to emulate the func-
tionality of type providers. Unsurprisingly, the code generation aspect of type providers
is easily reproducible with macro annotations (subsection 6.2.1). More interestingly,
even def macros can achieve generation of top-level definitions via an unexpected feature
interaction (subsection 6.2.2). The most challenging task is to reproduce lazy and erased
behavior of type providers (subsection 6.2.3).

6.2.1 Public type providers

Public type providers are called like that because they involve straightforward generation
of top-level classes, traits, objects, etc. This is the primary use case for macro annotations
(section 5.3), and they support it well. In the listing below, we reproduce the code example
from the section about macro annotations (subsection 5.3.2) that defines the h2db type
provider as a macro annotation.
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import scala.language.experimental.macros
import scala.reflect.macros.Context
import scala.annotation.StaticAnnotation

class h2db(url: String) extends StaticAnnotation {
def macroTransform(annottees: Any*): Any =
macro H2DbMacros.macroTransform

}

object H2DbMacros {
def macroTransform(c: Context) (annottees: c.Treex): c.Tree = {
}

object Test {
def main(args: Array[Stringl): Unit = {
@h2db("coffees") object Db
val brazilian = Db.Coffees.insert("Brazilian", 99.0)
Db.Coffees.update(brazilian.copy(price = 100.0))
println(Db.Coffees.all)
}
}

A typical approach to implementing a public type provider is to write a macro annotation
that can be put on an object that will host the generated definitions. Upon becoming
annotated, such an object expands according to compile-time logic implemented in
the macro annotations. On the example above, such logic connects to a database and
generates statically-typed data classes and CRUD helpers for available tables.

6.2.2 Anonymous type providers

Anonymous type providers are macro-based type providers that use anonymous objects
and structural types to generate boilerplate and expose it to the outer world. This
technique was pioneered by Travis Brown, who noticed a strange interaction between
anonymous objects and def macros shortly after macros were officially released [9].

Unlike public type providers (subsection 6.2.1), which use macro annotations and therefore
require a third-party compiler plugin, anonymous type providers can be used with the
default distribution of Scala since Scala 2.10.

In this approach, boilerplate is generated not as top-level definitions, but as mem-
ber definitions of local anonymous objects. Concretely, in our running example from
subsection 6.2.1, we can replace @h2db("coffees") object Db with val Db = h2db
("coffees"), where h2db is a whitebox macro that expands into an anonymous object.
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In order to understand how this works, let us try to write the macro expansion manually
in REPL and explore the generated result.

scala> val db = new {
| case class Coffee(id: Int, name: String, price: Double)
| object Coffees {
| def insert(name: String, price: Double): Coffee = 777
| def update(coffee: Coffee): Unit = 777
| def all: List[Coffee] = List(Coffee(l, "Brazilian", 99))
3
|}
db: AnyRef {
type Coffee <: Product with Serializable {
val id: Int;
val name: String;
val price: Double;
def copy(id: Int,name: String,price: Double): this.Coffee;
def copy$default$l: Int QuncheckedVariance;
def copy$default$2: String OuncheckedVariance;
def copy$default$3: Double @uncheckedVariance
¥
object Coffee
object Coffees
} = $anon$1@3003a3a3

As we can see, the Scala compiler infers a very precise type for the aforementioned
anonymous object. All members of the anonymous object get exposed in the resulting
structural type. The class representing Coffee gets erased to a type member, but
nonetheless the type member retains all public members of the original class, even the
synthetic copy$default$N methods generated to support default parameters in the
copy method.

The resulting object can be used as if it was written as object db { ... }, with all
member accesses and method calls statically typechecked. For example, in the printout
below, we can see how the structural type statically catches typos, recursively contains
structural types for nested objects and even support advanced features like method
applications with named and default parameters.

scala> db.Coffes
<console>:9: error: value Coffes is not a member of AnyRef { ... }

scala> db.Coffees

warning: there were 1 feature warning(s);

re-run with -feature for details

resO: db.Coffees.type = $anon$1$Coffees$050325aal
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scala> res0O.all
resl: List[this.Coffee] = List(Coffee(l1,Brazilian,99.0))

scala> resl1(0).name
res2: String = Brazilian

scala> res1(0).price
res3: Double = 99.0

scala> res1(0).copy(price = 100.0)
res4: db.Coffee = Coffee(1,Brazilian,100.0)

An unpleasant downside of this approach is its low-level implementation. On the JVM,
structural types are erased to their upper bound (in the case of db, that will be AnyRef),
and method calls on them are performed via runtime reflection, which has suboptimal
runtime performance. If we rerun the REPL with —-feature as prompted by the warning
above, we will see the detailed explanation.

scala> db.Coffees

<console>:9: warning: reflective access of structural type member

object Coffees should be enabled by making the implicit value

scala.language.reflectiveCalls visible.

This can be achieved by adding the import clause

’import scala.language.reflectiveCalls’

or by setting the compiler option -language:reflectiveCalls.

See the Scala docs for value scala.language.reflectiveCalls

for a discussion why the feature should be explicitly enabled.
db.Coffees

-~

resO: db.Coffees.type = $anon$1$Coffees$830926bd7

Interestingly, this downside can be worked around by even more macros, with the
technique that we have called “vampire macros” [8].

If, instead of exposing Coffee.id, Coffee.name, Coffee.price and others as regular
vals and defs, we declare them as macros, then the runtime cost of reflective dispatch
will no longer be an issue, because accesses to these members will be resolved at compile
time during macro expansion.

Of course, this brings another problem. Now, compile-time invocations like Coffee.
name need to expand into something. A typical approach here is to have classes like
Coffee wrap a generic property bag, e.g. Map[String, Any], and then have macro
expansions access this property bag and downcast the result to the statically-known
type. For example, a reference to coffee.name could expand into statically-typed
coffee.column("NAME") .asInstanceOf [String].
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This sketch works surprisingly well in practice. Even though structural types do not
fully support the entire language (e.g. they cannot refer to certain abstract types and
they cannot carry implicit members) and even though def macros have some limitations
(section 4.6), it is possible to get quite far with anonymous type providers.

6.2.3 Conclusion

Both def macros (chapter 4) and macro annotations (section 5.3) can generate boilerplate
definitions, providing statically-typed wrappers over datasources.

There are trade-offs associated with choosing one approach over another. The approach
based on def macros (subsection 6.2.2) is readily available in the standard distribution,
but is based on a feature interaction with an exotic feature whose implementation has its
corner cases. The approach that relies on macro annotations (subsection 6.2.1) generates
regular classes that can be consumed in a straightforward way, but requires a third-party
compiler plugin.

Both approaches described above rely on generating dedicated classes for each entity in a
datasource schema. While this approach may work well for moderately-sized datasources,
[116] reports that there are practical datasources that hit the limits of scalability of
such approach. We have not experimented with this yet, but we have a hunch that
a combination of the technique used in subsection 6.2.2 with Dynamic may very well
provide the infrastructure to implement erasure for type providers. This is an interesting
element of future work.

6.3 Type-level programming

Type-level programming is a technique that involves writing functions that operate on
types and using these functions to achieve precision in type signatures.

While type-level programming has proven to be useful in Scala, being a fundamental
feature enabling the design of standard collections [89], its applications remain limited.

In our opinion, one of the reasons for this is that type-level functions can only be
written using implicits, which provide a clever yet awkward domain-specific language
[89] for expressing general-purpose computations. With implicits being traditionally
underspecified and relying on multiple typechecker features playing in concert to express
non-trivial computations, it is hard to write robust and portable type-level functions.

Moreover, there is a problem of performance, which is a consequence of the fact that
implicit-based type functions are interpreted, and that interpretation is done by a
launching a series of implicit searches, which repeatedly scan the entire implicit scope.
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Compile-time metaprogramming provides an alternative strategy to do type-level pro-
gramming, allowing the programmer to encode type manipulations in macros, written in
full-fledged Scala. As we have seen in subsection 6.1.4, fundep materialization provides a
practically proven framework that can be used to achieve this.

Type-level computations with macros are more powerful than when written with implicits,
because they are not limited by the rules of implicit search and can use the entire surface
of the scala.reflect APL.

Moreover, an important practical advantage of the macro-based approach is the quality
of error messages, which can be tailored to precisely identify and present the problem to
the user, in comparison with variations on the generic “could not find implicit value of
type X” error that is the epitome of implicit-based programming.

However, type-level computations with implicits sometimes end up more concise than
their macro-based analogues. Even though most algorithms are way easier to express
with a reflective function, the boilerplate that is required to hook them up into the
fundep materialization infrastructure sometimes overweighs the benefits.

For example, let us take a look at the definition of Generic from subsection 6.1.4. In
order to express a type-level function that goes from case classes to their homogeneous
hlist-based representations, we define a dedicated typeclass, an associated materializer
and then wrap the result of the type-level function in an auxiliary instance of that
typeclass.

trait Generic[T, R] {
def to(t: T): R
def from(r: R): T

object Generic {
implicit def materialize[T, R]: Generic[T, R] = {
macro GenericMacros.materialize[T]

}

class GenericMacros(c: Context) {
import c.universe._

def materialize[T] (implicit tag: WeakTypeTagl[T]): Tree = {
val T = tag.tpe
val R = computeRepr(T)
q"new Generic[$T, $R] { ... }"

}
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If our only goal is to express a type-level computation, that is a lot of boilerplate, since
all that we need for that goal is to call computeRepr (T). It would definitely be less
ceremony if it was possible to a macro that uses an imaginary syntax similar to what
was possible with type macros (section 5.2).

type Generic[T] = macro Macros.generic[T]

class Macros(c: Context) {
import c.universe. _

def generic[T](implicit tag: WeakTypeTagl[T]): Tree = {
val T = tag.tpe
computeRepr (T)
}
}

The syntax in the listing above inherits the limitations of the initial design of Scala
macros, so it is still more verbose than it could be. However, in the new macro system
that merges macros and their impls, this snippet would look remarkably concise (see an
example of a similar type-level function at the end of subsection 9.3.5).

Unfortunately, by reducing materialization to type-level computation, we have lost
the ability to perform type-driven synthesis of terms. Concretely, our serializer from
subsection 6.1.4 that was using Generic.materialize, also needed its synthesized to
method, which is no longer available after we turn Generic into a type function.

implicit def serializer [T, R]
(implicit generic: Gemeric[T, R],
hlistSerializer: Serializer[R]): Serializer[T] = {

new Serializer[T] {
def serialize(x: T) = {
val repr = generic.to(x)
hlistSerializer.serialize (repr)
}
}
}

To put it in a nutshell, macro-based approach to type-level computations is more
straightforward and more powerful than its implicit-based counterparts, but sometimes it
is also significantly more verbose. It seems that the balance between simplicity of macros
and declarativeness of implicits has yet to be found.
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6.4 Internal DSLs

Macros have been successfully used to build powerful internal domain-specific languages.
Thanks to the fact that the code wrapped in a macro application is available as an AST,
DSL authors can inspect and rewrite such code according to domain-specific logic.

For example, we have seen how def macros (chapter 4) can provide a foundation to build
a LINQ facility that translates calls to an internal data access DSL that mimics standard
collection operators into domain-specific query constructors.

trait Queryl[T]
case class Table[T: TypeTagl() extends Query[T]
case class Select[T, Ul(q: Query[T], fn: Node[U]) extends Query[U]

trait Node[T]
case class Ref[T](name: String) extends Node[T]

object Query {
implicit class QueryApil[T](q: Query[T]) {
def map[U] (fn: T => U): Query[U] = macro
}

case class User(name: String)

val users = Table[User] ()

users.map(u => u.name)

// translated to: Select(users, Ref[String] ("name"))

This is a bread-and-butter technique available to def macros, and it has been successfully
used to develop numerous DSLs. Nevertheless, despite of the simplicity of this technique,
there are several practical concerns that metaprogrammers have to keep in mind when
using it. Below we outline the most common ones, and refer curious readers to Vojin
Jovanovic’s dissertation [66] for an extensive analysis of internal DSLs in Scala.

Transformation scope. Because of its local nature (section 4.4), macro expansion can
see tree representation only for the code that is currently expanding. As a result, if a
macro needs to introspect or transform code that lies outside the expansion scope, this
may cause problems.

def nameMapper (user: User) = u.name
users.map (nameMapper)

If we take a look at the code of the Query.map macro provided in section 4.2, we
will see that expanding the snippet provided above will result in a compilation error.
This happens because the translation macro only sees nameMapper and does not know
anything about its body.
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This transformation failure is quite hard to fix in the current implementation of def
macros, because there is no API to obtain a tree of an arbitrary method. Even though
there is an undocumented way to get ahold of ASTs of all files being compiled, the method
may be already precompiled, in which cast its AST will be missing. In scala.meta, we
are experimenting with mandatory AST persistence for compiled code that would solve
this problem, but this technology has not yet reached sufficient maturity (section 8.4).

To work around this problem, metaprogrammers have been using various techniques to
extend the scope of code available to macros. One example is wrapping DSL snippets in
an explicit macro block, e.g. requiring users to write query { ... }, where query is
a macro, instead of declaring methods like Query.map as macros and hoping that their

invocations capture all relevant context.

Error reporting. Some DSLs cannot handle the entire surface of the language. For
example, our running example of a LINQ DSL can only support operations that map
onto the capabilities of the underlying database. Even though some simple operations
like String.substring have adequate analogues in SQL, more complicated methods
from the standard library are unlikely to be supported.

Type-based DSLs solve this problem by providing a carefully crafted interface that only
exposes the supported parts of the language and the standard library. For example, a
database access DSL from Slick [75] uses Rep types that represent database types and
only support allowed operations.

class Users(tag: Tag) extends Table[(String, String)](tag, "USR") {
def name = column[String] ("NAME")
def role = column[String] ("ROLE")
def * = (name, role)

val users = TableQuery[Users]
users.filter(u => u.role === "admin") .map(u => u.name)

In the listing above, all plain types are wrapped, which allows the DSL to capture the
query in a fashion similar to symbolic execution.

For example, the result of the role method used in filter is not String, but Rep
[String]. By the virtue of extension methods, Rep [String] defines operations like
=== or index0f, so they can be used in Slick queries. To the contrast, Rep [String]
does not feature analogues of the standard String.getBytes or String.matches, so
these methods can not be used.

Defining such an interface is a tedious and error-prone task, but for type-based DSLs it
is a necessity, because otherwise DSL authors will not be able to access representations
of the programs that users write using these domain-specific languages.

144



6.5. External DSLs

To the contrast, macro-based DSLs get program representations for free, massively
simplifying the task of creating a language.

However, what macro-based DSLs lack is an out-of-the-box mechanism to restrict user
programs to supported shapes. If, in the Slick query, we change u => u.name tou => u
.name . getBytes, we will get a compilation error. Unfortunately, the Query .map macro
will accept such a lambda expression, because the macro engine only checks that macro
arguments are well-typed, and the task of rejecting it will fall on the metaprogrammer.

From the discussion above, we can see that macros provide a powerful foundation for
building internal DSLs, but this foundation can benefit from higher-level abstractions
that take care of common practicalities of authoring domain-specific languages.

6.5 External DSLs

External domain-specific languages are relevant even in languages like Scala which were
designed to be friendly to internal DSLs. Regular expressions, XML, JSON, SQL, text
templates; all of these can be succinctly represented as programs in external DSLs.

Without special language or tool support, programs view external DSLs as plain strings,
which can be parsed and interpreted, but cannot communicate with the main program.
Compile-time metaprogramming provides a way to add depth to external DSLs, making
them able to analyze and possibly influence the enclosing program.

In Scala, external DSLs can be embedded into code by the virtue of string interpolation
[114], which standardizes extensible string literals and the notion of interpolation both
for construction and pattern matching purposes.

For example, with string interpolation it is possible to define a domain-specific language
for JSON, having the convenient json"..." syntax for JSON objects.

implicit class JsonHelper(val sc: StringContext) {
def json(args: Any*): JSONObject = {
val strings = sc.parts.iterator
val expressions = args.iterator
var buf = new StringBuffer(strings.next)
while(strings.hasNext) {
buf append expressions.next
buf append strings.next
b

parseJson (buf)
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After the programmer defines the StringContext. json extension method, as shown
on the snippet above, scalac will desugar json"..." and json"""...""" literals
into calls to that method. Static parts of literals (like brackets and commas in json" [
$foo, $barl") are then available in sc.parts, while interpolated parts (like foo and
bar in the previous example) are passed as arguments to the extension method.

String interpolation additionally supports pattern matching. If we turn json in the
example above into an object that contains apply and unapply methods, we will be
able to use the json interpolator both in expressions and patterns.

Turning interpolators into def macros (chapter 4) opens a number of possibilities to DSL
authors. First of all, it allows to move the cost of parsing to compile time and to report
previously runtime errors at compile time.

Secondly, it is often possible to statically validate interpolated expressions against the
locations they are interpolated into. For example, the json macro can catch the following
typo at compile time by figuring out that it does not make sense to interpolate a number
into a location that expects a string.

val name = "answer"
val value = 42
json"{$value: $valuel}"

Analogously, it is possible to apply this strategy to interpolations used in pattern
matching. For example, a pattern macro (section 5.1) can figure out exact types
for patterns in payload match { case json"{$name: $valuel}" => ... } and
ensure that domain-specific pattern matching is precisely typed.

Moreover, by the virtue of being run inside the compiler, interpolation macros can interact
with the typechecker, asking it for information and even influencing typing. For example,
the quasiquoting interpolator [104] uses the types of its arguments to resolve occasional
ambiguities in the grammar of interpolated Scala and also conveys the exact types of the
variables bound during pattern matching to the typechecker.

The most comprehensive overview of building external DSLs with macros is provided
by Denys Shabalin in his joyquote tutorial [102] that embeds a subset of the Joy
programming language into Scala. The tutorial develops the notions from this section
into a practical system that supports unquoting, splicing, lifting and unlifting, as well as
discusses interactions between different features of macro-based external DSLs.

To put it in a nutshell, the feature interaction between def macros and string interpolation
makes it possible to embed external DSLs in Scala, providing compile-time validation
and typechecker integration for snippets of code written in other languages. A peculiar
property of such DSLs is that they can be used both in expressions and in patterns.
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Scala macros (chapter 4 and chapter 5) provide powerful abstraction facilities that strain
the developer tool ecosystem in several unique ways.

First, macros generate code that is invisible to their users. Since subsequent compilation
phases of the compiler do not see the original macro applications and work with macro
expansions instead, understanding compile-time and runtime behavior of the original
program may become challenging.

Secondly, macros change the type system. Blackbox macros (section 4.4) are relatively
benign, because for the purposes of code analysis they can be treated as regular methods
(modulo compilation errors produced by ill-typed expansions or macro APIs). However,
whitebox macros (section 4.4) and other macro flavors (chapter 5) result in immediately
visible changes to how Scala typechecks, making tools that do not support macros
noticeably less useful.

This chapter documents tool integration issues that metaprogrammers face when writing
Scala macros and explains our approaches to overcoming these issues. Most of these
approaches are only available as prototypes that represent ongoing work.

In section 7.1, we outline ways how macros change the usual intuitions about code
comprehension. In section 7.2, we further develop this notion by looking at new kinds of
compilation errors that can be caused by macros. Changes to the traditional development
workflow are described in section 7.3 (incremental compilation), section 7.4 (testing)
and section 7.5 (debugging). Finally, in section 7.6, we analyze how macros affect
documentation.

Most of the work described below was performed by open-source contributors under
my supervision - both by my students at EPFL and by external collaborators from the
community. I am thankful to everyone for our fruitful work together.
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7.1 Code comprehension

Common to whitebox macros (section 4.4) and macro annotations (section 5.3) is the
fact that their signatures cannot be expressed in the Scala type system.

When whitebox macros change implicit search or type inference, or when macro anno-
tations generate top-level definitions, IDEs need to interactively expand these macros,
otherwise they will have incorrect information about the program and may display
infamous red squiggles.

There are three major IDEs in the Scala community: IntelliJ [65], Eclipse [99] and
ENSIME [44]. Both Eclipse and ENSIME run a full-fledged Scala compiler that can
expand macros. However, IntelliJ has its own independent frontend, so it needs an adapter
that would expose its internal functionality behind a scala.reflect API. Unfortunately,
such an adapter was deemed to be impractical because of the complexity of scala.reflect
and has never been implemented (subsection 3.4.3). Therefore, at the time of writing,
IntelliJ has problems with whitebox macros and macro annotations.

In order to make it possible for IntelliJ to expand macros, we designed scala.meta, a
better metaprogramming API (chapter 8), and created a new macro system based on
scala.meta (chapter 9). Enabling scala.meta metaprograms to run in IntelliJ is an area
of ongoing collaboration with Mikhail Mutcianko from the IntelliJ team (section 8.4).

In the meanwhile, IntelliJ employs two practical workarounds - one that involves com-
municating with the Scala compiler to obtain macro expansions, and another one that
involves writing IDE plugins.

The first workaround consists in continuously running background compilation with
internal compiler flags that print macro expansions to console. These expansions are then
parsed and integrated into the language model of IntelliJ. While this approach works as
a last-ditch effort, it hurts interactivity and may stop working if the underlying program
has compilation errors.

The second workaround consists in exposing an API to write IntelliJ plugins that capture
the essence of particular macros [21]. In practice, most of the complexity of typical
macros lies in performing robust code generation, so the code that is responsible for type
system changes constitutes a small part of the macro logic. This means that extracting
the essence of popular macros, reimplementing it on top of the infrastructure provided
by the IDE and keeping it up to date is quite practical.
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7.2 Error reporting

When a macro expansion generates erroneous code, it often happens that compilation
errors produced by the compiler make little sense. Since these errors are reported against
generated code that is normally invisible to programmers, the results can be quite

perplexing. An illustration of this problem can be observed in section 4.2.

To help macro users with this problem, we have implemented several low-cost workarounds
and are collaborating with IDE developers to deliver a principled solution. In this section,
we document all approaches that our macro system supports.

Expansion printouts. This workaround involves internal compiler flags - ~Ymacro
-debug-lite and -Ymacro-debug-verbose, available in Scala since v2.10 - which
make the compiler print macro expansions to console. Such printouts rarely help with
pinpointing an exact culprit, because macro expansions are typically quite sizeable, but
they at least give something to work with.

One practical aspect of this workaround is that it highly benefits from a helpful pret-
typrinter. Unfortunately, scala.reflect trees involved in macro expansions lack formatting
and are typically desugared to a significant degree (section 3.2), so the prettyprinted result
may be cryptic even to experienced metaprogrammers. Since the potential consumers of
such printouts are macro users, not macro developers, this is especially concerning. We
expect that new-style macros based on scala.meta will improve the situation (chapter 9).

Explicit positions. This workaround enlists the help of macro writers. Scala.reflect
provides a way to annotate generated trees with positional information (subsection 3.2.2).
In the case when a culprit of a typecheck error is a positioned AST, the error message
emitted by the compiler will point at the corresponding position.

This technique works well when all that a macro does is carefully enriching existing code
with small bits of additional logic. However, it does not help much if a macro generates
a lot of synthetic code that cannot be assigned with meaningful positions.

Interactive expansion. Our most promising solution to the problem of error messages
is interactive expansion. The idea is to integrate into IDEs and provide user interface
for step-by-step macro expansion. This way macro users can see exactly what their
macro applications are expanding into (section 7.1), and within these expansions they
can pinpoint erroneous trees using the standard on-the-fly typechecking facilities.

Thanks to the efforts of Mikhail Mutcianko, Dmitry Naydanov, Artem Nikiforov, Igor
Bogomolov, and Jatin Puri, we have explored two Uls for interactive expansion - in-place
expansion via the code folding metaphor and side-by-side expansion via the playground
metaphor. Ultimately, both Uls have proven to have their merits.
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7.3 Incremental compilation

Sbt [74], the most popular Scala build tool, supports incremental compilation. When
building Scala programs, sbt attempts to reuse the results of previous builds as much as
possible, by only compiling the source files that have been changed since the last build
and dependencies thereof.

In order to achieve incremental compilation, sbt runs the Scala compiler in a special
mode where the standard compilation pipeline is extended by several additional phases
which collect and record dependencies between files. When a programmer makes a change
to their program, sbt uses the computed dependencies to understand which files in the
project depend on the changed files and therefore need to be recompiled along with them.

When macros were introduced, it became apparent that the existing dependency detection
algorithm in sbt has become insufficient. As part of his master studies, Martin Duhem
has implemented solutions to most of the problems that we found, and many of his fixes
were integrated into production versions of sbt. Below we provide a brief overview of
Martin’s contributions, leaving the full story to [37] and [38].

Tracking dependencies of macro applications. Sbt dependency collection phase
runs after typechecking, which means that earlier versions of sbt did not get to see the
original macro applications, just their expansions. As a result, sbt failed to recompile
macro expansions if dependencies of macro arguments changed. The fix was fairly simple.
Every macro expansion now carries its original, so that sbt could take both into account
when computing dependencies.

Tracking dependencies created by introspection. Macro impls have access to
powerful introspection capabilities via their Context parameter (section 4.5), and almost
every act of reflection creates a dependency on the reflected code element. This is
completely opaque to sbt, because it only samples the compilation pipeline before and
after the expansion.

In order to record information about language elements being introspected, we created
a proxy for Context that intercepts APIs that return symbols and then proxies those
symbols to record situations when someone inspects them (their names, signatures, etc).
This did not track all dependencies, because we only recorded accesses that happened
inside macro impls, but not accesses performed internally in the compiler, but that fixed
a significant chunk of incremental compilation issues.

Tracking dependencies on external files. Macro impls can feature arbitrary logic,
including file I/O. Some metaprogrammers use this possibility to generate code from
external files, only to discover that sbt does not recompile their code that uses the
generated definitions if these external files change.
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Upon a feature request, we implemented a private API that expresses that a certain
macro expansion depends on a certain group of files. A more principled approach would
be to hide file I/O behind a macro API and automatically track calls to such an API,
but that remains future work that we may address in the new macro system (chapter 9).

Tracking dependencies of macro impls. Any change in a macro impl (section 4.3) or
its transitive call graph should lead to recompilation of macro expansions. Unfortunately,
sbt dependency tracking infrastructure is way too simplistic to support this requirement.
Now, there is a prototype that upgrades sbt to accommodate runtime dependencies of
macro impls, but it remains to be seen whether this prototype can be turned into a
production-ready solution.

7.4 Testing

At the time of writing, it is only possible to write integration tests for macro expansions.
By instantiating the Scala compiler infrastructure at runtime and passing it snippets
of code that contain macro applications, it is possible to expand macros in a isolated
environment and inspect expansion results, i.e. to look into generated code, compilation
errors, etc.

Unit tests for pieces of logic underlying macro expansions do not work well at the moment.
Mocking the scala.reflect API requires implementing several hundred APIs (section 3.4),
which is a very time-consuming task. We are not aware of such implementations existing
in the Scala ecosystem.

7.5 Debugging

There are two kinds of debugging that involve macros. The first is debugging macro
impls. This one is conceptually simple, because macros are written as regular Scala code,
so any Scala debugger will work for this task.

The second is debugging generated code, and that is a real challenge that we will be
discussing in this section based on the results obtained by Dmitry Naydanov, Mikhail
Mutcianko, Artem Nikiforov, Igor Bogomolov, Zhivka Gucevska, Jatin Puri and Uladzimir
Abramchuk. Some of these results are documented in [87].

Much like with error reporting, there are workarounds for debugging generated code (e.g.
inserting debug prints into generated code), but a full-fledged solution required dedicated
effort. A lot of Scala programmers debug their applications using breakpoints, debug
watches and other functionality provided by IDEs, and supporting that workflow requires
coordination between the macro engine and the IDE.
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Firsly, the IDE needs to know the results of macro expansion, because one can not set
a breakpoint on what one can not see. Because code changes require rerunning the
compiler before debugging can proceed, in this use case there is no pressing demand for
interactive expansion (section 7.1), however there still must be a way to communicate
macro expansions from the Scala compiler to the IDE.

Secondly, the Scala compiler needs to emit debug information that takes macro expansions
into account. The JVM provides a way to establish correspondence between bytecodes
and lines in source files. However, this support is not enough for macro expansions,
which may transform a single line of code into a sizeable macro expansion that spans
many lines when prettyprinted. Therefore, there must be a mechanism which allows
the debugger to find out which parts of executable code correspond to which parts of
prettyprinted expansions.

One approach is to solve the debugging problem is pretend that files with macro expansions
never had macro applications in the first place, and that their corresponding expansions
were written there manually. This involves changing the Scala compiler to internally
prettyprint expansions, then assign positions to expanded trees according to the results
of prettyprinting, and finally shift positions of original trees that do not participate in
macro expansion.

In this case, the debugger obtains macro expansions (either by expanding relevant macros
internally or by loading expansions saved by the Scala compiler), inserts them into the
UI and then uses the standard functionality provided by the JVM to perform stepping,
breaking, etc. This has the benefit of a relatively simple implementation, but also involves
the massive downside of breaking existing tools, namely macro-unaware debuggers and,
more importantly, stack traces.

Another approach is to pretend that macro expansions are written past the end of the
file. This is similar to the previous strategy, with the difference that the positions of
manually written code remain as they were, which is more friendly to existing tools.

In this case, the job of the debugger becomes more complicated, because it needs to
correlate the positions of macro expansions as reported in debug information with
positions of macro expansions in the Ul. Additionally, this strategy still does not fix
stack traces and macro-unaware tools completely, because some stack trace elements may
point to generated code, which will have strange line numbers.

Having experimented with multiple approaches to debugging generated code, we now
think that the only way to provide smooth user experience is with a fully-customized
stack of tools.

Instead of trying to fit macro expansions into the standard debugging infrastructure
provided by the JVM, we propose to save relevant information in a custom class file section.
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Then, a dedicated debugger will read and respect this information while rendering its Ul.
Despite the major effort required to adapt existing debuggers to the new infrastructure,
this approach has the benefit of avoiding surprises when working with macro-unaware
tools, which we believe to be essential for macro users. We are looking forward to
experimenting with this approach in the future.

7.6 Documentation

Macro annotations (section 5.3) can generate top-level definitions, therefore for optimal
usability they need an API to provide documentation for generated code.

Unfortunately, scala.reflect does not provide facilities to manipulate syntactic trivia
(subsection 3.2.2), e.g. to attach documentation comments to generated trees, which
means that there is no public way of supporting this use case. We are planning to
improve on this with new-style macro annotations, because their underlying API natively

supports comments (section 8.2).

However, as it often happens with scala.reflect, there is a way to tap into compiler
internals and wrap generated definitions into internal DocDef AST nodes that represent
definitions with attached documentation. This is yet another situation when effective
use of Scala macros requires knowledge of compiler internals.

7.7 Conclusion

Disregarding tool support during the initial design of Scala macros was a mistake. As
our practice shows, tool support has profound impact on user experience of compile-time
metaprogramming and is not something that can be easily added as an afterthought.

Most of the problems with tool support are caused by scala.reflect (chapter 3), the
metaprogramming API that underlies Scala macros. The fact that scala.reflect is based
on the internals of the Scala compiler: 1) prevents third-parties from implementing the
macro engine, 2) complicates instrumentation of the API for testing and dependency
tracking, 3) causes problems with prettyprinting of expansions, which is key to a surprising
amount of tool-related scenarios.

In order to implement comprehensive tool support for macros, we developed scala.meta
(chapter 8), a new metaprogramming framework that solves all aforementioned problems
of scala.reflect. Based on scala.meta, we designed a new macro system (chapter 9) that
lends itself well to third-party implementations. Our initial experiments have produced
promising results (section 9.6), so we are confident that scala.meta provides a solid

foundation for solving the tool support problem.
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Scala.meta

Scala.meta is a unified metaprogramming framework created from scratch to be easy
to use for humans and easy to implement for developer tools. After testing its ideas
on a series of prototypes, we are now working on an implementation that we hope will
become the new standard for metaprogramming in Scala. The current milestone release
is available as a standalone library for Scala 2.11 [15].

The main innovation of scala.meta is a language model that can serve as a lingua franca
understood by the Scala compiler and third-party tools (section 8.2). Metaprograms
written against scala.meta can run both at compile time and at runtime (section 8.4).

The most important use case for scala.meta is macros (chapter 4 and chapter 5). The
original motivation for creating scala.meta was the need in a metaprogramming API
that would provide better user experience for macros, and scala.meta delivered on that,
becoming the foundation for a next-generation macro system (chapter 9).

Scala.meta was and still is strongly influenced by scala.reflect (chapter 3). On the one
hand, we view scala.reflect as the source of inspiration for things that did and did not
work in an API, and that very much guides our design process. On the other hand,
we view scala.reflect as a tool that programmers use to get things done. Since we are
planning to succeed scala.reflect, we will have to inherit and support its users, which
means that we need to be mindful of its important use cases. In the majority of situations,
our prototypes achieve feature parity or succeed the capabilities of scala.reflect.

Scala.meta was born from my collaboration with Denys Shabalin. We coauthored the
initial design and implementation, and even now, when Denys has shifted his focus to
other avenues, we frequently discuss design problems and further evolution of the project.
Fragments of design and implementation of scala.meta were developed together with
Mikhail Mutcianko, Oleksandr Olgashko, Mathieu Demarne, Adrien Ghosn, Eric Béguet,
Johann Egger, Olafur P4ll Geirsson, Guillaume Massé, Vojin Jovanovic, Guillaume
Martres and other open-source contributors.
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8.1 Intuition

We will organize this section as a comparison with section 3.1, where we started with an
architectural overview, then introduced the isImmutable metaprogram and explained

how it runs in different environments supported by scala.reflect.

In this section, we will briefly go through the architecture of scala.meta (subsection 8.1.1)
and then see how to write isImmutable in terms of scala.meta (subsection 8.1.2),
discussing how to run isImmutable at compile time and at runtime (subsection 8.1.3)
and how the outlined approaches differ from what we have already been able to achieve
with scala.reflect.

8.1.1 High-level architecture

Informed about the major usability downsides of using cake pattern to expose a public
API (subsection 3.1.1), scala.meta implements its language model in a set of top-level
definitions. All that it takes to use the language model is import scala.meta._.

Much like the decision to use cake pattern in scala.reflect, the decision to use top-level
definitions in scala.meta also has far-reaching consequences. In addition to bringing a
lightweight feel of not forcing users into unconventional idioms (subsection 3.1.5), it has
a major impact on how scala.meta APIs are organized.

In scala.reflect, universes encompass both the definitions of the language model and the
pieces of state that are required for its operations. For example, when a metaprogram
asks a definition about its signature or a type about the list of its members, the enclosing
universe consults its symbol table that internally lives in the universe. This happens
unbeknownst to the users, because scala.reflect lives within a cake that hides this detail
in its internal state.

In scala.meta, we have to be explicit about state, because the cake is gone. In order
to accommodate this design requirement, we went through the operations supported
by scala.reflect (section 3.5) and split them into groups based on the kind of state
these operations work with. As a result, we ended up with three groups of APIs that
comprehensively cover the functionality exposed in scala.reflect.

1) Stateless APIs such as manual construction and deconstruction of reflection artifacts.
Unlike in scala.reflect, the language model of scala.meta is stateless, so it can be used
in arbitrary situations, regardless of whether it is compile time, runtime or any other
environment.

scala> import scala.meta._
import scala.meta._
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scala> Term.Name("x")
resO: Term.Name = x

scala> val Term.Name(x) = resO
x: String = x

2) Syntactic APIs such as parsing, quasiquotes and prettyprinting. These APIs can
change behavior depending on a particular version of the language, so we reified these
distinctions into a dedicated entity called Dialect, and require a dialect in all such
APIs. Below we can see a simplified excerpt from scala.meta that illustrates this design.

package meta {
trait Dialect {
private[meta] def allowXmlLiterals: Boolean

¥

package object dialects {
implicit object Scala2ll extends Dialect { ... }
implicit object Dotty extends Dialect { ... }

package object meta {
implicit class XtensionParse[T] (inputLike: T) {
def parse[U](
implicit convert: Convert[T, Imnput],
parse: Parsel[U],
dialect: Dialect): Parsed[U] =

val input = convert.apply(inputLike)
parse.apply(input, dialect)
}
}

}

Here, a dialect is an opaque entity that does not have public methods, encapsulating
differences between language versions in methods that are only visible to scala.meta. For
example, Dialect.allowXmlLiterals (line 3) indicates whether a particular language
version supports XML literals. Current versions of the compiler have this feature, but
future versions based on Dotty are going to drop support for it.
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Syntactic operations like Input.parse take an implicit dialect and use its internal
methods to implement their logic. This particular operation is just a simple proxy that
converts its argument to parser input and then feeds the input along with the dialect into
a parser encapsulated in Parse, but the parser itself makes full use of syntax peculiarities
expressed by the dialect.

In order to use a syntactic API, we import an implicit dialect (note the implicit
modifiers next to implementors of Dialect on lines 9-10). After an implicit dialect is
available in scope, calls to syntactic operations will automatically use it.

scala> import scala.meta.dialects.Scala2l1l
import scala.meta.dialects.Scala21l1l

scala> "<xml />".parse[Term]
resO: Parsed[scala.meta.Term] = <xml />

In order to improve user experience, current version of scala.meta features a fallback
dialect that is used if no dialect was explicitly imported by the metaprogrammer. This
default dialect captures to the version of the compiler that compiled a given call to a
syntactic API. Therefore, even if in the listing above we did not import Scala211, the
call to parse would still work, and its result would correspond to the behavior of the
particular version of the compiler that underlies the REPL.

3) Semantic APIs such as name resolution, typechecking, enumeration of members of
a given type, etc. These operations need an index that keeps track of definitions available
in the program and its dependencies. We encapsulated such an index in a dedicated trait
called Mirror and require a mirror in all semantic APIs. To illustrate this point, here is
a simplified excerpt from an experimental branch of scala.meta that demonstrates the
definition of Mirror and one of the associated semantic operations.

package meta {
trait Mirror {
private[meta] def dialect: Dialect
private[meta] def defn(ref: Ref): Member

object Mirror {
implicit def mirrorToDialect(mirror: Mirror): Dialect = {
mirror.dialect

}
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package object meta {
implicit class XtensionTypeRef (tree: Type.Ref) {
def defn(implicit m: Mirror): Member = {
m.defn(tree)
}
}

¥

Much like a dialect, a mirror is also an opaque trait with all its logic concentrated in
internal methods. Analogously to syntactic operations, semantic operations take an
implicit mirror. Additionally, since a mirror must be aware of its language version, it has
a dialect and can be converted to a dialect enabling syntactic APIs (lines 10-12).

Here is an example that creates a mirror from a JVM environment that contains the
standard library and then transparently uses this mirror to resolve the identifier List,
obtaining a scala.meta representation of its definition. In this example, we use quasiquotes
(section 8.3), a convenient notation for abstract syntax trees.

scala> implicit val m = Mirror(".../scala-library-2.11.8.jar")
m: Mirror =

scala> q"List".defn
res3: Member.Term =
object List extends SeqFactory[List] with Serializable { ... }

This design of metaprogramming operations requires programs written using
scala.meta to explicitly request capabilities that describe their needs. For example, a
formatter will probably be okay with a dialect, whereas a linter will likely need a mirror.

Replacing universes with capabilities has been a significant improvement of user experience.
First, some metaprograms do not need explicit capabilities, which means that both they
and their usages are going to be more concise than in scala.reflect. Secondly, in scala.reflect
both writers and callers of metaprograms have to worry about universes, whereas in
scala.meta capabilities are typically implicit, so they can be passed around automatically.
Finally, capabilities present a much smaller cognitive load, only requiring their users
to understand implicits, in contrast to universes that make use of advanced aspects of
path-dependent types (subsection 3.1.5).

The only case when capabilities cause issues are universal methods toString, hashCode
and equals that are inherited from Any, the top type of the Scala type system. These
methods have hardcoded signatures that can not accommodate additional implicit
parameters, which presents a serious design problem.
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Despite the difficulties, we have been able to ensure sensible behavior for stringification.
On the one hand, we provide a dedicated API for customizable prettyprinting, which
does take a dialect that can be explicitly specified by metaprogrammers. On the other
hand, for every object whose prettyprinting depends on a dialect, we remember if a
particular dialect was used during its creation (e.g. a dialect to parse code into a tree)
and then use it when toString is called.

The problem with hashing and equality is more challenging. Maps and sets in both Scala
and Java standard libraries use hashCode and equals, and that makes them unusable
for abstract syntax trees whose equality relies on name resolution. Since, unlike with
dialects, there is no mirror that could work as a sensible default, we currently give up
and require metaprogrammers to use customized collections.

To put it in a nutshell, the architecture of scala.meta provides tangible benefits over
scala.reflect. From the point of view of plumbing, metaprograms written with scala.meta
are more concise and easier to understand, because the infrastructure makes use of
less advanced language mechanisms. The only significant issue that we observed is the
necessity for custom maps and sets to accommodate custom hashing and equality for
abstract syntax trees.

8.1.2 Revisiting islmmutable

In the listing below, we can see a scala.meta-based implementation of the immutability
check of Scala types described in subsection 3.1.2. In order to figure out the differences
between scala.reflect and scala.meta, let us compare and contrast it with a scala.reflect
implementation provided in the aforementioned subsection.

import scala.meta._

def isImmutable(t: Type) (implicit m: Mirror): Boolean = {
val cache =
scala.collection.mutable.Map[Type, Boolean]().
withEquality(_ =:= _)

def uncached(t: Type): Boolean = {

t match {
case t"$t ..Q@$annots" =>
cached (t)
case t"$t forSome { ..$defns }" =>
cached (t)

case t"..$parents { ..$defns }" =>
parents.exists(cached)

case t"$_.type" | t"${_: Lit}" =>
cached(t.widen)
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case t"${ref: Type.Ref}[...$_1" =>
if (ref.defn.isFinal && (ref.defn.tpe =/= t"Array")) {
if (t.vars.nonEmpty) return false
val fieldTypes = (t.vals ++ t.objects).map(m => m.tpe)
fieldTypes.forall (cached)
} else {
false

}
case _ =>
sys.error ("unsupported type: " + t)

}

def cached(t: Type) = {
cache.getOrElseUpdate(t, { cache(t) = true; uncached(t) })
}

cached (t)
}

As explained in subsection 8.1.1, it is enough to simply import scala.meta._ on line
1 in order to get access to the entire scala.meta API. In our personal experience of using
scala.meta after years of writing scala.reflect metaprograms, this relatively minor aspect
is particularly refreshing.

With the cake gone, users of scala.meta have to explicitly request capabilities depending
on the needs of their metaprograms. isImmutable actively uses semantic APIs, e.g.
name resolution on line 19 and member enumeration on lines 20-21, so it requests a

mirror on line 3.

Lines 4-6 accommodate the fact that semantic equality that is necessary to correctly
compare types does not work out of the box with maps from the standard library. The
withEquality method is a custom helper that makes maps respect custom equality
schemes. Implementation of this helper is omitted for brevity.

The rest of the code on lines 8-35 is similar to the scala.reflect implementation. On a
very high level, it also uses memoization on lines 31-33 to avoid infinite recursion, and
its main logic on lines 8-29 also goes through different flavors of types, checking them
for immutability. This is all part of the problem statement, so it is not a surprise that
nothing changes on the high level. Let us focus on the details of language models of
scala.reflect and scala.meta.

Scala.reflect uses about a dozen different entities to represent Scala programs. The most
important data structures are trees, symbols and types that we have seen in action earlier,
but there is a long tail of highly-specialized data structures like modifiers and flags that
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often overlap with the main ones. We refer curious readers to chapter 3 for more details
about how the language model of scala.reflect works.

To the contrast, scala.meta represents Scala programs with: tokens that describe low-level
syntactic details, and abstract syntax trees that describe everything else. This design is
remarkably minimalistic and is explained in more detail in section 8.2.

Therefore, places in the scala.reflect version of isImmutable that required symbols and
types now consistently use abstract syntax trees. As a result, on lines 10, 12, 14 and
others, we are able to take apart the given type using a WYSIWYG notation provided by
quasiquotes. Moreover, instead of working with scala.reflect symbols, which represent an
approximation of definitions with their own dedicated set of operations, we take the given
type and, on line 19, go directly to the definition that it refers to using the Ref.defn
operation.

Other differences between the two implementations are not so major, and are mostly
the consequence of scala.meta being optimized for ease of use. For example, one can
notice that instead of going through t.members like in scala.reflect, we use more specific
helpers t.vars, t.vals and t.objects on lines 20-21. Also, we no longer have to
process type members and type parameters separately from classes, traits and objects,
because scala.meta takes care of quirks like that.

From the discussion above, we can see that scala.meta is simpler than scala.reflect - both
from the point of view of high-level architecture and from the point of view of the language
model. While these simplifications can not directly influence the inherent complexity of
metaprogramming Scala, they lower the barriers to entry and make metaprograms more
robust.

8.1.3 Executing islmmutable

Compile-time execution. The original motivation for scala.meta was the need for
a metaprogramming API that would power a better macro system. Soon after the
official release of scala.reflect macros, we realized that scala.reflect causes a multitude of
usability problems including high barrier to entry and subpar tool support (section 3.6)
and decided to replace it with something better. Therefore, compile-time execution is
the primary use case for scala.meta.

Below we can see the Immutable.materialize macro from subsection 3.1.3 rewritten
in the new macro system that uses scala.meta. The details of why this macro is useful
were explained earlier in this section, and here we will only cover the basics of how new
macros work and how they use scala.meta. We invite readers to chapter 9 for more
information about the new macro system.
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import scala.meta._
trait Immutable[T]

object Immutable {
inline implicit def materialize[T]: Immutable[T] = meta {
if (isImmutable(T)) q"null"
else abort(T.origin, T + " is not immutable")
}
}

From the listing, it becomes clear that the new macro system based on scala.meta is
much more concise than the current one based on scala.reflect. Instead of separating
signatures and implementations of macros like in subsection 3.1.3, we define macros in
one go thanks to meta expressions (lines 5-8).

Cornerstone to new macros is the interaction between the newly introduced mechanisms
of inline and meta that capture the essence of macro expansion. The inline modifier
on a method indicates to the compiler that applications of that method are to be replaced
with the method body having formal parameters substituted with real arguments. meta
expressions wrap metaprograms written against scala.meta.

Having encountered such an expression, the compiler runs the corresponding metaprogram,
wrapping itself in a Mirror and passing this mirror to the metaprogram. After the
metaprogram returns, its result replaces the original expression. There are some details
to how meta interacts with lexical scoping, but we will not touch them in this section
leaving them for subsection 9.3.3.

As a result, in this new system, macro applications such as materialize [MyConfig]
expand in two steps. First, the invocation of the macro gets inlined and occurrences of T
in the macro body are replaced with their actual values, resulting in code resembling
meta { if (isImmutable(t"MyConfig")) ... }. Afterwards, the meta expression
gets evaluated, which results in either a dummy instance of Immutable (line 6) or in a
compilation error (line 7). The location of the error is specified via an origin, which is a
more principled equivalent of scala.reflect’s position.

Going back to the architecture of scala.meta described in subsection 8.1.1, we recall that
most scala.meta metaprograms and APIs require certain capabilities to be able to execute.
For example, isImmutable calls semantic APIs, so it needs a mirror. Additionally, it
uses quasiquotes, so it needs a dialect.

This contract is successfully met by meta blocks, because they provide a mirror, which
is the most powerful capability in scala.meta. Note how all this machinery works
transparently for the metaprogrammer thanks to Scala implicits.
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Runtime execution. In an experimental branch of scala.meta, we have a prototype
of a runtime mirror that works on top of the JVM reflection. Apart from type tags,
which we have not worked on yet, our implementation achieves feature parity with the
functionality described in subsection 3.1.4.

However, given the limitations of the JVM as well as major difficulties in implementing
runtime introspection for platforms like Scala.js and Scala Native, there is a tendency
in the Scala community to shy away from runtime metaprogramming. Therefore, we
are unsure whether we should support runtime execution in scala.meta, and to what
extent that would be practically useful. The fate of the prototype of a runtime mirror
for scala.meta remains future work.

scala> final class Metadata { ... %}
defined class Metadata

scala> final class MyConfig[T] (payload: T, metadata: List[Metadatal)
defined class MyConfig

scala> val c¢ = new MyConfig(42, Nil)
c: MyConfig[Int] = MyConfig@29eal79c

scala> import scala.meta._
import scala.meta._

scala> implicit val m = Mirror(".../scala-library-2.11.8.jar")
m: Mirror =

scala> val t = c.getType
t: Type = MyConfig

scala> isImmutable(t)
res2: Boolean = false

8.2 Language model

The language model of scala.meta is designed from scratch to: 1) minimize the surface of
the API, and 2) ensure interoperability with existing compilers and tools - all that while
maintaining feature parity with scala.reflect (chapter 3).

In order to achieve the first goal, as many concepts as possible are modelled with syntax
trees. In order to achieve the second goal, the model is not tied to any particular
implementation. There exist converters that transform existing language models to and
from scala.meta (section 8.4).
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Analogously to section 3.2, in this section we will to compile a simple program, and see
how scala.meta represents it. We are going to use the same program that we used to
illustrate the language model of scala.reflect.

object Test {
// create a list and compute its head
val xs = List(42)
val head: Int = xs.head
println((xs, head))
}

An experimental branch of scala.meta contains a compiler plugin called “scalahost” that
injects itself after the typer phase of the Scala compiler and converts all typechecked
trees from the scala.reflect format to the scala.meta format. By providing an internal
debug flag, we will ask scalahost to print out the results of conversion to the console.

$ scalac -Xplugin:scalahost.jar -Dconvert.debug Test.scala

The first part of the printout shows the prettyprinted representation of a scala.meta tree
corresponding to the program being compiled. Note that at this point this tree already
carries both syntactic and semantic information about the source.

[[scala.meta trees at the end of typerl]// Scala source: Test.scala
object Test {

// create a list and compute its head

val xs = List(42)

val head: Int = xs.head

println((xs, head))

At a glance, it becomes apparent that scala.meta does not throw away formatting details
(including comments) and does not perform desugarings. The abstract syntax tree
produced by scalahost looks exactly the same as the code that we have provided in the
test program. This is an immediate improvement upon scala.reflect.

In order to achieve full fidelity in representation of syntactic details, scala.meta remembers
all tokens that constitute trees that correspond to source files.

Tokens are atomic fragments of Scala programs that capture the entirety of Scala’s
lexical syntax. In addition to identifiers, keywords, delimiters and literals, we also model
syntactic trivia (whitespace and comments) as dedicated tokens, though we may choose
to coalesce adjacent whitespace characters together in the future to make things more
efficient. For example, here is how the tokens look like for the scala.meta abstract syntax
tree in question.
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object (0..6), (6..7), Test (7..11), (11..12),
{ (12..13), \n (13..14), (14..15), (15..16),
// create a list and compute its head (16..53),
\n (53..54), (54..55), (55..56), val (56..59),
(69..60), xs (60..62), (62..63), = (63..64),

An important consequence of retaining tokens as a low-level representation of abstract

syntax trees is that tokens automatically provide positions for their trees. An AST has

an extent that begins at the start of its first token and ends at the end of its last token.

The second part of the printout contains internal representation of the converted tree.

Next to some AST nodes we can see numbers, which stand for bits of semantic information

associated with these nodes.

[[scala.meta trees at the end of typerll// Scala source:

Source (Seq(

Defn.0Object(Nil, Term.Name("Test")[1]1{1}, Template(

Nil,
Nil,

Term.Param(Nil, Name.Anonymous()[2], None, None){1},

Some (Seq (
Defn.Val(

Nil, Seq(Pat.Var.Term(Term.Name("xs")[3]1{2})),

None,
Term. Apply(
Term.Name("List") [4]{3}<1>,
Seq(Lit (42){41)) {5},
Defn.Val(

Nil, Seq(Pat.Var.Term(Term.Name("head")[5]1{61})),

Some (Type.Name ("Int") [6]),

Term.Select (
Term.Name ("xs") [3]1{2}<2>,
Term.Name ("head") [7]1{6}){4}),

Term. Apply(

Term.Name ("println") [8]{7}<3>,

Seq(Term. Tuple (Seq/(
Term.Name ("xs") [3]{2}<2>,

Term.Name ("head") [6]1{6}<4>)){8}<5>)){9}))))))

Test.scala

Scala.meta trees are much more detailed than scala.reflect trees. For example, in the

printout above, we can see a dedicated Term.Tuple node (line 23) that represents tuple

literals which don’t exist in scala.reflect. Also, we can notice that names are modelled as

trees and modifiers are modelled as lists of trees (all of them are empty in this particular

case), instead of being represented with non-tree data structures like in scala.reflect
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An important consequence of the comprehensive nature of scala.meta trees is that it is
impossible to create a scala.meta tree that violates language syntax. For example, the tree
for a concrete val is defined as @ast class Val(mods: Seq[Mod], pats: Seq[Pat
] @nonEmpty, decltpe: Option[impl.Typel, rhs: Term), ensuring that only
correct types of AST nodes can be inserted into its fields. This significantly improves
user experience of quasiquotes (section 8.3).

In addition to the fields responsible for syntactic structure, trees may have denotations,
types and desugarings. This is how scala.meta trees store semantic information, as shown
on the remainder of the printout.

[[scala.meta trees at the end of typerl]l// Scala source: Test.scala

[1] {10}:: _empty_.Test

[2] {0}:: _empty_.Test.this

[3] {1}:: _empty_.Test.xs()Lscala/collection/immutable/List;

[4] {11}::scala.collection.immutable.List

[6] {1}:: _empty_.Test.len()I

[6] {12}::scala#Int

[7] {5}::scala.collection#IterableLike.head()Ljava/lang/0Object;
[8] {13}::scala.Predef.println(Ljava/lang/0bject;)V

In the printouts above, numbers in brackets signify denotations, i.e. internal data
structures of scala.meta that represent meanings for names. A denotation consists of a
prefix, represented by a number in braces to the left of ::, and a symbol, represented by
a string to the right of ::. Much like denotations, prefixes and symbols are internal data
structures and are not exposed in the public API.

Prefixes carry the type of the owner from which the referenced definition is selected. This
solves the problem of symbols forgetting their signatures in scala.reflect.

For example, the denotation [7] represents the meaning of head in xs.head. Now, it not
only knows that head comes from IterableLike, but it also remembers that its prefix
is {5}, which stands for List [Int]. As a result, when a metaprogrammer asks head
about its type, it will be able to correctly respond with Int, unlike a scala.reflect symbol
that would have responded T, because IterableLike.head is generic (section 3.5).

Symbols carry the identity of the referenced definition. Unlike in scala.reflect, symbols are
dumb identifiers. Global definitions are represented with fully-qualified names, possibly
with full signatures to disambiguate overloaded methods. Local definitions are represented
with UUIDs. In addition to that, all symbols carry a platform-dependent token that
indicates their origin in order to distinguish same-named symbols loaded from different
source files or class files.
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In scala.reflect, references are linked to definitions via symbols. In order to find out,
whether a given reference to a given definition or whether two references mean the same,
one compares their symbols via reference equality (subsection 3.2.3).

In scala.meta, references are linked to definitions via names, which are ASTs that
encapsulate denotations. Syntactically, every reference and every definition have a name
(for example, val xs = List (42) has a name on line 10, and a reference to xs is also
represented by a name on line 24). In order to find out, whether a given reference to a
given definition or whether two references mean the same, one compares their names via
the semantic equality operator Tree.=:=. Semantic equality looks into the denotations
internally underlying the names and uses their symbols to provide an answer.

[[scala.meta trees at the end of typerl]l// Scala source: Test.scala

{1} Type.Singleton(Term.Name("Test") [11{1})
{2} Type.Apply(Type.Name("List")[13], Seq(Type.Name("Int")[6]))
{3} Type.Singleton(Term.Name("List") [4]1{3}<1>)
{4} Type.Name("Int") [6]
{6} Type.Apply(Type.Name("List")[13], Seq(Type.Name("Int")[6]1))
{6} Type.Name("Int") [6]
{7} Type.Method(
Seq(Seq(
Term.Param(
Nil, Term.Name("x")[14]1{19},
Some (Type .Name ("Any") [15]), None){19})),
Type.Name ("Unit") [16])

In the printouts above, numbers in braces signify types of abstract syntax trees and
prefixes of denotations.

In scala.meta, we represent types with abstract syntax. For example, an application of
type List to a type Int is modelled as a type application syntax tree from the language
model, as illustrated by type {5}.

In order to accommodate all types from the language specification, we had to introduce
Type .Method and Type.Lambda that do not have concrete syntax. These types are
necessary to model non-value types from the specification - method types, polymorphic
method types and type constructors. For example, println has type {73}, which stands
for a method that has parameter x: Any and returns Unit.

As a result, in our design, types can use all the infrastructure that already exists for
abstract syntax trees. For example, note how types can themselves contain names which,
also being abstract syntax trees, can also contain denotations and maybe even other
types and desugarings.
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[[scala.meta trees at the end of typerl]// Scala source: Test.scala

<1> Term.ApplyType (
Term.Name("List") [4]{14}<6>,
Seq(Type.Name("Int") [6])){15}
<2> Term.Select(
Term.This (Name.Indeterminate("Test") [1]){1},
Term.Name ("xs") [3]1{2}) {5}
<3> Term.Select(
Term.Select (
Term.This (Name.Indeterminate("scala") [9]){12},
Term.Name ("Predef") [10]{13}){13},
Term.Name ("println") [8]{7}) {7}

In the printouts above, numbers in angle brackets represent desugarings. When converting
scala.reflect trees to scala.meta trees, scalahost remembers desugared representations of
corresponding pieces of syntax.

For example, this is how scala.meta knows that List in List (42) actually stands for
List [Int] (desugaring <1>). In that desugaring, List can be desugared further to
mean List.apply (desugaring <6>, not shown on the printout).

Much like types, desugarings are full-fledged trees, which makes it possible to treat them
uniformly with other parts of the language model.

From the discussion above, we can see that scala.meta represents programs in a mini-
malistic, yet powerful way. The public part of the language model only contains tokens
and trees, which is surprisingly enough for feature parity with scala.reflect that contains
trees, symbols, types and about a dozen other auxiliary data structures. In addition
to providing functionality similar to scala.reflect, scala.meta also can provide a more
precise view of Scala programs, comprehensively capturing syntactic details and giving

metaprogrammers explicit control over desugarings.

8.3 Notations

Scala.meta supports quasiquotes as its one and only notation for reflection artifacts. This
design decision is the direct consequence of our experience with scala.reflect.

Since statically-typed notations, i.e. reify (subsection 3.3.1) and type tags (subsec-
tion 3.3.3), did not perform well in scala.reflect, we decided to forgo them. To the
contrast, quasiquotes (subsection 3.3.2) garnered very positive user feedback, so we

implemented them in scala.meta.
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Syntactic aspect. Scala.meta trees are more detailed than scala.reflect trees, so
scala.meta supports more quasiquote interpolators than scala.reflect (16 versus 5). There
are several familiar ones, e.g. statements, types and patterns, which are similar to
scala.reflect, but there are also more exotic interpolators, e.g. import clauses, import
selectors and modifiers, which do not have analogues in scala.reflect. For comprehensive
documentation, refer to [16].

scala> import scala.meta._
import scala.meta._

scala> q"List(42)"
resO: Term.Apply = List (42)

scala> t"List[Int]"
resl: Type.Apply = List[Int]

scala> p"case List(x) => x"
res2: Case = case List(x) => x

scala> p"List(x)"
res3: Pat.Extract = List(x)

scala> enumerator"x <- List(42)"
res4: Enumerator.Generator = x <- List(42)

scala> importer"foo.bar"
resb: Importer = foo.bar

scala> importee"_"
res6: Importee.Wildcard = _

scala> mod"private"
res7: Mod.Private = private

Much like in scala.reflect, in scala.meta quasiquotes support unquoting and unquote
splicing and make it possible to statically validate these operations based on the type of

the unquotee and the location where it is inserted.

Unlike in scala.reflect, in scala.meta it is impossible to create trees that violate language
syntax, so scala.meta quasiquotes provide additional safety guarantees in comparison
with scala.reflect quasiquotes.

For example, if we compare the REPL printout below with the analogous printout for
scala.reflect (subsection 3.3.2), we will see that scala.meta statically rejects both attempts
to create nonsensical trees, whereas scala.reflect not only compiles the second attempt,
but also successfully runs it, producing a syntactically invalid tree.
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scala> val args
args: List[Lit]

List(q"42")
List (42)

scala> val list42 = q"List(..$args)"
list42: Term.Apply = List(42)

scala> q"println($list42)"
res8: Term.Apply = println(List(42))

scala> q"class $list42"
<console>:32: error: type mismatch when unquoting;
found : Term.Apply
required: Type.Name
q"class $list42"

scala> q"val weird: $list42 = 777"
<console>:32: error: type mismatch when unquoting;
found : Term.Apply
required: Option[Typel
q"val weird: $list42 = 777"

Analogously to scala.reflect, scala.meta quasiquotes support pattern matching, allowing
to conveniently deconstruct abstract syntax trees using unquoting and unquote splicing.

Scala.meta trees are more precise than in scala.reflect, so the resulting types of matched
variables are also more precise. For example, note how fn in the pattern match below has
type Term as opposed to just Tree in the same pattern match performed by scala.reflect
quasiquotes.

scala> val list42 = q"List(42)"
list42: Term.Apply = List(42)

scala> val q"$fn(..$args)" = list42
fn: Term = List
args: Seq[Term.Arg] = List(42)

Finally, scala.meta quasiquotes also support type-directed unquoting and unquote splicing
via dedicated typeclasses that express lifting and unlifting.

In scala.meta, these typeclasses have two type parameters, with the second parameter
controlling the non-terminal representing the position of insertion or extraction. This
additional functionality is possible thanks to scala.meta trees being more precise.
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scala> implicit def 1liftInt[0 <: Int, I >: Lit]: Lift[0, I] =
| Lift{ x => Lit(x) }
liftInt: [0 <: Int, I >: Lit]=> Lift[0,I]

scala> q"${42}"
resl2: Stat = 42

scala> implicit def unliftInt[I >: Lit]: Unlift[I, Int] =
| Unlift{ case Lit(x: Int) => x }
unliftInt: [I >: Lit]=> Unlift[I,Int]

scala> val q"${fortyTwo: Int}" = resil2
fortyTwo: Int = 42

Semantic aspect. This part of the story of quasiquotes in scala.meta is exactly the
same as in scala.reflect. Quasiquotes deliberately allow ill-typed code snippets for the
sake of flexibility, so resulting trees do not contain any semantic information.

To put it in a nutshell, the design of scala.meta quasiquotes is mostly similar to the
design of scala.reflect quasiquotes. Thanks to scala.meta trees being more detailed and
more precise, user experience has markedly improved, but notation remained mostly the
same. Internal implementation has been significantly simplified, but that discussion is
outside the scope of our dissertation. Finally, scala.meta inherits the same problems
with semantic information and hygiene that are inherent to scala.reflect quasiquotes
(subsection 3.3.4). Addressing these problems remains future work.

8.4 Environments

As explained in subsection 8.1.1, different scala.meta APIs require different capabilities to
run. Therefore, the question of whether an environment can run a scala.meta metaprogram
is equivalent to a question of whether the environment can provide capabilities requested
by the metaprogram.

At the moment, scala.meta defines two capabilities: dialects that power syntactic APIs

and mirrors that power semantic APIs.

Dialects that correspond to Scala 2.10, Scala 2.11, Dotty and popular build definition
formats are readily available in the standard distribution of scala.meta. Accompanying
these dialects are in-house implementations of a tokenizer, a parser and a prettyprinter for
Scala syntax. As a result, syntactic APIs of scala.meta are available in any environment
that can run these implementation, which at the moment includes all JVM-based
environments (the Scala compiler, Dotty and the JVM runtime). In the future, we plan
to expand this list to include Scala.js and Scala Native.
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Mirrors are completely different. According to a conservative estimate (obtaining the LOC
count of files in the typechecker package of the Scala compiler and in the internal
package of the scala.reflect language model), an analogue of the functionality required
from a mirror comprises more than 50k lines of code of scalac. Reimplementing this
logic on top of the scala.meta language model in a reasonably compatible way would
most likely require multiple years of effort, so we decided against providing an in-house
implementation of mirrors.

As a result, scala.meta only specifies the contract for Mirror and requires environments
to provide their own implementations of this contract. Learning from the experience
with scala.reflect whose hundreds of APIs clearly deterred third-party implementors, we
minimized the surface of Mirror to just a dozen methods. The surface of semantic APIs
exposed to metaprogrammers is much richer, but it is all funneled through the dozen
methods in mirrors.

In the listing below, we can see an adapted definition of Mirror taken from an experi-
mental branch of scala.meta. @opaque is a macro annotation (section 5.3) that makes
all members in the annotated definition private to scala.meta in order to make sure that
it is used as a capability and not as a source of APIs.

Q@opaque
trait Mirror {
def dialect: Dialect

def typecheck(tree: Tree): Tree

def defns(ref: Ref): Seq[Member]

def members(tpe: Type): Seq[Member]

def supermembers(member: Member): Seq[Member]
def submembers(member: Member): Seq[Member]

def isSubtype(tpel: Type, tpe2: Type): Boolean
def lub(tpes: SeqlTypel): Type
def glb(tpes: SeqlTypel): Type
def supertypes(tpe: Type): Seql[Typel
def widen(tpe: Type): Type
def dealias(tpe: Type): Type
}

Creating a mirror for an environment requires developing two high-level components:
1) a converter that translates environment artifacts into scala.meta artifacts and vice
versa, 2) an adapter that translates the calls to the Mirror API to the calls to internal
metaprogramming APIs of the environment. Let us see how this worked out in our
experiments.

175



Chapter 8. Scala.meta

Scala compiler. Scalahost (section 8.2) provides a prototype implementation of Mirror
that wraps scala.tools.nsc.Global, i.e. the Scala compiler. We have successfully
used this mirror to execute scala.meta metaprograms at compile time, achieving an
implementation of an early predecessor of new-style macros described in chapter 9.

A scalac implementation of the scala.reflect Universe was available automatically
from day one of scala.reflect, because Global is a scala.reflect universe (subsection 3.4.1).
The situation with the scala.meta Mirror is drastically different. Implementing the
adapter was very easy, but the converter caused and keeps on causing us a lot of trouble.

First, the main challenge in implementing a converter is the desugaring problem. Since
compiler trees are heavily desugared (section 3.2), and scala.meta trees are designed to
comprehensively describe language elements, a lot of work is required to convert from
scala.reflect to scala.meta (the reverse direction is much simpler, because scala.meta trees
are more detailed).

A particularly difficult task is to take a desugared scala.reflect tree, figure out which of
the dozens desugarings have been applied to it by the Scala compiler and then undo these
desugarings. Unfortunately, the compiler rarely keeps track of original, undesugared
trees, so within the current infrastructure it is impossible to carry out this task.

We tried multiple approaches that revolved around patching the typechecker to retain
information about desugarings, but we quickly hit a complexity wall. The desugarings are
numerous and undocumented, so significant engineering effort is required to undo them.
Judging from our initial experience, it may very well be that the desugaring problem
does not have a practical solution. Confirming or disproving that is an extremely critical
element of our future work.

Secondly, another important challenge in implementing a converter is obtaining scala.meta
trees from the compilation classpath. Translating scala.reflect symbols that represent
the definitions from the classpath is fairly straightforward, but scala.meta trees obtained
this way only have signatures and lack bodies. This is not a problem per se, because
that is the best that scala.reflect can do anyway, but it is nonetheless unsatisfying.

As a result, in scala.meta we postulate mandatory AST persistence for syntax trees after
typer. Thanks to the results of Mathieu Demarne and Adrien Ghosn [30], we know that
AST persistence is feasible and practical, so we are now experimenting with it. Scalahost
patches the JVM backend of the Scala compiler to save serialized scala.meta trees into
class files, so that we can later load these trees and gain access to their original bodies.

To sum it up, implementing a Scala compiler mirror requires non-trivial engineering
effort to restore information about code that the compiler typically throws away. After
fighting with the Scala compiler for quite a while, we now appreciate the compilers that
are designed with programmability in mind.
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Dotty. We have been collaborating with the Dotty team to implement a mirror that
would allow to run scala.meta metaprograms in Dotty. Following through the initial
prototype is an exciting prospect for future work. Moreover, additional effort may be
required to support runtime reflection of JVM programs produced by Dotty, because
Dotty features compilation flags that enable whole-program optimization [93].

IntelliJ. From the very inception of scala.meta, we have been working together with the
IntelliJ team, and recently this collaboration has resulted in a prototype of an IntelliJ
mirror. In his dissertation, Mikhail Mutcianko from the IntelliJ team describes design
and implementation of the mirror [86].

JVM. Based on our experience with developing a JVM universe for scala.reflect (subsec-
tion 3.4.4), we decided against building a classloader-based JVM mirror for scala.meta.
Instead, we require a classpath, and based on that classpath we launch an instance of the
Scala compiler. We then proxy the calls to the mirror API to an auxiliary Scala compiler
mirror that wraps the underlying compiler instance.

Other runtimes. The situation with mirrors for other runtimes is analogous to the
same situation in scala.reflect (subsection 3.4.5 and subsection 3.4.6). Neither Scala.js
nor Scala Native currently provide enough reflective facilities to host a scala.meta mirror,
and it is doubtful that the situation will change in the future.

8.5 Operations

Much like section 3.5, this section is also going to be a practical exploration of a
metaprogramming API. In the REPL printout below, we will demonstrate a mixture of
syntactic and semantic APIs implemented in scala.meta. The syntactic part has been
recently shipped in a stable release, but the semantic part is only available as a prototype
in an experimental branch of the project.

We will begin with syntactic APIs, which according to subsection 8.1.1, require a wildcard
import and a dialect. Let us work with the Scala211 dialect.

scala> import scala.meta._
import scala.meta. _

scala> import scala.meta.dialects.Scala21l1l
import scala.meta.dialects.Scala2l1l

Obtaining a scala.meta tree is similar to scala.reflect. We can: 1) parse it from an Input,
i.e. anything that can provide an array of characters, 2) create it with a quasiquote
(subsection 3.3.2), 3) receive it from an environment, e.g. from a macro engine during

macro expansion.
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Unlike in scala.reflect, parsing does not require a helper (i.e. a toolbox or a macro context)
and is not hardcoded to parse just terms. In a type argument of parse, metaprogrammers
can choose from more than a dozen non-terminals of the Scala grammar that they would
like the scala.meta parser to produce.

scala> "List(42)".parse[Term]
resO: Parsed[scala.meta.Term]

List (42)

scala> "List(42)".parse[Typel
resl: Parsed[scala.meta.Type]
<input>:1: error: end of file expected but ( found
List (42)

scala> q"List(42)"
res2: Term.Apply = List (42)

scala> t"List[Int]"
res3: Type.Apply = List[Int]

Similarly to scala.reflect, there are multiple ways to prettyprint a tree, with analogues
existing for both show and showRaw from scala.reflect. Thanks to the comprehensive
nature of scala.meta trees, prettyprinting produces exactly the syntax that was used to
create a tree, including all formatting details.

scala> val x = "val x = 42 // the answer to...".parse[Stat].get
x: Stat = val x = 42 // the answer to...

scala> x.syntax
res4: String = val x = 42 // the answer to...

scala> x.structure
resb5: String =
Defn.Val(Nil, Seq(Pat.Var.Term(Term.Name("x"))), None, Lit(42))

As shown above, low-level syntactic details are not encoded in the case class structure.
Instead, these details are externalized in tokens - first-class entities of the scala.meta
language model that are associated with abstract syntax trees during parsing.

scala> x.tokens
res6: Tokens =
Tokens(, val, , x, , =, , 42, , // the answer to..., )

scala> x.tokens.structure

res7: String = Tokens(BOF [0..0), val [0..3), [3..4),

x [4..5), [5..6), = [6..7), [7..8), 42 [8..10),
[10..11), // the answer to... [11..30), EOF [30..30))
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In order to start experimenting with semantic APIs, we will need a mirror. For the sake
of simplicity, we will use a runtime mirror that is created from a classpath (section 3.4).
This does not lose generality, because exactly the same API is available at compile time.

scala> implicit val m = Mirror(".../scala-library-2.11.8.jar")
m: Mirror =

In contrast to scala.reflect, the semantic API of scala.meta does not use anything but
trees. Symbols are represented by names, and types are represented by their abstract
syntax (section 8.2).

Moreover, there is no publicly visible distinction between attributed and unattributed
trees. As we have seen in section 8.2, the language model includes the notions of
denotations, types and desugarings, but these notions are internal to the scala.meta
framework and its implementors, which means that users do not know about them.

Whenever a metaprogrammer requests semantic information from a tree that internally
happens to be unattributed, scala.meta calls Mirror.typecheck on that tree, and it
is a responsibility of the mirror to produce a correct result. Specifying exactly what
“correct” means is inherently linked to hygiene (subsection 3.3.4), so we leave that for
future work. In the meanwhile, our prototype typechecks unattributed trees at the top
level of the underlying mirror.

The REPL printout below illustrates name resolution and signature inspection - the
tasks that are typically done with symbols in the scala.reflect language model. We start
with t"List", a quasiquote that produces a regular abstract syntax tree, and then call
Ref .defn on that tree.

Ref.defn sees that t"List" is internally unattributed (because quasiquotes create
unattributed trees as per subsection 3.3.2), so it calls Mirror.typecheck on a mirror
that is provided to it as an implicit parameter. An unqualified List typechecks as a
reference to a type alias that is declared in the scala package.

Having gotten ahold of an attributed tree corresponding to t"List", Ref.defn resolves
the reference List and returns the result to the metaprogrammer. However, unlike
scala.reflect, the metaprogrammer does not get back a symbol, but instead sees a
representation of the scala.List type alias encoded in an abstract syntax tree.

scala> val list = t"List".defn
list: Defn.Type = type List[+A] = List[A]

In order to inspect the signature of a definition, we do not need any special APIs like
Symbol.info or Symbol.typeParams. Instead, we inspect the structure of the tree
and extract the relevant parts. Alternatively, if writing a quasiquote to destructure a
definition is too verbose, we can call a helper method that does the same internally.
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scala> list.structure

res8: String = Defn.Type(
Nil, Type.Name("List"),
Seq(Type.Param(Seq(Mod.Covariant()), Type.Name("A"), ...)),
Type.Apply (Type.Name ("List"), List(Type.Name("A"))))

scala> val gq"..$_ type $_[..%tparams] = $_" = list
tparams: Seq[Type.Param] = List(+A)

scala> list.tparams
res9: Seql[Type.Param] = List (+A)

Naturally, the resulting abstract syntax trees can also participate in semantic APIs.
For example, it is possible to obtain the body of the scala.List type alias and
recursively resolve it to a definition, obtaining an abstract syntax tree representing
scala.collection.immutable.List. In that case, no call to typecheck would be
required, because that tree was returned by the mirror and preattributed in advance.

Scala.meta provides many more semantic APIs, with the goal to achieve feature parity
with scala.reflect. For example, similarly to scala.reflect, there exist Type.<:<, Type.
members and the like.

scala> t"List[Int]" <:< t"List[Any]"
resl0: Boolean = true

scala> t"List[Int]".foreach(println)
override def companion: GenericCompanion[List] = 777
def ::[B >: Int](x: B): List[B] = 777

There are several noteworthy facts about the REPL printout above. First, scala.meta does
not forget prefixes when enumerating members of a type. For example, the List [A] . ::
method, whose definition looks like def ::[B >: A](x: B): List[B], remembers
the fact that it has been obtained from List [Int] and adjusts its signature accordingly.

Secondly, since our AST persistence technology is still experimental, more often than not
we do not have ASTs for dependencies loaded from the classpath. Therefore, we have
to emulate these trees by reconstructing their signatures from available metadata and
replacing their bodies (if applicable) with a marker. This looks somewhat strange, but
does not affect introspective capabilities of scala.meta.

In the examples above, we have seen that scala.meta noticeably improves upon scala.reflect
in comprehensiveness and simplicity of its API. Even though at the time of writing our
semantic operations are only available in a prototype, we are very excited by our initial
results and are looking forward to developing them further in the future.
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8.6 Conclusion

Scala.meta was originally created to supersede scala.reflect (chapter 3) in the capacity of
the metaprogramming API powering Scala macros (chapter 4 and chapter 5).

Initially, the design of scala.meta was dictated by the desire to avoid three problems of
scala.reflect: 1) unconventional architecture requiring knowledge of advanced language
features (subsection 3.1.1), 2) extravagant and brittle API based on compiler internals
(section 3.2), 3) lackluster interoperability with third-party tools (chapter 7).

In order to improve on scala.reflect, we designed scala.meta from first principles. Starting
from scratch, we created an independent language model for Scala (section 8.2) and
designed a set of operations that works with it (section 8.5), carefully documenting the
capabilities that are required to run these operations (subsection 8.1.1).

Moving from data structures of compiler internals to a language model defined in a library
was somewhat ironic. It was just several years ago that the move in the opposite direction
- from Code and Manifest (section 2.3) to compiler internals - was considered an
important achievement. Nevertheless, our experience with scala.meta has demonstrated
that having a standalone language model is paramount to solving the interoperability
problem of scala.reflect.

Our progress with scala.meta looks quite promising. Even though we do not yet have a
fully-featured implementation, scala.meta has already started catalyzing the next step in
the evolution of metaprogramming in Scala.

First, we have successfully presented a prototype of a new macro system that works both
in the Scala compiler and in IntelliJ (section 9.6) - something that has been out of reach
of scala.reflect for almost five years.

Secondly, we have discovered that a unified metaprogramming API can be useful not
only as a standard facility underlying compile-time and runtime reflection, but also as a
foundation for the ecosystem of novel developer tools (section 8.4).
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Def macros (chapter 4) and macro annotations (section 5.3) have become an integral part
of the Scala ecosystem. They marry metaprogramming with types and work in synergy
with other language features, enabling practically important use cases (chapter 6).

Unfortunately, Scala macros have also gained notoriety as an arcane and brittle technology.
The most common criticisms of Scala macros concern their subpar tool support (chapter 7)
and overcomplicated metaprogramming API powered by scala.reflect (chapter 3).

While trying to fix these problems via evolutionary changes to the current macro system,
we have realized that they are all caused by the decision to use compiler internals as the
underlying metaprogramming API. Extensive use of desugarings and existence of multiple
independent program representations may have worked well for compiler development,
but they turned out to be inadequate for a public API.

The realization that we cannot make meaningful progress while staying within the confines
of scala.reflect meant that our macro system needs a redesign. We took the best part
of current macros - their smooth integration into the language - and discarded the rest,
replacing scala.reflect with scala.meta (chapter 8) and coming up with a lightweight
declaration syntax. In this chapter, we present the current version of the design.

Unlike most technologies presented in this dissertation, the new macro system only exists
as a prototype [13, 86]. Nevertheless, based on the feedback from the community, we are
confident that it is moving in the right direction and are excited to develop it further.

The new design was created together with Denys Shabalin and Martin Odersky and was
further elaborated with Mikhail Mutcianko, Vladimir Nikolaev, Vojin Jovanovic, Sébastien
Doeraene, Dmitry Petrashko, Valentin Rutz and the tool support squad (chapter 7). The
prototype was developed with contributions of Hiroshi Yamaguchi, Tamer Mohammed
Abdul-Radi, Takeshi D. Itoh, Oleksandr Olgashko, David Dudson, Dale Wijnand and
Olafur Pall Geirsson.
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9.1 Motivation

In addition to the four design goals stated in section 4.1, we have introduced further
requirements to make sure that the new macro system is free from the most important

problems characteristic for its predecessor.

5) Enable comprehensive tool support. By associating themselves with scala.reflect, the
current macros make it virtually impossible for third-party tools to support them fully.
Code comprehension, error reporting, incremental compilation, testing, debugging - all
suffer because of the limitations of scala.reflect (chapter 7).

6) Simplify the metaprogramming API. Practical examples from subsection 3.1.2, sec-
tion 4.2 and other sections show that even not very complicated macros occasionally
require knowledge of compiler internals. We would like the new macro system to have an
API that avoids such problems.

7) Prevent inadvertent name capture. As illustrated in section 4.2, it is trivial to make
hygiene mistakes, and it is hard to notice them. The current macro system neither
prevents these mistakes from happening, nor assists metaprogrammers with detecting
them. Our anecdotal experience with reviewing open-source Scala macros shows that
hygiene bugs are one of the most common oversights in macro writing.

8) Simplify macro declaration syntax. From subsection 4.3.4 and subsection 5.3.2, we
can see that defining macros in the current macro system is associated with significant
amounts of boilerplate. Now that the programmers in the Scala community are familiar
with the concept of language-integrated compile-time metaprogramming, we can afford
switching to a less explicit, but more concise syntax.

9) Lift the separate compilation restriction. The inability of the current macro system to
handle macro applications and their macro impls in the same compilation run (subsec-
tion 4.3.3) presents a practical inconvenience. Since macro-generating macros are almost
never used in Scala, this restriction is rarely a significant problem, but it does bring the
trouble of having to tinker with the build system.

10) Provide feature parity. Even though the current macro system has a lot of shortcom-
ings, it also has a lot of users. While we probably will not be source-compatible with a
great number of existing scala.reflect metaprograms, we feel the pressure to strive for
feature parity between the current and the new macro systems.

The first three of the additional requirements belong to the domain of scala.meta
(chapter 8), which was initially designed specifically to address them. The quest of
satisfying the last three requirements is described in subsequent sections of this chapter.
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9.2. Intuition

9.2 Intuition

Let us go through the LINQ example from section 4.2, porting it to new-style macros
and discussing similarities and differences with the current macro system. This example
features a significant amount of domain-specific infrastructure, so you may find it useful
to revisit the explanation of this infrastructure provided in the original section where the
example was introduced.

trait Queryl[T]
case class Table[T: TypeTag] () extends Query[T]
case class Select[T, Ul(q: Query[T], fn: Node[U]) extends Query[U]
trait Node[T]
case class Ref[T](name: String) extends Node[T]
object Query {
implicit class QueryApi[T](q: Query[T]) {
def map[U](fn: T => U): Queryl[Ul = { ... }
}
}
case class User(name: String)
val users = Table[User] ()

users.map(u => u.name)
// translated to: Select(users, Ref[String]("name"))

In a nutshell, the listing above introduces an infrastructure that represents queries to
datasources (lines 1-6), and we want to expose it to users in a convenient way that
resembles the operations on the standard library collections (line 8-12). For that, we need
a facility that would translate calls to such operations (line 16) into query constructors
as shown on line 17.

In section 4.2, we turned Query.map into a macro, associating applications of Query.
map with our custom metaprogram that does the required translation at compile time.
The listing below provides the source code of such a macro implemented with the current
macro system.

import scala.language.experimental.macros
import scala.reflect.macros.blackbox.Context

object Query {
implicit class QueryApil[T](q: Query[T]) {
def map[U](fn: T => U): Query[U] = macro QueryMacros.map
}
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object QueryMacros {
def map(c: Context)(fn: c.Tree): c.Tree = {
import c.universe._

// c.prefiz looks like:
// Query.Querydpi [<T>] (<prefiz>)
val q"$_.$_[$_1($prefix)" = c.prefix

val node: Tree = fn match {
case q"($param) => $body" =>
val sym = param.symbol
body match {
case q"$qual.$_" if qual.symbol == sym =>
q"Ref [${body.tpel}] (${sym.name.decodedName.toString})"

3

q"Select($prefix, $node)"

3

In the listing above, Query.map is a macro def (line 6) that is associated with the
metaprogram QueryMacros.map (lines 11-28) which is called a macro impl. Whenever
the compiler encounters an application of Query .map, it calls the corresponding macro
impl to generate code that will replace the original application at compile time. In the
macro impl, we analyze the fn argument (lines 18-25), translate it into a corresponding
Node (lines 19-24), and then produce a Select query that represents the application of
Query.map (line 27).

User interface of def macros is a seamless extension to the existing language interface.
Thanks to macro defs looking like regular methods and macro applications looking like
regular method applications, users are likely to not even realize that they are using
macros.

Unfortunately, metaprogrammer interface leaves much to be desired. First, in the
current macro system, metaprograms have to be defined separately from their signatures,
typically involving helper objects and duplication of parameters (lines 10-29). Secondly,
the underlying metaprogramming API requires knowing bits and pieces of compiler
internals. For example, in the case of Query.map, the metaprogrammer had to know
the internal representation of the QueryApi application (line 16) and internal details of
how names are represented (line 23).

New-style macros provide the same user interface, and at the same time significantly
improve metaprogrammer interface by enabling lightweight macro declaration syntax
and using a better metaprogramming API.
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object Query {
implicit class QueryApil[T](q: Query[T]) {
inline def map[U]l(fn: T => U): Query[U] = meta {
import scala.meta._

val q"$_($prefix)" = this

val node: Tree = fn match {
case q"($param: $_) => $body" =>
body match {
case q"$qual.$field" if qual =:= param =>
q"Ref [${body.tpe}] (${field.toString})"

3

q"Select($prefix, $node)"

}
}

At a glance, new-style macros simply forgo a noticeable amount of ceremony, merging
the previously disparate macro defs and macro impls as well as swapping around a few
keywords in the process. The underlying metaprogram does not seem to have changed
much, still using quasiquotes and key APIs like Tree.tpe and Name.toString.

First impression notwithstanding, the new design revamps a lot of underlying mecha-
nisms. Below we provide a high-level overview of our new approach to compile-time
metaprogramming, and refer curious readers to section 9.3 for information concerning the
new expansion mechanism and to chapter 8 for details about the new metaprogramming
APT underlying the design.

Expansion mechanism. The new design takes the notions of inlining and compile-time
execution from the current macro system and turns them into separate language features.

The goal of the inline modifier on Query.map is to signify that applications of this
method are inlined, i.e. replaced with the method body, in which references to enclosing
this, self, and formal parameters are rewritten accordingly (subsection 9.3.2).

The goal of the meta keyword is to demarcate code that executes at compile time and
to provide that code with scala.meta capabilities (subsection 8.1.1). The metaprogram
written inside the meta scope has access to multiple implicit capabilities and can get
ahold of representations of certain values and types from lexical scope. The compiler
runs this metaprogram, interprets its result as an abstract syntax tree and replaces the
meta expression with that tree (subsection 9.3.4).
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When the compiler encounters a call to Query.map, it simply inlines the body of map
into the callsite without performing any compile-time function execution. For the running
example of users.map(u => u.name), this inlining produces the result illustrated in
the listing below.

{
val prefix$l: QueryApi = QueryApi(users)
val fn$1: User => String = u => u.name
meta {
import scala.meta._
val q"$_($prefix)" = q"QueryApi(users)"
val node: Tree = q"u => u.name" match {
case q"($name: $_) => $body" =>
body match {
case q"$qual.$_" if qual =:= name =>
q"Ref [${body.tpe}] (${name.toString})"
}
}
q"Select($prefix, $node)"
}
}

Before inlining a method application, the compiler first hoists the prefix and by-value
arguments of the application into temporary variables. This is done in order to guarantee
that applications of inline methods are semantically equivalent to applications of regular
methods.

Afterwards, the compiler replaces the application with a block that consists of hoisted
values and the transformed method body. In the method body, all regular references
to this and self as well as by-value parameters are rewritten to references to the
corresponding temporary variables. If such references are part of a meta scope, they
are replaced with scala.meta-based representations of the prefix and the corresponding
arguments, without going into temporary variables.

When the compiler comes across a meta expression that is not part of an inline method,
it executes the code inside the expression and replaces the expression with the result of
execution. For our running example, this produces the desired expansion that invokes
query constructors corresponding to the LINQ notation.

New metaprogramming API. Scala.meta noticeably improves on scala.reflect in the
convenience of the API and no longer requires metaprogrammers to understand compiler
internals in order to write macros.
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In particular, on line 6 we do not need to know that construction of the implicit class
involves expanding the reference to QueryApi into a fully-qualified name and inferring
the missing type argument. The particular implementation of the scala.meta API that
runs the meta expression may or may not do these desugarings, and scala.meta shields
us from this fact. We can use the WYSIWYG pattern q"$_($prefix)" in order to
unwrap the original prefix of the call.

Moreover, on line 12 we do not have to worry about the compiler internally mangling
non-alphanumeric names. Again, even if the underying macro engine internally does
name mangling, scala.meta abstracts away such implementation details.

Finally, on line 9 we are able to improve on scala.reflect thanks to more precise quasiquotes.
If in the current macro system, we used q" ($name: $_) => ..." to match the fn
argument, name would capture a scala.reflect Name that does not carry any semantic
information. In scala.meta, names are full-fledged trees, so we can use Tree.=:= to
semantically compare the name with the qualifier of the field selection on line 11.

In order to use semantic APIs, scala.meta metaprograms need the mirror capability
(subsection 8.1.1), so it is implicitly provided inside meta scopes. As a result, meta
expressions can use the full spectrum of APIs available in scala.meta.

To put it in a nutshell, the new-style macro system combines two language features -
inline definitions (subsection 9.3.1) and meta expressions (subsection 9.3.3) - in order
to provide a more lightweight syntax for the current def macros. Moreover, this macro
system does a switchover from scala.reflect to scala.meta, featuring a new API that is
more convenient and does not require compiler knowledge to be utilized effectively.

9.3 Inline and meta

9.3.1 Inline definitions

The main motivation behind inline is to provide a templating system that can express
simple use cases of compile-time metaprogramming in an lightweight declarative style
that does not involve explicit introspection.

Towards that end, we introduce a new reserved word: inline, which can be used as
a modifier for concrete vals, concrete methods and parameters of inline methods, as
illustrated in the listing below.

inline val x = 4

inline def square(x: Double) = x * x
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inline def pow(b: Double, inline n: Int): Double = {
if (n == 0) 1
else b * pow(b, n - 1)

}

Inline vals are guaranteed to be compile-time constants, superseding the existing approach
of declaring such constants with final wval. Inline parameters get the same treatment,
adding a previously non-existent functionality of guaranteeing that an argument of a
method is a compile-time constant.

A value is considered to be a compile-time constant if it is a Scala literal, or it is equivalent
to one by the means of inline/meta expansion and constant folding. Future work may
extend this notion to custom classes, but this discussion lies outside the scope of the
dissertation.

Inline defs are guaranteed to be inlined at compile time, superseding the existing approach
of annotating methods with the @inline annotation. After introducing inline, we
expect to deprecate and phase out @inline.

The problem with @inline is that it does not provide guarantees. As specified in
documentation, @inline tells the compiler to “try especially hard to inline the annotated
method”. However, different backends interpret this request differently. The JVM backend
ignores this annotation if optimizations are disabled and sometimes skips inlining even
when optimizations are enabled. Both Scala.js and Scala Native always inline methods
that are marked with this annotation. In contrast, inline achieves guaranteed inlining,
regardless of the backend.

Inline defs are very similar to macro defs in the sense that they look like regular defs and
that they expand at compile time. As a result, the rules in subsection 4.6.1 also apply to
inline defs with three exceptions.

First, inline defs effectively final; they cannot be overridden. Inline members also never
override other members. The idea of allowing macro defs to override regular defs did not
find compelling use cases, so we prohibit this for inline defs.

Secondly, inline defs can have default parameters. Not supporting default parameters for
macro defs was an oversight of the initial design, so now we fix this oversight in the new
macro system.

Thirdly, inline defs have regular bodies, just like regular defs. When an inline def is
typechecked, its body is typechecked according to the usual rules, which means that
inline defs are eligible for return type inference. If an inline def does not explicitly specify
its result type, the result type gets inferred from the type of its body.

190



9.3. Inline and meta

9.3.2 Inline reduction

When the compiler encounters certain patterns of code that involve references to inline
vals and applications of inline defs, it will perform the rewritings provided below, if and

only if these patterns appear outside the bodies of inline vals and defs.

1) If prefix.v refers to an inline value in a method call that involves only compile-time
constants or in a condition of a conditional expression that is a compile-time constant,
simplify the corresponding expression. This rewriting is necessary to make sure that
methods like pow from subsection 9.3.1 successfully expand.

2) If prefix.v refers to an inline value elsewhere, replace it with the body of v.

3) If prefix.f[Ts] (argsl) ... (argsN) refers to a fully applied inline method, hoist
the prefix and the arguments into temporary variables with fresh names and then replace
the expression with the method body. In the body, replace parameter references with
references to temporary variables created for the corresponding arguments. Also, replace
enclosing this and self references with references to the temporary variable created for
the prefix.

{
val prefix$1l = prefix
val paraml$l = argl

val paramN$1 = argN
<transformed body of f>

¥

The hoisting is intended to preserve the semantics of method applications under inlining.
A method call should have the same semantics with respect to side effects independently
on whether the method was made inline or not. If an inline method has by-name
parameters, then corresponding arguments are not hoisted.

The rewriting is done in accordance with hygiene. Any references from the method body
to its lexical scope will be kept in the rewritten code. If the result of the rewriting
references private or protected definitions in the class that defines the inline method,
these references will be changed to use accessors generated automatically by the compiler.
To ensure that the rewriting works in the separate compilation setting, it is critical
for the compiler to generate the accessors in advance. Most of these accessors can be
pregenerated by analyzing the bodies of inline methods, except for members that are
referred to inside meta scopes. Such references are disallowed, because it is impossible to
generate them in advance.

4) If prefix.f[Ts] (argsl) ... (argsN) refers to a partially applied inline method,
an error is raised. Eta expansion of inline methods is prohibited.
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The rules of inline reduction are similar to the rules of feature interaction for macro
applications (subsection 4.6.2) as well as relevant parts of the rules of def macro expansion
(section 4.4) with four exceptions.

Firstly and most importantly, inline reductions in their current form preclude whitebox
expansion (section 4.4). Since bodies of inline vals and defs are typechecked when their
definitions are typechecked, potential meta expansions that may happen afterwards will
not be able to change their types. Implications of this are discussed in subsection 9.3.5.

Secondly, by-value and by-name arguments behave differently. By-value arguments are
hoisted in temporary variables, while by-name arguments remain as they were. This does
not affect meta expansions (subsection 9.3.4), but it does make a semantic difference
for parts of inline definitions that are not inside meta scopes. Note that this and self
references always follow the by-value scheme, because there is no syntax in Scala that
allows to define them as by-name.

Thirdly, named and default arguments are fully supported. Again, not including them in
the initial release of def macros was an oversight, which is now fixed.

Finally, the rules of rewriting mandate the “outside in” style, i.e. calls to inline methods
are expanded before possible calls to inline methods in their prefixes and arguments. This
is different from how the “inside out” style of def macros (section 4.4), where prefixes
and arguments are expanded first. Previously, it was very challenging to take a look at
unexpanded trees, but now the metaprogrammer can easily switch between unexpanded
and expanded views (section 9.4).

From the discussion above, we can see that inline reduction closely resembles the inlining
aspect of the current macro system. The only significant difference is lack of support for
whitebox expansion, which will be discussed in subsection 9.3.5.

9.3.3 Meta expressions

A meta expression is an expression of the form meta { ... }, where { ... } is some
block of Scala code, called meta scope. (In fact, meta may prefix arbitrary expressions,
but blocks are expected to be used most commonly).

Meta expressions can appear both in the bodies of inline methods (then their expansion
is going to be deferred until the enclosing method expands) and in normal code (in that
case, their expansion will take place immediately at the place where the meta expression
is written).

Meta scopes can contain arbitrary code, but they must return values that are either of
type scala.meta.Term or are convertible to it via the scala.meta.Lift typeclass.
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There are standard instances of the typeclass that lift simple values to literals as well as
ones that support frequently used collections of liftable values. Metaprogrammers may
define and use their own instances as long as they are available in corresponding meta
scopes.

Inside meta scopes, metaprogrammers can use a combination of general-purpose and
expansion-specific metaprogramming facilities. Refer to section 9.4 for more information.

Since meta scopes must return scala.meta trees, and scala.meta trees are by design
statically untyped (section 8.2), the type of meta expressions can not be computed from
the inside and has to come from the outside. Therefore, meta expressions can only be
used in contexts that specify an expected type.

// allowed, ezpected type provided by the return type
inline def map[U](fn: T => U): Query[U] = meta { ... }

// mot allowed, no explicit return type
val x = meta { ... }

// allowed, expected type of a condition is Boolean
if (meta(T.isPrimitive)) { ... }

Meta scopes can reference names in their lexical scope outside the enclosing meta expres-
sion. While crossing the meta boundary, references change their meaning. Concretely,
here is how the transformation works for different references:

Inline vals and inline parameters. These are guaranteed to be compile-time constants,
so an inline value of type T is available inside a meta scope as a regular value of type T.

Inline defs. When viewed from within a meta scope, inline defs become tree transformers.

Types of their inline parameters are unchanged, their non-inline parameters and return

type become typed as scala.meta.Term. For example, inline def pow(b: Double

, inline n: Int): Double transforms into def pow(b: scala.meta.Term, n:
Int): scala.meta.Term.

Term parameters of an inline method. References to statically known term param-
eters, enclosing this or self become values of type scala.meta.Term. This is similar
to c.Expr/c.Tree parameters of macro impls (subsection 4.3.1), but more lightweight,
because there is no need to declare these parameters explicitly.

Type parameters of an inline method. References to statically known type param-
eters become values of type scala.meta.Type. This is similar to c.WeakTypeTag
parameters of macro impls (subsection 4.3.2), but more lightweight, because metapro-
grammers do not need to explicitly manifest their interest in given type parameters in
order to get access to their representations.
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This rule can create clashes between term and type namespaces. If such a clash happens,
i.e. if a reference to a type parameter is ambiguous with an eponymous term, the compiler
emits an error. This is regrettable, but Scala naming conventions make this situation
unlikely, and there is always a workaround of renaming the type parameter.

Global definitions. Statically available types and terms, e.g. List or Int, are usable
inside meta scopes as themselves. This means that meta expressions, just like macro
impls, can use the standard library and arbitrary third-party libraries.

Other definitions. Macro scopes cannot reference definitions that do not fall into one
of the categories mentioned above. This outlaws usages of local definitions - both terms
and types. Such definitions may refer to state that only exists at runtime, so we prohibit
them altogether. This has no analogues in the current macro system, because macro
impls must be defined in static methods, which means that by definition their scope
cannot contain local definitions.

In other words, definitions that are statically available outside meta scopes remain
available in meta scopes, term and type arguments of inline methods become available
as their representations, while signatures of inline methods are recursively transformed
according to the rules above.

From the discussion above, we can see that meta expressions provide an analogue of
the compile-time execution part of the current macro system. In addition to achieving
feature parity, meta expressions also improve on the corresponding part of def macros by
allowing metaprograms to easily obtain representations of their term and type parameters
and making it possible to run anonymous snippets of metaprogramming code without
wrapping them in a dedicated macro.

9.3.4 Meta expansion

When the compiler encounters a meta expression that appears outside the bodies of
inline vals and defs, it expands that expression as described below.

A meta expression is expanded by evaluating its body and replacing the original meta
expression with an expression that represents the result of the evaluation. The compiler
is responsible for providing the capabilities (section 9.4) necessary for meta scopes
to evaluate and for converting between its internal representation for language model
elements and representations defined in scala.meta, such as scala.meta.Term and
scala.meta.Type.

Meta expansion works very similarly to the relevant part of the def macro expansion
pipeline (subsection 4.4.1). Code in the meta scope is precompiled and then reflectively
invoked by the compiler, sharing the class loader with other metaprograms run inside
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the compiler. Expansion can return normally or can be interrupted with an exception.
Expansion results are typechecked against the expected type of the meta expression.
Typecheck results are upcast to the expected type in blackbox style, as discussed in
subsection 9.3.5.

Attentive readers may notice that the reflective style of executing meta scopes contradicts
the goal of lifting the separate compilation restriction (section 9.1). That is a deliberate
decision, because developing a full-fledged interpreter or JIT compiler for scala.meta
trees is outside the scope of this dissertation. Nevertheless, this is a very interesting
project that we plan to tackle in the future, and some initial work in that direction is
described in [85].

Another practicality of meta expansion is the protocol of communication between inline
and meta. On the one hand, a reasonable default for inlining that does not involve meta
expressions is to hoist prefixes and by-value arguments (subsection 9.3.2). On the other
hand, macro writers default to having unfettered access to abstract syntax trees without
needing to write additional boilerplate. These two design preferences are at odds with
each other.

Therefore, in our design inline both hoists eligible components of inline applications
and passes their original representations into meta expressions. This way, both defaults
are satisfied and, additionally, if meta expressions need to hoist something, they can use
the newly introduced hoist API (section 9.4).

In the case when an inline method consists in a single meta expression, the new macro
engine removes temporary variables that are produced by hoisting and are not claimed
by hoist. In the case when an inline method does not contain meta expressions,
all temporary variables are retained, because they are necessary to express method
application semantics. Finally, in the case of a hybrid inline method, meta expressions
can look into representations of hoisted expressions, but they cannot use them in their
expansions without calling hoist first in order to preserve the order of side effects.

In a nutshell, meta expansion closely resembles the compile-time execution aspect of the
current macro system. The only nuance is the interaction with hoisting performed by
the mechanism of inline reduction.

9.3.5 Losing whiteboxity

In design goals (section 9.1), we manifested our desire to provide reasonable compatibility
with the current macro system. So far, the biggest digression from this course is giving
up whitebox expansion. In this section, we discuss what it will cost us to follow this
through, identify the aspects of the new design that prevent whiteboxity and propose
alternatives.
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The main motivation for getting rid of whitebox expansion is simplification - both of
the macro expansion pipeline and the typechecker. Currently, they are inseparably
intertwined, complicating both compiler evolution and tool support. Therefore, the new
design tries to disentangle these systems.

Let us recapitulate the limitations that def macro expansion (section 4.4) applies to
applications of blackbox macros, outlining use cases from chapter 6 that blackboxity
cannot express. This will not give us the full picture, because there are many macros in
the wild that we have not classified, but nonetheless it will provide an understanding of
the significant chunk of the Scala macros ecosystem.

1) When an application of a blackbox macro expands into a tree x, the expansion is
wrapped into a type ascription (x: T), where T is the declared return type of the
blackbox macro def with type arguments and path dependencies applied in consistency
with the particular macro application being expanded (subsection 4.4.1). This invalidates
blackbox macros as an implementation vehicle for type providers (section 6.2).

2) When an application of a blackbox macro is used as an implicit candidate, no
expansion is performed until the macro is selected as the result of the implicit search
(subsection 4.4.2). This makes it impossible to dynamically calculate availability of
implicit macros, precluding some advanced aspects of materialization (subsection 6.1.4).

3) When an application of a blackbox macro still has undetermined type parameters
after the Scala type inference algorithm has finished working, these type parameters
are inferred forcibly, in exactly the same manner as type inference happens for normal
methods (subsection 4.4.3). This makes it impossible for blackbox macros to influence
type inference, prohibiting fundep materialization (subsection 6.1.4).

4) When an application of a blackbox macro is used as an extractor in a pattern match
(section 5.1), it triggers an unconditional compiler error, preventing customizations of
pattern matching implemented with macros. This precludes blackbox macros from
providing precise types to values extracted from patterns written in external DSLs
(section 6.5), preventing a library-based implementation of quasiquotes (subsection 3.3.2).

As we can see, whitebox expansion plays an important role in several use cases, so it
is now clear that our desire for simplification is at odds with the ways how the Scala
community uses macros. In order to resolve the apparent conflict, we outline several
solutions, whose evaluation we leave for future work.

Give up on simplification. This is probably the most obvious approach, in which we
admit that tight coupling with the typechecker is intrinsic to the essence of Scala macros
and change the new design to enable whitebox expansion.

Concretely, accommodating whiteboxity in the new macro system requires changing the
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aspects of the new design specified in subsection 9.3.2 and subsection 9.3.4 according to
the plan provided below.

e Force inline reductions and meta expansions inside the typechecker. Currently,
both the rules of inline reduction and the rules of meta expansion are intentionally
vague about the exact point in the compilation pipeline that does expansions, but
whiteboxity will leave us no room for that.

e Delay typechecking of the bodies of inline vals and defs until their expansion. Meta
expressions inside inline definitions are not expanded, which means that eager
typechecking of these definitions precludes whitebox expansion.

e Allow using meta expressions without expected type. This captures the main idea
of whitebox expansion, in which compile-time metaprogramming has the final say
about the type of transformed snippets of code.

Assimilate the most popular use cases. Instead of supporting the general notion
of whiteboxity, we can introduce dedicated compiler support for the most popular uses
cases including the Generic mechanism in Shapeless (subsection 6.1.4) and quasiquote
patterns in scala.reflect (subsection 3.3.2).

This is an attempt at a compromise. On the one hand, this approach allows us to follow
through with simplification. On the other hand, it significantly minimizes the impact on
the existing users of whitebox macros.

The downside of this solution is that it requires an extensive design process (because
it involves adding new language features to Scala) and assumes that the internalized
techniques have reached their final form. If a new version of Shapeless or a new version
of scala.reflect (read: scala.meta) decide to adapt their designs after these designs have
been assimilated, they will have hard time doing that.

Dedicated support for type-level computations. Manifestations of whiteboxity
are quite diverse, but a lot of them are reducible to type-level computations.

For example, let us take a macro join that takes two objects and outputs an object that
has fields of both. Since Scala does not have row polymorphism, it is impossible to write
a type signature for this macro, so we have to declare it as whitebox.

scala> def join(x: Any, y: Any): Any = macro
defined term macro join: (x: Any, y: Any)Any

scala> join(new { val x = 2 }, new { val y = 3 })
resO: AnyRef{val x: Int; val y: Int} = $anon$1@64af328d

Here we can see how the whitebox macro encapsulates a type-level computation that takes
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the types of both arguments (AnyRef{ val x: Int } and AnyRef{ val y: Int })
and merges them into the result type. Since this computation does not involve the
abstract syntax trees of the arguments, the whitebox part of the macro can be extracted
into a helper, making the macro itself blackbox.

scala> :paste
// Entering paste mode (ctrl-D to finish)

trait Join[T, U, VI
object Join {

implicit def materialize[T, U, V]: Join[T, U, V] = macro
}

// Eziting paste mode, mow interpreting.

defined trait Join
defined object Join

scala> def join[T, U, VI(x: T, y: U)
| (implicit ev: Join[T, U, V]): V = macro
defined term macro join: [T, U, V](x: T, y: U)...

This approach can express some macros that refine their return type, all fundep ma-
terialization macros, and even some macros that dynamically compute availability of
implicits (such macros can be modified to take an additional implicit parameter whose
failure to materialize can be used to control availability of the enclosing implicit) - that
is, all macros whose whiteboxity depends only on types of their prefix and arguments.

Now, after eligible whitebox macros are rewritten this way, we can replace the whitebox
materializers that compute types, e.g. Join.materialize, with a dedicated language
feature that natively expresses them, similarly to our ideas briefly outlined in section 6.3.
The listing below provides a sketch of an imaginary syntax that assumes inline types and
type-generating meta expressions, whose evaluation is left for future work.

inline type Join[T, U] = meta {
import scala.meta._
val jointVals = union(T, U)
t"{ ..$jointVals }"

}

inline def join[T, Ul(x: T, y: U): Join[T, U] = meta { ... }

From the discussion above, we can see that whiteboxity is an important feature of the
current macro system and is used in multiple highly popular open-source libraries. As a
result, giving up whiteboxity may lead to undesired practical consequences.
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Future work is needed to reconcile the design of the new macro system and existing use
cases, and in this section we provided several approaches to addressing this need. In
the opinion of the author, the approach that involves dedicated support to type-level
computations is the most promising, because it both simplifies the macro system and
provides support for the most important use cases of whiteboxity.

9.4 Meta APIs

In scala.meta, all APIs are available out of the box after doing import scala.meta._.
However, in order to use most of them, metaprogrammers must have access to certain
capabilities such as Dialect or Mirror (subsection 8.1.1).

Meta scopes provide three different capabilities. On the one hand, meta scopes provide
a Dialect and a Mirror which enable usage of general-purpose metaprogramming
facilities of scala.meta. On the other hand, there are expansion-specific facilities enabled
via a brand new capability called Expansion, whose simplified listing is presented below.

Q@opaque

trait Expansion {
def abort(origin: Origin, msg: String): Nothing
def error(origin: Origin, msg: String): Unit
def warning(origin: Origin, msg: String): Unit
def hoist(term: Term): Term.Ref

}

Comparing the functionality provided by Expansion with macro APIs from the current
macro system outlined in section 4.5, we can make several observations.

First, Context.prefix is no longer necessary, because meta expressions can refer to pre-
fixes of enclosing inline definitions via this (subsection 9.3.3). Context.macroApplication
is unnecessary as well, because meta expressions may be written outside inline vals and
defs, which means that they will not have a corresponding application at all.

Secondly, much like their counterparts in the current macro system, meta APIs support
diagnostic messages. Domain-specific error reporting is very frequently used in practice.

Thirdly, we no longer expose APIs that involve compiler internals. Most of these APIs
take care of the limitations of scala.reflect, so in the new system based on scala.meta
they are simply unnecessary. Others feature advanced functionality that manipulates
internal compiler state that is beyond the scope of this dissertation.

Finally, we also support hoist, which takes a scala.meta.Term, precomputes it in
a temporary variable outside the meta expansion and returns a reference to it. This
functionality provides inline-compatible hoisting of prefixes and arguments.
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9.5 Extensions

Much like the current macro system can get extended to support macro annotations
(section 5.3), the new macro system can get extended to support new-style macro
annotations that provide similar functionality.

import scala.annotation.StaticAnnotation

class h2db(url: String) extends StaticAnnotation {
inline def apply(defns: Any): Any = meta {

}
}

object Test {
def main(args: Array[String]): Unit = {
@h2db("coffees") object Db
val brazilian = Db.Coffees.insert("Brazilian", 99.0)
Db.Coffees.update(brazilian.copy(price = 100.0))
println(Db.Coffees.all)

}

In the current macro system, a macro annotation is a subclass of StaticAnnotation
that define a macro def called macroTransform. In the new design, a macro annotation
is a subclass of StaticAnnotation that defines an inline def called apply.

Expansion of new-style macro annotations is very similar to expansion of vanilla macro
annotations (subsection 5.3.2). The only difference is that we only provide syntactic
APIs, informed about the limitations brought by exposing semantic APIs in macros
that generate top-level definitions (subsection 5.3.3). Concretely, meta scopes in macro
annotations expose a Dialect capability instead of a Mirror. As a result, we can afford
to expand on enter (subsection 5.3.4) without any limitations to the shape of expansion.

9.6 Tool support

The key innovation of the new macro system is the fact that it is based on scala.meta,
which finally makes it feasible to provide third-party implementations of mirrors.

As described in section 8.4, there exists a prototype implementation of an IntelliJ mirror.
Moreover, thanks to a further effort of Mikhail Mutcianko from the IntelliJ team, this
mirror powers an interactive expander of new-style macro annotations. This recent
advancement that it was a right choice to bet on scala.meta to fix code comprehension
(section 7.1) and error reporting (section 7.2) issues with the current macro system.
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This takes some pressure off whitebox macros. In the current macro system, there is a
preference towards blackbox macros, because they are much friendlier to IntelliJ. Once
we have a fully-working mirror for IntelliJ, user experience of blackbox and whitebox
macros should be equivalent. For additional discussion of whiteboxity from a language
design and compiler development perspective, refer to subsection 9.3.5.

Improvements in support for incremental compilation (section 7.3), testing (section 7.4)
and debugging (section 7.5) also hinge on a capability of scala.meta to enable custom
mirror implementations. However, they also require significant new functionality to be
developed in the corresponding tools (additional dependency tracking mechanisms for
the incremental compiler and changes to the vanilla debugger in IDEs).

9.7 Conclusion

Pioneered by def macros (chapter 4) and macro annotations (section 5.3), the area
of language-integrated compile-time metaprogramming in Scala has shown significant
practical value.

During the last several years, we have been utilizing and maintaining the current macro
system in industrial projects. Learning from this experience, we have created a new
design based on inline and meta that provides comparable functionality and avoids
the most common pitfalls of existing macros (section 9.2).

The user interface of the new system is a conservative evolution of def macros. Inline
defs (subsection 9.3.1) work similarly to macro defs (section 4.3), and meta expressions
(subsection 9.3.3) play the compile-time execution role of macro impls (section 4.3).
These new language features are designed to be used together, and in this capacity their
look and feel can hardly be distinguished from that of def macros.

The metaprogrammer interface of the new system is a drastic redesign. We have merged
macro defs and macro impls, and, more importantly, we have switched the underlying
metaprogramming API from scala.reflect (chapter 3) to scala.meta (chapter 8). This has
allowed us to make significant improvements in robustness and tool support (section 9.6).

The main open question of the new design is whether whiteboxity will stay or will be
removed from the new macro system (subsection 9.3.5). Future work also includes hygiene
(section 8.3) and lifting the separate compilation restriction (subsection 4.3.3).

At the time of writing, inline and meta are partially implemented in a prototype
compiler plugin for Scala 2.11 and an accompanying experimental branch of IntelliJ. We
are excited with our initial results and are planning to further experiment with the new
design, eventually aiming to submit it as a Scala improvement proposal.
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Ill] Related work

C# was initially limited to runtime metaprogramming via reflection capabilities provided
by the CLR, its underlying runtime [61]. Later on, thanks to the introduction of
Microsoft LINQ [79], C# gained a capability to perform type-directed reification of
lambda expressions into so-called expression trees. Expression trees can be inspected,
reassembled and evaluated at runtime.

Expression trees were an inspiration for Code (section 2.3), which in turn inspired reify,
scala.reflect’s notation for abstract syntax trees (subsection 3.3.1).

Latest developments in C# metaprogramming happen within the recently released .NET
Compiler Platform, better known by its codename “Roslyn” [95]. Roslyn exposes a wide
range of functionality including syntactic and semantic analyses of C# and Visual Basic
.NET code. Roslyn is quite popular as a foundation for developer tooling in C#, but it is
unclear whether it will be used in the language. In recent discussions, the C# team seems
to deliberately avoid language-integrated metaprogramming, preferring plugin-based
alternatives [123].

Roslyn was a major influence on the design process of scala.meta. Both Roslyn and
scala.meta were complete rewrites of their predecessors with comprehensiveness of the
language model being one of the core goals, and that made the experience of the Roslyn
team of particular interest to us. The idea to use tokens (section 8.2) in order to capture
formatting and other syntactic details of Scala syntax comes directly from Roslyn.

C/C++ both include support for compile-time metaprogramming via the C prepro-
cessor [100]. The preprocessor operates via string substitution, making it possible for
metaprograms to produce syntactically invalid programs. Writing robust preprocessor
macros and debugging macro expansions is notoriously hard.

C++ enhances metaprogramming capabilities of C with support for templates, recipes
for generating similarly structured pieces of code [55, 1]. Templates are instantiated
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at compile time and, through an interplay of a disparate set of language features not
originally intended to support metaprogramming, can perform static computation, code
specialization and type structure analysis.

Even though the design of Scala macros (chapter 4 and chapter 5) has little in common
with the design of C++ templates, our tooling situation is quite similar. For both
systems, tool integration was not on the list of the original design goals, so mistakes
in metaprograms oftentime result in arcane error messages, metaprograms are hard to
debug, some metaprograms are not portable between implementation, etc.

Recent versions of C++ also include support for compile-time function execution via
constexpr. With this language feature, it becomes possible to evaluate expressions that
belong to a subset of the language at compile time.

D originated as reengineering of C++, so it revisits and improves much of the functionality
of its predecessor. Notably, D does not have a preprocessor and has a redesigned template
system that uses dedicated language features (compile-time function execution, aliases,
static ifs, traits, mixins and others) to provide a straightforward metaprogramming
experience [28].

Inline/meta (chapter 9), our new macro system, is partially inspired by metaprogramming
in D. Thanks to the combination of dedicated metaprogramming features, D can express
some metaprograms in a markedly concise way. In comparison, the current macro system
(chapter 4 and section 5.3) requires non-trivial amounts of boilerplate just to declare a
macro. As a result, when designing the next version of Scala macros, we kept an eye
on the possibilities to simplify metaprogrammer experience, and that led to creation of
inline.

F+# is one of the languages of the .NET platform, so, similarly to C#, it supports both
runtime reflection provided by the CLR and type-directed expression reification required
by LINQ. Unlike C#, F# is not supported by Roslyn, but instead it features its own F#
Compiler Services infrastructure [45]. Additionally, F# supports several features that
are unique to the .NET ecosystem.

First, F# implements untyped and typed quotations, which can construct and deconstruct
abstract syntax trees from snippets of F# code with support for unquoting. Quotations
enable language virtualization, which was successfully used for implementing LINQ),
accelerating F# code on GPU and performing runtime native code generation [115, 20].

Secondly, F# supports type providers [116, 117], a compile-time metaprogramming
facility that can generate top-level definitions with user-defined logic. This logic only
has access to literal arguments passed to type provider invocations invocations, but they
cannot ask the compiler about other definitions in the program. Code generation is
performed lazily, and generated types can be optionally erased.
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Quotations served as a blueprint for the original prototype of tree notations in scala.reflect
(section 3.3). At some point, we were pondering over the distinction between untyped
and typed quasiquotes, hesitant to introduce both, and experience reports from F+#
provided valuable insight. Type providers were the direct inspiration for type macros
(section 5.2) and one of the main use cases for macro annotations (section 5.3).

Haskell supports compile-time metaprogramming via Template Haskell [108, 78], which
provides syntax to call metaprograms during compilation and insert results into their
callsites. Such metaprograms can use a dedicated reflection API to ask the compiler for
information about types, definitions, etc. An interesting peculiarity of Template Haskell
is that metaprograms run in a monad that encapsulates internal state involved in keeping
track of static metadata and generation of fresh names.

Template Haskell supports quasiquotations, which have later been generalized to allow
for user-defined implementations of arbitrary notations [77].

Moreover, Haskell has runtime metaprogramming facilities that evolved from “Scrap
Your Boilerplate” [72], a seminal paper on generic programming [84]. Using built-in
functionality, it is possible to derive instances of magic typeclasses that capture metadata
about given types.

Being one of the classic designs in compile-time metaprogramming, Template Haskell
significantly influenced our work on Scala macros. In particular, Haskell’s customizable
approach to quasiquotations inspired the design of extensible string interpolation [114],
which we then used to build quasiquotes for scala.reflect and scala.meta (subsection 3.3.2
and section 8.3). Liftable in scala.reflect and Lift in scala.meta came from the original
Template Haskell paper [108]. Certain parallels can also be drawn between meta in
scala.meta and $ in Template Haskell.

Haskell’s take on generic programming, including the infrastructure around the Generic
typeclass, served as an inspiration for similar functionality in Shapeless [98], and Shapeless
was the original driving force behind our research in materialization (section 6.1).

Idris supports compile-time metaprogramming via error reflection and elaborator reflec-
tion that reify internal compiler data structures and allow custom metaprograms to run
inside the compiler. Reflection APT includes support for quasiquotation as well as the
ability to query global and local elaboration contexts [23].

Additionally, there is an experimental extension to Idris that implements dependent type
providers [22], which can run inside the Idris elaborator and return values of type Type.
Thanks to the dependent nature of Idris, this process does not involve reflection and
resulting values can immediately participate in typechecking. Even though dependent
type providers can not introduce top-level definitions, they still allow many of the benefits
of F#’s type providers.
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Java provides only runtime metaprogramming facilities in its standard distribution,
but there exist several research systems that enrich Java with support for compile-time
metaprogramming. Of note are [62, 80], which introduce dedicated language features to
support static reflection and code generation in a type-safe manner.

During the initial design phase of inline/meta (chapter 9), we experimented with the
idea of extending the templating capabilities provided by inline from the expression
level to the definition level using ideas from MorphJ [62]. We provide a corresponding
design sketch, along with ideas for potential use cases in [6].

Lisp and its descendants have made a tremendous contribution to compile-time metapro-
gramming. Over fifty years of research went into development of macro systems in
different Lisp dialects [60].

Syntactic macros in Lisp are functions that take syntax and return syntax. Upon
encountering certain syntax patterns, Lisp compilers call these functions and use them
to rewrite these patterns. Apart from constructing and deconstructing syntax objects,
macros also have access to reflection APIs.

It is typical for the languages of the Lisp family to have a minimalistic set of language
features, and then use macros to implement missing functionality in libraries. Macros have
been successfully used to build such complex language features as pattern matching [119],
classes, mixins, traits [53, 52] and type systems [120]. Moreover, Racket goes beyond just
syntactic macros, and provides facilities to build languages as libraries [121, 46]. Using
these facilities, a programmer may change all aspects of a language: lexicographic and
parsed notation, the static semantics, module linking, and optimizations.

Such intense use of macros motivated research into idioms and technologies of effective
macro writing, including quasiquotation [3, 70], hygiene [69, 70, 40, 24, 51, 50|, phase
separation [48, 49], tool integration [26, 47, 25], so Lisp macros are now the gold standard
in macro systems.

In Scala, a language with an established type system and a wide range of already existing
language features, we limited our initial design of the macro system (chapter 4) to
well-formed and well-typed method applications. Being aware of the risks of language
fragmentation associated with Lisp-style macro systems [125], we decided to contain the
metaprogramming powers using types.

Our experience shows that there are practically important macros that go beyond the
capabilities of the Scala type system (subsection 6.1.4, section 5.3), but nevertheless we
are trying to restrict them too (subsection 9.3.5). There have also been experiments in
adding parser macros [39] to test the waters, but so far parser macros have not yet found
their adopters.
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Of particular interest to Scala macros is Lisp’s extensive body of literature on hygiene.
We hope that adapting Racket’s technologies will provide us with insight to address
our hygiene issues (subsection 3.3.4). Recent advances in hygiene described in [50] are
particularly inspiring, because they reformulate previous approaches in a simpler, yet

similarly powerful manner.

MetaML was one of the first programming languages designed to support multi-staged
programming. By a combination of three dedicated language constructs - brackets, escape
and run - MetaML enables runtime code generation and compilation [118]. Requiring
that code representation is statically typed and cannot be taken apart guarantees that
well-typed programs always generate well-typed programs.

MacroML demonstrated that using brackets and escape from MetaML and collapsing the
tower of stages to just compile time and runtime results in a generative macro system
[54]. Even though this macro system does not support analytic macros or reflection APIs,
it guarantees that well-typed macros always generate well-typed code.

Our early design of def macros (chapter 4) that used Expr [T] to represent parameters
of macro impls (subsection 4.3.1) and reify (subsection 3.3.1) to combine exprs into
bigger exprs was somewhat similar to MacroML. Even though we also exposed additional
functionality via the scala.reflect API (section 4.5), the core that dealt with tree rewriting
shared many characteristics with MacroML.

Our experience shows that the majority of practically important macros (chapter 6)
can not be expressed within the limitations that come with the MacroML style of
compile-time metaprogramming, so eventually we abandoned reify in favor of quasiquotes
(subsection 3.3.2).

Nemerle is a hybrid object-oriented/functional programming language for the .NET
platform. It is noticeably similar to C#, both syntactically and semantically, but it also
adds new features like global type inference and pattern matching. Moreover, Nemerle
introduces macros that can rewrite both expressions and definitions at compile time
according to user-defined logic [111, 110].

Macros in Nemerle are top-level functions that take syntax and return syntax. Depending
on they way how a macro is defined, it can be used like a normal function (in that
case, it will perform expression rewriting) or like an attribute on definitions (in that
case, it will rewrite definitions). Macros can use quasi-quotes and interact with the
compiler, obtaining semantic information about their arguments and other definitions
in the program. Additionally, specially-defined macros can modify the syntax of the
language.

Nemerle was the direct inspiration for Scala macros (chapter 4 and chapter 5). Nemerle
provides a success story of taking a mainstream statically-typed language with C-like
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syntax and transparently enriching it with macro powers, and that experience was very
important for legitimizing our ideas.

Many aspects of the Nemerle macro system, including transparent macro invocation
syntax, the ability to constrain macro arguments with method signatures and the
separate compilation restriction have been mirrored in our original design. Some others,
for example having quasiquotes as an integral part of the reflection API and the ability
to rewrite definitions, have been added over time.

Nevertheless, despite of heavily drawing inspiration from Nemerle, Scala macros were
designed and evolved in a markedly unique way. First, we enforce well-formedness and
well-typedness restrictions on parameters of def macros, relying on other DSL-friendly
features of Scala to customize language syntax in a principled manner. Secondly, we
further tighten the integration of macros into the language, allowing macros to be
members of classes, traits, objects, etc. This makes it possible to transparently use
macros in language features that desugar to method calls (section 4.6). Finally, we give
significant attention to the reflection API, upgrading its status from a compiler API to a
unified metaprogramming framework (chapter 3 and chapter 8).

Rust supports compile-time metaprogramming via macros that can change language
syntax. Rust macros come in two flavors: 1) macro_rules [17] that can only use
declarative syntax inspired by [70], 2) procedural macros [18] that can rewrite syntax
trees or token trees into syntax trees using custom logic and internal compiler APIs.

Even though Rust is a statically-typed language, Rust macros deliberately expand before
typechecking, so they do not have access to semantic information about the program.

Procedural macros in Rust are similar to Scala macros in the sense that they are both
awkward to define, they both use an API derived from compiler internals, and they are
both so useful that they are widely used regardless. There is an ongoing initiative in the
Rust community to evolve procedural macros, introducing a more lightweight definition
syntax and a new metaprogramming library to be used in procedural macros [19]. The
circumstances and the high-level design goals of this initiative clearly resemble our own
situation with the inline/meta proposal (section 9.3), which we find quite fascinating.
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I8l Conclusion

At the time of writing, scala.reflect and def macros have been an experimental part of
the Scala compiler for about five years.

Our technologies have appeared in the right place at the right time, receiving enthusiastic
feedback from the Scala community, which alowed us to perform an extensive practical
evaluation of our ideas. Based on practical experience, we can now confidently pass
judgment on the experiment with unified metaprogramming. Let us revisit the original
thesis statement sentence by sentence.

A metaprogramming framework that unifies compile-time and runtime reflec-
tion in a statically-typed programming language is feasible and useful...

Within about a year of effort, we were able to ship a production release of scala.reflect,
in no small part because the desire for unification motivated us to reuse the already
existing compile-time metaprogramming infrastructure provided by the Scala compiler.
This confirms that unified metaprogramming is feasible.

The comprehensive nature of scala.reflect has earned it a place in the standard distribution
and the status of one of the most influential open-source project in the Scala community.
This shows that unified metaprogramming is useful.

Usefulness of unification comes from the fact that it promotes ontological correspondence
of metaprogramming facilities and the underlying language [7], motivating the language
model to correspond to the ontology of the language regardless of the environment.

However, as our experience shows, the degree to which ontological correspondence can be
achieved is limited by the introspection capabilities of the environment. We observed the
troubles brought by desugarings employed by the Scala compiler, type erasure used by
the JVM and aggressive optimizations performed by Scala.js and Scala Native. Future
research is needed to determine if and how these adverse effects can be compensated.
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...A portable language model that naturally arises from unification fosters
reuse of metaprogramming idioms across a multitude of environments...

Scala.reflect has delivered on its promise to provide a unified language model that can
be used to write metaprograms targetting both compile time and runtime.

First, we created and shipped macros, compile-time metaprograms that run inside the
Scala compiler using scala.reflect. Moreover, we introduced a way to do runtime reflection
in terms of Scala features - again thanks to scala.reflect.

Both of these use cases utilize the same API and share the same techniques, e.g. using
quasiquotes and type tags to represent abstract syntax trees and types. This demonstrates
reuse of metaprogramming idioms across environments.

Again, depending on the environment, the array of available idioms may vary. We have
seen how the language model of scala.reflect exhibits a split between trees and symbols,
because compiled programs on the JVM do not carry original source code. In order to
combat that, we have started experimenting with AST persistence, but since then Scala
has gained new backends that can dramatically restructure definitions over the course of
whole-program optimizations. It looks like metaprogrammability and performance are at
odds with each other, and future work is needed to balance them.

...3uch a common vocabulary of idioms can simplify and stimulate development
of code analysis and generation tools.

Delivering a metaprogramming framework that exposes almost the entire surface of
the language entailed a prolonged and focused engineering effort in an area that was
practically important but was historically lacking attention. Almost inevitably, this
resulted in significant innovation.

This innovative spirit most strongly manifested itself in Scala macros. Armed with a
powerful vocabulary of metaprogramming idioms provided by scala.reflect, thousands of
enthusiasts from the Scala community have rushed into exploring compile-time metapro-
gramming.

In addition to creating obvious value in the form of new techniques and libraries, this
enthusiasm also indirectly stimulated bugfixes and subsequent feature developments in
future versions of scala.reflect.

The demand in evolution was so high that it has even led to creation of scala.meta, an
effort aimed at rebuilding the language model from scratch. This shows that unified
metaprogramming not only allowed to solve new practical problems, but also created the
foundation for future developments in the area.
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We will now wrap up our account of unification that happened in Scala metaprogram-
ming and its effects on the ecosystem. As promised in the introduction, we explained
what worked, what did not and what directions were taken by further evolution of
metaprogramming in Scala.

Concretely, our best idea was to expose a powerful language model, since that led to
development of macros, a feature that has now became an integral part of the Scala
ecosystem. Our worst idea was to expose compiler internals in an API, since that led
to subpar metaprogrammer experience and inadequate tool support. Our plans for
the future involve a new implementation-independent language model that is tuned for
metaprogrammer convenience and integration with third-party tools.

In conclusion, we would like to thank the readers for following through the exciting
history of explosive growth of Scala metaprogramming. We hope that our experiences
and discussions will inspire future developments in other programming languages.
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