
Optimistic Causal Consistency for Geo-Replicated
Key-Value Stores

Kristina Spirovska, Diego Didona, Willy Zwaenepoel
École polytechnique fédérale de Lausanne

Email: first.last@epfl.ch

Abstract—Causal consistency is an attractive consistency model
for geo-replicated data stores because it hits a sweet spot in the
ease of programmability vs performance trade-off.

In this paper we propose a new approach to causal consistency,
which we call Optimistic Causal Consistency (OCC). The opti-
mism of our approach lies in the fact that updates from a remote
data center are immediately made visible to clients in the local
data center. A client, hence, always reads the freshest version
of an item, whose dependencies, however, might have not been
installed in the local data center yet. When serving a read request,
a server can detect whether it has not received such dependencies
yet. This is achieved without inter-server synchronization thanks
to cheap dependency meta-data supplied by the client. Upon
detecting a missing dependency, the server waits to receive it.

This approach contrasts with the design of existing systems,
which are prone to expose stale versions of a data items, to ensure
that clients only see versions whose dependencies have already
been replicated in the local data center.

OCC explores a novel trade-off in the landscape of consistency
models. Because network partitions are practically rare events,
OCC partially trades availability to improve other performance
metrics. On the one side, OCC maximizes the freshness of data
returned to clients and reduces the communication overhead.
On the other side, a server might need to wait before serving a
client’s request, leading the system to be unavailable in case of
a network partition. To overcome this limitation, we propose a
recovery mechanism that allows an OCC system to fall back to
a pessimistic protocol to recover availability.

We implement OCC in a new system, which we call POCC. We
compare POCC against a recent (pessimistic) approach to causal
consistency using heterogeneous workloads on an Amazon AWS
deployment encompassing up to 96 nodes scattered over 3 data
centers. We show that POCC is able to maximize the freshness
of data returned to client while providing comparable or better
performance than its pessimistic counterpart in a wide range of
production-like workloads.

I. INTRODUCTION

Over the last years geo-replication has become the de facto
standard for storage systems underlying large scale web appli-
cations. Data is sharded across several machines within a data
center (DC) to achieve scalability and then replicated across
data centers to deliver lower response times to geographically
distributed clients and to achieve fault tolerance [1], [2], [3].

A critical choice when designing a geo-replicated data plat-
form is the consistency guarantees that it achieves. At one end
of the consistency spectrum, strong consistency [4] provides
simple semantics, but incurs high latency and does not tolerate
network partitions [5]. At the other end, eventual consistency
provides excellent performance and tolerates partitions [6], but
it is hard to program against.

Causal Consistency. Causal consistency [7] lies between these
two endpoints and is an attractive model for building geo-
replicated data stores. Causal consistency has garnered much
attention as it hits a sweet spot in the ease of programming vs
performance trade-off for this kind of systems [8], [9], [10],
[11], [12], [13], [14]. On the one hand, it avoids the long
latencies and inability to tolerate network partitions of strong
consistency. On the other hand, it is easy to reason about and
avoids some anomalies allowed under eventual consistency.

Existing systems employ different techniques to achieve
causal consistency, but they all share the same key mechanism.
When serving a read operation, a server within a DC returns
the most recent version of an item whose causal dependencies
are known to have been already replicated in that DC. Such
version might be not the freshest one. This invariant allows
such data stores to tolerate network partitions and DC fail-
ures. It demands, however, the implementation of dependency
checking [8], [9] or stabilization protocols [13], [15] to track
the delivery of dependencies. Not only do these protocols
result in computational and communication overhead, but
they also delay the visibility of new versions of data items,
increasing the staleness of the data returned to clients.

Optimistic Causal Consistency. In this paper we argue that
existing protocols are too pessimistic for modern data center
deployments and we propose Optimistic Causal Consistency
(OCC). According to OCC a server always returns the most
recent available version of an item. Potentially unresolved
dependencies are detected by the server upon serving a read
operation, without the need for synchronization with other
servers. This is accomplished by means of cheap dependency
meta-data supplied by the client. When a potential unresolved
dependency is detected, a server waits to receive it.

The effectiveness of our optimistic approach stems from two
main insights. First, recent works have revealed that updates
replication in data stores exhibits a naturally consistent order.
Namely, a data item is typically replicated (and accessed) after
its dependencies have already been propagated [16], [17], [18].
Hence, the most recent version of a data item could typically
be returned without violating consistency [19]. OCC leverages
this insight by having servers waiting to receive missing de-
pendencies when serving a client’s request, rather than relying
on expensive dependency checking and stabilization protocols.
Servers rarely incur such waiting overhead, because of the
naturally consistent order of updates. Hence, OCC maximizes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148028404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the freshness of data returned to clients and improves resource
efficiency with negligible impact on performance.

Second, network partitions can be considered relatively rare
events (and complete DC failures even more rare) [17], [20],
[21], [22]. OCC leverages this insight by avoiding (most
of) the overhead associated with network partition tolerance
during normal operative conditions, and by incurring it only
when a network partition is actually occurring. To this end,
OCC entails the infrequent –hence cheap– execution of a
stabilization protocol to allow a system to fall-back to operate
according to a pessimistic scheme in presence of a network
partition. This design contrasts with existing ones, which incur
dependency checking overhead and expose stale data items to
clients even under normal operational conditions.

Contributions. We make the following contributions.
i) We introduce Optimistic Causal Consistency, discussing its
benefits and inherent performance vs availability trade-offs.
ii) We present the design and implementation of POCC, a
causally consistent protocol that implements OCC. POCC
relies on physical clocks and vector dependency clocks to
succinctly keep track of causal dependencies.
iii) We assess the benefits brought by OCC by comparing
POCC with the (pessimistic) state-of-the-art design to causal
consistency based on physical vector clocks. We run hetero-
geneous workloads on a large scale infrastructure on Amazon,
comprising up to 96 nodes scattered across 3 geo-distributed
sites. Our results indicate that optimistic causal consistency is
effective in minimizing the staleness of data returned to client
and delivers performance that is competitive or better than its
pessimistic counterpart in a wide range of realistic workloads.

The remainder of the paper is structured as follows. Section II
describes the target system model. Section III describes the
approach underlying OCC. Section IV introduces POCC. Sec-
tion V provides the evaluation of POCC. Section VI discusses
related work. Section VII concludes the paper. The Appendix
provides POCC correctness arguments.

II. DEFINITIONS AND SYSTEM MODEL

A. Causal consistency

Causal consistency requires that servers of a system return
values that are consistent with the order defined by the causal-
ity relationship. Causality is a happens-before relationship
between two events [23], [7]. For two operations a, b, we
say that a causally depends on b, and write a b, if and only
if at least one of the following conditions holds:
• Thread-of-execution: a and b are operations in a single

thread of execution, and a happens before b.
• Reads-from: a is a write operation, b is a read operation,

and b reads the value written by a.
• Transitivity: there is some other operation c such that a c

and c b.
Unless stated otherwise, we use lower case letters, e.g., x, to
refer to a key and the corresponding capital letter, e.g., X to
refer to a version of the key. A version X of a data item x is

causally dependent on a version Y of data item y if the write
of X causally depends on the write of Y .

Finally, we define an item X stable in a DC if all the
dependencies of X have already been replicated in such DC.

B. Convergent conflict handling

Two operations a, b are concurrent if neither a b nor
b a. If both a and b are concurrent write operations on the
same key, they conflict. Namely, their result can be propagated
to replicas in different orders, potentially leading to replicas
to diverge forever. To enforce that different replicas converge
to the same value for any key, a protocol must implement a
convergent conflict handling procedure. Such procedure must
implement a commutative and associative function, such that
replicas can manage update replication messages in the order
they receive them and converge to the same state.

The most popular convergent conflict handling functions is
the last-writer-wins rule (Thomas’ write rule [24]): given two
updates, one of them is deterministically decided to having
occurred later than the other, determining the value of the value
written. The implementation of OCC that we present applies,
for simplicity, the last-writer-wins rule to achieve convergent
conflict handling. OCC can, however, be implemented also in
systems that manage conflicts differently [8], [13], [15].

C. System model

We assume a distributed key-value store that manages a
large set of data items. The data-set is split into N partitions
and each key is deterministically assigned to a single partition
according to a hash function. Each partition is replicated at
M different sites, each corresponding to a different datacenter.
Hence, a full copy of the data is stored at each datacenter.

We assume a multiversion data store. An update operation
creates a new version of an item. In addition to the actual value
of the key, each version also stores some metadata, in order to
track causality. The system periodically garbage-collects old
versions of items. We further assume nodes in the system can
communicate through point to point lossless FIFO channels.

The system provides the following operations to the clients:
• PUT(key, val): A PUT operation assigns value val to an

item identified by key. If item key does not exist, the
system creates a new item with initial value val. Else, a
new version storing val is created.

• val ← GET(key): A GET operation returns the value
of the item identified by key. A GET operation is such
that its return value does not break causal consistency as
explained in the following. Assume X is a version of data
item x, Y is a version of data item y and X Y . Suppose
that a client c issues a GET(y) operation, receiving Y as
result. Then, any subsequent GET(x) operation issued by
c must return either X or a version X’ such that X ′�� X .

• 〈vals〉 ← RO-TX〈keys〉: This operation provides a
causally consistent read-only transaction [8], [9]. Namely,
assume X and Y are two versions of items x and y,
respectively. If a read-only transaction returns X and Y,

and X Y, then there does not exist another version of x,
X’, such that X X’ Y.

At the beginning of a session, a client c connects to a node
nc in the closest datacenter according to some load balancing
scheme. c does not issue the next operation until it receives the
reply to the current one. Operations on data items not stored
by nc are transparently forwarded to the node(s) responsible
for such data items, and the result is relayed back to c by nc.

III. OPTIMISTIC CAUSAL CONSISTENCY

In this Section, we describe the design of OCC. We start by
presenting the key principles on which OCC is based. Then we
discuss the data freshness vs availability trade-off that OCC
explores. Finally, we describe the mechanism employed by
OCC to preserve availability during network partitions.

A. The design of OCC

The overall goal of OCC is to maximize the freshness of
data returned to clients without the need to rely on dependency
checking messages or stabilization protocols to enforce causal
consistency. To achieve this goal, OCC implements a client-
assisted lazy dependency resolution protocol. In the following,
we first outline how OCC maximizes the freshness of returned
data items, and then we describe how its dependency resolu-
tion protocol contributes to achieve such goal.

Data freshness maximization. Maximizing the freshness of
data returned to the client takes a different meaning depending
on whether the client performs a GET operation or a RO-TX.
Upon receiving a GET(x) request from a client c, a server p
always returns the freshest version of x that is compatible with
the history of c. If c does not depend on any version of x, then
p returns the most recent version of x that it locally stores.
If c, instead, has established a dependency towards a specific
version X , then p returns the freshest locally available version
of x, noted X ′, such that X ′�� X . The difference with existing,
pessimistic designs lies in that OCC allows p to return X ′ even
if X ′ is not locally stable yet.

In case c reads x from p in the context of a RO-TX
operation, p cannot safely return the freshest available version
of x. Assume that X is the freshest version of x and that
there exist Z, Z′ such that Z Z′ X . If c reads Z within a
transaction, returning X in the same transaction would violate
the semantics of the RO-TX operation as defined in Section II.
To explain how OCC maximizes the freshness of data returned
within the scope of a transaction, we introduce the concept of
snapshot visible to a transaction. We define it as the set of
data items that can be returned to c as a result of a transaction
without violating the semantics of the RO-TX operation. The
optimism of OCC, then, lies in how the boundaries of a
transaction’s snapshot are determined. In OCC, the boundaries
of a transactional snapshot are defined on the basis of the
items currently received by nodes in the local data center
when the transaction is issued. In existing systems, instead,
such boundaries are determined by the set of items that are
stable at the time the transaction is issued.

Client-assisted lazy dependency resolution. Because OCC
exposes unstable items it can be that a client c establishes a
dependency towards an item Z that has not been received yet
by its corresponding local partition pZ . If then c wants to read
such item, OCC must prevent pZ from returning a version of z
that is not causally consistent with c’s history. OCC achieves
causal consistency despite exposing unstable data by means of
a client-assisted lazy dependency resolution protocol, that we
explain in the following.

Clients store information about the causal dependencies
established when performing reads. If c reads Y and there
exists X such that X Y , c needs to record it has established
a dependency towards X and Y . The client-side dependency
meta-data is supplied by c when it performs a later operation.

For a read operation (GET or RO-TX), such information is
needed to allow a server p to determine whether its own state is
consistent with c’s history. Referring to the previous example,
if c wants to read X after it has read Y , the dependency meta-
data provided by c, together with some state information that
p locally stores, allows p to check whether it has already
received X or not. If p has already received X , then the freshest
local version of x that p stores is compatible with c’s history,
and it is returned to c. If p has not received X yet, p must
receive it before serving c’s request. In this case, p simply
stalls c’s request until it receives X .

For a PUT operation, the client-side dependency informa-
tion is needed to know what the newly created item depends
on. Moreover, such information might also be needed to
enforce state convergence. Some convergent conflict handling
schemes, in fact, require that upon writing Y on server p, p
must have already delivered all the versions of y on which Y
causally depends [8], [10], [13]. In this case, in OCC, p must
wait, if necessary, until it has received the freshest version of
y on which the issuing client depends.

On the one hand, this lazy dependency resolution scheme is
cheap to implement, as it does not require any synchronization
among servers. On the other hand, it potentially introduces
delays to serve an operation, thus hurting response times.
The effectiveness of OCC relies on the insight that, typically,
updates are propagated in order of creation. Therefore, a server
typically already stores a version of a key that is causally
consistent with a client’s history. Moreover, suppose that two
items X and Y such that X Y are propagated in a remote
DC in an order that does not respect causality (i.e., first Y ,
then X). A client c in that DC would be prone to be stalled
only if it first accessed Y and then tried to read X . By the time
this sequence of operations takes place, it is very likely that
X has been installed at the DC, avoiding any stall for c.

These claims are backed by empirical evidence gathered
on popular commercial cloud data stores [16], [19], [25], a
massive scale deployment such as Facebook’s [18] and are
also confirmed by analytical models [17].

OCC can be implemented with any dependency tracking
mechanism that has been proposed in literature, e.g., de-
pendency lists [8], dependency matrices [10], physical scalar
clocks [13] and physical vector clocks [15]. Because the client

has to supply dependency information upon each operation,
however, it is paramount to encode dependencies in the most
succinct fashion possible. As we shall show in Section IV,
POCC, our implementation of OCC, meets this requirement
by relying on physical vector clocks, which can keep track
of dependencies with a overhead that is only linear with the
number of data centers in the system.

B. Data Freshness vs Availability

OCC aims to maximize the freshness of data exposed to
clients. Its potentially blocking behavior, however, makes it
vulnerable to network partitions. Suppose, for example, there
are two items X , Y such that X Y . Assume Y gets replicated
to DC′, but X is prevented from doing so by a network
partition. If a client c in DC′ establishes a dependency on
Y and then tries to read X from node p, p must block until
the network partition heals to receive X and, thus, to preserve
causal consistency. If the partition does not heal, however, the
client’s request is blocked indefinitely. Namely, OCC is not
always available, because it cannot guarantee that any client’s
operation is always completed in a finite amount of time.

Existing pessimistic causally consistent protocols do seam-
lessly tolerate network partitions, and full DC failures (which
can be modeled as un-healed network partitions). OCC trades
this ability for a higher freshness in data returned to the client.
This might seem an unduly high cost to pay, given that the
CAP theorem states it is possible for a service to be both
available and network partition tolerant [5].

Highly available OCC. To circumvent this limitation, we
propose to augment OCC with a recovery procedure aimed to
regain availability during network partitions. This procedure
follows the structure outlined by Brewer to breach the CAP
boundaries and it is based on three phases [21]. In the first
phase, the network partition is detected. In the second one, the
system enters a partition-tolerant mode, in which it may give
up some functionalities or properties. The third phase is the
recovery one, during which the system switches back to run
its (non network partition tolerant) protocols.

We explain our recovery mechanism starting from the
aforementioned blocking condition example. If p blocks while
serving a request from c, as soon as p realizes there is
a network partition occurring, it closes the session with c.
A network partition can be identified by p if it blocks for
more than a configurable amount of time. At this point, c re-
initializes its session. This new session is managed according
to a pessimistic protocol and, therefore, is ensured not to block
even during the ongoing network partition. The cost for this
session re-initialization is that the client might not be able to
see the same version of some data items read or written in the
optimistic session. If and when the network partition heals,
the session can be promoted again to be managed according
to the optimistic approach.

Equipped with this recovery mechanism, OCC can be imple-
mented in a highly available fashion, representing a novel and
unexplored trade-off between performance and availability.
Specifically, OCC trades the ability to seamlessly tolerate

network partitions –only minimally impacting the availability
property– with a higher freshness in data returned to clients.

We believe that, for many applications, this is a reasonable,
if not favorable, trade-off. As already stated, in fact, careful
engineering and redundant links make modern geo-distributed
data-centers reliable enough to regard network partitions as
infrequent events [20], [21], [22], [26]. This is also confirmed
by the successful implementation and deployment of strongly
consistent geo-replicated storage systems, which, by the CAP
theorem, do not tolerate network partitions by design [1].

Further, if a network partition does occur, the cost of re-
initializing a client session, both in terms of time and data
visibility, is affordable for many applications, e.g., social
networks. In particular, it is important to note that our recovery
mechanism does not expose the application to any behavior
or anomaly that is not encompassed by a pessimistic imple-
mentation of causal consistency. In fact, an application that
relies on the causal semantics is naturally coded to tolerate
the unexpected re-initialization of a session. This stems by
the stickiness property of causal consistency [27]. Suppose a
client c establishes a session towards a server in DC′. c can
lose the connection towards DC′ because of a network partition
or because of the failure of DC′. In that case, similarly to
what happens in our recovery protocol, c opens a new session
towards a new server in another data center, which might have
not received item versions on which c depends on (and that c
has potentially written) 1.

In the case of a full DC failure or, equivalently, of a network
partition that does not heal, OCC can be subject to what
we define the phenomenon of the lost update. Assume, for
example, there exist X , Y such that X Y and both have
been created in DC′. It can happen that Y gets replicated in
DC′′ and X is prevented to do so because of the failure of
DC′. Then, Y can be read in DC′′ and new items depending
on Y can be written, establishing a dependency towards an
item that will never be received by DC′′. As a consequence,
an OCC would fall-back to run a pessimistic protocol without
the possibility to switch back to operating optimistically.

A possible mechanism to recover from this situation is to
discard items that depend on a lost update and that have been
created after the failure of DC′. This recovery mechanism
causes the loss of some updates. As previously discussed,
however, data loss is a consequence of a DC failure that is
already encompassed also by pessimistic approaches to causal
consistency. In pessimistic approaches, however, only updates
originated in the failed DC can be lost. In OCC, instead, also
updates from healthy DCs might get discarded.

We finally note that the implementation of a mechanism to
recovery from full DC failure is a requirement also for other
state-of-the-art protocols. In GentleRain [13], for example, this
is because a full DC failure prevents nodes in other DCs
to install remote updates. In Cure [15], instead, a recovery
mechanism is needed because healthy DCs might have not

1This limitation is addressed for example by SwifCloud [14], which enables
the transparent client fail-over to another DC [14]. SwiftCloud, however, uses
caching at the client side and also delays the visibility of local updates.

Algorithm 1 POCC: operations at client c
1: function GET(key k)
2: send 〈GETReq k, RDVc〉 to server
3: receive 〈GETReply v, ut, DV, sr〉
4: RDVc← max{RDVc,DV} . Track dependencies
5: DVc← max{RDVc,DVc}
6: DVc[sr]← max{DVc[sr],ut} . Update client’s dependencies
7: return v
8: end function

9: function PUT(key k, value v)
10: send 〈PUTReq kkk,,,vvv,,,DDDVVV ccc〉 to server
11: receive 〈PUTReply uuuttt〉
12: DVc[m]← ut . Update client’s dependency at local replica
13: end function

14: function RO-TX(key-set χ)
15: send 〈RO-TX-Req χχχ,,,RRRDDDVVV ccc〉 to server pppnnn

mmm
16: receive 〈RO-TX-Resp DDD〉
17: for (d ∈ D) do
18: read d as if it was the result of a GET
19: end for
20: end function

received the same set of updates from the failed DC, leading
their states to diverge.

IV. POCC: A SCALABLE IMPLEMENTATION OF OCC

This section presents the design of POCC, a system that
implements OCC. In this paper, we do not present the im-
plementation of the protocols needed to recover from network
partitions or full DC failures, but we only focus on the protocol
run by POCC during normal operational behavior.

In POCC each server is equipped with a physical clock,
which provides monotonically increasing timestamps. We as-
sume that such clocks are loosely synchronized by a time
synchronization protocol, such as NTP [28]. The correctness of
our protocol does not depend on the synchronization precision.

In POCC each update u is assigned a physical clock times-
tamp that represents the time at which the corresponding item
has been created. u is also assigned a dependency vector with
one entry per DC. Because dependencies are tracked at the
granularity of the DC this vector tracks potential dependencies.
Namely, if the i-th entry of the vector is t, the update is
marked as potentially dependent on every item originated
from the i-th DC with timestamp lower than t. Dependency
vectors represent a trade-off between meta-data efficiency and
dependency tracking granularity. On the one hand, they allow
POCC to succinctly track dependencies. On the other hand
they they might cause a client’s request to be (uselessly) stalled
because of a potentially unresolved dependency that does not
correspond to any real dependency.

We now describe the protocol in detail. An informal proof of
POCC correctness is provided in Appendix.

A. Meta-data

Item. An item version d is represented as a tuple
〈k,v,sr,ut,dv〉. k is the unique id that identifies the key of which
d is a version. v is the value of the item. sr is the source
replica of d, namely the id of the data center in which d has
been created by means of a PUT operation. ut is the update

Algorithm 2 POCC: operations at server pm
n

1: upon receive 〈GETReq kkk,,,RRRDDDVVV ccc〉 do
. Ensure pm

n ’s state is consistent with c’s history
2: wait until VV m

n [i]≥ RDVc, i = 0 . . .M−1, i 6= m
3: d = argmaxd.ut{d : d.k == k} . Version of k with highest timestamp
4: send 〈GETReply ddd...vvv,,,ddd...uuuttt,,,ddd...DDDVVV ,,,ddd...sssrrr〉 to client

5: upon receive 〈PUTReq kkk,,,vvv,,,DDDVVV ccc〉 do
. Ensure pm

n ’s state is consistent with c’s history. (Optional: see Sec. IV-B)
6: wait until VV m

n [i]≥ DVc, i = 0 . . .M−1, i 6= m
7: wait until max{DVc}< CCCllloooccckkkmmm

nnn
8: VVVVVV mmm

nnn [m]←CCCllloooccckkkmmm
nnn . Update version vector

9: create new item d
10: d← 〈k,v,m,VV m

n [m],DVc〉
11: insert d to version chain of key k
12: for each server ppp jjj

nnn, j ∈ {0 . . .M−1}, j 6= m do . Replicate d
13: send 〈REPLICATE d〉 to ppp jjj

nnn
14: end for
15: send 〈PUTReply ddd...uuuttt〉 to client

16: upon receive 〈REPLICATE d〉 from ppp jjj
nnn do

17: insert d to version chain of key d.k
18: VVVVVV mmm

nnn [j]←d.ut

19: upon every ∆ time do
20: ct ←CCCllloooccckkkmmm

nnn
21: if ct ≥≥≥VVVVVV mmm

nnn [m]+∆ then
22: VVVVVV mmm

nnn [m]←ct
23: for each server ppp jjj

nnn, j ∈ {0 . . .M−1},k 6= m do
24: send 〈HEARTBEAT cccttt〉 to ppp jjj

nnn
25: end for
26: end if

27: upon receive 〈HEARTBEAT ct〉 from ppp jjj
nnn do

28: VVVVVV mmm
nnn [j]←ct

29: upon receive 〈RO-Xactχχχ,,,RRRDDDVVV ccc〉 from c do
30: χi = {k ∈ χ : partition(k) == i} . Set of requested keys per node
31: D = /0 . Items to return to client
32: TV = max{VV m

n ,RDVc} . Entry wise
33: for (i s.t. χi 6= /0) do
34: send 〈SSSllliiiccceeeRRREEEQQQχχχ iii,,,TTTVVV to pm

i 〉
35: receive 〈SSSllliiiccceeeRRREEESSSPPP DDDiii〉 from pm

i
36: D← D∪Di
37: end for
38: reply 〈DDD〉 to c

39: upon receive 〈SliceREQ χχχ,,,TTTVVV 〉 from pm
i do

40: wait until VV m
n ≥ TV . Ensure pm

n installed all updates in the snapshot
41: D = /0
42: for k ∈ χ do
43: Dk = {d : d.k == k∧d.DV ≤ TV} . Compute visible versions set
44: dk ← argmaxDk {d.ut} . Freshest visible version
45: D← D∪dk
46: end for
47: reply 〈SSSllliiiccceeeRRREEESSSPPP DDD〉 to pm

i

time, i.e., the physical timestamp of the item, computed as the
creation time of the item at its source replica. dv represents
a dependency vector and consists of M entries. dv[i] is the
update time of the item d′ with the highest timestamp such
that i) d′ has been originated at the i−th replica and ii) d
potentially depends on d′.

Client. A client c maintains during its session a dependency
vector DVc and a read dependency vector RDVc, both con-
sisting of M entries. DVc[i] is the update time of the item d
with the highest timestamp such that i) d has been originated
in the i−th datacenter and ii) c has established a potential
dependency towards d. This vector is stored together with any
item c writes. RDVc[i] is the update time of the item d with
the highest timestamp such that i) d has been originated at the

i−th DC and ii) c has read an item that potentially depends
on d. Namely, RDV is computed as the entry-wise maximum
of the dependency vectors associated with items read by c.

Server. pm
n maintains a version vector VV m

n [29], [7] consisting
of M physical timestamps corresponding to updates seen by
pm

n . VV m
n [m] is the highest update timestamp of any update

originated at pm
n . Similarly, pm

n has received all updates with
timestamp up to VV m

n [i](i 6= m) from pi
n.

B. Operations

We now describe how servers running POCC support GET
and PUT operations issued by clients, replicate updates and
exchange heartbeats to stay synchronized. Algorithms 1 and 2
show the pseudo-code of the protocol running at the client and
server side, respectively. In the discussion we indicate a target
client as c. We refer to the server which handles c’s request
as pm

n . pm
n can be the node with which c has established a

session, or the node to which the request has been forwarded
(as described in Section II). As said in Section II, concurrent
updates to the same key are handled by means of the last-
writer-wins rule. The “last” version of a data item is the one
with the highest update timestamp. Ties are broken by looking
at the source replica id (lowest wins).

GET operation. c sends a request 〈GET k, RDVc〉, where
k is the key of the item to be read. pm

n checks whether its
version vector is entry-wise greater than or equal to RDVc.
This check is not done for the m-th entry because dependencies
towards local items are trivially always satisfied. If the check
is positive, it means that pm

n has received all the items of the
n-th partition on which c potentially depends. In this case, pm

n
returns the version in k’s item chain with the highest update
timestamp. If at least one entry of VV m

n is smaller than RDVc,
it means that c potentially depends on an item d that pm

n has
not replicated yet. Since d can represent an instance associated
with key k, pm

n has to wait for its receipt, or else it might return
a version of k that is not causally consistent with c’s history.
Therefore, pm

n blocks until RDVc[i]≤VV [i], i 6= m.
Once pm

n has determined the correct version d to return,
it replies to the client with d’s value, update timestamp,
dependency vector and source replica. The client then tracks
the newly established dependencies, by updating RDVc and
DVc with d’s dependencies and DVc with d’s update time.

PUT operation. c sends a request 〈PUT k,v,DVc〉, where k is
the key of the item to be written and v is the desired value to
associate with k. pm

n , first waits until the local physical clock
is higher than the maximum timestamp in DVc. In this way, pm

n
ensures that the soon-to-be-created item d has a higher update
timestamp than any of its potential dependencies.

pm
n then updates the local entry of its version vector with its

physical clock time and creates a new version d of k. Then, d
is inserted in the version chain corresponding to k. Finally, pm

n
sends a reply with the update time of the newly created item
version to c. Upon receiving d as a reply, c sets the m−th entry
of DVc to d.ut to track the newly established dependency.

Updates replication. pm
n replicates local updates asyn-

chronously by sending them in update timestamp order to its
replicas at the other DCs. When a server receives a replicated
update d from replica pm

n , it inserts d in the corresponding
version chain and advances its m-th entry of its local version
vector to the update time of d.

Heartbeats. If pm
n does not receive update requests from

clients, it does not send replication messages to its replicas
either. Therefore, other replicas cannot increase the m-th entry
in their version vector. Keeping the version vector up-to-date,
as we shall see, is necessary to implement a garbage collection
protocol to remove stale versions of data items. Therefore,
a partition that does not receive requests for local updates
for a time longer than ∆ broadcasts its latest clock time to
its replicas. It does so by piggybacking the clock time in
the heartbeat messages used by failure detectors. Heartbeat
messages and update replication messages are sent in order of
increasing update timestamps and clock values.

RO-TX. A client c sends a request 〈RO-TX χ,RDVc〉 to a
server pm

n , where χ is the set of keys to be read. Upon
receiving the request, pm

n first determines the timestamp vector
of the snapshot visible to the transaction TV . As said in
Section III-A, when serving a transaction pm

n cannot simply
return the freshest version of a key. Thus, TV has to be as
recent as possible, to avoid returning excessively stale versions
of the requested data items, and must include all potential
dependencies established by the client. Hence, TV is computed
as the entry-wise maximum between VV m

n and RDVc. Then,
pm

n sends TV to every node pm
i that holds at least one key in

χ , together with the set of keys pm
i has to read.

Garbage collection. Periodically, nodes within a DC exchange
the vector corresponding to the aggregate maximum of the TV
vectors corresponding to active transactions. If on pm

n there
is no running transaction, pm

n sends VV m
n . The servers, then,

compute the garbage collection vector GV as the aggregate
minimum of the received vectors. Then, each server pm

m scans
the version chain of keys it replicates in descending timestamp
order. For each key k, pm

n retains up to and including the
first version dk such that dk.DV ≤ GV . Namely, pm

n keeps the
oldest version of k that can be accessed within the scope of a
transaction, and removes oldest versions.

C. Highly available POCC

To achieve high availability in presence of network parti-
tions POCC must be able to fall-back to a pessimistic protocol.
Because POCC is based on physical vector clocks, POCC can
be easily augmented to fall-back to run the protocol imple-
mented in Cure [15], a recent causally consistent system also
based on physical vector clocks 2. We call Highly Available
POCC (HA-POCC) the resulting augmented version of POCC.

In Cure, nodes within a DC periodically run a stabilization
protocol. It consists of exchanging their version vectors and

2Cure’s programming model is transaction-centric. It is, however, straight-
forward to adapt Cure to support GET and PUT operations.

computing the aggregate minimum called Globally Stable
Snapshot (GSS). GSS[i] = t means that all nodes within a
DC have installed all updates originated in the i-th DC. In
Cure a remote item d is visible only if d.DV ≤GSS, meaning
that all d’s dependencies have been received. Local items are
immediately visible, because they depend only on stable items.

HA-POCC runs this stabilization protocol much less fre-
quently than Cure, because HA-POCC only needs to use the
GSS in the uncommon case of suffering from a network par-
tition. HA-POCC, thus, reduces the overhead associated with
the stabilization protocol during normal operational behavior.
Because the GSS is infrequently updated, however, this higher
resource efficiency comes at the cost of an increased perceived
data staleness during network partitions. We argue this is a
favorable trade-off, since network partitions are rare events.

During network partitions, HA-POCC runs Cure’s protocol
except for one detail. In Cure, local data items are always
visible, because they depend on stable items. In HA-POCC,
however, a local item can depend on remote items that are
not stable yet, or that have not even been replicated in the
current DC yet. Therefore, HA-POCC needs to distinguish
between clients that are running the optimistic protocol and
clients that are running the pessimistic protocol. In this way,
servers can recognize a local item d created by an optimistic
client and make d visible to pessimistic clients only if d is
stable according to the pessimistic protocol.

Finally, HA-POCC adopts the garbage collection protocol
of Cure, because HA-POCC needs to keep the oldest version
of an item that could be accessed by the pessimistic protocol.

V. EVALUATION

In this section we evaluate the effectiveness of OCC.
Because OCC departs from the traditional way causal con-
sistency is achieved, in this paper we primarily want to assess
whether OCC can be efficiently implemented and can deliver
performance that is competitive with pessimistic designs while
increasing data freshness. Specifically, the focus of this eval-
uation is on performance during normal operational behavior,
i.e., in the absence of network partitions, which is the behavior
expected during the vast majority of its running time. We
leave the investigation of the behavior of the system during a
network partition and its recovery for future work.

To evaluate the effectiveness of OCC, we compare the
performance achieved by POCC with the one of Cure∗, a
reimplementation of Cure [15], a state-of-the-art causally
consistent system based on vector clocks. Because Cure only
supports transactional operations, we have augmented Cure∗

with support for simple GET and PUT operations. We can
compare POCC and Cure∗ in a fair manner because the amount
of meta-data exchanged by clients and servers to implement
the operations is the same. The two mainly differ in that POCC
does not run any stabilization protocol and does not need to
search for a stable version of a key when serving a GET.

A. Experimental test-bed
We consider an Amazon AWS deployment consisting of 3

DCs and 32 partitions per DC. The data centers are located

in Oregon, Virginia and Ireland. We use c4.large instances,
corresponding to 2 virtual CPU and 3.75 GB of RAM.

All data is kept in memory and no fault tolerance mech-
anism is implemented. This allows us to isolate the effects
of OCC from the dynamics of the specific fault tolerance
mechanism implemented, e.g., primary copy [30], Paxos [31]
or chain replication [32].

Each data partition is composed of one million key-value
pairs. We consider small items, with both keys and values of
8 bytes, because they are predominant in many production
workloads [2], [33], [34], [35]. Keys are chosen within each
partition according to a zipf distribution with parameter 0.99.

Clients are collocated with servers, establish their sessions
with the collocated server and perform operations in closed
loop. We introduce a think time between client operations
to simulate a more realistic workload, in which a client
does not simply injects requests but also processes the result
of a performed operation. Naturally, having a think time
between operations also lowers the chances that a request
blocks when using OCC, because it gives time to servers to
receive potentially missing client dependencies. We set the
think time to 25 milliseconds. This value is low enough to
avoid masking the blocking dynamics in POCC and high
enough to allow us to fully load the compared systems without
requiring an excessive number of client threads. We note that
25 milliseconds is orders of magnitude lower than the think
time used in standard session-based benchmarks like TPC-
W [36], TPC-C [37], SpecWeb2005 [38] and Rubis [39], and
therefore allows us to benchmark the effectiveness of OCC in
a particularly challenging setting.

We run NTP [28] to keep physical clocks synchronized. As
in previous work [15], clocks are synchronized before each
experiment. We use the NTP server 0.amazon.pool.ntp.org.

Both POCC and Cure∗ use the last-writer-wins rule to arbi-
trate conflicting updates to the same key. In POCC we enable
the waiting condition in the server side handling of a PUT
request (Algorithm 2 Line 6). Despite this not being needed to
implement the last-writer-wins rule, this allows us to observe
the behavior that POCC would have when implementing a
different convergence conflict handling mechanism.

Heartbeats are sent by a node if it does not serve any put
request for 1 millisecond. The stabilization protocol in Cure∗

is run every 5 milliseconds.

B. Get-Put workload

We start by experimenting with a workload in which clients
issue GET and PUT requests. In such a workload, a GET:PUT
ratio of N : M means that each client issues N consecutive
GETs followed by one PUT. Each GET operation targets a
different partition. The PUT operation is issued against a key
in a partition chosen uniformly at random.

Scalability. In the first experiment, we asses the scalability
of POCC. To this end, we deploy POCC and Cure∗ on a
system composed of different partitions (from 2 to 32) and we
measure the maximum achievable throughput. The GET:PUT
ratio is p : 1, where p denotes the number of partitions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

2 4 8 16 24 32T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

e
c
)

Partitions

Cure*
POCC

(a) Throughput while varying the number
of partitions.

 5

 10

 15

 20

 25

 30

 35

 0.45 0.5 0.55 0.6 0.65 0.7

A
v
g
.
re

s
p
.
ti
m

e
 (

m
s
e
c
)

Throughput (Mops/sec)

Cure* POCC

(b) Avg. resp. time on 32 partitions with
a 32:1 GET:PUT workload.

 0.5

 0.6

 0.7

32:1 16:1 8:1 4:1 2:1 1:1T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

e
c
)

GET:PUT ratio

(c) Throughput on 32 partitions with dif-
ferent GET:PUT workloads.

Fig. 1. Scalability and performance with workloads composed of GET and PUT operations in Cure∗ and POCC.

Figure 1a reports the result of this experiment. The plot shows
that the two systems achieve basically the same throughput,
showing that the optimistic approach can be implemented
with no throughput loss with respect to the corresponding
pessimistic implementation.

Response time. In the next experiment we fix the number
of partitions to 32 and we investigate the average operation
response time achieved while increasing the workload inten-
sity. The result of the experiment is depicted by Figure 1b.
It is possible to see that POCC achieves a slightly lower
response time than Cure∗ before reaching the saturation point
at about 0.65 Mops/sec. This is because, as we shall see more
in detail later, POCC rarely blocks upon serving an operation
and it is more resource efficient than Cure∗. POCC, in fact,
never traverses an item’s version chain, nor needs to run any
stabilization protocol (or can run it much more infrequently).
Under very high load, POCC performs slightly worse than
Cure∗, because the better resource efficiency is outweighed
by the incidence and extent of operations blocking.

Sensitivity to write intensity. We now assess the sensitivity
of the two systems to the workload write intensity. To this end,
we run workloads with different GET:PUT ratios (from 32:1 to
1:1) on a 32 partitions deployment. As shown by Figure 1c, the
throughput achieved by the two systems naturally decreases
the write intensity increases. The performance degradation,
however, is more evident for POCC because of its potentially
blocking behavior. In fact, a higher update rate implies a
higher likelihood that the delivery of a replicated updated
is delayed yielding an operation to block in another DC.
POCC, however, remains competitive with Cure∗, achieving
a maximum throughput loss of 10% (corresponding to the 2:1
ratio). This result shows that OCC is more suited for read
intensive workloads. Luckily, typical production workloads are
heavily read dominated, attaining GET:PUT ratios that are
even much higher than the one targeted by our evaluation (up
to 300:1) [3], [33], [40].

Blocking dynamics vs staleness. We now investigate the
blocking behavior of POCC and the staleness of data returned
to client by Cure∗. Evaluating these two metrics allows us to
understand the implications of the pessimistic and optimistic
designs, and it is instrumental to better understand the perfor-
mance results presented so far. To this end, Figure 2 reports

statistics about the blocking incidence with POCC (Figure 2a)
and about the data staleness perceived by the clients with
Cure∗ (Figure 2b). The results refer to the aforementioned
32:1 GET:PUT workload run over 32 partitions.

Figure 2a, specifically, reports the probability that, in
POCC, an operation blocks and the average blocking time
for a blocked operation. The plot shows that the blocking
probability is negligible under moderate to high load and
that becomes noticeable only as the system approaches the
maximum achievable throughput (0.65 Mops/sec). A similar
dynamic is exhibited by the blocking time, which is in the
order of a few microseconds as long as the system is not
heavily loaded. The plot shows that, as long as the workload
intensity is not too close to the maximum sustainable (i.e., up
to 0.6 Mops/sec), the possible blocking behavior of POCC
has a negligible effect. In particular, up to 0.6 Mops/sec the
blocking probability is lower than 0.001, meaning that the
99.999-th percentile of the operation response times is not
affected by the blocking behavior of POCC. Only when the
workload reaches POCC’s saturation point the system becomes
very prone to stall client requests, reaching a block probability
higher than 0.01.

To describe the results corresponding to data staleness in
Cure∗ we first provide a definition of old and unmerged
returned data item. We define a data item “old” if the version
returned to the client is not the one with the highest timestamp.
We define a data item “unmerged” if there is at least one
version of the data item that is not stable yet, regardless of
whether the version of the item returned to the client is the
freshest. Naturally, an old item is also unmerged, because it
means that the returned version has not been merged with other
remote versions with higher timestamp that are not visible yet.
The vice-versa is not true because it is possible that the version
with the highest timestamp is visible in because it is local, yet
there are older versions not yet stable.

We measure statistics for both old and unmerged data
items to characterize the data staleness perceived by clients
depending on the convergence conflict handling mechanism
implemented. Under the last-writer-wins rule, a client sees
stale data if the returned version of the requested item is old.
With more complex convergent conflict handling mechanisms,
instead, a client sees stale data if the returned item version
has not been merged with all the concurrent and possibly

10
-6

10
-5

10
-4

10
-3

10
-2

 0.45 0.5 0.55 0.6 0.65

150

 0.04

 1

 25

B
lo

c
k
in

g
 p

ro
b
.
(l
o
g
)

B
lo

c
k
in

g
 t
im

e
 (

m
s
,
lo

g
)

Throughput (Mops/sec)

Blocking probability
Blocking time

(a) Blocking behavior in POCC.

 0

 5

 10

 15

 20

 25

 30

 35

 0.45 0.5 0.55 0.6 0.65

 0

 3

 6

 9

 12

 15

%
 A

ff
e
c
te

d
 G

E
T

#
 V

e
rs

io
n
s
 i
n
 c

h
a
in

Throughput (Mops/sec)

% Old
% Unmerged

Fresher vers.
Unmerged vers.

(b) Data staleness on Cure∗.

Fig. 2. Blocking incidence in POCC and perceived data staleness in Cure∗
(32 partitions, 32:1 GET:PUT workload).

conflicting updates to the corresponding key.
Figure 2b shows the percentage of old data items returned

in Cure∗ and the number of fresher versions available in the
version chain of an old returned data item. The figure also
shows the percentage of unmerged data items returned in
Cure∗ and the number of unmerged versions available in the
version chain of an unmerged returned data item. The plot
shows that the probability to return stale data increases with
the load. This is not only because of a higher remote update
rates. It is also because higher contention on physical resources
slows down the execution of the stabilization protocol needed
to identify stable versions. In fact at high load, but before
the saturation point, the percentage of returned old, resp.
unmerged, items almost reaches 15%, resp. 10%. When Cure∗

is highly loaded, the percentage of returned stale data items
grows as high as 30%.

We note that in bigger deployments the execution of the
stabilization protocol would naturally progress at a lower pace,
with a commensurate increase in the perceived staleness. In
addition, these results correspond to running the stabilization
protocol every 5 milliseconds. Higher values would allow the
system to reach a higher throughput (as shown in previous
work [13]), but would come at the cost of an increased data
staleness. By contrast, POCC is immune to this trade-off.

Summary of the results. Figure 1b and Figure 2 reveal
that POCC is competitive with Cure∗ even under high load,
when POCC is prone to block more frequently and for a
longer amount of time. POCC achieves this result because
blocking is a rare event, thus not hurting the the vast majority
of operations, and because a blocked operation yields the
CPU, thus increasing the amount of computational resources
available to quickly serve non-blocked operations. In Cure∗,
instead, data staleness yields to a higher CPU demand to
traverse the version chain upon serving a GET operation and
all the requests concurrently compete for the CPU, mutually
hurting each other’s performance.

C. Transactional workload

We now assess the performance of POCC when facing
a workload composed of PUT operations and transactional
reads. To this end, we run on 32 partitions a workload in which
each client first issues a RO-TX to read p items corresponding
to p distinct partitions, and then performs a random PUT. p
is varied from 1 to 32.

Transactional scalability. Figure 3a shows the throughput
achieved by POCC and Cure∗ while increasing the number of
partitions involved in a read-only transaction. The plot shows
that the performance of POCC and Cure∗ are comparable –
with POCC being slightly better in general– when the number
of involved partitions is small. The gain of POCC over Cure∗

becomes more noticeable (up to 15%) when a transactions
involves the majority of the partitions in the system. This
is because, as the number of involved partition increases,
executing a transaction becomes more resource demanding.
POCC, then, achieves a higher throughput because it is more
resource efficient than Cure∗.

Throughput and response time. We now investigate the
throughput and response time dynamics while increasing the
number of active clients. Figure 3b depicts the throughput and
average RO-TX response time achieved by POCC and Cure∗

when transactions involve half of the partitions in the system.
The plot reveals that, despite reaching the same maximum
throughput, the two systems exhibit very different performance
dynamics. The throughput of POCC, in fact, drops after having
reached its maximum value. This is caused by a surge in the
average response time of read-only transactions. By contrast,
the throughput of Cure∗ plateaus after having reached its
maximum value, and its average RO-TX response time steadily
increases with the number of active clients. The difference in
the behavior exhibited by the systems is due to the blocking
dynamics of POCC, as we explain in the next paragraph.

Blocking behavior. Figure 3c shows the probability that a
PUT or a transactional read stalls on a server and the average
amount of time a stalled request is delayed. The reported
results correspond to the same workload as in the previous
paragraph. The plot shows highly non-linear dynamics. The
operation blocking probability peaks in correspondence of
64 active threads per partition, which corresponds to the
peak throughput. In correspondence of lower throughputs, the
blocking probability decreases because of the lower update
rate in the system. The blocking time of stalled operations
instead, decreases from 32 to 64 clients and then quickly
grows. We argue that the rationale behind this dynamic is as
follows. At low throughput, there is also a low rate of updates.
Hence, provided that an operation blocks on a server p, p is
expected to wait a relatively long time before receiving the
update or the heartbeat that unblocks the pending operation.
In correspondence of 64 clients per partition, the throughput
is high enough to reduce such waiting time. When the number
of clients grows too high, performance and blocking dynamics
are mainly determined by the high contention on physical
resources. This causes the delayed processing of updates and
heartbeats messages, yielding to very high blocking times (and
blocking probability). This, on its turn, yield the throughput
to plummet.

Data staleness. As already explained in Section III-A, with
transactions, OCC does not in general return the freshest
version of a key. Therefore, both POCC and Cure∗ are prone

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 5 10 15 20 25 30T
h
ro

u
g

h
p
u
t
(M

o
p
s
/s

e
c
)

Contacted partitions/RO-TX

Cure* POCC

(a) Throughput while varying number
of contacted partitions per transaction.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 150 200

 100

 200

 300

 400

 500

 600

 700

 800

 900

T
h
ro

u
g

h
p
u
t
(M

o
p
s
/s

e
c
)

R
O

-T
X

 a
v
g
.
re

s
p
.
ti
m

e
 (

m
s
e
c
)

#Clients/partition

Cure*-Thr
POCC-Thr

Cure*-Resp
POCC-Resp

(b) Throughput and avg. resp. time
with different # clients per partition.

10
-5

10
-4

10
-3

10
-2

10
-1

 50 100 150 200

150

 25

B
lo

c
k
in

g
 p

ro
b
.
(l
o
g
)

B
lo

c
k
in

g
 t
im

e
 (

m
s
,
lo

g
)

#Cliets/partition

Blocking probability
Blocking time

(c) Blocking behavior in POCC with
different # clients per partition.

 0.01

 0.1

 1

 10

 40 80 120 160 200

%
 A

ff
e
c
te

d
 G

E
T

#Clients/partition

Cure*-Old
POCC-Old

Cure*-Unm

(d) Data staleness in POCC and Cure∗
with different # clients per partition.

Fig. 3. Comparison of POCC and Cure∗ with a workload composed of PUT and RO-TX operations. The systems are deployed on 32 partitions per DC.

to return stale data. In this paragraph we compare the staleness
of data returned to client by POCC and Cure∗. In particular,
Figure 3d reports the percentage of old data items returned by
the two systems and of unmerged items returned by Cure∗. The
plot does not report statistics for unmerged items in POCC. In
POCC, in fact, all the item versions behind the returned one
in the version chain have already been merged. Therefore, in
the context of transactional reads in POCC, the definitions of
old and unmerged item coincide.

The plot shows that the staleness exhibited by POCC is two
orders of magnitude lower than Cure∗’s. This is because POCC
defines the boundaries of items visible within a transaction on
the basis of the issuing client’s history and the set of items
received by the transaction coordinator node. Cure∗, instead,
defines such boundaries in terms of items that are stable on
the transaction coordinator node, thus being much more prone
to read old values.

Summary of the results. We have shown that OCC is able to
achieve higher performance than a pessimistic design in the
case of workloads composed of PUT and RO-TX operations.
The cause for this performance increase is mainly the higher
resource efficiency enabled by OCC. Transactions are, in fact,
more demanding both in terms of computational resources
and communication. Therefore, with a workload composed
of transactions, POCC higher resource efficiency pays off
more than the case of a workload consisting of simple GET
operations. Our results also confirm the capability of OCC to
deliver much fresher data to clients than what is made possible
by a pessimistic design.

VI. RELATED WORK

Our proposal is primarily related to the vast literature on
causally consistent systems, which include Eiger [9], Bolt-
on causal consistency [12], ChainReaction [11], Orbe [10],
GentleRain [13], SwiftCloud [14] and Cure [15]. These sys-
tems differ in the mechanism they employ to achieve causal
consistency. Some of them use logical clocks and rely on the
exchange of dependency messages to determine the visibility
of remote updates. Dependencies are tracked at the item [8],
operation [9] or partition [10] granularity. Other systems use
physical clocks [13], [15] and run a periodic stabilization
protocol to identify stable items. The common trait of these
systems is that they are pessimistic, i.e., a remote data item
becomes locally visible only when all its dependencies have

been received in the local data center. OCC differs from
this approach because it makes any update visible as soon
as it is received by a server. The primary aim of OCC
are maximizing data freshness and alleviating the overhead
incurred by dependency checking and stabilization protocols.

OCC is also related to the literature on speculative systems.
Speculation consists of optimistically processing an operation
even if previous operations have not been fully completed
yet and only their tentative result is available. If the tentative
result differs from the later final one, the system rollbacks to a
consistent state. Speculation has been investigated in a variety
of contexts, including processor architectures [41], operating
systems [42], simulators [43], concurrency control schemes
for transactional systems [44], and recent systems that can
concurrently support different consistency levels [19]. The
primary aim of speculation is to reduce operation response
times by avoiding to wait for the expensive computation
of the final value of an operation. OCC, instead, embraces
an optimistic approach to maximize the freshness of data
returned to client and to reduce the overhead for dependency
checking/stabilization. As we have shown, however, in many
cases the better resource efficiency enabled by OCC can also
yield performance gains in terms both of response times and
achievable throughput.

VII. CONCLUSION AND FUTURE WORK

We have presented OCC, an optimistic approach to achieve
causal consistency in geo-replicated key-value stores. OCC
regards network partitions and data center failures as rare
events in modern deployments. Therefore, OCC trades some
of the availability properties achievable by causal consistency
for a higher freshness in the data returned to clients and a
higher resource efficiency.

We have implemented OCC in a system named POCC.
We have shown that POCC can achieve performance that
is comparable or better than its “pessimistic” counterpart in
a wide range of workloads, while being able to reduce (or
eliminate) the staleness of the data returned to clients.

In this paper, we have focused on assessing the benefits of
OCC during normal operational behavior, i.e., in the absence
of network partitions. As future work, we plan to quantitatively
assess the performance and behavior of POCC in presence of
network partitions and full data center failures.

REFERENCES

[1] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Google’s globally distributed
database,” ACM Trans. Comput. Syst., vol. 31, no. 3, pp. 8:1–8:22, Aug.
2013.

[2] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at facebook,” in Proc. of NSDI,
2013.

[3] S. A. Noghabi, S. Subramanian, P. Narayanan, S. Narayanan, G. Holla,
M. Zadeh, T. Li, I. Gupta, and R. H. Campbell, “Ambry: Linkedin’s
scalable geo-distributed object store,” in Proc. of SIGMOD, 2016.

[4] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3,
pp. 463–492, Jul. 1990.

[5] E. A. Brewer, “Towards robust distributed systems (abstract),” in Proc.
of PODC, 2000.

[6] W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1, pp.
40–44, Jan. 2009.

[7] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal
memory: Definitions, implementation, and programming,” Distributed
Computing, vol. 9, no. 1, pp. 37–49, 1995.

[8] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: Scalable causal consistency for wide-area storage
with cops,” in Proc. of SOSP, 2011.

[9] ——, “Stronger semantics for low-latency geo-replicated storage,” in
Proc. of NSDI, 2013.

[10] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe: Scalable causal
consistency using dependency matrices and physical clocks,” in Proc.
of SoCC, 2013.

[11] S. Almeida, J. a. Leitão, and L. Rodrigues, “Chainreaction: A causal+
consistent datastore based on chain replication,” in Proc. of EuroSys,
2013.

[12] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Bolt-on causal
consistency,” in Proc. of SIGMOD, 2013.

[13] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gentlerain: Cheap
and scalable causal consistency with physical clocks,” in Proc. of SoCC,
2014.

[14] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas, and
M. Shapiro, “Write fast, read in the past: Causal consistency for client-
side applications,” in Proc. of Middleware, 2015.

[15] D. D. Akkoorath, A. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,
N. Preguiça, and M. Shapiro, “Cure: Strong semantics meets high
availability and low latency,” in Proc. of ICDCS, 2016.

[16] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data consis-
tency properties and the trade-offs in commercial cloud storage: the
consumers’ perspective,” in CIDR 2011, Fifth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 9-12,
2011, Online Proceedings, 2011, pp. 134–143.

[17] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Sto-
ica, “Probabilistically bounded staleness for practical partial quorums,”
Proc. VLDB Endow., vol. 5, no. 8, pp. 776–787, Apr. 2012.

[18] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus,
S. Kumar, and W. Lloyd, “Existential consistency: Measuring and
understanding consistency at facebook,” in Proc. of SOSP, 2015.

[19] R. Guerraoui, M. Pavlovic, and D.-A. Seredinschi, “Incremental consis-
tency guarantees for replicated objects,” in Proc. of OSDI, 2016.

[20] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage
for geo-replicated systems,” in Proc. of SOSP, 2011.

[21] E. Brewer, “Cap twelve years later: How the ”rules” have changed,”
Computer, vol. 45, no. 2, pp. 23–29, 2012.

[22] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A fault-
tolerant engineered network,” in Proc. of NSDI, 2013.

[23] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[24] R. H. Thomas, “A majority consensus approach to concurrency control
for multiple copy databases,” ACM Trans. Database Syst., vol. 4, no. 2,
pp. 180–209, Jun. 1979.

[25] E. Anderson, X. Li, M. A. Shah, J. Tucek, and J. J. Wylie, “What
consistency does your key-value store actually provide?” in Proc. of
HotDep, 2010.

[26] P. Bailis and K. Kingsbury, “The network is reliable,” Queue,
vol. 12, no. 7, pp. 20:20–20:32, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2639988.2639988

[27] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein,
and I. Stoica, “Highly available transactions: Virtues and limitations,”
Proc. VLDB Endow., vol. 7, no. 3, pp. 181–192, Nov. 2013. [Online].
Available: http://dx.doi.org/10.14778/2732232.2732237

[28] “NTP: The network time protocol,” http://www.ntp.org.
[29] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker,

E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline, “Detection
of mutual inconsistency in distributed systems,” IEEE Trans. Softw. Eng.,
vol. 9, no. 3, pp. 240–247, May 1983.

[30] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new primary
copy method to support highly-available distributed systems,” in Proc.
of PODC, 1988.

[31] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, May 1998.

[32] R. van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability,” in Proc. of OSDI, 2004.

[33] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load analysis of a large-scale key-value store,” in Proc. of SIGMETRICS,
2012.

[34] “How much text versus metadata is in a tweet?” http://goo.gl/EBFIFs.
[35] “Storing hundreds of millions of simple key-value pairs in redis,”

http://goo.gl/ieeU17.
[36] D. F. Garcı́a and J. Garcı́a, “Tpc-w e-commerce benchmark evaluation,”

Computer, vol. 36, no. 2, 2003.
[37] D. R. Llanos and B. Palop, “Tpcc-uva: an open-source tpc-c implemen-

tation for parallel and distributed systems,” in Proc. of IPDPS, 2006.
[38] R. Hariharan and N. Sun, “Workload characterization of specweb2005,”

in SPEC Benchmark Workshop, 2006.
[39] S. Elnikety, S. Dropsho, E. Cecchet, and W. Zwaenepoel, “Predicting

replicated database scalability from standalone database profiling,” in
Proc. of EuroSys, 2009.

[40] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “Tao: Facebook’s distributed
data store for the social graph,” in Proc. of ATC, 2013.

[41] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edi-
tion: A Quantitative Approach, 5th ed. Morgan Kaufmann Publishers
Inc., 2011.

[42] E. B. Nightingale, P. M. Chen, and J. Flinn, “Speculative execution in
a distributed file system,” ACM TOCS, vol. 24, no. 4, Nov. 2006.

[43] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. Diloreto, “Time
warp operating system,” in Proc. of SOSP, 1987.

[44] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM TODS, vol. 6, no. 2, Jun. 1981.

APPENDIX: CORRECTNESS OF POCC

We now provide an informal proof sketch that POCC
provides causal consistency. Namely, we show that an item
returned to a GET operation never violates causal consistency,
and that the set returned by a RO-TX is a causal snapshot
according to the definition provided in Section II.

We start by proving two Propositions that we will use to
build the correctness proof.

Proposition 1. Let X, Y be two data items such that X Y .
Then, Y.DV [X .sr]≥ X .ut.

Proof. This invariant stems from the fact that a client c
tracks the dependencies established by any read/written item
and stores such dependencies with the data items it writes.
Specifically, upon reading an item d, c transitively tracks
d’s dependencies by computing the entry-wise maximum
between DVc and the d.DV , and storing the result as new DVc.

http://doi.acm.org/10.1145/2639988.2639988
http://dx.doi.org/10.14778/2732232.2732237

Further, upon reading/writing an item d, noting i the source
replica of d, c tracks the direct dependency on d by setting
DVc[i] = max{DVc[i],d.ut}. Finally, when writing a data item
d, c stores DVc with d. �

Proposition 2. Let X, Y be two data items such that X Y .
Then, X .ut < Y.ut.

Proof. A client c that has established a dependency towards
X is such that DVc[X .sr] ≥ X .ut. When c tries to write Y on
pm

n , Algorithm 2 Line 7 enforces that Clockm
n is strictly higher

than the maximum value in DVc. Therefore, because Clockm
n

is used as update timestamp for Y , it is Y.ut > X .ut. �

We now show that POCC delivers causal consistency.

Proposition 3. Causally consistent GET operation. Let
client c read Y such that X Y . Then, if c later issues a
GET (x) operation, c reads X ′ such that either X ′ = X or
X ′�� X.

Proof. The proposition is verified because upon processing a
GET operation issued by c for a key x, a node pm

n waits until
it is positive to return a version of x that complies with c’s
history. We prove this by contradiction, by assuming that there
is a X0 X Y and showing that if pm

n returns X0, then it
has not respected the protocol of POCC.

Because X0 X , it is, by virtue of Proposition 2, X0.ut <
X .ut. In addition, because X Y , Proposition 1 enforces that
DVc[X .sr] ≥ X .ut. If pm

n returns X0 it means that it has not
received X yet. If pm

n had received X , it would have returned
it because X has a higher timestamp than X0 and POCC returns
the version of a key with the highest timestamp. To return X ,
however, pm

n must pass the waiting condition in Algorithm 2
Line 2. In particular, because DVc[X .sr] ≥ X .ut ≥ X0.ut, it
must be that VV m

n [X .sr]≥ X .ut. This, however, is impossible
because pm

n has not received X and updates and heartbeats are
sent by nodes in timestamp order.

�

Proposition 4. Causally consistent RO-TX operation. The
result of a RO-TX issued by a client c represents a causally
consistent snapshot and is causally consistent with the history
of operations issued by c.

Proof. We first show that the data returned to c are causally
consistent with c’s history. This stems from the fact that the
snapshot vector corresponding to a read-only transaction is
computed as the entry-wise maximum between the version
vector of the transaction coordinator and the read dependency
vector of the client (Algorithm 2 Line 32). This means that
the snapshot includes every item read or written by c, and any
transitive dependency induced by such items. Before serving
a transactional read, a server pm

n waits until its vector clock is
at least entry-wise equal to the snapshot vector (Algorithm 2
Line 40). Therefore, for the same reasons presented for the
GET operation case, POCC enforces that pm

n does not return
any item that is not causally consistent with c’s history.

We now show that a RO-TX operation returns a causal
snapshot. Namely, assume that X X ′ Y and that c reads x
and y in the same transaction. Then, if the returned snapshot
contains Y , it also contains X ′.

By contradiction, assume that the returned snapshot includes
Y and X . Because X X ′ Y , it stems from Proposition 1
that Y.DV [X ′.sr] > X ′.ut and Y.DV [X .sr] ≥ X .ut. In addition,
since Y is in the returned snapshot, it follows that TV ≥Y.DV
(Algorithm 2 Line 43). Therefore, it is SV [X ′.sr]≥Y [X ′.sr]>
X ′.ut and SV [X .sr] ≥ Y [X .sr] > X .ut. Then, by virtue of
the blocking condition in Algorithm 2 Line 40, the server
replicating x, noted px has received both X and X ′ by the time
it serves the RO-TX request from the client. Then, px cannot
return X instead of X ′ because i) X X ′ and Proposition
2 enforces that X .ut < X ′.ut and ii) px returns the item in
the version chain with the highest timestamp (provided that
its dependency vector is entry-wise smaller than or equal to
TV). �

	Introduction
	Definitions and System model
	Causal consistency
	Convergent conflict handling
	System model

	Optimistic Causal Consistency
	The design of OCC
	Data Freshness vs Availability

	POCC: a scalable implementation of OCC
	Meta-data
	Operations
	Highly available POCC

	Evaluation
	Experimental test-bed
	Get-Put workload
	Transactional workload

	Related work
	Conclusion and Future Work
	References

