
Orchestration Graphs: Enabling Rich Social Pedagogical
Scenarios in MOOCs

Stian Håklev
Ecole Polytechnique Fédérale

de Lausanne
stian.haklev@epfl.ch

Louis Faucon
Ecole Polytechnique Fédérale

de Lausanne
louis.faucon@epfl.ch

Thanasis Hadzilacos
Open University of Cyprus and
Ecole Polytechnique Fédérale

de Lausanne
thanasis.hadzilacos@ouc.ac.cy

Pierre Dillenbourg
Ecole Polytechnique Fédérale

de Lausanne
pierre.dillenbourg@epfl.ch

ABSTRACT
One of the initial promises of MOOCs was to enable partic-
ipants from around the world to learn and build knowledge
together, however existing MOOC platforms are very limited
in their collaborative functionality. Using a recent educational
modeling language which can express a broad diversity of
educational scenarios, we present a technical infrastructure
design and prototype which enables instructors to design and
run pedagogically rich and therefore complex scenarios. We
present this as a theoretical and technical contribution to sup-
port a broad program of research and innovation related to
collaborative learning at scale.

Author Keywords
MOOCs; Scripting; Orchestration.

INTRODUCTION
Globally distributed MOOCs are characterized by large num-
bers of learners, and significant student diversity, in terms of
geographical location, life experience, culture and language.
Ideally, we would treat the number of learners, and their di-
versity, as an astounding opportunity for rich learning and
communal knowledge building, rather than as an obstacle to
be overcome.

However, several studies show that simply asking students to
solve a task or discuss a problem is unlikely to engage them in
a productive process of collaborative knowledge construction
[1]. A key question, which has guided much of the research
in the field of Learning Sciences, is how this process can best
be supported and guided by an instructor or learning designer,
through the careful design of the physical and digital learning
context and its affordances.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S 2017, April 20 - 21, 2017, Cambridge, MA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4450-0/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3051457.3054000

To help support such learning, Fischer and his colleagues
[4] proposed a form of scaffold, which they call an “external
collaboration script”, that specifies the roles and goals of the
participants, allocates material and tasks, and coordinates
student grouping and learning activities. Once scripts have
been designed, they need to be implemented or enacted.
Dillenbourg, et al. call this process “orchestration”, defined as
“how a teacher manages, in real time, multi-layered activities
in a multi-constraints context” [3].

CHALLENGE
Despite a long history of research on pedagogical scripts
for small groups and school classes, there has been very
little research on appropriate pedagogical scripts that take
advantage of very large numbers of heterogeneous learners.
One example is Håklev, who has suggested design principles
for pedagogical scripts for collaborative MOOCs that use a
matrix of weekly thematic scripts which feed into a set of
interdependent longer running scripts [5].

We need more creativity and sharing in this area, and to enable
this, a common notation, or educational modeling language,
as well as tools for editing and sharing educational scenarios,
could help. However, our largest challenge is how to imple-
ment these scripts in very large settings. A school teacher can
fall back to using sticky notes and “talk to your neighbour”
strategies, but currently implementing even a very simple
script on a MOOC platform (for example wanting to set up
a peer-review session, but in a different way than the built-in
approach) requires significant software development resources
not available to most groups.

This paper will present a suggested common educational mod-
eling language called Orchestration Graphs; our prototype
framework for authoring and sharing Orchestration Graphs; as
well as the design of an ecosystem of activities and operators
which can be “run” by an Orchestration Engine. We posit
that this is an innovation which has the potential to promote
development and research around rich collaborative activities
and scenarios at scale.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148028398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/3051457.3054000

Figure 1. Example of an Orchestration Graph. From Orchestration
Graphs by Pierre Dillenbourg, Lausanne: EPFL Press. Copyright 2015
by Pierre Dillenbourg. Reprinted with permission.

Figure 2. Two students participating in a collaborative learning activity.

ORCHESTRATION GRAPHS
An Orchestration Graph (such as the example in Figure 1) is a
structured view of a learning scenario, consisting of learning
activities (nodes) [2]. These nodes have a start and an end-
time. The X-axis of the graph denotes time, and the placement
and width of activities on it denote start and duration. In short
synchronous scripts, these time cut-offs might be absolute, to
enable students to “sync up” (e.g., after five minutes, everyone
has to switch groups), whereas in long-running asynchronous
scripts, activities might be open for several days, and students
can choose when to engage with them.

Planes
Activities take place at different social planes (Y axis), the
three key ones being individual activities, team activities, and
whole class activities.

Activities
Activities range from reading a text or watching a video, to
contributing ideas in a brainstorm, or experimenting with a
simulation. They can take input data and social structures from
previous activities and operators, and produce student products
(such as students answers and designs), as well as detailed
student trace data. See an example of a running activity in
Figure 2.

Edges
Activities (nodes) are connected through edges. These can con-
tain pedagogical justifications (e.g., activity 1 is an advanced

organiser for activity 2), learning analytics information (e.g.,
student success is activity 1 is 34% correlated with/predictive
of success in activity 2), and operators.

Operators
Operators receive data from student activities (products), and
generate input for subsequent activities. Operations can in-
clude aggregation, disaggregation, assignment, translation and
transformation of the student product. Operators are also used
to generate social structures based on input data, such as orga-
nizing students into groups based on their previous answers.

PRIOR ART
The idea of an educational modelling language (EML) has
a long history. Several of these languages also come with
their own software for editing, and sometimes executing
the graphs. LAMS [9] offers a graphical editor of learning
workflows, which can be executed by the system. Collage [7]
proposes richer design patterns, which can be executed within
GLUE!-PS [10].

Two recent platforms, ILDE [6] and Learning Designer[8]
build upon a community of designers. The latter provides
feedback to designers, for instance the proportion of various
learning activity types (investigation, practice, etc.). However,
the designed scenarios are not runnable on the platform.

EXAMPLE
Orchestration Graphs can describe orchestrated live interac-
tions, such as a “jigsaw script” centred around earthquake
mitigation in San Francisco (depicted in Figure 1). Each team
comprises four roles: the mayor of San Francisco (a2a), a seis-
mology expert (a2b), a security officer (a2c), and an insurance
agent (a2d). Students begin by discussing the task in groups
composed of all four roles, but are then interrupted by “expert
group meetings”, where all mayors meet with each other sep-
arately. This cycle can be repeated several times, before the
teams conclude (a4) and meet as a whole class.

Scripts can also move across much larger granularities and
time frames. For example, Håklev [5] describes a script which
begins by thousands of students (in-service teachers) con-
tributing individual educational resources that they find useful.
Students are then presented with relevant resources to their
own teaching (based on semantic tags), and tag, vote and add
comments. The curated and annotated list of resources feed
into the small (3-6 person) groups which work on developing
a lesson plan using technology. Their work in progress is
cycled back to the community for constructive peer-review on
a weekly basis. Thus we see overlapping scripts that last over
several weeks, and which distribute input from thousands of
students, to small teams, and back to larger “communities of
interest”.

Repair/orchestration
All of the individual activities, and the graph as a whole, have
a standardised interface for live-streaming learning traces (log
data) from learners, and a well-defined API for the teacher to
interface with the execution (re-ordering groups, modifying
the configuration or order of activities, etc). This can allow

Figure 3. The teacher’s analytics dashboard and orchestration controls

an instructional team to monitor the progress of thousands
of students through innovative visualisations and alerting sys-
tems, and intervene where groups are not working well, or
the community is not moving forwards as planned (see an
example of a dashboard in Figure 3).

Given this standardised interface, it would also be feasible
to construct intelligent agents that use machine learning to
“act on the teacher’s behalf” (perhaps even trained on a his-
tory of teacher actions), automatically monitoring group and
individual student progress, and intervening when necessary.

ECOSYSTEM OF ACTIVITIES AND OPERATORS
The online education space has a long history of plugins,
widgets and protocols for integrating external learning
activities into Learning Management Systems, and now
MOOCs. However, existing standards do not satisfy several of
our requirements: the ability to have an artefact generated in
one activity used as an input in another activity, the access to a
live stream of learning analytics data, class reorganisation into
teams, and the ability for a teacher to “orchestrate”/intervene
in an ongoing activity.

We have defined an API (shown in Figure 4) to enable rich
integration with highly modular activities. Activities are cur-
rently distributed as separate packages; in the future we will
allow for activities which run on separate servers. Activities
provide their own metadata, configuration function (e.g., a
video player requires a URL, a quiz requires questions and
alternatives), and a “runner”, which receives the configuration
data, the input data from any previous activities, and a social
structure. Activities also implement a live analytics dashboard
using the learning traces sent as logs by the "runner".

Operators are located on the edge between two nodes, and
receive the student products from the source node, and either
transform the product, or generate new social structures based
on the student products. Operators are also separate packages
(and will be able to run on remote servers as APIs), providing

Figure 4. API of activity types

a configuration function, and a “runner”, which receives it’s
own configuration, as well the data to process, returning the
output data or social structure.

INTEGRATION IN MOOC PLATFORMS
The first version of the Orchestration Engine is being devel-
oped as a stand-alone tool, but there are several possible ways
in which it can be integrated into traditional MOOC platforms.
One possibility is to offer several synchronous sessions within
a MOOC. Students could be asked to log on at a certain
time and date, and visit a specific section in any platform
supporting the Learning Tools Integration (LTI) API[11].

This activity would function as a “window” to the Orchestra-
tion Engine, and within this window, an entire learning sce-
nario could play out. While the script were running, the instruc-
tional staff would be monitoring the live learning analytics,
and have the ability to intervene to repair or improve the script.

We could also imagine that each separate activity in an Or-
chestration Graph could be given a unique LTI URL. A course
designer working within the EdX platform (as an example)
who wanted to implement something similar to the macro
script described above [5], could add an “Individual survey”
activity in Week 1 of the MOOC. In the graph, this activity
would be connected to an operator that would generate group
structures based on the responses, and further to a group activ-
ity that would rely on this group structure. The designer could
then insert the group activity as a separate LTI component in
Week 2 of the EdX course, and the Engine would take care of
all the data flow and social structure behind the scenes (see an
example in Figure 5).

FUTURE POSSIBILITIES
Our work on the educational modelling language Orchestra-
tion Graphs, and the technical infrastructure/architecture for

Figure 5. Example of an external activity from the Orchestration Graph
seamlessly embedded in an EdX MOOC

editing and running these graphs, form part of a larger research
program to empirically investigate and improve our under-
standing of large-scale collaborative learning scripts. Typical
learning analytics research with MOOCs has generated large
amounts of data points, but the analysis has rarely taken into
account the instructional design or the pedagogical role of
each activity.

If we begin with a computer legible description of the
pedagogical design, and can automatically map rich learning
analytics (both general, and activity-specific) onto the graphs,
we can begin to develop models of student learning in the
form of transition matrices (predicting the success of a student
on an activity from his observed behaviour, his performance
on the previous activity and the performance of other students
on the current activity).

CURRENT STATUS AND CONCLUSION
We currently have a working prototype system, which allows
users to edit scripts by adding and configuring activities and
operators. We have a set of activities and operators, which
are all completely isolated code-bases connected to the En-
gine through the public API, and we are able to run scripts
generated by the editor, with learning analytics and teacher
orchestration capabilities.

We are in the process of refining the design of the API, and
expanding the collection of activities and operators, as well as
rebuilding the architecture to be more scaleable (distributed
across multiple servers). We plan a number of smaller ex-
periments in the spring of 2017 aimed at testing UI/UX with
instructional designers/teachers, and running scripts with ac-
tual students. The platform will then become an integral part

of an EdX MOOC in fall 2017, when students will not only
participate in scripts designed by the instructor, but will also
get the opportunity to themselves design and run scripts as
part of the learning process.

REFERENCES
1. Elizabeth G. Cohen. 1994. Restructuring the Classroom:

Conditions for Productive Small Groups. Review of
Educational Research 64, 1 (1994), pp. 1–35.

2. Pierre Dillenbourg. 2015. Orchestration Graphs:
Modeling scalable education. EPFL Press.

3. Pierre Dillenbourg, Miguel Nussbaum, Yannis
Dimitriadis, and Jeremy Roschelle. 2012. Design for
Classroom Orchestration. Computers & Education 69
(2012), 485–492. DOI:
http://dx.doi.org/10.1016/j.compedu.2012.10.026

4. Frank Fischer, Ingo Kollar, Karsten Stegmann, and
Christof Wecker. 2012. Toward a Script Theory of
Guidance in Computer-Supported Collaborative Learning.
Educational Technologist 48, 1 (2012), 56–66.

5. Stian Håklev. 2016. From seminar to lecture to MOOC:
Scripting and orchestration at scale. Ph.D. Dissertation.
University of Toronto.

6. Davinia Hernández-Leo, Juan I Asensio-Pérez, Michael
Derntl, Luis P Prieto, and Jonathan Chacón. 2014. ILDE:
community environment for conceptualizing, authoring
and deploying learning activities. In European
Conference on Technology Enhanced Learning. Springer,
490–493.

7. Davinia Hernández-Leo, Eloy D. Villasclaras-Fernández,
Juan I. Asensio-Pérez, Yannis Dimitriadis, Inés
Ruiz-Requies, Bartolomé Rubia-Avi, and Iván
Jorrín-Abellán. 2006. COLLAGE: A collaborative
Learning Design editor based on patterns. Journal of
Educational Technology & Society 9, 1 (2006), 58.

8. Diana Laurillard. 2013. Teaching as a Design Science:
Building Pedagogical Patterns for Learning and
Technology. Routledge.

9. Patrick McAndrew, Peter Goodyear, and James Dalziel.
2006. Patterns, designs and activities: unifying
descriptions of learning structures. International Journal
of Learning Technology 2, 2-3 (2006), 216–242.

10. Luis Pablo Prieto, Juan Alberto Muñoz-Cristóbal,
Juan Ignacio Asensio-Pérez, and Yannis Dimitriadis.
2012. Making learning designs happen in distributed
learning environments with GLUE!-PS. In 21st Century
Learning for 21st Century Skills. Springer, 489–494.

11. Charles Severance, Ted Hanss, and Josepth Hardin. 2010.
Ims learning tools interoperability: Enabling a mash-up
approach to teaching and learning tools. Technology,
Instruction, Cognition and Learning 7, 3-4 (2010),
245–262.

http://dx.doi.org/10.1016/j.compedu.2012.10.026

	Introduction
	Challenge
	Orchestration Graphs
	Planes
	Activities
	Edges
	Operators

	Prior art
	Example
	Repair/orchestration

	Ecosystem of activities and operators
	Integration in MOOC platforms
	Future possibilities
	Current status and conclusion
	References

