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Abstract

®

CrossMark

A large area antenna generates a plasma by both inductive and capacitive coupling; it is an
electromagnetically coupled plasma source. In this work, experiments on a large area planar RF
antenna source are interpreted in terms of a multi-conductor transmission line coupled to the
plasma. This electromagnetic treatment includes mutual inductive coupling using the complex
image method, and capacitive matrix coupling between all elements of the resonant network and
the plasma. The model reproduces antenna input impedance measurements, with and without
plasma, on a 1.2 x 1.2 m” antenna used for large area plasma processing. Analytic expressions
are given, and results are obtained by computation of the matrix solution. This method could be
used to design planar inductive sources in general, by applying the termination impedances

appropriate to each antenna type.

Keywords: inductively coupled plasma, complex image, multi-conductor transmission line,

resonant antenna

(Some figures may appear in colour only in the online journal)

1. Introduction

Uniform plasma processing over large areas (>1 m?) is
required for the industrial production of solar cells, flat panel
displays, packaging, and surface treatment, etc. Inductively
coupled plasma (ICP) reactors are standard in the semi-
conductor industry, and are being further developed for large
area applications [1-5].

Electromagnetic (EM) effects such as standing wave non-
uniformity can arise in ICP antenna sources [6—13] when the
reactor size is non-negligible compared to the RF excitation
wavelength, as well as in capacitively coupled (CCP) reactors
[14-17]. Furthermore, capacitive coupling occurs in ICP
reactors [13, 14, 18], just as inductive coupling occurs in CCP
reactors [15]. Hence the need for an electromagnetic model of
large area ICP antenna sources: calculations of the antenna
characteristics are necessary for source design and prediction
of plasma properties, as well as for comprehension and

0963-0252/17,/035010+-11$33.00

interpretation of measurements. For example, the influence of
plasma coupling on the antenna input impedance determines
the power transfer efficiency [19] and the RF power matching
conditions.

1.1. Existing models of ICP sources

The transformer model [1, 14, 20], using discrete (lumped)
circuit elements to represent self-inductances and mutual
inductance with the plasma, is often used to model solenoid
and coil ICP sources, including spiral coils [21]. The inclu-
sion of parasitic capacitive coupling improves the model
[14, 22]. For large area ICP sources, EM standing wave
effects have previously been described by treating long coils
as a single, lossy transmission line [6-9], where the trans-
former model was used to calculate the per-unit-length cou-
pling to the plasma. ICP antennas were also treated as
segments of an immersed transmission line [10]. These
models do not consider capacitance and mutual inductance

© 2017 I0P Publishing Ltd


mailto:alan.howling@epfl.ch
https://doi.org/10.1088/1361-6595/aa59d6
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6595/aa59d6&domain=pdf&date_stamp=2017-02-22
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6595/aa59d6&domain=pdf&date_stamp=2017-02-22

Plasma Sources Sci. Technol. 26 (2017) 035010

P Guittienne et al

matrices between all the antenna elements and the plasma [7].
Mashima et al [23] used the moment method but plasma
coupling was not taken into account. Numerical simulation
can include EM effects via the wave field equations [11-13]
although the solution requires longer computation.

In this paper, a large area ICP antenna array is modeled
as a multi-conductor transmission line (MTL) [24]. The
results of this EM model are compared with experiments
performed on al.2 x 1.2 m” planar antenna which consists of
an array of identical resonant circuit elements. When excited
at one of its resonance frequencies, the RF resonant antenna
develops very high currents within its structure, which can be
used as an ICP source [19, 25-29]. Due to the spatially dis-
tributed resonant network, they are good candidates for large
area plasma processing, with a particular advantage con-
cerning impedance matching and power transfer efficiency
because of their high and real input impedance. Previous
models of small resonant network reactors successfully
described antenna—plasma loading by accounting for lumped-
element mutual inductance between the antenna elements and
the plasma; a mutual inductance matrix was calculated in
terms of plasma properties using the complex image
method [30, 31].

For the large area source, however, experiments show
that plasma can be maintained even for an electrically floating
antenna, which means that strong capacitive currents flow
from the antenna via the plasma to ground. Modeling and ICP
source design therefore also require the calculation of the
associated capacitance matrix. The self-consistent calculation
of antenna currents and voltages coupled by the mutual
inductance matrix and the capacitance matrix is achieved here
by considering the array of antenna legs as a MTL [24]
coupled with the plasma. These considerations could also be
relevant to other large area antenna reactor designs [1-3] such
as the ladder antenna [23, 32-43], the serpentine antenna
[10, 12, 44], the U-type antenna [45-47] and the double
comb-type antenna [48-50].

1.2. Compatrison of large area ICP sources

External coil ICP reactors have the scale-up problem that the
thick dielectric window, necessary to withstand atmospheric
pressure over a large area, reduces the mutual inductance with
the plasma [4-7, 11, 40, 51]. Internal coil ICP reactors can
increase inductive coupling with the plasma and avoid the
necessity of a thick dielectric window [52-55] by placing the
antenna inside the vacuum chamber. Large area ICP sources
are often an array of parallel linear legs [40]. The legs can be
immersed in the plasma, with the legs individually isolated by
a dielectric sleeve (serpentine [10, 12, 44], U-shape [45-47],
comb-type [48, 49]), or directly exposed to the plasma (for
example, versions of the ladder type [2, 36, 40]). Alter-
natively, the whole ICP antenna can be embedded in a di-
electric, protected from the plasma by a thin window [22, 56—
59]. In this context, the large area resonant antenna in this
work is an internal, embedded ICP source.

This paper is organized as follows: first, the large-area
antenna experimental setup is described in section 2. A MTL

model of the antenna is introduced in section 3 which uses a
mutual partial inductance matrix and a capacitance matrix.
The MTL model is compared with measurements of node
voltages and antenna input impedance spectra without plasma
in section 4. Plasma loading and uniformity measurements for
the large antenna operating as an ICP source are interpreted
using the MTL model in section 5 before concluding.

2. Experimental setup

A schematic of the experimental setup is shown in figure 1.
The antenna network is made up of 25 water-cooled tubular
copper legs, length 120 cm, external radius 0.4 cm, with
parallel axes 5 cm apart. The legs are connected at both ends
by stringers consisting of 375 pF ceramic capacitor assem-
blies with copper strip connectors 0.6 cm wide. The antenna
assembly is set in a closed aluminium housing of internal
dimensions 135 x 135 x 13cm®. The leg axes are posi-
tioned 5 cm above the baseplate to limit eddy current power
loss from inductive coupling with this plate. To avoid spur-
ious plasma below and within the antenna network, the lower
part of the reactor is filled with silica—alumina 85%-porosity
foam dielectric. This low-permittivity dielectric also mini-
mizes capacitive coupling, and hence RF capacitive current,
to the baseplate. The antenna surface is separated from the
plasma by 0.3 cm thick glass; this thin dielectric window
promotes strong mutual inductive coupling with the plasma,
although the close proximity to the plasma means that capa-
citive coupling must also be taken into account. Any small
gaps between the foam, glass and legs are filled with micro-
sphere glass beads to prevent parasitic plasma below the
glass. The plasma boundaries are the glass surface, the
grounded metal top-plate 7 cm above the glass which defines
the plasma gap, and the grounded metal sidewalls. The whole
reactor was placed inside a vacuum vessel.

The RF input power is centrally connected along one side
via a coaxial cable at node A13 in figure 1(b) whose ground
shield connects to the baseplate. In this way, the RF current
circulates only on the inside of the closed reactor which acts
as a Faraday screen; this is important to suppress electric field
leakage and parasitic plasma ignition in the space between the
reactor and the vacuum vessel walls [2]. Inside the reactor, the
antenna was either grounded to the baseplate via connections
A10 and A16 (to preferentially excite mode m = 8 [25]), or
left unconnected for an electrically floating antenna.

The antenna impedance spectrum without plasma was
measured with a network analyser, and the network node
voltages An and Bn were measured with high impedance
probes. The plasma-coupled network was electrically char-
acterized by its input impedance and RF power using a cur-
rent—voltage—phase probe (Z-Scan™ [60]) at the vacuum
feedthrough between the matching box and the antenna.
Plasma density profiles were measured using a uniform sur-
face array of 100 negatively biased (—30V) multiplexed
probes flush with the top-plate, and a laterally traversing
Langmuir probe.
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Figure 1. Scale drawings of the planar resonant antenna assembly. (a) Open top view of the empty antenna, with legs considered as
inductances L in a multi-conductor transmission line, joined at their ends by stringer capacitances Cy, shown in the inset. (b) End view of the
closed reactor showing the antenna electrical connections: RF coaxial input at node A13; ground connections at A10 and A16.

The plasma parameters were 1.5-2Pa argon pressure
with 5002000 W delivered power over a frequency range
from 12 to 14 MHz, and 15 kW at 13.56 MHz.

3. The multi-conductor transmission line (MTL)
model for plasma-coupled antennas

This section introduces the electromagnetic model which will
be used to interpret the experimental results in sections 4 and
5. Reliable calculations of the antenna characteristics are
necessary for source design and prediction of plasma prop-
erties, as well as for comprehension and interpretation of
measurements. For example, the influence of plasma coupling
on the antenna input impedance determines the choice of
capacitors for a given operating frequency, the power transfer
efficiency [19], and the RF power matching conditions.

3.1. Equivalent circuit for antenna—plasma coupling

In previous work on a small antenna [30, 31], a lumped-
element equivalent circuit gave a good representation of the
experimental measurements because the antenna legs were
very short (0.2 m) compared to the wavelength of the RF
excitation (22 m in vacuum at 13.56 MHz). Mutual induc-
tance calculations were critically necessary in that work to
accurately model the measured impedance spectra

[30, 31, 61]. However, the present antenna is six times longer,
and experimental observations can no longer be accurately
explained by the lumped-element mutual inductance model.
For example, it was observed that plasma can be maintained
with no antenna ground connection; the return current must
all be flowing by capacitive coupling via the plasma to
ground. This is incompatible with a purely inductive model.

As a rule of thumb in the EM treatment of large area (or
very high frequency) sources, standing-wave non-uniformity
generally occurs when the reactor size L is longer than a tenth
of the free-space wavelength of the RF excitation [15, 62], i.e.
EM effects are expected for fL > 0.1c, where f is the fre-
quency of the RF excitation and c is the speed of light in
vacuum. The antenna stringers are much shorter than the legs
and so a lumped-element approximation holds for these. Only
standing waves in the long legs will be taken into account in
the following calculations. The stringers enter the equations
as termination impedances in appendix A.2.

The simultaneous capacitive and inductive coupling
implies a transmission line treatment, where the multiple
parallel leg conductors mean that the antenna can be descri-
bed as a MTL [24] as shown in figure 2. Strictly speaking, the
large antenna ICP generates a plasma which is simultaneously
a CCP and an ICP; it would therefore be better described as
an electromagnetically coupled plasma (EMCP) source. The
MTL model will be developed here to calculate the input
impedance of the antenna, and the distribution of currents and
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Figure 2. The antenna equivalent circuit comprising a multi-leg
transmission line terminated at both ends by stringer capacitors Cg.
The Cj; represent the per-unit-length capacitive coupling, and M;; the
per-unit-length mutual partial inductance, between all legs, including
their images induced in the plasma and in the reactor housing [31].
The reactor housing is the ground reference plane carrying the total
RF return current. Only a few elements are shown for clarity.

voltages, for any arrangement of RF power feeding and
ground connections (or electrically floating).

For the MTL model, referring to figure 2, the line vol-
tages on the N lines, with respect to the ground reference
conductor, can be written as a column vector:

V(@)

Va(2)

V() = (D

W (@)

and similarly for the currents. The theoretical basis for the
analysis of MTLs is given by Paul [24]. By analogy with
single transmission line equations [6, 10, 63], the generalized
expressions for voltage and current are

dV (z) /dz = —jwMI (2), 2)
dI' (z) /dz = —jwCV (2), 3)

where M is the per-unit-length mutual partial inductance
N x N matrix for the antenna legs [31], and C is the per-unit-
length capacitance N X N matrix. In figure 2, M is the
mutual inductance between lines i and j, and L; = Mj; is the
self-inductance of the ith leg which is a special case of mutual
inductance [64, 65]. The elements M; and C; of these
matrices are generally complex, to account for the line series
resistance and the dielectric parallel conductance, respec-
tively. Mutual partial inductance exists between conductors
which are parallel, but not between orthogonal conductors
[65]. This means that one matrix can be defined for the legs,
and another independently for the stringers; analytical
expressions are given in [31]. The per-unit-length mutual
partial inductance matrix for the legs, M, is obtained by
dividing by the leg length.

The transmission line is assumed to be uniform along z
so that M and C are constants. These two matrices are con-
sidered for the antenna, respectively without plasma and with
plasma, in the next two sections. The uniform MTL wave

10 T T j j
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S 10
8
=]
[a~] I
=
a I
g :
3 10 .
— 1
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13 ,MHz measuremen
1 0—2 — 1 N .
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frequency [MHz]

Figure 3. The real input impedance spectrum calculated using the
MTL model compared with the network analyser measurement for a
grounded antenna without plasma (RF feeding at A13; ground
connections at A10 and A16). The m = 8 mode is used in figures 4
and 7.

equation, analogous to the single transmission line [6, 10, 63],
is:

d?V (z) /dz? = (—wMO)V (2), )

for bi-symmetric matrices [24]. Also by analogy with single
transmission line theory, the mode voltages have the solution
[24]

V(@) = eV + et 5)
where I represents the complex propagation constants of the

modes. The solution of the transmission line equations for the
plasma-loaded antenna is given in appendix A.

4. Experimental results and comparison with the
MTL model for the antenna without plasma

The MTL model was first verified by comparison with
antenna measurements in air, without plasma. To access the
antenna with voltage probes, these measurements were made
with the top-plate removed as shown in figure 1(a). The M
and C matrices then describe coupling between antenna legs
and their images in the baseplate, for which wire-to-plane
(microstrip) expressions are well known [24, 30, 31, 63, 65].
Either M or C can be calculated directly, and the other
derived using MC = p,eol, where I is the identity matrix for
this homogeneous dielectric (vacuum) [24].

4.1. Measurements with a grounded antenna

Comparison of the MTL calculation of antenna input impe-
dance spectrum with the measurement shows very good
agreement in figure 3. The lumped-element mutual inductance
solution (not shown) [31] is not as accurate because the fre-
quencies are over-estimated by about 1% when capacitive
coupling is neglected. The influence of capacitive coupling is
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Figure 4. Comparison of the normalized node voltages An and Bn for
0.35 MHz above the 13.0 MHz resonance frequency of mode m = 8
for the grounded antenna. (a) Measured with a voltage probe, and (b)
calculated using the MTL model. (c) The same comparison, but
calculated using a lumped-element mutual inductance model [31].
The lines ‘env’ show the amplitude envelope. Same grounding
configuration as for figure 3.

small for this case without plasma because the antenna is
comparatively distant from the baseplate. Therefore, although
the lumped-element model may be sufficiently accurate for
vacuum calculations, it will be shown to be inadequate for
plasma operation.

Comparison of the node voltage measurements An and
Bn in figure 4(a) with the MTL solution in figure 4(b) also
shows very good agreement, where the distortion of the
voltage distribution due to off-resonance conditions is
reproduced in detail. The amplitude envelope given by the
lumped-element inductive approach [31] in figure 4(c) is
clearly not as accurate, because the effects of capacitive
coupling are neglected.

The antenna parameters are now fixed and no case-to-
case adjustment is applied to the reactor equivalent circuit.

10 T x . .
: floating antenna
1 (no plasma)
1
S
8
=
[a~]
]
2
£
'0?3 10
=
mode :m =8
13.2 MHz
-2
10 M M M 1 1 M M
6 10 20 30 40

frequency [MHz]

Figure 5. Real input impedance spectrum calculated using the MTL
model compared with network analyser measurement for an
electrically floating antenna without plasma (RF feeding at A13; no
ground connections). The mode m = 8 is used in figure 8 for
measurements with plasma coupling.

4.2. Measurements with an electrically floating antenna

The MTL solution also provides very good agreement with
the floating antenna input impedance spectrum measurement
in figure 5. In this case, the ground return connections A10
and A16 in figure 1(b) were removed and measurements were
performed with the antenna electrically floating (DC de-
coupled) with respect to ground. In the MTL model, the
impedances of the A10 and A16 connectors were set to a very
high value. The previous lumped-element inductive model
[31] has no corresponding solution because capacitive cou-
pling was not considered there. The measured and calculated
node voltages (not shown) again agree in fine detail.

This good agreement with experimental results lends
confidence to the MTL model for capacitive and inductive
coupling between the antenna elements without plasma. In the
following sections, this approach is extended to include
antenna—plasma coupling, where the antenna input impedance
effects are more clearly manifested because of the close
proximity of the plasma to the antenna.

5. Experimental and MTL model results for plasma
coupling to the antenna

For plasma experiments, the dielectric foam and glass win-
dow were installed and the reactor was closed with the top-
plate as shown in figure 1(b). The vacuum impedance mea-
surements now correspond to a stripline because the antenna
conductors are enclosed by both the baseplate and top-plate
ground planes. Homogeneous stripline expressions for M and
C are well known [24, 66, 67]. In presence of plasma, how-
ever, the situation is more complicated and the next two
sections discuss how M and C can be estimated.
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Figure 6. Schematic of capacitive coupling for the antenna legs to

the plasma and top-plate, showing two equivalent circuits of the leg
capacitances to ground. Capacitively coupled plasma dissipation is
represented by the resistance Regp.

5.1. Matrix of partial inductances M for the multi-conductor
plasma-coupled antenna

The tangential magnetic field due to the leg currents decays
with the characteristic skin depth [63] as it penetrates the
plasma, inducing a skin depth current. The complex image
method was introduced previously to estimate the mutual
inductive coupling between the antenna elements and their
image current in a semi-infinite plasma slab [30, 31]. The use
of a complex skin depth p in the plasma accounts for both
inductive coupling and ohmic dissipation in the antenna.

The complex image method is modified here to account
for coupling with a resistive slab whose opposite boundary is
limited by a conducting plate, as shown by Weisshaar et al
[68]: in the expressions for mutual partial inductance [31], the
complex distance from source to mirror plane [30], 2 + p, is
replaced by  the  effective  complex distance
p,, = h + ptanh(D/p), where D is the distance across the
plasma to the top-plate (see figure 6). This expression self-
consistently accounts for image currents induced by the
antenna in both the plasma and the top-plate.

Using the principle of superposition for magnetic flux,
the net mutual partial inductance M of the antenna is the
algebraic sum of the mutual partial inductance with all
induced currents, including image currents in the baseplate as
well as the plasma and top-plate [31]. M is a bi-symmetric
Toeplitz matrix and so only one row or column needs to be
calculated to define the whole matrix, thus reducing compu-
tation time.

5.2. Capacitance matrix C for the multi-conductor plasma-
coupled antenna

The importance of capacitive coupling is demonstrated by the
observation that plasma is maintained even when the antenna
ground return connections, A10 and A16 in figure 1(b), are
removed. The antenna is then electrically floating and it
behaves as a CCP with an array of high voltage legs instead of
a RF electrode plate. In this case, the RF feed current returns
uniquely by capacitive coupling, principally via the plasma to
the grounded top-plate. This is different from other ICP
antennas which have ground connections, or at least a

capacitor termination [14, 52, 55]. It is necessary to estimate
the capacitance matrix between the antenna legs and the
plasma.

The normal electric field in the sheath does not penetrate
the plasma because of Debye screening [18], therefore the
antenna—plasma system can be treated as a microstrip trans-
mission line with conducting boundaries defined by the
antenna legs and the adjacent plasma surface. The microstrip
is assumed uniform along the legs, but it is inhomogeneous in
the transverse plane because of the vacuum and the glass
dielectric regions shown in figure 6.

The per-unit-length capacitance matrix of this inhomo-
geneous microstrip, C.s, was calculated from the inverse of
Maxwell’s potential coefficient matrix P [24, 69] using the
partial image method of Silvester [24, 67]. P is the matrix of
induced potentials at every leg position for unit charge
separately on each leg. It is also a bi-symmetric Toeplitz
matrix and so Cp,y = P! is bi-symmetric; it contains only real
elements because the glass in figure 6 is effectively lossless.

A particularity of the microstrip here is that, although the
plasma surface is the mirror plane for induced charge, it is not
the ground plane; the ground plane is the top-plate on the far
side of the plasma. With reference to figure 6, the transverse
RF currents are given by zT;f = jwCs Vms, where Vms is the
microstrip voltage array between the antenna legs and the
plasma surface. Respecting current continuity, as shown
schematically in figure 6, this can also be written in terms of
the MTL parameters as i} = ij‘V, where V = Vms + \7D is
the voltage array between the antenna and ground, and C is
the required plasma-coupled capacitance  matrix.
Hence C = Cps/(1 + Vi /Vin).

Finally, using the simplified plasma equivalent circuit in
figure 6, \7,3 / Vms ~ JwCsReqp, for Cpg K Cg, where Cs is the
sheath capacitance, and R, is the capacitive coupling
resistance accounting for ohmic and stochastic heating of
electrons [14]. This means that the MTL capacitance matrix C
has complex elements, which represent an effective con-
ductivity and capacitively coupled power loss. It is difficult to
estimate R,, [14] although it is expected that the plasma
resistance is small compared to the capacitive impedance. In
practice, Vip/ Vi ~ 0.1j gives a reasonable fit to the exper-
imental data shown below. In view of these approximations, it
would be superfluous and cumbersome to calculate the
capacitance matrix for the complete experimental configura-
tion, including multiple reflections of the antenna between the
plasma and the distant baseplate in presence of the inhomo-
geneous dielectric. Instead, the capacitance matrix described
above serves as a sufficient approximate example.

5.8. Plasma measurements with a grounded antenna

Figure 7(a) shows the grounded antenna input impedance
spectra measured, with plasma, at the vacuum feedthrough for
various RF powers using a variable frequency RF generator.

The observed shifts to frequencies below the vacuum
resonance frequency are a clear indication of capacitive
coupling of the antenna to the plasma. Figure 7(b) shows
calculations of the corresponding input impedance mode
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Figure 7. (a) Measurements of the mode m = 8 impedance spectra
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1500 and 2000 W RF power. (b) Calculations of the same spectra
using the multi-conductor transmission line model. Argon pressure
2 Pa, same grounding configuration as for figure 3.

spectra using the MTL model, which show reasonably good
agreement for the frequency shifts and the strong reductions
in input impedance in the presence of plasma loading of the
antenna. Conversely, for purely inductive coupling [31], the
mode resonance frequency would only increase above the
vacuum resonance, and the lumped-element model results
(not shown) over-estimate the mode frequencies by
~0.7 MHz (~5%) and the mode impedance by a factor ~2.
This is a large error compared to the corresponding case
without plasma (section 4.1) because of the close proximity of
the antenna, and therefore strong capacitive coupling, to the
plasma.

The mutual inductive coupling of the plasma with the
antenna in figure 7(b) was calculated using the complex
image method [30, 31] according to section 5.1. The mutual
inductance depends on geometrical dimensions and the
plasma complex skin depth, given by the electron density and
the electron—neutral collision frequency [30], as follows:

(1) The distance between the antenna leg axes and the
plasma/sheath boundary, i = 1.05 cm, was chosen
according to 1 cm from the leg axes to the glass top
surface, plus an estimated 0.3-0.5cm for the sheath
width (corresponding to about four Debye lengths for
the undriven sheath in these plasma conditions [18]).

(i) The argon pressure determines the electron—neutral
collision frequency vy, [s™'] ~ p [Pa] x 2.6 x 107 for

typical electron temperature in these plasma condi-

tions [18].
(iii) The plasma density was measured by Langmuir probe
to be approximately

ne ~ {0.8, 1.2, 1.7, 2.4} x 10'*m~3 for delivered RF
power B¢ = {500, 1000, 1500, 2000} W.

These three parameters suffice for the complex image
calculations [31] in figure 7(b).

The calculated range of real skin depth [31] goes from
7 cm (at 500 W) to 4 cm (at 2000 W). For the lowest power,
the associated skin depth is approximately equal to the elec-
trode gap, and capacitive coupling could be expected to
dominate because significant current is induced in the top-
plate instead of in the plasma. On the other hand, for the
highest power, the skin depth is approximately half of the
electrode gap and inductive coupling could be expected to
dominate [14, 18, 31]. This is consistent with the frequency
shift from negative (dominant capacitive coupling) to positive
(dominant inductive coupling) in figure 7.

The RF power inductively coupled to the plasma via the
mutual inductance is called the H-mode power transfer from
the antenna ICP source, and the RF power coupled to the
plasma by capacitive coupling is called the E-mode power
transfer [8, 9, 14]. For the EMCP of these antennas, the
transition from E-mode to H-mode can be indistinct [19],
because both E- and H-modes co-exist to some degree
[8, 9, 14, 70].

5.4. Plasma measurements with an electrically floating
antenna

For the floating antenna, the MTL model results in figure 8(b)
are in fair agreement with the measurements in figure 8(a).
The measured plasma densities in this case were
ne ~ {0.7, 1.7, 2.1} x 10' m—> for delivered RF power
Py = {500, 1500, 2000} W.

The purely inductive coupling (lumped-element) model
[31] over-estimates the mode frequencies by ~0.48 MHz
(~3.6%) and the mode impedance by less than 20%. This is a
smaller error compared to the grounded case, possibly
because capacitive currents to the plasma are weaker for the
floating antenna.

5.5. Plasma uniformity

Uniformity is a key criterion for large area plasma processing.
For this antenna, Langmuir probe density measurements in
figure 9(a) typically show a flattened dome profile with
approximately 50% drop in plasma density from the center to
the antenna edges’. This plasma non-uniformity does not
fulfil the condition of transmission line uniformity in
section 3.1, although averaging over the whole antenna
nevertheless gives reasonable agreement with the measured
plasma-loaded antenna input impedance in figure 8.

* For these high power (15 kW) tests, 100 pF was added to each stringer
capacitor so that the mode resonance with plasma corresponded approxi-
mately to the industrial frequency 13.56 MHz. This correction was necessary
because the initial design did not account for capacitive coupling.
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Figure 8. (a) Measurements of the mode m = 8 impedance spectra
for a floating antenna in vacuum and with plasma for 500, 1000 and
2000 W RF power. (b) Calculations of the same spectra using the
multi-conductor transmission line model. Argon pressure 1.5 Pa,
same floating configuration as for figure 5.

In CCP reactors, [15, 71, 72], the RF current circulates as
a spatially distributed surface current in the skin depth of
metal plate electrodes, whereas the current in ICP reactors
circulates in discrete coils or antennas. For ICPs, the antenna
pattern of these currents may appear on the substrate if the
radical diffusion path is not long enough, requiring low
pressure and wide electrode gap [12, 73]. However, the peaks
in figure 9(b) are due to the m = 8 mode structure of the
resonant antenna, not the individual legs. Note that low
pressure ICP operation brings the advantage of no powder
formation in deposition plasmas [29].

Figure 9(c) shows the measured variation in ion density
along the length of the central leg. Using the MTL model, the
calculated standing-wave variation of current and voltage
along the legs is between 9% and 21%, depending on whether
the node position is near the middle or the end of a leg. This
corresponds to a wavelength reduction factor [15, 62, 74] of
approximately 2.25 compared with the vacuum wavelength,
due to the relative permittivity of the antenna—plasma system.
The relative permittivity is a centro-symmetric matrix given
by MC/(pq€0); it is not a diagonal matrix because of the
inhomogeneous dielectric-plasma system [24] and the dif-
ferent plasma penetration depths of the tangential magnetic
and normal electric fields. However, the size and frequency of
this reactor are not high enough to unambiguously demon-
strate a standing wave non-uniformity in figure 9(c) because
of the convolution with the diffusion profile [75, 76].

~
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Figure 9. (a) Contour plot of the ion density »; over the antenna area
using a 10 x 10 array of surface probes. Contour levels descend
successively by é th of the central maximum of 2.3 x 1017 m™>. (b)

Measured density profile along the dashed line in (a), using a
traversing Langmuir probe. The circles mark the surface probe
measurements; the square symbols indicate the position of m = 8
mode maxima which also correspond to figure 4. (c) Measured
density profile along the central leg. Argon pressure 1.5 Pa, 15 kW
input power at 13.56 MHz. Same floating configuration as for
figure 5.

6. Conclusions

A large antenna generates a plasma which is simultaneously a
CCP and an ICP; it would therefore be better described as an
electromagnetically coupled plasma (EMCP) source. A multi-
conductor transmission line (MTL) model is proposed to
describe electromagnetic coupling in a large area planar ICP
antenna. The inductive antenna—plasma coupling was calcu-
lated in terms of the per-unit-length mutual partial inductance
matrix, using the complex image method [30, 31]. The per-
unit-length capacitance matrix was estimated by analogy of
capacitive coupling of the antenna to a plasma slab. The MTL
matrix equations were solved by implementing the termina-
tion impedances of the resonant network.
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The MTL model reproduces the measurements of
antenna input impedance spectra, with and without plasma
coupling, for grounded and electrically floating antennas. The
distinguishing feature of the model is that the mutual induc-
tances and capacitive coupling between all elements of the
antenna, plasma, and reactor are taken into account.

The model is valid for the whole range of skin depths in
the plasma from much shorter to much longer than the reactor
transverse dimensions. The MTL method is also valid for
reactor lengths from shorter to longer than the effective
wavelength of RF excitation in the plasma-coupled system.
The model is analytic, with computation required only for the
matrix solution.

The MTL approach could be applicable to model and
design other planar ICP antenna sources (ladder, U-type,
serpentine, double comb, etc) by applying the termination
impedances appropriate to each antenna type.
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Appendix A. Solution of the MTL equations for the
ICP antenna source

A.1. General solution of the MTL equations

The uniform MTL wave equation, analogous to the single
transmission line [6, 10, 63], is:

A2V (2) /dz? = (—wMO)V () (A.1)
and identically for I (z), where the implicit commutability
MC = CM is assured by the matrix bi-symmetries [24]
mentioned in sections 5.1 and 5.2. The equations can be
decoupled by a similarity transformation [24]

V() =T V), (A.2)

where Ty is the matrix whose N columns are the eigenvectors
of (—wMC) and V,, (z) is the array of mode voltages. The N
decoupled wave equations for the mode voltage amplitudes
are

A2V (2) /dz2 = TV (2), (A.3)

where T = Ty, ! (—w™MC)Ty is the N x N diagonal matrix
of propagation constant eigenvalues. By analogy with single
transmission lines [6, 10, 63], the N mode voltages and cur-
rents have the solution [24]

Vn(@ = eV, + eV,
Tn() = V. e 2V, — "el=v,), (A4)

where the matrix exponentials are defined as

eiFIZ 0 . O
_ +hz :
e | 0 e 0 (A.5)
O e O eiFNZ

Here, \7[:; and Vn: are N x 1 arrays of complex phasor
amplitudes of forward and backward waves, to be determined
by boundary conditions, and ¥, = (jwM) 'T,I'T,' is the
characteristic admittance matrix of the line which depends on
plasma coupling.

A.2. Solution for the ICP resonant network antenna source

The termination impedances appropriate to the resonant net-
work shown in figures 1 and 2 are applied here. With regard
to the appendix in [31], instead of using constant current and
Ohm’s law in the antenna legs, the voltage and current of each
leg are now related by the transmission line equations. The
solution consists in finding the values of the phasor amplitude
vectors an and \7“; for the N legs. The lumped-element model
for purely inductive coupling in [31] is recovered when
capacitive coupling is neglected, i.e. in the limit C — 0.

Taking the origin for z at the middle of the leg length 2H,
the voltages \7(1) and currents | (z) at both ends of the legs
are A =VH), B=V(-H), I, =1H), Iz =1(—H).
These voltages and currents are determined by the termination
impedances in the stringers: using the terminology of [31],
Ohm’s law for the stringers gives

UrA = Z'ne] 4 ZoPPK
UrB = Z"™K + 7], (A.6)
where J, K are the currents in each line of stringers, Z!in® is
the impedance matrix of stringers, including mutual induc-
tance to all other in-line stringers, and Z°P is the mutual
inductance matrix with all opposing stringers. For the reso-
nant network in this paper, Z'" includes the stringer capa-
citors Cg,, but other ICP linear array types can be modeled
using termination impedances appropriate to the stringers of
each particular antenna. Current conservation at the nodes
[31] requires

U =Ix + Sy,

UK =~ Iy + S, (A7)

where §A, p are the source current vectors. A relation between
the node voltages and currents can be found by eliminating J,
K to obtain:

A=y + S) — my Iy — Sp),
B=uniy (s + Sy) — mi(ly — Sp), (A8)
where rit; = Uy 'Z'me~! and m, = U;'Z°PPU~". The solu-
tion is facilitated by defining

C,= “elH + e TH,

S, = elH — ¢ TH, (A.9)
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with a change of variables:

A=V -7,
s T
o=V, + V.. (A.10)
With these definitions, according to (A.2) and (A.4)
A=Ty (G5 - 54)/2,
B=T,(G3 + 54)/2,
I =TT (GA - §) /2,
Iy = .T, (C,A + §,3) /2. (A.11)

Introducing these expressions into (A.8) for B—A and
B+A respectively, gives

[, — ) "Iy Sy, + YTy G A
:‘STl} - 52 = ODA’
(G + m) Ty Cy + YTy S, 10

=Sp + Sy = 053, (A.12)

which define the matrices Op s as shorthand pre-factors of
A, 7 respectively. The source current vectors Sy and S must
account for the imposed input currents as well as for possible

connections to ground. Considering an input current I,
injected into a single node A;, (node A13 in figure 1), we set

Tin - YAZ’
— Y3B,

Sh
Sp (A.13)
where the vector I, has zeros for all components except for I,
at Ay, and Y, p are diagonal matrices with the ground con-
nector admittance at the relevant indices (nodes A10 and A16
in figure 1, with )73 = 0). The expressions for Sg + S4 in
(A.12), which were derived from the network currents and

voltages, can be compared with expressions (A.13) for the
source currents by using (A.11) to write:

Sp — Sp = (Y — )Ty C,3/2
— (s + W SA/2 - I,
=06 + 025 — Zn
Sp + Sy =— (I + ¥p) Ty C3/2
+ (4 - YT §A/2 + 1,

=055 + O,A + I, (A.14)

where the matrices O,_, are shorthand pre-factors of A, dg.
Using the pre-factor simplifications, equating (A.12) and

(A.14) gives the following simultaneous equations for A and
g

-

(Op — OA — 0,5 = — Ly,

(Os — 03)3 — O4A = + I, (A.15)

whose solution gives the required voltage solution using
(A.10) and (A.2).

10

References

(1]

(2]

(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]

(18]

[19]
[20]
[21]

[22]
[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

d’Agostino R, Favia P, Kawai Y, Ikegami H, Sato N and
Arefi-Khonsari F (ed) 2008 Advanced Plasma Technology.
(Weinheim: Wiley)

Kawai Y, lkegami H, Sato N, Matsuda A, Uchino K,
Kuzuya M and Mizuno A (ed) 2008 Industrial Plasma
Technology (Weinheim: Wiley)

Pizzini S 2012 Advanced Silicon Materials for Photovoltaic
Applications (New York: Wiley)

Kim S S, Chang H'Y, Chang C S and Yoon N S 2000 Appl.
Phys. Lett. 77 492

Jun H-S and Chang H-Y 2008 Appl. Phys. Lett. 92 041501

Lamm A J 1997 J. Vac. Sci. Technol. A 15 2615

Khater M H and Overzet L J 2000 Plasma Sources Sci.
Technol. 9 545

Sugai H, Nakamura K and Suzuki K 1994 Japan J. Appl. Phys.
33 2189

Lee S-H, Cho J-H, Huh S-R and Kim G-H 2014 J. Phys. D:
Appl. Phys. 47 015205

Wu Y and Lieberman M A 2000 Plasma Sources Sci. Technol.
9210

Kushner M J, Collison W Z, Grapperhaus M J, Holland J P and
Barnes M S 1996 J. Appl. Phys. 80 1337

Park SE, Cho B U, Lee J K, Lee Y J and Yeom G Y 2003
IEEE Trans. Plasma. Sci. 31 628

Kawamura E, Graves D B and Lieberman M A 2011 Plasma
Sources Sci. Technol. 20 035009

Chabert P and Braithwaite N S J 2011 Physics of Radio-
Frequency Plasmas (Cambridge: Cambridge University
Press)

Lieberman M A, Booth J P, Chabert P, Rax ] M and
Turner M M 2002 Plasma Sources Sci. Technol. 11 283

Sansonnens L, Howling A A and Hollenstein C 2006 Plasma
Sources Sci. Technol. 15 302

Strobel C, Zimmermann T, Albert M, Bartha ] W and Kuske J
2009 Sol. Energy Mater. Sol. Cells 93 1598

Lieberman M A and Lichtenberg A J 2005 Principles of
Plasma Discharges and Materials Processing 2nd edn
(Hoboken, NJ: Wiley)

Hollenstein C, Guittienne P and Howling A A 2013 Plasma
Sources Sci. Technol. 22 055021

Piejak R B, Godyak V A and Alexandrovich B M 1992 Plasma
Sources Sci. Technol. 1 179

Gudmundsson J T and Lieberman M A 1998 Plasma Sources
Sci. Technol. T 83

Colpo P, Ernst R and Rossi F 1999 J. Appl. Phys. 85 1366

Mashima H, Takeuchi Y, Noda M, Murata M, Naitou H,
Kawasaki I and Kawai Y 2003 Surf. Coat. Technol. 171 167

Paul C R 2008 Analysis of Multiconductor Transmission Lines
2nd edn (Hoboken, NJ: Wiley)

Guittienne P, Lecoultre S, Fayet P, Larrieu J, Howling A A and
Hollenstein C 2012 J. Appl. Phys. 111 083305

Lecoultre S, Guittienne P, Howling A A, Fayet P and
Hollenstein C 2012 J. Phys. D: Appl. Phys. 45 082001

Guittienne P, Fayet P, Larrieu J, Howling A A and
Hollenstein C 2012 55th Annual SVC (Surface Vacuum
Coaters) Technical Conf. (Santa Clara, CA, USA, 28 April-
3 May)

Fayet P, Guittienne P, Howling A A and Larrieu J 2014
Whistler wave heated discharges in planar geometry /0th
Int. Conf. Coatings on Glass and Plastics (Dresden,
Germany)

Demolon P, Guittienne P, Howling A A, Jost S and Furno I
2017 in preparation

Howling A A, Guittienne P, Jacquier R and Furno I 2015
Plasma Sources Sci. Technol. 24 065014


https://doi.org/10.1063/1.127021
https://doi.org/10.1063/1.2838306
https://doi.org/10.1116/1.580781
https://doi.org/10.1088/0963-0252/9/4/310
https://doi.org/10.1143/JJAP.33.2189
https://doi.org/10.1088/0022-3727/47/1/015205
https://doi.org/10.1088/0963-0252/9/2/315
https://doi.org/10.1063/1.362932
https://doi.org/10.1109/TPS.2003.815247
https://doi.org/10.1088/0963-0252/20/3/035009
https://doi.org/10.1088/0963-0252/11/3/310
https://doi.org/10.1088/0963-0252/15/3/002
https://doi.org/10.1016/j.solmat.2009.04.023
https://doi.org/10.1088/0963-0252/22/5/055021
https://doi.org/10.1088/0963-0252/1/3/006
https://doi.org/10.1088/0963-0252/7/2/002
https://doi.org/10.1063/1.369268
https://doi.org/10.1016/S0257-8972(03)00264-0
https://doi.org/10.1063/1.4705978
https://doi.org/10.1088/0022-3727/45/8/082001
https://doi.org/10.1088/0963-0252/24/6/065014

Plasma Sources Sci. Technol. 26 (2017) 035010

P Guittienne et al

(31]
[32]
(33]
[34]
[35]
[36]

[37]

[38]
[39]

[40]
[41]

[42]
(43]
[44]
[45]
[46]
[47]
(48]
[49]
[50]
[51]
[52]

(53]

Guittienne P, Jacquier R, Howling A A and Furno I 2015
Plasma Sources Sci. Technol. 24 065015

Takeuchi Y, Nawata Y, Ogawa K, Serizawa A,
Yamauchi Y and Murata M 2001 Thin Solid Films 386 133

Takeuchi Y, Kawasaki I, Mashima H, Murata M and Kawai Y
2001 Thin Solid Films 390 217

Takatsuka H, Noda M, Yonekura Y, Takeuchi Y and
Yamauchi Y 2004 Sol. Energy 77 951

Takatsuka H, Yamauchi Y, Kawamura K, Mashima H and
Takeuchi Y 2006 Thin Solid Films 506-507 13

Nishimiya T, Takeuchi Y, Yamauchi Y, Takatsuka H, Kai Y,
Muta H and Kawai Y 2007 Plasma Process. Polym. 4 S991

Nishimiya T, Takeuchi Y, Yamauchi Y, Takatsuka H,
Shioya T, Muta H and Kawai Y 2008 Thin Solid Films
516 4430

Yamauchi Y, Takeuchi Y, Takatsuka H, Yamashita H,
Muta H and Kawai Y 2008 Contrib. Plasma Phys. 48 326

Murata M, Takeuchi Y, Sasagawa E and Hamamoto K 1996
Rev. Sci. Instrum. 67 1542

Wendt A E and Mahoney L J 1996 Pure Appl. Chem. 68 1055

Murata M, Mashima H, Yoshioka M, Nishida S, Morita S and
Kawai Y 1997 Japan J. Appl. Phys. 36 4563

Kawai Y, Yoshioka M, Yamane T, Takeuchi Y and Murata M
1999 Surf. Coat. Technol. 116-119 662

Mashima H, Murata M, Takeuchi Y, Yamakoshi H, Horioka T,
Yamane T and Kawai Y 1999 Japan J. Appl. Phys. 38 4305

Kim K N, Lee Y J, Kyong S J and Yeom G Y 2004 Surf. Coat.
Technol. 177-178 752

Lim J H, Kim K N and Yeom G Y 2007 Plasma Process.
Polym. 4 S999

Takagi T, Ueda M, Ito N, Watabe Y and Kondo M 2006 Japan
J. Appl. Phys. 45 4003

Takagi T, Ueda M, Ito N, Watabe Y, Sato H and Sawaya K
2006 Thin Solid Films 502 50

Kim K N, Lee Y J, Jung S J and Yeom G Y 2004 Japan J.
Appl. Phys. 43 4373

LimJ H, Kim KN, Park J K, Lim J T and Yeom G Y 2008
Appl. Phys. Lett. 92 051504

Lim J H, Kim K N, Gweon G H, Park J B and Yeom G Y 2009
Pl. Chem. PI. Proc. 29 251

Forgotson N, Khemka V and Hopwood J 1996 J. Vac. Sci.
Technol. B 14 732

Suzuki K, Konishi K, Nakamura K and Sugai H 2000 Plasma
Sources Sci. Technol. 9 199

Intrator T and Menard J 1996 Plasma Sources Sci. Technol.
5 371

11

[54]
[55]
[56]
[57]

[58]
[59]

[60]
[61]

[62]
[63]
[64]
[65]
[66]

[67]
[68]

[69]
[70]
[71]
[72]
[73]

[74]

[75]

[76]

Menard J and Intrator T 1996 Plasma Sources Sci. Technol.
5363

Setsuhara Y, Miyake S, Sakawa Y and Shoji T 1999 Japan J.
Appl. Phys. 38 4263

Meziani T, Colpo P and Rossi F 2001 Plasma Sources Sci.
Technol. 10 276

Colpo P, Meziani T and Rossi F 2005 J. Vac. Sci. Technol. A
23 270

Meziani T, Colpo P and Rossi F 2006 J. Appl. Phys. 99 033303

Yu Z, Shaw D, Gonzales P and Collins G J 1995 J. Vac. Sci.
Technol. A 13 871

Advanced Energy Industries Inc www.advanced-energy.com.

Jin J 1998 Electromagnetic Analysis and Design in Magnetic
Resonance Imaging (Boca Raton, FL: CRC Press)

Schmitt J P M, Elyaakoubi M and Sansonnens L 2002 Plasma
Sources Sci. Technol. 11 A206

Paul C R and Nasar S A 1987 Introduction to Electromagnetic
Fields (New York: McGraw-Hill)

Grover F W 1962 Inductance Calculations: Working Formulas
and Tables (New York: Dover)

Paul C R 2010 Inductance: Loop and Partial (Hoboken, NJ:
Wiley)

Kammler D W 1968 IEEE Trans. Microw. Theory Tech. MTT-
16 925

Silvester P 1968 Proc. IEE 115 43

Weisshaar A, Lan H and Luoh A 2002 [EEE Trans. Adv.
Packag. 25 288

Harrington R F 1958 Introduction to Electromagnetic
Engineering (New York: McGraw-Hill)

Ahr P, Schiingel E, Schulze J, Tsankov T V and Czarnetzki U
2015 Plasma Sources Sci. Technol. 24 044006

Chabert P, Raimbault J-L, Levif P, Rax J-M and
Lieberman M A 2006 Plasma Sources Sci. Technol. 15 S130

Liu Y-X, Zhang Y-R, Bogaerts A and Wang Y-N 2016 J. Vac.
Sci. Technol. A 33 020801

Kim D W, You S J, Kim J H, Chang H Y and Oh W Y 2015
IEEE Trans. Plasma. Sci. 43 3876

Schmidt H, Sansonnens L, Howling A A, Hollenstein C,
Elyaakoubi M and Schmitt J P M 2004 J. Appl. Phys.
95 4559

Vahedi V, Lieberman M A, DiPeso G, Rognlien T D and
Hewett D 1995 J. Appl. Phys. 78 1446

Stittsworth J A and Wendt A E 1996 Plasma Sources Sci.
Technol. 5§ 429


https://doi.org/10.1088/0963-0252/24/6/065015
https://doi.org/10.1016/S0040-6090(00)01663-1
https://doi.org/10.1016/S0040-6090(01)00952-X
https://doi.org/10.1016/j.solener.2004.06.007
https://doi.org/10.1016/j.tsf.2005.08.011
https://doi.org/10.1016/j.tsf.2005.08.011
https://doi.org/10.1016/j.tsf.2005.08.011
https://doi.org/10.1002/ppap.200732314
https://doi.org/10.1016/j.tsf.2007.10.016
https://doi.org/10.1002/ctpp.200810056
https://doi.org/10.1063/1.1146885
https://doi.org/10.1351/pac199668051055
https://doi.org/10.1143/JJAP.36.4563
https://doi.org/10.1016/S0257-8972(99)00295-9
https://doi.org/10.1016/S0257-8972(99)00295-9
https://doi.org/10.1016/S0257-8972(99)00295-9
https://doi.org/10.1143/JJAP.38.4305
https://doi.org/10.1016/j.surfcoat.2003.08.017
https://doi.org/10.1016/j.surfcoat.2003.08.017
https://doi.org/10.1016/j.surfcoat.2003.08.017
https://doi.org/10.1002/ppap.200732316
https://doi.org/10.1143/JJAP.45.4003
https://doi.org/10.1016/j.tsf.2005.07.235
https://doi.org/10.1143/JJAP.43.4373
https://doi.org/10.1063/1.2840997
https://doi.org/10.1007/s11090-009-9176-0
https://doi.org/10.1116/1.588706
https://doi.org/10.1088/0963-0252/9/2/313
https://doi.org/10.1088/0963-0252/5/3/004
https://doi.org/10.1088/0963-0252/5/3/003
https://doi.org/10.1143/JJAP.38.4263
https://doi.org/10.1088/0963-0252/10/2/317
https://doi.org/10.1116/1.1854695
https://doi.org/10.1063/1.2164536
https://doi.org/10.1116/1.579844
http://www.advanced-energy.com.
https://doi.org/10.1088/0963-0252/11/3A/331
https://doi.org/10.1109/TMTT.1968.1126828
https://doi.org/10.1109/TMTT.1968.1126828
https://doi.org/10.1049/piee.1968.0008
https://doi.org/10.1109/TADVP.2002.803267
https://doi.org/10.1088/0963-0252/24/4/044006
https://doi.org/10.1088/0963-0252/15/2/S15
https://doi.org/10.1116/1.4907926
https://doi.org/10.1109/TPS.2015.2475613
https://doi.org/10.1063/1.1690096
https://doi.org/10.1063/1.360723
https://doi.org/10.1088/0963-0252/5/3/011

	1. Introduction
	1.1. Existing models of ICP sources
	1.2. Comparison of large area ICP sources

	2. Experimental setup
	3. The multi-conductor transmission line (MTL) model for plasma-coupled antennas
	3.1. Equivalent circuit for antenna–plasma coupling

	4. Experimental results and comparison with the MTL model for the antenna without plasma
	4.1. Measurements with a grounded antenna
	4.2. Measurements with an electrically floating antenna

	5. Experimental and MTL model results for plasma coupling to the antenna
	5.1. Matrix of partial inductances M&macr; for the multi-conductor plasma-coupled antenna
	5.2. Capacitance matrix C&macr; for the multi-conductor plasma-coupled antenna
	5.3. Plasma measurements with a grounded antenna
	5.4. Plasma measurements with an electrically floating antenna
	5.5. Plasma uniformity

	6. Conclusions
	Acknowledgments
	Appendix A.Solution of the MTL equations for the ICP antenna source
	A.1. General solution of the MTL equations
	A.2. Solution for the ICP resonant network antenna source

	References



