
The design of Wren, a Fast and Scalable Transactional
Causally Consistent Geo-Replicated Key-Value Store

Diego Didona, Kristina Spirovska and Willy Zwaenepoel
École polytechnique fédérale de Lausanne

Abstract
This paper presents the design of Wren, a new geo-replicated
key-value store that achieves Transactional Causal Consis-
tency. Wren leverages two design choices to achieve higher
performance and better scalability than existing systems.

First, Wren uses hybrid logical physical/clocks to times-
tamp data items. Hybrid clocks allow Wren to achieve low
response times, by avoiding the latencies that existing sys-
tems based on physical clocks incur to cope with clock skew.

Second, Wren relies on a novel dependency tracking and
stabilization protocol, called Hybrid Stable Time (HST).
HST uses only two scalar values per update regardless of
the number of data centers and nodes within a data center.
HST achieves high resource efficiency and scalability at the
cost of a slight increase in remote update visibility latency.

We discuss why Wren achieves higher performance and
better scalability than state-of-the-art approaches.

1. Target Model
Consistency model. Wren is a new geo-replicated key-
value store that achieves Transactional Causal Consistency
(TCC) [3]. CC [2] is the strongest consistency model that
can be achieved in an always available fashion for individ-
ual operations [8]. TCC extends causal consistency with
the abstraction of interactive read-write transactions. As
such, TCC achieves the strongest semantics compatible with
high-availability and low-latency [3]. In addition, Wren can
achieve convergence [8] in different fashions, e.g., using the
last-writer-wins rule [10], user-defined commutative and as-
sociative functions [7] or CRDTs [3, 9].

System model. We assume a distributed key-value store
whose data-set is split into N partitions. Each key is de-
terministically assigned to one partition according to a hash
function. Each partition is replicated at M different data cen-
ters. Hence, a full copy of the data is stored at each site.
We further assume nodes communicate through point-to-
point lossless FIFO channels. Each server is equipped with
a physical clock that advances monotonically. Such clocks
are loosely synchronized by a time synchronization protocol
such as NTP [1]. The correctness of Wren does not depend
on the synchronization precision.

2. The design of Wren
Clients establish a session towards a node in their local data
center. This node acts as coordinator of a client’s transac-
tions and as proxy towards other nodes in the data center.
Clients manipulate data by means of transactions. A client
starts a transaction, performs some reads and writes, and
then commits the transaction.

Upon starting, a transaction T is assigned a snapshot S
by the coordinator node. S represents a causal snapshot, i.e.,
it includes the effects of all transactions that causally pre-
cede T . S also includes all the items produced by remote
transactions whose effects are visible in the local data cen-
ter. The visibility of a remote transaction is determined by a
stabilization protocol, as we shall describe later. S is repre-
sented by a local timestamp and a remote one. They define
the upper bound on the commit time of local, resp. remote,
transactions whose effects (i.e., updates) are visible to T .

Upon committing, T gets a commit timestamp, which
is used as update time of the items updated by T . This
timestamp reflects causality among transactions: if T has
a timestamp t, it means that T potentially depends on all
the transactions committed in the local data center with
timestamp smaller than t.

The commit timestamp of a transaction T is determined
by means of a 2PC protocol. Every node that stores an item
written by T proposes a timestamp and the maximum is
chosen as commit timestamp. Every update produced by T
also carries the remote entry of the snapshot S assigned to
T at the beginning of T ’s execution. The combination of
commit time and remote snapshot timestamp determines the
snapshot to which T and the items written by T belong to.

Once T is committed, each server p involved in T ap-
pends T and the set of modifications to be applied on p to
a commit list. The effects of transactions are applied in in-
creasing commit timestamp order. The updates of a trans-
action are also replicated to remote data centers upon being
applied on the local server.

Hybrid Logical/Physical Clocks (HLC). To ensure correct-
ness, transactions in Wren are applied in increasing commit
timestamp order. Assume a transaction T writes x on node p
and y on node p′. Assume that p proposes t as commit times-
tamp and p′ proposes t′ > t. Then, by picking the maximum

1 2017/2/18

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148028407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the proposed values, T is timestamped with t′. To enforce
correctness, the effect of T cannot be applied on p until p is
sure that it will never commit another transaction that writes
x and that has a lower timestamp than t′.

Assume that t and t′ are timestamps taken from the
servers’ physical clocks, as it is the case in GentleRain [5]
and Cure [3], two state-of-the-art approaches to (T)CC.
Then, it is possible that the clock on p will catch up with
t′ in a long time because of clocks skew. During this time,
p stalls any transaction that wants to access the snapshot of
the data store that includes the version of x written by T .

Wren overcomes this limitation by using HLC [6] to
generate timestamps. A HLC has a physical part HLC.p
and a logical part HLC.l. Likewise, a hybrid timestamp t
is a pair t = 〈t.p, t.l〉. A hybrid timestamp with logical
part equal to 0 corresponds to a physical timestamp. The
physical part of a HLC on a node p is always greater than or
equal to the value of the physical clock of p. It can, in fact,
be moved forward with respect to the local physical clock
value to reflect causality among events. The logical part is,
similarly, increased when p needs to generate a timestamp
that is higher than any previous timestamp generated on
p and the physical clock of p is lower than the physical
component of the current HLC on p.

With reference to the previous example, as soon as p re-
ceives the (hybrid) commit timestamp t′ for T , p (whose
HLC.p is smaller than t′.p) moves its HLC to t′. Because
the HLC is used to generate the proposed commit times-
tamps, p is guaranteed to not commit any later transaction
with timestamp smaller than t′: the smallest timestamp that
p can now generate is 〈t′.p, t′.l+1〉. Hence, p is able to make
promptly visible to later transactions the version of x gener-
ated by T , without stalling them because of clock skew.

Recent work shows that clock skew severely hinders the
performance of transactional operations in causally consis-
tent systems [3, 4]. We argue that, by means of HLC, Wren
will be able to achieve better performance than state-of-the-
art approaches to TCC. Our claim is also backed by our re-
cent successful experience in using HLC to achieve (non-
Transactional) CC incurring a latency up to 3.5x lower than
the one achieved by a design based on physical clocks [4].

Hybrid Stable Time (HST). HST is the novel stabilization
protocol employed by Wren to determine when the updates
generated by a transaction can become visible to clients in a
data center. As with most causally consistent systems, HST
allows updates originating in a data center DC to become
visible immediately in DC. A remote update d, instead,
becomes stable, i.e., visible to clients in DC when all the
causal dependencies of d have been received in DC.

The key feature of HST is that every data item tracks de-
pendencies by means of only two scalar timestamps, regard-
less of the scale of the system. One entry tracks the depen-
dencies on local items. One entry summarizes the dependen-
cies on remote items.

HST hits a sweet spot in the meta-data size vs perfor-
mance spectrum. On one side, the use of only two scalar val-

ues enables high scalability and throughput in Wren. This
contrast with the design of Cure, in which the dependency
meta-data grows linearly with the number of data centers [3].

On the other side, decoupling local and remote dependen-
cies ensures that a transaction can determine the visibility
of a local item without the need to synchronize with remote
data centers. This is, for example, the case of GentleRain [5].
In GentleRain, dependencies are tracked by means of a sin-
gle timestamp. Likewise, the snapshot visible to a transac-
tion is determined by a single timestamp t. Then, to be sure
that a node has installed all the items belonging to the snap-
shot, a transaction is stalled until the local data center has
received all the updates with timestamp smaller than t com-
ing from all the data centers . This synchronization step can
lead to a latency that is in the same order of magnitude of
the communication delay between data centers [4].

HST works as follows. Each server pmn maintains a ver-
sion vector V V m

n . n is the id of the data partition replicated
by pmn , and m the id of its data center (DCm). V V m

n [m] is
the commit timestamp of the latest local transaction applied
by pmn . V V m

n [i], i 6= m, is the timestamp of the latest trans-
action applied by pmn that comes from the i-th replica of the
n-th partition.

Periodically, servers within DCm compute the minimum
timestamp across the remote entries of all the version vec-
tors in DCm. This value becomes the Remote Stable Time
(RST ) and indicates that all the transactions coming from
all the remote data centers with commit timestamp ≤ RST
have been applied in DCm.

When a transaction T starts, the remote entry of the cor-
responding snapshot S is set to be RST . The local entry,
instead, is set as the maximum between the latest commit
timestamp seen by the client and the hybrid clock of the
server responsible for coordinating T . In this way, the fresh-
ness of S is maximized, and S also includes any previous
snapshot manipulated by the client. T uses the timestamps
in S to determine the freshest version of a data item that
falls within the visible snapshot.

HST enables high scalability and performance at the ex-
pense of a slight increase in the time that it takes for an up-
date to become visible in remote data centers (the so called
remote updates visibility latency). This stems from the fact
that HST only tracks a lower bound on replicated transac-
tions coming from all the remote data centers. This effec-
tively makes the visibility latency of an update in a remote
data center DCr dependent on the communication latency
between DCr and its furthest data center.

We believe that the performance benefits brought by HST
largely outweigh the slight increase in remote update visibil-
ity latency.

3. Conclusion
We have presented the design of Wren, a new geo-replicated
key-value stores that achieves TCC. Wren uses HLC and
a new stabilization protocol to achieve high performance
and scalability. We are implementing Wren and we plan to
compare it with state-of-the-art approaches to (T)CC.

2 2017/2/18



References
[1] NTP: The network time protocol. http://www.ntp.org.
[2] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto.

Causal memory: Definitions, implementation, and program-
ming. Distributed Computing, 9(1):37–49, 1995.

[3] D. D. Akkoorath, A. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bi-
eniusa, N. Preguiça, and M. Shapiro. Cure: Strong semantics
meets high availability and low latency. In Proc. of ICDCS,
2016.

[4] D. Didona, K. Spirovska, and W. Zwaenepoel.
Okapi: Causally Consistent Geo-Replication Made
Faster, Cheaper and More Available. ArXiv e-prints,
https://arxiv.org/abs/1702.04263, Feb. 2017.

[5] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gentlerain:
Cheap and scalable causal consistency with physical clocks.
In Proc. of SoCC, 2014.

[6] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and
M. Leone. Logical physical clocks. In Proc. of OPODIS,
2014.

[7] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen. Don’t settle for eventual: Scalable causal consistency for
wide-area storage with cops. In Proc. of SOSP, 2011.

[8] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availabil-
ity, convergence. Technical Report TR-11-22, Computer Sci-
ence Department, University of Texas at Austin, May 2011.

[9] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Proc. of SSS, 2011.

[10] R. H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database
Syst., 4(2):180–209, June 1979.

3 2017/2/18


