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Abstract

Random solid solution alloys are a broad class of materials that are used across the entire spectrum of
engineering metals, whether as stand-alone materials (e.g. Al-5xxx alloys) or as the matrix in precipitate-
strengthening materials (e.g. Ni-based superalloys). As a result, the mechanisms of, and prediction of,
strengthening in solid solutions has a long history. Many concepts have been developed and important trends
identified but predictive capability has remained elusive. In recent years, a new theory has been developed
that builds on one historical model, the Labusch model, in important ways that lead to a well-defined model
valid for random solutions with arbitrary numbers of components and compositions. The new theory uses
first-principles-computed solute/dislocation interaction energies as input, from which specific predictions
emerge for the yield strength and activation volume as a function of alloy composition, temperature, and
strain-rate. Being a general model for materials that otherwise have a low Peierls stress, it has broad
application and has been successfully applied to Al-X alloys, Mg-Al, twinning in Mg alloys, and recently fcc
High-Entropy Alloys. Here, the new theory is presented in a general and systematic manner. Approximations
and limiting cases that reduce the complexity and facilitate understanding are introduced, and help relate
the new model to various physical features present among the historical array of models. The quantitative
predictions of the model in the various materials above is then demonstrated.
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1. Introduction microstructural scales, and is associated with the
collective interactions among defects (solutes, dis-
locations, grain boundaries, precipitates). With
rapidly increasing computational power and new
methods at all of these various scales, computa-
tional metallurgy is entering a new chapter where
predictive capability is achievable and having an

impact on the design of new materials.

To facilitate the development of advanced ma-
terials, computational materials science can be
used to provide guidelines for design and to give
physical mechanistic insight into the origins of
experimentally-derived trends. However, robust
and predictive models are critical. Predictions of
the macroscopic mechanical properties, such as flow

stress, work hardening, and fatigue behavior, in Here, we present recent progress in the modeling

metals or other materials undergoing dislocation-
mediated plastic flow, hold particular challenges.
Such behavior is controlled by phenomena at mul-
tiple scales, from atomistic through mesoscale and
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of one broad class of materials, random solid solu-
tions. Such materials are some of the most tech-
nologically important and/or promising materials:
aluminum alloys, such as the 1xxx, 3xxx, SHxxx and
solutionized 6xxx series [I] used in automotive ap-
plications, austenitic stainless steels [2], many bi-
nary alloys such as Ni-Fe and Cu-Ni [3] [4], and
the emerging high entropy alloys (HEAs) [5] [6] [7].
Many precipitation-strengthened alloys also retain
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some solid solution strengthening that is not negli-
gible. Interstitial solutes, such as hydrogen, carbon,
and nitrogen, also confer strengthening that may be
beneficial or detrimental, and their high mobililty
can contribute to dynamic strengthening phenom-
ena.

In the next section, we briefly discuss the
main historical concepts that developed over many
decades. In subsequent sections, we present the cur-
rent model framework in general. We then show
how the current model encompasses some histori-
cal models, in terms of general scaling of strength-
ening versus material parameters, so that the cur-
rent model can be seen as a holistic version of the
historical models but with precise and computable
material parameters. We then present applications
of the model to a sequence of cases, each of which
reveals some new features in the solute strengthen-
ing that arise naturally from the model due to the
different dislocation structures in each case.

2. Background

Solute strengthening arises from the interaction
of a dislocation with the solutes in the lattice.
These interactions fall into two basic categories:
those where the solute changes or reconfigures the
dislocation core structure and those where the so-
lute leaves the topology of the core structure largely
intact. When a solute changes the core structure,
the strengthening effects depend on the specific de-
tails of the interaction and how the core structure
is changed [8, @) 10, IT]. We do not envision any
general theory for this important class of problems;
presumably the changes in structure and associated
energies are very specific to the solute, the ma-
trix, and the dislocation character. When a solute
distorts the core but does not change it topologi-
cally, and/or when solutes outside the core interact
through nominally elastic interactions, then a gen-
eral theory can be developed, and that is the focus
of the work presented here.

When solutes do not change the core structure,
the fundamental quantity is the interaction energy
Ul(x;,y;,2,) between a straight dislocation at the
origin with line direction z and glide direction =z,
and a solute at position (z;,y;,2,). At the sim-
plest level, this interaction energy can be mod-
eled as the mechanical interaction energy between
the straight dislocation pressure field p(z;,y;) and
the misfit volume AV of the solute with respect
to the matrix material. This interaction energy
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Ue(xi,y;) = —p(24,y;) AV, also referred to as the
first order “size” interaction [12], is equal to the
work done on the dislocation pressure field by the
expansion or contraction of the material upon addi-
tion of the misfitting solute atom. This mechanical
interaction energy can be generalized to include the
interaction energy between deviatoric misfit strains
and the deviatoric dislocation stress field (the first
order “shape” interaction), which is typically im-
portant for interstitial solutes [13] [14, [15]. For sim-
plicity here, we focus on misfit volumetric strains
that are appropriate for substitutional solutes in
cubic matrices [16, [I7]. The elastic interactions are
long-ranged, since the dislocation stress field decays
only as 1/r with distance r from the center of the
dislocation, and give a quantitative description of
the solute/dislocation interaction away from imme-
diate dislocation core region [13], [14] 15} 16}, 17, [18].

When the solute is located within the core re-
gion of the dislocation, i.e. along the glide plane
and within the highly-distorted region of the core,
additional effects between the solute and the dislo-
cation can occur. Part of the chemical short-range
interaction can be estimated using additional elas-
ticity models. Since the addition of solutes changes
the elastic moduli of the material, a solute atom
can be envisioned to possess elastic constants that
differ from the host matrix, giving rise to an “elas-
tic inhomogeneity” interaction energy [12] 19, 20].
This interaction decays as 1/r? so is short-ranged
and, within linear elasticity, can be simply added
to the first-order size interaction. A “second or-
der size” interaction arises when non-linear effects
(e.g. third-order elastic constants) are considered,
and also contributes at short range [I2]. However,
both concepts are of limited practical utility be-
cause it is difficult to define the “elastic constants”
of a solute and to deal with non-linear elasticity.
Another “chemical” core-specific interaction is asso-
ciated with solute/stacking-fault interactions [21],
arising for dislocations having a dissociated core
consisting of two partials separated by a stacking
fault ribbon, as occurs in fcc and many slip systems
of hep materials. This interaction will be discussed
in section (3l

With the advent of high-performance comput-
ing, and efficient techniques to deal with the long-
range elastic fields of dislocations [22] 23] 24], it is
now possible to compute dislocation core structures
using first-principles methods, most commonly us-
ing Density Functional Theory (DFT). This topic
is covered in depth in the partner Overview Arti-
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cle “Ab initio modeling of dislocation core prop-
erties” [25]. Using the same methods, the so-
lute/dislocation interaction energies U(z;,y;) for
any solute at atomic positions {z;,y;} in and
around a dislocation core in any matrix can be com-
puted directly. While computationally demanding,
it provides the fundamental information (the inter-
action energy) including all “chemistry” and short-
range effects at the highest level of fidelity available
at the present time. Due to their value, such com-
putations have been undertaken for a number of
solutes in a number of matrix materials, primarily
for edge dislocations and mainly at atomic sites just
on either side of the glide plane and within the par-
tial dislocations of dissociated cores, where “chem-
istry” effects are expected to be most important and
where elasticity is most likely to fail. For solutes
away from the core region, e.g. the elastic inter-
action energy Ue(z;,y;) = —p(zi,y;)AV is used,
with AV computed by first-principles and with the
dislocation pressure field p(x;,y;) computed using
the first-principles-computed core structure. The
pressure field can be computed using local elastic
strains and elastic moduli or by using the computed
distribution of Burgers vector along the glide plane
within a Peierls-Nabarro-type model [I8]26]. Thus,
both near-core and far-field interaction energies are
computed on the same underlying dislocation struc-
ture and solute/matrix chemistry. Figure [1| shows
the resulting interaction energies U(z;,y;) for sev-
eral cases that will be studied here. We note in
particular that the interaction energies, calculated
directly by DFT in some regions and via elasticity
in others, are quite continuous, indicating the accu-
racy of the elasticity model rather close to the core,
but still in a region where the local atomic environ-
ment is that of the distorted crystal lattice. This
continuity also shows that the near-core energies
are not significantly larger than those at slightly
further distances, immediately suggesting that both
near-core and far-field interactions might contribute
comparably to the net strengthening.

The above discussion focuses on  so-
lute/dislocation interaction energies. A number
of historical models have been developed based
on the forces exerted by solutes on dislocations.
The force of a solute on a straight dislocation can
be computed as a configurational force derived
from the interaction energy. Specifically, the force
exerted by the solute in the glide direction z
can be computed, in a continous formulation, as
F(z,y) = —dU(z,y)/dz, i.e. it is the change in
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interaction energy as the relative position of the
solute and the dislocation changes. Both energetic
and force-based concepts capture the same basic
physics and, while the theoretical paths appear
rather different, the final outcomes should be the
same aside from approximations made along each
path. We will focus below on an energy-based ap-
proach, but try to point out where the force-based
approaches would enter.

Whether the long-range or short-range interac-
tions control the strength has given rise, histor-
ically, to two broad competing theories for so-
lute strengthening. The strong-pinning theory
(Friedel [27], Fleischer [28] [29]) considers only so-
lute atoms in the glide plane(s) of the dislocation
and treats them as independent point obstacles that
pin the dislocation. The solutes are characterized
by Fmax, the maximum resistive force exerted by
the solute on the dislocation. Under stress, the
dislocation bows out in the regions between the
solutes, exerting forces that counteract resisting
forces of the solutes. The zero-temperature yield
stress for this Friedel mechanism, T;(‘), is the stress
at which the curved dislocation exerts a force on
the dislocation segment at the solute that is suffi-
cient to overcome the resistive force of the solute.
The Friedel strength for a random distribution of
solutes at concentration c is given by

3
Enx 2 2F 1
oo = ( 2; ) <b2> c2. (1)

where T' is the dislocation line tension that relates
the dislocation bow out to the force exerted on the
obstacle, and b is the magnitude of the Burgers vec-
tor.

Examining Fig. it is clear that solute forces
are generated at many positions in and around the
dislocation core, even if attention is confined to
only the planes above and below the glide plane.
The basic Friedel model neglects all such compli-
cations. Recognizing that many solutes can si-
multaneously exert forces on the dislocation, the
weak-pinning model (Mott-Nabarro [30], Mott [31],
Labusch [32] [33]) considers the collective interac-
tion of the random solutes with the dislocation.
Strengthening is then attributed to the occurrence
of favorable statistical fluctuations in the overall
solute configuration that locally bind the disloca-
tion much more strongly than any individual so-
lute. Labusch first considered only solutes in the
glide plane, although the concept is really three-
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Figure 1: Solute/dislocation interation energy U (z;,y;) versus solute position (z;,y;,z) for various materials and solutes;
(a) Mn solutes around Al edge dislocation, (b) Zn solutes around Mg basal edge dislocation and (c) Al solutes around Mg
twin edge dislocation on a twin boundary. Sites indicated by bold symbols are computed using DFT and all other sites are
computed using the elastic contribution to the interaction energy. The core structure is optimized in DFT calculations using

the Lattice Green’s Function method [22].

dimensional in nature. He then derived a zero- as

temperature flow stress Ty[b that uses many of oo

the same parameters as the Friedel model, plus B = 4‘1:‘% (3)
cw

a parameter w that represents the spatial range
of interaction of the solutes with the dislocation
(and discussed further below). The resulting zero-
temperature Labusch strength is

F4 w % 2
TyLO = (ZF; ) 3. (2)
which shows a different scaling with solute concen-
tration ¢ as compared to Friedel’s model.

At any given solute concentration, the opera-
tive mechanism has historically been assumed to
be the mechanism that gives the strongest zero-
temperature yield stress. Taking the ratio of
Egs. and yields 81/6 where B is the tran-
sition parameter first identified by Labusch [32] B3]

When 8 > 1, the strong-pinning model gives a
much larger zero-temperature yield stress and is ex-
pected to be the dominant mechanism. Conversely,
the weak-pinning model is dominant when § < 1.
There is thus a transition concentration cf"S at
B = %ﬁz. At low concentrations
¢ < cfr*®s the strong pinning mechanism is domi-
nant and at high concentrations ¢ > cf*" the weak
pinning mechanism is dominant. Using typical ma-
terials parameters gives a transition concentration
~ 1072, which has led to the assumption that the
strong pinning model is applicable at moderate to
low solute concentrations [32] [34].

Solute strengthening is, of course, temperature-

trans __
1, ¢ =
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and strain-rate-dependent, i.e. the underlying pro-
cess is thermally—aetivatecﬂ The standard Labusch
and Friedel theories are zero-temperature theories.
Extending the theories to finite temperatures, i.e.
examining the energy barriers to dislocation mo-
tion, reveals a significant difference between the two
theories. The energy scale of the Friedel model is
the maximum interaction energy Upax of a single
solute with the straight dislocation, independent of
solute concentration [I8]. As seen in Fig. [1} this en-
ergy is typically on the order of ~ 100 — 200 meV.
Applied stresses reduce the barrier toward zero as
the stresses approach the zero-temperature yield
stress. Therefore, the energy barrier for thermally-
activated escape of the dislocation across a single
pinning solute is very low, and the escape rate
very fast, at moderate temperatures (with k7" ~
25 meV at room temperature). Correspondingly,
the finite-temperature yield stress decreases rapidly
with temperature, and simple models show that the
Friedel mechanism has a characteristic temperature
TF ~ 100-200 K at which the strength is essen-
tially zero. In contrast, the energy scale of the
Labusch model is related to the collective solute
fluctuations and scales as ~ ¢*/3, and can be much
greater than U ., even at moderately low concen-
trations (¢ > 10~%). The yield stress of the Labusch
model thus decreases much more slowly with in-
creasing temperature as compared to the Friedel
model (and also never goes to zero; see discussion
below). At finite temperature, the concentration at
which there is a transition from the Friedel to the
Labusch model, ¢, is then much smaller than
the zero-temperature estimate . Detailed esti-
mates show, for example, that c¢*®% < 10~% when
T > 78 K for the Al-X (X= Mg, Si, Cu, Cr, Mn and
Fe) and the Mg-Al (basal) systems [36]. As a result,
the Friedel model rarely applies for moderate so-
lute/dislocation binding energies. For solutes that
change the core structure, and with much larger as-
sociated interaction energies (e.g. Upax = 1 €V [§]),
the Friedel model may become pertinent [27, [32] be-
cause the core-changing solutes dominate over all
other solute interactions in the far-field and the ac-
tivation energy barrier is significant.

Both strong-pinning and weak-pinning models
struggle to deal quantitatively with both the long-
range interactions and the short-range interactions.

2We do not consider here the dynamic overshoot and pos-
sible quantum effects that can occur at very low tempera-
tures T < 50K |20, [35].
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The Friedel-type models entirely neglect the long-
range interactions, so that even solutes just two
atomic planes above or below the glide plane are
not considered to exert forces on the dislocation
even though their maximum pinning force can be
appreciable [37]. If such solutes were included, the
Friedel theory would need to include different val-
ues for F.. for each atomic plane and, moreover,
the “spacing” between solutes would become very
small so that the dislocation bow out would be oc-
curring over atomic distances where the line tension
model surely fails. The early Labusch model, and
recent derivations of the weak-pinning model [20],
also considered solutes only near the glide plane.
In this limit, the interaction energy falls off rapidly
(1/d?) with distance d along the glide plane, so that
the concept of a finite range w is acceptable. How-
ever, when extended to 3D (i.e. not just solutes
on the glide planes), the Labusch model must also
ignore long-range interactions beyond a certain dis-
tance. Since the solute/dislocation interactions de-
cay only as 1/r, fluctuations in the net positive and
negative interactions scale as 1/r?, and the inte-
gral of those fluctuations over a cylinder of radius
R around the dislocation line diverges as In(R). To
avoid this problem, the Labusch model has tradi-
tionally adopted the 2d concept by invoking a cut-
off in the interaction energies at an arbitrary dis-
tance w. Unfortunately, all predictions depend on
the undefinable w, while attempts to “measure” a
w from the solute/dislocation interaction forces in
atomistic simulations [38] cannot be quantitative
because of the fundamental 1/r scaling of the in-
teraction energy. With respect to short-range in-
teractions, researchers had little detail about the
true dislocation core structures. So, a singular
Volterra field associated with a sharp dislocation
core was typically used, and the short-range inter-
actions were simply cut off at some convenient but
ill-defined distance. Argon [20], for example, ig-
nores solutes in the two planes immediately above
and below the glide plane, denoting this a “dead
zone”, even though this is precisely where the in-
teraction energies and forces are the largest (see
Fig. , and considers only the planes just above
and below these planes. In general, the theories
make uncontrolled approximations precisely where
the solutes will have the largest effects.

The short-range issue is resolved, in principle, by
the detailed computations of solute/dislocation in-
teraction energies as shown, for example, in Fig.
How this more-detailed information can be embed-
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ded into the historical models has not been ad-
dressed. For purposes of guiding alloy design, i.e.
selection of solutes, Trinkle et al. [39] devised two
quantitative measures for the solute/dislocation in-
teraction energy, a misfit volume parameter and
a solute/stacking fault interaction parameter, and
used these parameters in Fleischer/Friedel-type
model to predict trends in solute strengthening
at 0 K. Quantitatively predictive models have re-
mained elusive. The long-range issue was only
clearly addressed by the new theory presented in
the following sections. An inkling of the resolu-
tion of the divergence problem at long-range can be
found, however, in the study of the so-called Cot-
trell atmosphere formed by solutes diffusing around
a fixed dislocation. Hirth et al. [40] showed that,
although the energy of the solute-cloud/dislocation
diverges (infinite binding of the dislocation), the
stress to move the dislocation does not diverge.
The stress does not diverge because the (diverging)
energy contributions of solutes far from the dislo-
cation do not affect the net configurational force
—dU(z,y)/dz upon incremental motion of the dis-
location. A similar feature will emerge here in so-
lute strengthening with no diffusive motion of the
solutes, i.e. a dislocation moving through a fized
field of randomly-distributed solutes, leading to a
convergent theory.

Experimentally, there are many excellent data
sets on the yield strength versus temperature
and/or strain-rate in binary fcc alloys, mainly with
a dilute (< 1%) concentration of one type of so-
lute [29] 411 [42] [43] [44] [45], 46l [47, [48]. These ex-
periments clearly show a commonality in the flow
behavior versus temperature and versus concentra-
tion. Moreover, experiments have measured the ap-
parent activation volume V' ~ (1/kT)d(lnc)/dIn€,
which reveals the underlying length scale of dislo-
cation motion during whatever thermally-activated
process is controlling the flow behavior [44] [49]
50]. At the dislocation level, the activation vol-
ume can be expressed as the derivative of the
stress-dependent energy barrier versus stress, V =
—dAE(7)/dr, and so directly connects to quantities
arising in any theory. Moreover, Basinski postu-
lated the “stress equivalency” principle: if two dif-
ferent alloys have the same yield stress at the same
temperature and strain-rate then they will have the
same activation volume, regardless of the types of
solutes or their concentrations [44], [50]. The “stress
equivalency” principle has been demonstrated ex-
perimentally many times.
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With a strong empirical data base, the histori-
cal theories have been applied to predict qualitative
and quantitative trends. Nabarro showed that some
features related to stress equivalency emerge natu-
rally from the Labusch-type models, solidifying the
broad applicability of the Labusch model, consis-
tent with our discussion above. Earlier, Kratchovil
and Neradova [43] showed that the (extrapolated)
zero-temperature strength scales with solute con-
centration as ¢?/3, as predicted by the Labusch
model. Nonetheless, the simplicity of the Friedel
model - it contains just a few physically-based pa-
rameters - has led to continued applications of the
model concepts. In particular, when the Friedel
model based on pinning by individual solute atoms
has failed to quantitatively explain experiments, re-
searchers have postulated the existence of solute
“clusters” as the operative pinning points within
a Friedel-type model [51, 62 53]. These exper-
iments are, however, well-interpreted in terms of
the Labusch-type models. The Labusch-type mod-
els (i.e. models that consider the collective statis-
tical fluctuations of the random solutes as caus-
ing the pinning) have thus, in general, provided
a framework for qualitative interpretation of many
experiments, in spite of nagging theoretical issues.
Quantitatively, however, the models are not accu-
rate, which is not surprising given the approxima-
tions, particularly for the interaction energies. Ar-
gon shows that the estimated F,,x parameter in the
Labusch model is 2-3 times larger than the value de-
rived by fitting theory to experimental data, so that
the model has limited predictive capability. Ver-
sions of the Labusch model have attempted to de-
scribe experiments using very simplified forms, such
as Ty, = Kzn ciBAVf/g, with n referring to the
elements in solid solution and with K being a fit-
ting parameter [54], 53], without any regard to the
temperature and strain-rate dependence of the flow
stress.

Finally, experimental data on some systems
shows a high-temperature “plateau”, i.e. the yield
stress becomes less temperature-dependent than ex-
pected based on the models. “Plateau” stresses
have a long history and are usually attributed to
“athermal” mechanisms, such as long-range dislo-
cation/dislocation interactions [56]. “Athermal”
mechanisms are those with large energy barriers
but also large length scales, for which the strength
is not high but the barrier renders that strength
temperature-insensitive.  In solute-strengthened
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materials, the “plateau” is, however, dependent on
solute concentration itself. The mechanistic origins
of such plateaus have historically been unknown.
Labusch [57, [68] suggested that additional energy
barriers enter at high temperatures, but without
substantial quantification. Zaiser [59] used scaling
arguments coming from the theory of flux pinning
in superconductors and provided a clearer picture of
how the “plateau” arises and its connection to the
low-temperature solute strengthening. Discussion
of the physical origin(s) of such “plateaus”, based
on the progress resulting from the recent develop-
ment, is presented below.

In this Overview, we present a new Labusch-type
solute strengthening model that resolves many of
the conceptual and operational difficulties of the
historical models. The derivation of the Labusch-
type model is quite different from previous deriva-
tions, although with similarities to the analysis of
Zaiser [59]. The analysis provides a clean, phys-
ical, and energy-based picture of how a disloca-
tion moves through a random field of solutes. The
theory starts from the solute/dislocation interac-
tion energies and proceeds forward with a few
non-critical assumptions. The resulting model is
parameter-free and generally applicable across ma-
terials and crystal structures, and interfaces (twin-
ning). To date, the theory has only been applied to
cases with very low intrinsic Peierls stresses where
the solute strengthening dominates the flow stress.
The new theory reproduces all the positive features
of the Labusch-type models, and the final functional
forms for flow stresses and energy barriers are con-
sistent with historical models. However, the coef-
ficients emerge directly from the solute/dislocation
interaction energies, making the model predictive.
By examing limiting cases of the model, we can
also make specific contact with the various histori-
cal models and concepts.

3. Theory of Solute Strengthening

In this section, a general theory of solute
strengthening in substitutional alloys with arbi-
trary number of components and arbitrary com-
position is described. The presentation considers
fcc crystals, but most aspects of the theory are
more general. Basic concepts and physical mech-
anisms responsible for the strengthening are first
introduced, and then the full theory leading to the
temperature, strain-rate and compositional depen-
dance of the strength is derived.
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3.1. Average matriz in a random alloy

We consider an N-component random solid so-
lution alloy, with concentration ¢, of the nt" ele-
ment, satisfying the sum rule Zgzl ¢, = 1. Except
in the case of dilute alloys, there is no specific rea-
son to identify one specific elemental component as
the matrix, i.e. as the reference state for the real
material. Indeed, when the concentrations of alloy-
ing elements are non-dilute, there is not one major
element nor can the real solid solution be consid-
ered as a small perturbation of the matrix of one
of the elements. Rather, an effective matrix at the
overall alloy composition can be envisioned, which
has the crystal structure of the real solid solution
alloy. Such an average alloy reference state can be
demonstrated explicitly for systems represented by
Embedded Atom Method (EAM) interatomic po-
tentials [60] 6], for instance, and an average alloy
is the basis of effective medium approaches and co-
herent potential approximations in electronic struc-
ture theory [62] 63] [64]. The effective matrix ma-
terial has all of the important average properties
of the true random alloy: lattice constant a, elas-
tic constants {C;;} including shear modulus p and
Poisson’s ratio v, and stable/unstable stacking fault
energies ysp and yysr. All of these quantities de-
pend on the alloy composition, but are well-defined
average quantities. The gliding dislocations in an
effective fcc matrix would be the typical {111} (110)
dislocations, with a Burgers vector b = a/2 (110),
dissociation into two Shockley partials separated by
an intrinsic stacking fault, and glide at very low
Peierls stresses [20, [56, [65] 66]. Standard results
for dilute systems, where the average matrix ap-
proaches that matrix of the dominant element of
the alloy, emerge naturally when the concentration
of one alloy component approaches 1 while the other
concentrations approach zero.

Within the average matrix material, each elemen-
tal alloy atom can be viewed as a “solute” atom
embedded into the average “matrix” of the sur-
rounding material [61] [65]. Each solute of type
n has some average properties in the average ma-
trix, such as a misfit volume AV ,. In the true
random alloy, each specific solute atom has a mis-
fit volume that depends on the precise surround-
ing distribution of other atoms, and can be repre-
sented as the average value plus a fluctuating term,
AV, (x4, 95, 21) = AV, + 8Vi (@4, yj, 2). The aver-
age misfit volume can be determined, for instance,
by measuring the change in atomic volume V ver-
sus alloy composition, and taking the appropriate
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derivatives as
— ov
AV, = m | =——
; ‘ |: acn

These average misfit volumes follow the sum rule
>on cn AV, = 0, since the reference state is the
stress-free average material at average lattice con-
stant a. Each solute will also interact with any
structural defect in the effective matrix material.
For a straight dislocation in the average matrix,
centered at the origin and lying along the z direc-
tion, an individual solute atom of type n at position
(xi,y;,2) has an interaction energy with the dis-
location of U™ (z;,y;, 2k) = Un(:z:i, y;) independent
of z because the straight dislocation in the average
matrix is periodic along z, as shown schematically
in Fig. Pb. In the true random alloy, a solute of
type n at position (z;,y;, zx) has a specific inter-
action energy U™ (z;,y;,2,) due to the specific lo-
cal distribution of other solutes around (z;,y;, 2x).
For a statistical distribution of local environments,
the true interaction energy can be expressed as the
average value in the average matrix plus a fluctu-
ation, U™ (x4,yj, 26) = U (x4,;) + 0U™ (24, Yj, 21)-
If the interaction was purely elastic, then the av-
erage interaction energy would be directly related
to the average of the solute misfit volume through
the pressure field of the dislocation in the average
matrix. The additional fluctuations sU™(x;, y;, 2k)
in the interaction energy of the real random al-
loy would be related to the fluctuations in both
the misfit volume 8V, (x;, y;, 2) and the misfit so-
lute shape (deviatoric misfit strains) since the av-
erage solute shape contribution is zero, by sym-
metry, in a cubic matrix. The interaction energy
U™ (@i, yj,2) = U (23,5) + 0U™ (4,5, 2) includ-
ing both the interaction in the average matrix ma-
terial and the additional fluctuations is the funda-
mental input to the theory for solute strengthening.
In the dilute limit, where one element acts as the
matrix, U™ (z;,y;, 2k) = Un(xi,yj), independent of
2k, and can be computed as shown in Fig. 2b. For
non-dilute systems, computation of U™(x;,y;, 2x)

(4)

ov }

c &ma

or Un(xi7yj) is challenging, but their existence is
clear.

3.2. Energy of a straight dislocation segment in a
random alloy

Strengthening, i.e. increased stress required to
move a dislocation due to the presence of solutes,
arises from the totality of the interaction energies
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Figure 2: Effective medium approach for dislocation/solute
interactions: (a) Fully-random 3-component alloy containing
a dissociated edge dislocation; (b) Effective matrix material
of the same alloy, with an embedded A “solute” at position
(4, 9;, z) relative to the dislocation centered at the origin,

with interaction energy T4 (4,9;); (c), Normalized Burgers

1 (2—d/2\2 1 (a+d/2)\?
vector distribution % ~e 2( 4 ) +e 2( 4 ) along
the glide plane of edge dislocation in the effective matrix,
with d the dislocation dissociation distance and o describing

the partial spreading.
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between all of the solutes and each individual dis-
location. The average matrix concept allows us to
imagine a straight dislocation in that matrix, with
surrounding solutes. The random distribution of so-
lutes in the lattice gives rise to local fluctuations in
solute concentrations and lattice distortions. The
dislocation is thus attracted to some fluctuations
and repelled by others. A key concept in the model
is the energy change of a straight dislocation seg-
ment of length { when the dislocation glides a dis-
tance w from an initial position at = 0. The
change in the position of the dislocation relative to
the positions of the (fixed) solutes leads to a poten-
tial energy change of

AUtot(Ca U}) = Z SZ’]{: [Un (xl —w,Yj, Zk)
1,5,k
n
- Un(xiayjazk)] ) (5)
where Sie = 1 if a type-n solute is at position

(@i, y;, 2) and 0 otherwise. This energy change can
be positive or negative, and has a statistical distri-
bution. We are interested in those environments
that pin the dislocation segment (i.e. lower the sys-
tem energy). The typical energy reduction associ-
ated with such favorable “binding” environments is
the negative (binding taken as a negative energy)
of the standard deviation of the energy change

oA, (Cw) = {<AU§Ot(C7w)> - <AUtot(<>w)>2:|
(6)

Because the solutes are randomly distributed, i.e.
uncorrelated (no short range order), the quantity
OAU,., ((,w) can be computed analytically. Invari-
ance of the dislocation along z allows the average
over the variations 6U" (z;,y;, 2r) due to local dis-
tortions and/or local chemical environment among
the sites z, to be rigorously performed [61], leading
to

oAt (Cw) = (\/%b) A, (w), ™)
with
ABy(w) = | Y en(ATH@) +okuy )| 2 )

2,]
n

where AUZ(w) =U"(z; —w,y;) — U (x;,y;) and
oAUy is the associated standard deviation of the

N|=
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distribution due to local fluctuations. AE,(w) is
the key mesoscale quantity for strengthening in the
theory. We note that this quantity includes the
additional fluctuations in interaction energy that
arise in the true random alloy within the framework
of the effective matrix.

The computation of AE,(w) does not repre-
sent any convergence issues. The energy difference
Aﬁ?j (w) due to solutes far from the dislocation, i.e.
where r >> w with r = ($$+y]2)1/2, scales as w/r?
and so the sum over all sites {4, j} in Eq. is con-
vergent. As long as w emerges as a finite distance
(see below), there is no divergence in the sum. The
quantity w is not a cut-off distance in any way, and
thus has a different meaning than that arising in
the original Labusch model.

3.8. Minimum energy configuration of a long dislo-
cation in a random alloy

We have seen that straight dislocation segments
can lower their energies by moving to favorable so-
lute fluctuations that exist in the random alloy.
However, different segments along a long disloca-
tion line will want to move to different positions
along the glide plane, i.e. the dislocation will not
remain straight, and there is an elastic energy cost
to creating the non-straight dislocation. There-
fore, an initially straight dislocation of length L
can minimize its total energy by adopting a wavy
configuration where segments of some characteris-
tic length (. reside in regions of favorable fluctua-
tions. These segments lie at the minima in a po-
tential energy landscape having typical minima and
maxima spaced by some characteristic distance w,
along the glide plane. The pinned segments (. are
connected through additional segments of length
(. to create a wavy, quasi-sinusoidal configuration
(see Fig. [3). Adopting such a wavy configuration
involves bowing of the dislocation, which has the
elastic energy cost associated with the dislocation
“line tension” I'. For the configuration envisioned
here, the cost of bowing is related to the change
in total length of the dislocation and is given by
AFErr (¢, w.) = Tw?/2¢, per 2¢. dislocation por-
tion (see Fig. [3)) when w, < (. (verified ex post
facto).

To determine the characteristic (. and w., we
consider all possible dislocation configurations ¢, w
and minimize the total energy with respect to (
and w. The total energy of a wavy dislocation is
the sum of the elastic energy penalty of bowing and
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Figure 3: Schematic of the low-energy wavy configuration of the dislocation as it moves through the 3d random field of solutes.
The configuration is characterized by segments of lateral length 2¢ of amplitude w along the length of the long dislocation.
The key quantity is the change in energy of a straight segment of length ¢ as it glides a distance w through the random solute
field. The total dislocation energy is minimized with respect to both ¢ and w to obtain the controlling characteristic lengths

(e and we.

of the potential energy gain of favorable solute en-
vironments,

ABor (¢, w) = lrg”; - (fgb) % AE,(w)

where L/2¢ is the number of pinned segments of
length ¢, with each segment of length ¢ finding a
local environment that has, on average, the typi-
cal binding energy oay,,,. We have factored out
the length ¢ from the potential energy so that the
key quantity AEp(w) appears explicitly. The equi-
librium dislocation configuration is then found by
minimizing the total energy AF;. with respect to
both ¢ and w to obtain (. and w,. Minimization
with respect to ¢ is analytical, giving

1

2w\’
Co(w) = (4\/§AE§(w)> : (10)
Minimization of AFE;. with respect to w then
reduces to the solution of OAE,(w)/0w =
AE,(w)/2w. AE,(w) is not explicit in w, and thus
minimization is performed numerically. In the the-
ory, w. emerges naturally via minimizing the total

energy.

The above analysis shows that the total energy
of the wavy dislocation described by (. and w, is
lower than the original straight dislocation by an

10

energy per unit length of

ABuon(Corwe) /L = ——> (AEé(wC)y, (11)

w(vo

8.23 b2w?2l

where the numerical factor is related to the crys-
tallography of the slip system. This describes the
typical pinning of the dislocation by the random
field of solutes.

3.4. Thermal activation of dislocation glide

Motion of the overall dislocation then occurs by
the motions of the individual segments of length
(.. In the pinned configuration, each 2(, portion of
the dislocation resides in a local total energy mini-
mum, of average depth 2. AFot (., we)/ L with re-
spect to the zero energy. Along the glide plane,
at typical distance w,. away from that minimum,
there is a local maximum energy corresponding to
an unfavorable solute configuration. We envision
this local potential energy landscape to be locally
sinusoidal, and the associated potential energy bar-
rier AE;, i.e. the average energy between the local
minimum and the local maximum, is then a factor
of /2 larger than the minimum energy [17]. The
total energy barrier AFEj, to unpin the 2(. disloca-
tion segment must then include a reduction by the
elastic energy gain AFypr, such that the final energy
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barrier is given by

1.22 (wgPAEg (“’0)> 3 ,

AE, = (12)

b

with 1.22 emerging as a combination of derived nu-
merical constants.

To glide, the dislocation must overcome AFEj, by
thermal activation. The analysis from this point is
standard. An applied resolved shear stress 7 facili-
tates the thermal activation by providing the work
—7b(.x on the (. segment as it glides a distance
2 within the local energy landscape away from the
minimum energy position. The local energy land-
scape in the presence of an applied stress is then

_AE,

E(r,xz) = 5 (1 — cos (Z)x)) — 7. .

(13)

With increasing 7 the effective energy barrier
steadily decreases, as shown schematically in Fig. [4]
At a sufficiently high stress, the energy barrier be-
comes zero and the dislocation can glide forward
without any thermal activation. This stress is
therefore the zero-temperature yield stress 7,0. For
the potential energy landscape of Eq. , the zero-
temperature yield stress is analytically obtained as

- 1
AE AEY(w.) \ *®

o = ——==t 01 AE(we) ) © (14)

‘ 2 bl (we)we rodwd

At lower stresses T < Ty, the energy barrier is fi-

nite. The barrier versus stress, shown schematically

in Fig. 4| can be determined from Eq. and for

T near Ty can be written as [27]

AE (1) = AE, {1 - (T;ﬂ .

3.5. Yield Stress versus Temperature and Strain
Rate

The overall plastic strain-rate is controlled by the
rate of thermally activated glide of the dislocation
segments over the stress-dependent energy barrier.
Orowan’s relation for the strain-rate is € = p,,bv
where p,, is the mobile dislocation density and v is
the velocity [20] 26, 56]. The velocity is determined
by the rate of escape R of the segments and the typ-
ical glide distance d ~ w, for each event. The rate
of escape is the rate of thermal activation of a seg-
ment over the barrier, R = vge” 2EM/FT where 1

(15)

11
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Figure 4: Normalized energy barrier AE/AE} versus nor-
malized stress 7/7y0, where AE}, and 7,0 are the zero-stress
energy barrier and zero-temperature flow stress, respectively.
Solid line: multiscale bow out model that applies across all
stress levels; Dashed line: single-scale bow out model that is
accurate at high stresses, and thus controls the strength at
low temperatures, as given by Eq. .

is an attempt frequency that is related to the atomic
vibration frequency and the number of atoms along
the dislocation line segment, vy ~ va/((:/b). As-
sembling all of these pieces, the plastic strain-rate
is then
f oo PnbOa _sEm
Ce

Using typical values for well-annealed metals, v, ~
10%s~!, and with w. ~ I1nm and (. ~ 10nm
emerging from various analyses below, the reference
strain-rate is &g ~ 10°s~!. Since &y will always ap-
pear within a logarithm (see below), values within
one order of magnitude of this estimate, e.g. from
10%s~1 to 10!, make little quantitative differ-
ence in final predictions of the yield strength versus
temperature at typical experimental strain rates of
¢=10"%"1 to 10~ 2s~ L.

Solving Eq. for the finite-temperature, finite
strain-rate yield stress 7,(T,€) gives, for 7,/7y,0 >
0.5

2
kT 0\ 2
Ty(T, 5) = Ty |:l — <AEb In ?) ] .

This is a standard formulation in historical solute-
strengthening theories (see, for example, Refs. [20]

. _AE(1)
=ége kT

(16)

(17)
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With increasing temperature, Labusch [67, 57]
argued that the dislocation can become wavy on
multiple larger scales, finding ever-deeper energy
barriers over longer length scales. He concluded
that the relevant energy barrier increases logarith-
mically with decreasing stress at low stresses, but
did not provide a quantitative analysis for evalua-
tion. We have recently derived [68] a related result
based upon a generalization of our analysis above
for single-scale bow out to multiple-scale bow out.
We have demonstrated that there is indeed a tran-
sition toward a regime with an approximately log-
arithmic scaling of the energy barrier versus stress.
At even lower stresses, there is a transition to a
power-law regime, but this regime tends to be below
the regime probed in most available experiments.
The energy barrier emerging from the multiscale
bow out analysis is shown in Fig. [4] along with the
single-scale bow out model. Fitting our full multi-
scale bow out analysis to a logarithmic form over
an intermediate range of stresses 0.2 < Ty/TyO <0.5
gives a yield stress versus temperature and strain-
rate of [I7], 67, 68]

1 T 3

Ty (T, €) = Ty0 exp (_057AkEb n E;) , (18)
This logarithmic result can actually be used at
stresses up to 7,/7y0 ~ 0.8 with very modest errors
of approximately 7% over the result of Eq. .

For polycrystalline materials, the predicted
strength 7, (T, €) needs to be converted into an uni-
axial yield stress o, (T, €). For an equiaxed fcc poly-
crystal, the uniaxial tension strength is obtained
from the shear strength by multiplying by the Tay-
lor factor of 3.06.

3.6. Activation Volume

A quantity associated with the finite tempera-
ture thermal activation and yield stress is the area
swept by the dislocation during the activation pro-
cess. This area multiplied by the Burgers vector is
the activation volume V = —0AE(1)/07. For the
high-stress/low-temperature model (Eq. (7)), the
activation volume can be directly calculated from

Eq. as

3AE, [ kT . ¢
= — 1 -
V=3 o (AEb ”é)

col=

(19)

Basinksi [44] first experimentally observed that the
relationship between the activation volume V and

12
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the finite temperature yield stress 7, seemed inde-
pendent of the alloy composition for a given tem-
perature. This “stress equivalency principle” is
nominally satisfied by the model, provided that
the quantity w. does not vary much between dif-
ferent alloy compositions (which turns out to be
the case in the dilute limit for a given matrix ma-
terial [I7, [69]). Then, for a single solute of con-
centration ¢, the quantity AE,(w.)? controls both
Tyo and AEy, which leads to a direct relation-
ship between V' and 7,. For the high-stress/low-
temperature solution, this relationship takes the
form 7, = K,V ~3/2(1 — K;V'/?), where K, and
K, are constants. When K,V1/2 is small, the re-
lationship between V' and 7, can be approximated
by the power law V ~ 75/3
derived by Nabarro [70].

, which was previously

4. Valuable and Insightful Simplifications

The present theory predicts solute strengthening
due to the mesoscale fluctuations on the scale of
(e, w.) that create the dominant energy barriers
controlling thermally-activated dislocation motion.
All aspects of the theory are well-defined - there
are no fitting or adjustable parameters - and thus
the theory should be predictive. The major inputs
to the theory are the solute/dislocation interaction
energies, which depend on the detailed dislocation
structure. The other inputs are the Burgers vec-
tor, the elastic constants and the dislocation line
tension in the average matrix. The latter is not
known precisely, but scales as I' o< ub? where 1 is a
representative shear modulus. We will show some
specific predictions in Section [5}

However, the full general model does not provide
significant direct insights into the role of the average
matrix properties, the solute properties, or the over-
all composition. In addition, the solute/dislocation
interaction energies U™ (z;, y;, 25 ) may not be easily
computable or measurable in real materials. Here,
we thus simplify the theory to some important lim-
iting cases: (i) dilute solutions where one compo-
nent has a high concentration and serves as the
“matrix” in which the remaining components are
solutes, (ii) elastic interactions only, and (iii) elastic
interactions plus a solute/stacking fault interaction
model to better account for the dislocation core spe-
cific interactions. These simplifications reveal many
connections with historical theories, particularly in
the dilute limit.
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4.1. Dilute limat

To make contact with the historical models, we
consider the dilute limit of Egs. , and ,
as most of the efforts in modeling solute strength-
ening were done for low solute concentration mate-
rials.

In this limit, one component ng is largely dom-
inant, i.e. ¢p, > {Cn#n,}, and becomes the ma-
trix element. Each solute n is therefore only sur-
rounded by ng-type atoms, so the fluctuations of
solute/dislocation interactions due to the different
possible local chemical and structural environment
disappear and the oauy terms in Eq. vanishes.
Applying the sum rule ) anU?j(w) =0, Eq.
can be rewritten as

N

1 .

—1——2 Z cncpAUZ-AUfj
no 37 netno
p#no

(20)

Taking the limit cpzn, < cn, ~ 1, we finally get,
neglecting the second order terms in c¢;,£p,

2

ABE,(w) = |> Y en AT (w)?

i,J nF#Eng

Inserting Eq. into Egs. and , and
reducing further to the case of only one solute
with concentration c and interaction energy changes
{AU;;(w.)} (binary dilute alloy), the scalings of
the zero-temperature flow stress and energy barrier
with ¢ emerge as

(21)

(Zzg AUij(wc))2

o

Ty0 =1.01 Fb5w5 c3,
w2l Y, AU (we 5
AE, =1.22 ( Z”b swel )"y (22)

The scalings with solute concentration 7,9 o c2/3

and AFE,  ¢!/3 are similar to those found in the
historical collective pinning models [30, 32 B3], 57].
The present analysis provides quantification, i.e.
analytic derivation of the prefactors, in terms of
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Table 1: Concentration-normalized energy barrier AEy/ cl/3
and zero-temperature yield stress 70/ c2/3 for various dilute
binary alloys, as obtained by fitting to experimental data.

AEy/ct3 (eV)  71y0/c*? (MPa)

Cu-Al [44] 3.96 1873
Cu-Ge [51] 3.02 227.2
Cu-Mn [51] 4.01 4155
Ag-Al [AT] 4.30 97.2

the fundamental solute/dislocation interaction en-
ergies.

If the solute/dislocation interaction energies and
the line tension parameter « are not known,
Egs. can be used to fit experimental mea-
surements with only two parameters over arbitrary
temperature and concentration ranges. These pa-
rameters are the concentration-normalized energy
barrier AE,/c'/? and zero-temperature flow stress
7y0/c?/3. Examples of such fittings are shown in
Fig. p| for the Cu-Al [44], Cu-Ge, Cu-Mn [5I] and
Ag-Al [47] systems. The fitted parameters are sum-
marized in Table A similar analysis was per-
formed by Argon [20], although that fit was unable
to capture the high temperature behavior of the
yield stress.

Finally, we return to the multiple solute case in
the dilute limit. If the minimized w, for each indi-
vidual solute value does not vary significantly across
the range of solutes considered (verified for solutes
in Al by Leyson et al. [I7]), then the approximate
relationship

v
ol

7AEb =

> (aE™) ’

n

Y

(23)
holds where 7'158) and AEZE") are the zero-
temperature flow stress and energy barrier for so-
lute n alone. The first expression in Eq. is
consistent with Labusch’s analysis [32], B3], which
implicitly assumed some constant value of the w
cut-off parameter.

4.2. Elastic interaction model

We now simplify the full strengthening the-
ory of Egs. , and by considering
only the elasticity contribution UJ(z;,y;,2r) =
—p(xi, y;) AV, (25,5, zx) to the solute/dislocation
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Figure 5: Yield stress versus temperature, as predicted by multiscale bow out model (lines) and as measured (symbols): (a)
Cu-Al [44]; (b) Cu-Ge [51], (c) Cu-Mn [51] and (d) Ag-Al [41]. Predictions use fitted parameters in Table [I]

interaction energy, which is due to the interaction
between the pressure field p(z;,y;) of the disloca-
tion at the solute site and the solute n misfit volume
at this site. This “size” contribution is common
to all materials. Furthermore, in substitutional fcc
materials, due to cubic symmetry, the effects of lo-
cal deviatoric misfit strains of solutes average to
zero. The elasticity limit also enables comparison
with simpler literature models based on elasticity
concepts.

We first express the dislocation pressure field as

(i, yj) = — 4= Eii;f(xz,yj) where f(z;,y;) is the
dimensionless pressure generated by the distribu-
tion of normalized Burgers vector along the glide
plane (see for instance Fig. ) Here, p is the
isotropic shear modulus so that anistropic elastic
effects are embedded within the function f. Insert-

ing the above into Eq. , the key energy in the

14

theory becomes

2

1+v 9
Eli_yi ZAij(w)

where Afij(w) = f(zi —w,y;) — f(zi,y;). Recall
that AV, is the average misfit volume of solute n
and oay, its standard deviation due to different
local chemical and structural environments.
Minimization of the total energy with respect
to w to determine w, is then determined only by
Af;j(w); the role of the dislocation core structure is
thus separated from the solute properties. In other
words, w. depends only on the dislocation core

AE

p

(w)

- ®
3

[N

(24)

X lz Cn, (AVZ + U2AVn)

n
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structure through the dislocation pressure field. Af-
ter minimization, we obtain (., w.) for the specific
dislocation core structure. Without any loss of gen-
erality, we can express the line tension for bowing
in the glide plane as I' = aub?, with a a dimension-
less number that may also incorporate anisotropic
elasticity. The zero-temperature flow stress 7,0 and
energy barrier AEj, can be written as

1
7,0 = 0.051 a"3p (1 v

fﬁwa

-V

2
3

Y nCn (AVi + O'QAVH)

X 7% ) (25)
1 .3 1+v E
AE, = 0.274 a3 pub T fa(we)
—2
Saen (AV: +03y,)
X (26)

b6 ’

where f1(w.) =

[(£c>5/2 Zi,jA fj(wc)] . and
Bl = [(5) 5, A wd]

mized coefficients for the given core structure.
Two interesting features emerge when examin-
ing the role of the core structure for dislocations
that dissociate into two partial dislocations sep-
arated by a stacking fault of length d, as in fcc
crystals and basal and pyramidal slip in hcp crys-
tals. We first represent the core structure by a dis-
tribution of Burgers vector along the glide plane,
and compute the pressure using isotropic linear
elasticity (see and Fig. for de-
tails). Then, for sufficiently large d, the minimiza-
tion to obtain w,. and the coefficients f;(w.) and
f2(w.) reveals the existence of two minima with
two values we v < d and weut ~ d and thus two
sets of coefficients fi rr(werr), fo,ur(we,nr) and
fror(wenr), faar(we,mr). The first minimum has
a higher strength fi pr(we,rr) > fi,ur(wenT) but
lower energy barrier fg’LT(wC’LT) < fg’HT(’wC’HT).
The first minimum thus controls the strength at
lower temperatures while the second minimum con-
trols the strength at higher temperatures, with low
and high depending on the precise material values.
The second minimum thus provides a “high tem-
perature plateau” strength that may supplant the
high temperature behavior due to the first mini-
mum. This unexpected outcome will appear in our

are the mini-
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predictions below for Mg-Zn.

Of perhaps more importance is that the coeffi-
cients firr(werr) and forr(werr) for the first,
low temperature, minimum are essentially indepen-
dent of d for d > 10b. For matrices (pure or alloy)
with low stacking fault energies ysg, and thus large
d, the low temperature flow stress is independent
of stacking fault energy. The coefficients depend
on the spreading of the Burgers vectors of the par-
tial dislocations, but these do not vary significantly
across fcec metals. This unexpected outcome will en-
able predictions of flow strength for a range of fcc
High Entropy Alloys for which the stacking fault
energies are sufficiently low (such that d > 10b) but
are not established with any quantitative accuracy.

With coefficients fi rr(wepr) and fo rr(werr)
independent of material (for d > 10b), the above
elastic theory becomes fully analytical. Eqgs. (25)
and then show that high strength materials
are achieved by maximizing the shear elastic mod-
ulus of the matrix (which itself encourages larger
d=pb(24+v)/(247(1 — v)ysr) for fcc edge disloca-
tions) and maximizing the concentration-weighted
mean-squared misfit volume quantity. The impor-
tance of high shear elastic modulus and high mis-
fit parameter appear in previous models for dilute
alloys [29, B2, 39, 69], but the result here is now
generalized for arbitrary composition of the solid
solution alloys.

Furthermore, the concentration-weighted mean-
squared solute misfit volume quantity appearing in
Eqgs. and can be related - under certain
conditions - to the so-called “lattice misfit parame-
ter” §. Specifically, neglecting the fluctuations in
solute/dislocation interactions, assuming that all
alloying elements can crystallize in the same struc-
ture, and assuming that Vegard’s law is followed for
the lattice parameter variations with alloy composi-
tion, the misfit parameter is § =1/ C,LAVZ/Z’»V,
with V' the atomic volume of the average matrix.
The zero-T strength and energy barrier thus scale
as Tyo OC 6%/3 and AE, o 62/3. This § param-
eter is frequently estimated [6l [71l [72] [73] using
tables of “accepted” atomic radii for the different
elements. Such estimates are generally not suffi-
ciently accurate for real predictions and should be
replaced by the more general definition using the
misfit volumes of the solutes in the actual alloy
of interest. These misfit volumes are well-defined
quantities from both thermodynamics and mechan-
ics perspectives, do not rely on any Vegard’s law as-
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sumption, do not require the elements to crystallize
in the same structure, and are simple enough to be
computable using ab initio calculations [I3], [I7, [74].

Reducing again to the case of only one dilute so-
lute with concentration ¢ and misfit volume AV we
obtain the zero-temperature flow stress and energy
barrier for dilute binary alloys as

4 4

1 1+v)\3 2 AV3s

750 = 0.051la 3“(11/) Ji(we) 3 RV
1 3 AV

AE, = ().27404%;#“'(1+ > folwe) b gg
(27)

These scalings with the solute misfit volume, 7,9 o
AV*/3 and AE, o< AV?/? [I7, [69], show that AV
is a sensitive quantity for which an accurate deter-
mination is necessary. However, AV can now be
achieved by routine ab initio computations. Note
that the sign of the misfit volume does not have any
importance within the simplified model adopted
here, i.e. solutes having misfit volumes of the same
magnitude but with opposite signs will strengthen
the material in the same way.

If the solute(s) modify the elastic constants of
the average matrix relative to the pure elemental
matrix then, in the dilute binary alloy case, we can
write g = po + (Op/0c)e, giving rise to a second-
order dependence on concentration ¢ in both 7y
and AF,. This provides one component of the
“modulus” term in the strengthening. As summa-
rized by Argon [20], the change in elastic constants
induced by the presence of solutes in a pure el-
ement has two main consequences: (i) additional
core-specific interactions (inhomogeneity or “mod-
ulus” Fleischer effect [20] 28] 29]) and (ii) modifica-
tion of the dislocation line tension. The simplified
model based on misfit interactions in the average
matrix does not include the first effect, but does
create a concentration-dependence of the disloca-
tion pressure field and the line tension. In the full
model, Eqs. , and , core interactions are
computed atomistically by DFT, meaning that the
“modulus” effect and all other higher order effects
occurring within the dislocation core are automati-
cally included (cf. description of solute/dislocation
interactions in section .

4.8. Additional core contribution: interaction with
the stacking fault

As mentioned above, the reduced elasticity misfit

volume interaction model for the solute/dislocation
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interaction neglects all specific chemical interac-
tions within the dislocation core. In fcc materials,
dislocations are dissociated into two partials sepa-
rated by a stacking fault. An alternative to direct
calculations that improves the interaction descrip-
tion within the core zone without adding too much
complexity is to consider also the interaction of the
solute with the stacking fault in this region. This
has been done in the work of Yasi et al. [39] and
Ma et al. [75] for dilute binary alloys, and we dis-
cuss the dilute binary case for simplicity. The total
interaction energy for the solute n at a given po-
sition (x;,y,) becomes the sum of the misfit term
and a stacking fault term

U"(Ii,yj) = *p(xuyj)AVn + U,?(xi,yj), (28)

The stacking fault term UZJ(z;,y;) can be approx-
imated as constant within the stacking fault and
zero outside, so that

U™ (5, ;) = U 61 [H(x + 7) - H(x

where 9,41 is the Kronecker symbol, d < deq the
equilibrium dislocation dissociation distance and H
the Heaviside function, which delineates the range
along the glide plane where the interaction with the
stacking fault exists. This accounts for the interac-
tion energy U, of the solute with the stacking fault
over the two planes adjacent to the glide plane that
define the stacking fault plane. Note that interac-
tions of substitutional solutes in planes farther away
from the stacking fault can exists [37] and can be
included in Eq. by considering j = 2,3, ....
Interstitial solutes and/or multiple solute sites not
related by symmetry [76] [[7] are also straightfor-
ward to consider. However, in such cases, and even
when considering only the two planes adjacent to
the stacking fault energy, the Heavyside function
may require some smoothing to avoid an abrupt
transition in the energy contributions versus dis-
tance w. This does not change the general con-
clusions below. The solute/stacking fault interac-
tions can be calculated using direct ab initio calcu-
lations, that are now routinely done for dilute alloys
[7eL (77, [78, [79).

Using the interaction model of Eq. , the key
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characteristic energy AEp(w) becomes

~ —9 n
AE,(w) = |AV, > Ap?j(w) + U2 " AhZ(w)
1,5 i,j
— QAVHU% ZApij (w)AhU (w) C%.
4,7
(30)
with
w (I+v

Apij(w) == o El - V;Afij(w), (31)

Ahij(w) =541 [H(zl —w+ g) - H(:rz + g)

—w— g) + H (i - g)} . (32)

The key energy AEp(w) of Eq. can therefore
be decomposed into a misfit volume (“size”) term,
a stacking-fault interaction term, and a cross-term
between misfit volume and stacking fault interac-
tion. Interestingly, contrary to the case of the mis-
fit volume interaction only, the role of the solute
and matrix properties are no longer separated. The
minimization with respect to w leading to w, is not
independent of the solute properties.

Both zero-temperature flow stress and energy
barrier scale with the key energy AE’p(wC), i.e. we
have 7,0 o< AE,(w.)*? and AE, o< AE,(w.)?/?.
Consequently, the first two terms in Eq. are
always positive and contribute to enhancing the
strength at any temperature, whatever the sign of
AV, and of UJ. However, their respective signs
matters for the third term (the cross-term), which
can contribute either to enhance or to decrease the
strength. Similar conclusions have been obtained
by Yasi et al. [39] and Ma et al. [75], who adopt
a slightly different expression for the interaction of
the solute between the two partials, considering a
slip misfit parameter

—H(.Z‘i

1 dyse
sk dc

€SF ; (33)

c=0

with ygp the relevant stable stacking fault energy
of the material. The solute/dislocation interaction
is then given by

UY (wi,y£1) = Asvn (us(w4,y+1)) €s¥, (34)

where A is the area of the solute atom projected on
the slip plane, ,;, is the generalized stacking fault
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energy of the host, u; is the shear displacement of
the atom adjacent to the stacking fault with co-
ordinates (z;,y+1). This formulation should bet-
ter describe the interaction of the solutes when ap-
proaching the partial cores than the simple model
of Eq. , as it accounts for the exact misfitting
displacement along glide direction instead of hav-
ing an abrupt Heaviside function. On the other
hand, inclusion of the interaction of solutes located
in planes farther away from the glide plane is less
obvious within this approach and would require ad-
ditional modeling [76] [79].

To conclude, simplified models to account for
both elastic long-range effects and chemical-specific
short-range interactions within the dislocation core
allows us to tackle and understand the possible
consequences of including core interactions, com-
pared to the purely elastic case: (i) variation of
w,. with the solute type (seen in Al alloys [I7], al-
though changes are very weak), and (ii) strength-
ening/softening compared to the simplified mis-
fit volume interaction model. Finally, the elas-
tic/stacking fault interaction models require mate-
rials input that are obtained from comparatively
low-cost ab initio simulations, thus allowing for
the construction of design maps at a low cost, as
compared to full direct computations of the so-
lute/dislocation interactions (see Yasi et al. [39] for
an example in Mg alloys).

5. Applications

We now turn to various applications of the
strengthening model to materials having low intrin-
sic Peierls stress. We select specific cases here that
are not addressed in detail in earlier work, so that
the results here are new in some respects. The ap-
plications cover a range of systems, one with a rela-
tively compact dislocation core (fcc Al alloys), one
with well-dissociated and distinct partial disloca-
tions (basal slip in hep Mg alloys), one with the
dislocation at an interface (twinning in Mg), and
finally complex non-dilute alloys (fcc High Entropy
Alloys). Each application demonstrates the quan-
titative, parameter-free power of the theory while
also revealing new predictions that emerge from the
theory.

5.1. Al-Mn Solid Solutions

We have previously examined the strengthening
behavior of various solutes in Al alloys [I7, [69].
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Here, we specifically discuss the case for Mn so-
lutes in Al and pay detailed attention to the role
of the line tension. The edge dislocation core was
computed by previously [80] and corresponds to the
structure shown in Fig. [Th. Based on this structure,
the normalized pressure field of the dislocation away
from the core is described using the following spread
core model,

b 2 yj
n—l—llz ’

f(wi,y5) = 2 [xi—l(g)]Q—i—y?

(35)

where n = 10, which was previously shown to agree
well with the core predicted using an EAM poten-
tial [8I]. A Peierls-Nabarro model [26] could also
be used, or a double-Gaussian model as shown in
Fig. . The solute/dislocation interaction outside
the dislocation core is assumed to be purely elastic,
i.e. Ua(zs,y;) = —p(xs,y,)AV. For sites imme-
diately adjacent to the dislocation core (stacking
fault region), the interaction energy is calculated
by direct substitution of an Al atom by a Mn atom
in the computational cell. The resulting map of
solute/dislocation interaction energy versus solute
position is shown in Fig. [Th. This is the only solute
input to the theory.

The line tension I' is a material property, but
its precise value is not well-established since it in-
volves dislocation core energies. In addition, since
line tension is in part controlled by elastic interac-
tions along a non-straight dislocation, the line ten-
sion varies with the length of the bowing line. In
the context of solute strengthening, the line tension
should thus be computed at the characteristic pe-
riodic length 2(.. Recent atomistic calculations for
Al using an EAM potential [82] showed that I" for
the edge dislocation is approximately

T = Cy In(2¢./b) + Co, (36)

where C; = 0.072 eV.A"! and Cy = —0.04 eV.A~ L.
The theory above assumes that the line tension is
independent of ¢ and so is not included in any min-
imization of the total energy. Since the line tension
only varies logarithmically with (., the additional
complexity has minor quantitative effects. For in-
stance, for Mn concentrations ranging from 0.001-
0.01, (. varies in the range 150-300 A, and Eq.
then predicts T' to range from 0.30-0.35 eV.A~T.
The zero temperature strength and energy bar-
rier scale weakly with T, as 7, ~ T'~!/? and
AE, ~ T''/3 respectively, so that effects of such
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variations in line tension are minor. The values
0.30-0.35 eV are slightly lower, however, than the
value of 0.47 eV.A~! used in Ref. [I7]. The line
tension I' can be calculated self-consistently using
the model and the relationship between I' and (.
given in Eq. . Specifically, an initial value for
T" is assumed and is used to calculate (.. A new
line tension I (¢.) is then computed and used to
predict a new value of ¢, ~ I"~1/3. This process
is iterated until both (. and I' are converged. The
resulting self-consistent I' then determines the so-
lute strengthening parameters AE, ~ I'"'/3 and
Tyo ™~ F1/3.

The total energy vs. w for Al-Mn is shown in
Figure [Bh. For the Al core with small partial dislo-
cation separation, only a single minimum emerges
at a characteristic length w. = 18.6A that is on
the order of the partial separation. The resulting
solute strengthening parameters for Al-Mn are sum-
marized in Table The predictions of the model
are compared to experimental measurements by
Diak et al. [49] on three different alloy compositions
at temperatures ranging from 78K to 263K and
¢ = 5x1075s~!. The theory uses a reference strain-
rate of €9 = 10*s~1. Diak et al. have confirmed that
their alloys contained elements other than Mn, but
in negligible concentrations. In particular, Fe con-
centrations are less than 3 ppm; this is especially
important because solute strengthening of Fe in Al
is anomalously large [I7),[69]. Moreover, the present
theory fails in prediction of the strength of dilute
Al-Fe binary alloys; this will be discussed in Sec-
tion [6] The comparison between predictions and
experiments for Al-Mn alloys is shown in Fig.
For the purpose of illustration, predicted strengths
over a range of line tension values are shown to in-
dicate sensitivity of the results to this quantity. A
good agreement over the entire concentration and
temperature range of the experiments is found. We
emphasize here that our predictions are based on
first-principles calculations and are parameter-free.

5.2. Activation volume of Al alloys

The activation volume V is a physical quantity
that can be measured experimentally using strain
jump tests, and Basinski showed that V satisfies the
stress-equivalency principle in solute strengthened
materials. It was shown earlier that stress equiva-
lency is predicted by the model if w. is the same
for all the alloys, which is well-satisfied in Al-X al-
loys, and assuming that I" is a constant. While the
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Figure 6: The total energy change per unit length AFy,¢/L versus distance w. Left plot: Al-Mn, showing a single minimum

finite-temperature yield stress 7, is only weakly de-
pendent on I' due to the opposing trends on 79 and
AE,, the activation volume scales like T'%/9. Tt is
thus not clear if stress equivalency is obeyed if T’
varies with (. and, therefore, solute concentration.
To investigate this issue, we have computed the line
tension I' self-consistently using the model and the
relationship between I' and (. given in Eq. , as
discussed in the previous paragraph.

We perform the analysis for Al-Mg and Al-Si al-
loys using solute strengthening parameters reported
in Ref. [I7], but rescaled with the self-consistent I'.
These alloys are chosen because they have very dif-
ferent AE;, and 7,9 but the same w,. The predicted
activation volume as a function of 7, is shown in

at we, = 18.6 A; right plot: Mg-Zn, showing two minima at w1 = 9.6 A and We,2 = 35.1 A.
60 —— 5 T (K)
. O 0.123% Mn , / 250
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Figure 7: Experimental [52] and predicted finite-temperature
yield stress oy (T') = 3.067, (T") for Al-Mn alloys. The pre-
dicted results use self-consistent line tension I' values. The
range of predicted values corresponds to an assumed range
of I' = 0.2 to 0.47eV.A~! to show sensitivity to this pa-
rameter; symbols without a range indicate that the range is
smaller than the symbol size. The dashed line of slope of
unity is a guide to the eye.
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Fig. in a log-log plot along with the experimen-
tal values of Diak et al. Diak et al. [52 53] mea-
sured at 78 K for a range of solutes in Al. The
results show that stress equivalency is upheld even
when T' varies with solute concentration (through
the corresponding value of (.). Both the predic-
tions and the experiments in Fig. are approx-
imately linear, indicating a power-law relationship
V'~ 7, ™. The exponent m using the self-consistent
T' is slightly larger than that using a fixed I" but
both cases are smaller than experiments. The pre-
dicted magnitude of V' is larger than experiments,
but the experimental yield stress includes contribu-
tions due to lattice friction (Peierls stress) on the
order of 1 MPa. When this is taken into considera-
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Figure 8: (a) Normalized activation volume MV/b3 and ver-
sus yield stress 7, at 78 K for experimental binary Al al-
loys [62 53] (open symbols) and predictions (solid line:
I' = 0.25 eV/A; dashed line: self-consistent I'). Predictions
are calculated using solute strengthening parameters for Al-
Mg and Al-Si from Ref. [I7], and the results are identical
thus demonstrating Basinksi’s stress equivalency principle.
(b) Self-consistent line tension I' vs 7.

tion, agreement is improved. Finally, an interesting
consequence of this analysis is that the variation of
I' with 7, also shows a “stress equivalency”. That
is, given the same finite-temperature yield stress,
two alloys with the same matrix will have the same
characteristic length regardless of the alloying ele-
ment(s) (the I' vs. 7, curve is given in Fig. )

5.8. Mg-Zn Solid Solutions

Unlike the relatively compact dislocation core in
Al the basal edge dislocation in Mg has a large dis-
sociated core with distinct partials, commensurate
with its low stacking fault energy. The fundamental
theory applies in general, but reveals that a second
minimum solution arises in Mg that is absent in Al,
and this has implications for the strength at higher
temperatures. We first reported on this feature of
the model in Ref. [I8] for Mg-Al alloys. Here, we
present previously unpublished predictions for the
Mg-Zn system.
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The solute/dislocation interaction energies were
calculated by DFT for atomic sites in the Mg basal
edge dislocation core by Yasi et al. [39], and are
shown in Fig. [Ib. The solute/dislocation ener-
gies outside the core region were approximated by
elasticity with the DFT-computed misfit volume
AV = —10.6 A3 of Zn in Mg. For an accurate de-
scription of the normalized pressure field f(z;,y;),
we use the Peierls-Nabarro model,

oo b (x )
[ (@i y;) = / %diﬁ/
—oo (@ — 2')" + y;

where the Burgers vector distribution ¥'(z') =
db/dx is calculated from the first-principles-
computed core structure of Yasi et al. [39]. The
complete solute/dislocation interaction energy map
is shown in Fig.[Ip. The smooth transition between
the DFT computed core interactions and the elastic
misfit volume interactions outside the core region
is again found and supports the use of the elastic-
ity approximation just outside the core. We use a
line tension based on Eq. , but scaled the re-
sults from Al to account for the differences in shear
modulus and Burgers vector, as I' = aub?. The self-
consistent procedure leads to a I' that ranges from
0.19-0.28 eV.A~! for the temperature and concen-
tration range in the experiments.

The total energy per unit length as a function of
w (see Eq. (L1))) for the wavy dislocation is shown in
Fig.[6p. Here, the change in total energy shows two
minima rather than just one; this was noted earlier
during our discussion of the elasticity limit of the
general theory. In Mg basal slip, there are therefore
two equilibrium configurations that the dislocation
can adopt, leading to two sets of solute strength-
ening parameters as summarized in Table The
two minima arise because of the dissociated nature
of the Mg basal edge dislocation core. The first
configuration corresponds to a decorrelation of so-
lute fluctuations when the dislocation has moved
approximately one-half the partial separation. This
configuration is characterized by a relatively large
zero-temperature yield stress but a relatively low
energy barrier. The second configuration corre-
sponds to decorrelating much longer-range solute
fluctuations, and is characterized by a relatively
small zero-temperature yield stress but a relatively
high energy barrier.

In order to glide, the dislocation must overcome
both types of configurations by thermal activation.
In general, one of the configurations will dominate,

(37)
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Table 2:  Solute strengthening parameters for the Al-Mn
and Mg-Zn systems. The Mg-Zn system have two sets
of parameters, corresponding to each minimum shown in
Fig. @ The parameters shown use I' = 0.32 eV/A and
I' =024 eV/A for Al-Mn and Mg-Zn, respectively.

Normalized Al-Mn Mg-Zn
parameter Conf. 1 Conf. 2
w, (A) 18.6 9.6 35.1
Ce-c/3 (A) 38.8 31.8 108.4
AE,/c'/3 (eV)  6.62 1.61 5.76
7,0/c® (MPa)  807.9  416.5 108.9

i.e. have the largest barrier at any given stress. To
determine the net rate of flow, Eq. should thus
be replaced by

1 1 1
=+

é 6.1 6.2

(25 (252 o

where the subscripts 1 and 2 indicate the first
and second configurations, respectively. Inverting
Eq. yields the prediction of the finite temper-
ature yield stress 7, (T, €). Due to the two different
configurations, the temperature dependence of the
yield stress exhibits two regimes. At low tempera-
tures, since AE; < AFE5 which leads to €5 < €1, the
low temperature behavior of Mg basal slip is con-
trolled by the first configuration. At higher tem-
peratures, the opposite and second configuration
dominates the flow. The transition between the two
regimes occurs over a relatively narrow temperature
range because the energy barrier appears in an ex-
ponential Arrhenius law. The solution to Eq.
can be well approximated by using Egs. (17) and
for both configurations and selecting the larger
stress.

We now compare the predictions against experi-
ments by Akhtar and Teghtsoonian [83]. They mea-
sured the yield stresses of Mg-Zn alloys at concen-
trations ranging from 0.15% to 0.45% and at various
temperatures, at ¢ = 1.66 x 1074 s~1. As before, we
use &g = 10* s~!. Because the alloy strengths are
comparable to the measured Peierls stress 7,18 of
pure Mg , we add 7)'8 to the predictions. The
yield strength versus temperatures, as predicted
and measured, are shown in Fig. [J] With no ad-
justable parameters or fitting, the predictions are
in good agreement with experiments over all con-
centrations and temperatures. There is some over-
estimation of the yield stress at low temperatures,
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but of more importance is that the model nicely
captures the transition in strength with increasing
temperature into what is traditionally referred to as
a “plateau” regime. The presence of a plateau has
previously been attributed to additional strength-
ening mechanisms, such as solute multiplets [51],
elastic dislocation/dislocation interactions [84], or
solute drag “friction” [20]. Here, the “plateau”
regime arises naturally from the theory as a con-
sequence of the well-dissociated nature of the basal
dislocations in Mg, and quantitatively explains the
trends in experimental results versus temperature
and composition. No new or unusual mechanisms
need to be invoked to explain the experiments.

5.4. Twinning in Mg

The theory predicts how a dislocation will move
in a random field of solutes. The dislocation is not
restricted to be a lattice dislocation, and so equally
applies, in principle, to dislocations along interfaces
(with possible modifications needed for any finite
Peierls stress). Thus, in particular, the model is
applicable to the strengthening of twinning dislo-
cations moving along a twin boundary, where the
defect has a dislocation+step character. Our dis-
cussion here examines strengthening of the tensile
twin dislocation in Mg due to Al and Zn solutes.

The solute/twin-dislocation interaction energies
for Al solutes were computed using DFT and the
dislocation pressure field, as shown in Fig. [Tk. No-
tably, the solutes have a strong interaction (both
positive and negative) with the twin boundary, in-
dependent of the twin dislocation. This new fea-
ture of the energetics emerges when studying dis-
locations moving along boundaries, but is not an
impediment to application of the theory. Direct
DFT calculations of the solute/twin-dislocation in-
teraction energy are computationally very expen-
sive, and so we computed Zn interactions with the
twin boundary alone (no dislocation) and have then
estimated the Zn interaction energy around the dis-
location by a validated scaling of the corresponding
values for Al [85]. The line tension is dominated by
the step because the dislocation Burgers vector is
quite small (b ~ 0.5A). The line energy is computed
as T' = 0.040 eV.A~! from the twin dislocation core
energy using the EAM Liu potential [86], which
predicts twin boundary structure and energy, and
twinning dislocation core structure, in good agree-
ment with DFT [87].

With the above inputs, the theory is applied. As
found for Mg basal slip, application of the model
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Figure 9: Experimental [83] and predicted finite temperature yield stress 1, (T') for Mg-Zn alloys. Left: 7, shown by the solid
line, with the low and high temperature strengths shown by the dashed line (7y1) and dashed-dot line (7y2). Right: experimental
versus predicted strength across all alloys and temperatures, with predictions using the self-consistent line tension I" with scaling
Eq. by the ratio of Mg and Al shear moduli. Dashed line of slope of unity is a guide to the eye.
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Figure 10: Normalized total energy change per unit length
vs. roughening amplitude w normalized by the periodicity
of the coherent twin boundary L; = 7.58A, for Al and Zn
solutes interacting with twinning dislocation in Mg. The Zn
interaction energies are obtained by direct DFT calculations
at selected sites and scaled Al interaction energies elsewhere.
Use of the scaled energies at all sites (dashed line) introduces
an error of ~ 0.001 meV.A~! in the normalized total energy.
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to the twinning problem shows new features, as
follows. Fig. shows the total energy per unit
length of dislocation AFE}.(w)/L for various val-
ues of the amplitude w. Unlike in the previous
applications to lattice dislocations, a clear mini-
mum in the total energy does not emerge from
the analysis. Rather, the energy is almost inde-
pendent of w, for each discrete (periodic) value of
w > 0. This feature is unique to the twin dislo-
cation because the interaction energies are domi-
nated by the solute/twin-boundary energies rather
than the solute/twin-dislocation energies. As the
twin dislocation moves along the boundary plane,
it shifts the twin boundary up by the unit step
height and changes the relative positions of solutes
with respect to the boundary; solutes on the origi-
nal boundary are below the new boundary and so-
lutes above the original boundary are on the new
boundary. In a random solute field around the twin
dislocation, the strengthening is dominated by the
favorable statistical fluctuations of solutes along the
original and new twin boundaries which extend be-
yond the defect core. Furthermore, the small line
energy of the twin dislocation enables more bow-
ing to find such favorable solute fluctuations. As a
result, in the Mg twin, various roughening ampli-
tudes w, given by multiples of the twin periodicity
L1, have nearly equal contributions to AEp(w) and
thus affect the total energy by comparable amounts.

Because there is no minimum in the total energy
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versus amplitude w, with all values of w having
nearly equal energies, the analysis of strengthen-
ing for the twin dislocation is thus more complex
than strengthening for the lattice dislocation but
follows as a generalization of the two-minimum sit-
uation found in basal slip in Mg. For fixed values of
temperature, concentration, and strain-rate, there
are now many possible configurations available for
the twinning dislocation to optimize its energy, i.e.
the dislocation line may bow out by various mul-
tiples of L; towards favorable solute distributions.
Among all of these configurations, the one requir-
ing the highest stress to achieve the desired strain-
rate at any given temperature is the configuration
that controls the strengthening. Thus, a prediction
of the yield stress versus temperature and concen-
tration requires calculation of the strength for all
possible roughening amplitudes w and then a de-
termination of the maximum strength among all
these strength values. The strength versus tem-
perature at a given ¢ and strain-rate is then con-
structed as the “envelope” of the strength vs. T
curves for each possible integer bow out w = nlL;.
Creation of the envelope is straightforward but un-
wieldy. Since AEyq/(Lc?/3) is essentially constant
for all the integer values of w = nL; (see Fig. ,
we can develop an analytic model by considering
w as a continuous variable for w > L; but with
AE /(Lc?/3) independent of w, and carry out the
maximization analytically. This yields an analytic
expression for the finite-T, finite strain-rate yield
stress (for w > Lq) given by

(T8 = 27(33 — 8v/2) [~ AEio/Lc3 2T 3¢
v 25+/5b kpTlney/é

» (39)

where AF/(Lc??) is the computed constant
value for w > L; shown in Fig. [T0] for the given so-
lute. This analytic result is in excellent quantitative
agreement with the results obtained through nu-
merical construction of the “envelope” of strength
vs. T curves. The analytic result, encompassing all
possible bow outs, changes the scaling of strength
versus concentration and temperature, as compared
to the case for lattice dislocations. For the twin, the
strength is directly proportional to concentration ¢
and inversely proportional to the temperature T.

We now compare the model to experiments for
the Mg-Al-Zn alloys. For multiple solute types at
dilute concentration, the above model can be gen-
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(T é) 25v/5b kpTIne,/é

(40)

where n ranges over the solute types (but not
the host matrix). The predictions use the rele-
vant collective solute/twin-dislocation interaction
energy quantity AFyo /(Lc?/?), computed using the
DFT-computed solute/twin-dislocation interaction
energies. Specifically, we use the average values
of AF/(Lc*?) = —0.009 meV.A~! for Al and
—0.014 meV.A~! for Zn, corresponding to the av-
erage values as indicated in Fig. We com-
pare to experiments performed at T=300K and
¢ = 1073371, and use a reference strain-rate of
éo = 10°s7!'. Twinning in pure single-crystal Mg
was studied by Kelly and Hosford [88], who ob-
tained a strength of 3MPa at room temperature;
this value represents the “Peierls stress” for twin-
ning and must be added to our prediction in mak-
ing any comparison with experiments. Direct and
systematic experiments measuring the strengthen-
ing effect of solutes on twinning in Mg alloys have
not been reported. However, there is significant
stress-strain data on textured polycrystals with ei-
ther controlled solute concentrations or commer-
cial compositions, and these studies have been used
to estimate the stresses needed to drive twinning.
Ref [89] contains an analysis of earlier experimental
data for AZ31 [90, 911, 92}, 93], AZ61 and AZ80 [91]
at various grain sizes. The twinning yield stress
for these alloys can be determined from the results
at a (large) grain size of 100 um and applying the
appropriate Schmid factor (m = 0.37) [89]. The
experimental strengths and our predictions for the
total twin yield stress (CRSS) including the Peierls
barrier are shown in Table [3} the agreement is very
good. Estimates of the critical resolved shear stress
(CRSS) required for twin growth in Mg AZ31 alloys
were also reported to be in the range of 6-14 MPa
[94], in reasonable agreement with the prediction of
7, = 14 MPa. However, Stanford and Barnett [89]
studied the solute strengthening of twinning in bi-
nary Mg-Zn polycrystals and found that the CRSS
is independent of Zn concentration up to 1at%
(2.8wt% ), in disagreement with our prediction that
the strength should increase from the Peierls stress
of 3 MPa to =~ 8 MPa at 1at% Zn. These strength-
ening levels are small, but should be measurable if
real. The ratio of twin vs. basal CRSS predicted
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by the model, however, reproduces well the ratio
obtained in Ref. [89).

Table 3: Twinning yield stress in MPa for commercial Mg
alloys, as measured and as predicted by the present model.
The compositions used in the model are shown.

Alloy ¢ (at%) Ref. [89] This work
AZ31 Al:2.7, 7Zn:0.37 18 14
AZ61 Al:5.47, 7Zn:0.37 22 23
AZ80 Al:7.28, Zn:0.187 33 28

Overall, the theory cannot match two entirely
different experimental results, those on the Mg-Al-
Zn alloys and those on the binary Mg-Zn alloys.
The expected uncertainties in the model predictions
(due to line energy and solute/twin interaction en-
ergies) are not large enough to rectify the discrep-
ancy. We consider the good agreement found for
the AZ alloys to suggest that solute strengthening
of twinning does exist, and with the theory point-
ing toward these experiments as more representa-
tive. The issue of strengthening of twinning by so-
lutes will be resolved experimentally only through
designed tests on single-crystal Mg alloys, although
such studies may be complicated by the need to nu-
cleate twins. Nonetheless, our robust mechanistic
theory provides a theoretical foundation for inter-
pretation of such future results.

5.5. fec High Entropy Alloys

Finally, we apply the solute strengthening model
to several non-dilute random solid solutions of high
current interest: equicomposition fcc High Entropy
Alloys (HEAs) in the Ni-Co-Fe-Cr-Mn family. In
the detailed publication [61], comparison of the the-
ory to molecular simulations on a model Ni-Fe-Cr
alloy, using EAM interatomic potentials, was pre-
sented to validate important features of the theory.
Here, we concentrate on predictions for real mate-
rials. The Ni-Co-Fe-Cr-Mn family has been well-
studied by George and coworkers [95] [96] [97], who
performed uniaxial tensile yield strengths versus
temperature, strain-rate, and grain size d, in poly-
crystalline materials. The HEA strengths showed
two contributions: a grain-size-dependent Hall-
Petch (H-P) contribution on_p(dy) and a chemi-
cal/alloying effect oaioy that is modeled by solute
strengthening theory. For comparison with theo-
retical predictions, we thus only consider those al-
loys for which the measured H-P contribution can
be subtracted from the total experimental strength,
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Table 4: Atomic volumes V,, of element n =Ni, Co, Fe, Cr
and Mn, computed from litterature data on the experimental
lattice parameters of Ni-X binary solid solutions for X=Co,
Fe and Cr [60} 98, [99] and on the wider family of Ni-Co-
Fe-Cr-Mn HEAs [95], and applying a Vegard’s law to the
average alloy atomic volume.

n Ni Co Fe Cr Mn

V, (A% 1094 11.12 1209 1227 12.60

i.e. NiCoFeCr and NiCoFeMn alloys at various tem-
peratures [95, 7], and NiCo, NiFe, NiCoFe, and
NiCoCr alloys at T = 293K [96] (for details see
Ref. [61]).

Prediction of o0y for these alloys requires the
input parameters of the model. Ab initio com-
puted data are not available, and are also very
challenging to obtain in these highly-concentrated,
multicomponent systems. We therefore use the
simplified elasticity model of Egs. and .
Measurements of the polycrystalline elastic con-
stants (u, V) versus temperature (for NiCoFeCr and
NiCoFeCrMn) and at room temperature (for NiCo,
NiCoFe, and NiCoCr) [95] [07] and Burgers vectors
b are available. The average misfit volume AV,
of each solute element is computed using litera-
ture data on the lattice parameter of binary Ni-
X (X=Co, Cr, Fe) fcc solid solutions [60, [98, Q9]
and on the wider family of Ni-Co-Fe-Cr-Mn HEAs
studied by Wu et al. [05], and applying Vegard’s
law to the atomic volumes [61]. The corresponding
atomic volumes for each element are shown in Ta-
ble [ and the misfit volume of solute type n in
any alloy is then computed as AV, =V, — V.
The line tension parameter o = 0.123 is obtained
from the atomistically-measured edge dislocation
line tension in the EAM FeNiCr effective matrix,
and is close to the coefficient for elemental Al [82].
The dislocation cores in HEAs show large dissoci-
ation distances d > 10b, consistent their relatively
low stacking fault energies ysp (low ab initio esti-
mates, and large stacking fault ribbons observed
experimentally [I00, 0T, 102]). The minimized
parameters of Eqs. and , fi(we) ~ 0.35
and fa(w.) ~ 5.7 for the low temperature solution
(which is the only one relevant for these materials
up to ~ 700K) are thus independent of the precise
value of d or ~vgp.

With all these inputs, the analytic theory of
Egs. and then predicts the strength ver-
sus temperature and strain-rate for any alloy com-
position. Figs. [IIp,b show the predicted and mea-
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Figure 11: Quantitative comparison between experimental and theoretical yield stress versus temperature for the NiCoFeCr
(left) and NiCoFeCrMn (right) equiatomic alloys [95} [97], as measured (black symbols) after subtraction of the Hall-Petch
contribution to the strength and as predicted by the theory (open symbols). The dashed lines show predictions using a line
tension of one-half the original value (i.e. a is reduced by 1/2), showing the weak sensitivity of the model to the line tension

except at very low T.

sured alloy contributions ooy to the yield stress
for the NiCoFeCr and NiCoFeCrMn alloys over the
complete temperature range at ¢ = 1073 s~!. The
predictions are very good, again with no fitting pa-
rameters. The NiCoFeCr and NiCoFeCrMn alloy
strengths are nearly identical, which the theory at-
tributes to the compensating effects of a larger mis-
fit contribution for NiCoFeCrMn and a larger y for
NiCoFeCr. The predictions at the lowest temper-
ature (T = 77K) are, however, well below the ex-
periments. This could be due to chemical-specific
core interactions that are absent in the elasticity
model, or to the neglected fluctuations due to local
structural and chemical disorder in HEAs (appear-
ing in Eq. ) On the other hand, Figs. 7b
also show predictions using a line tension parame-
ter a = 0.06125, demonstrating that the strength
predictions are nearly independent of line tension
except at T' = 77K and thus some of the discrep-
ancy at T' = 77K could be due to inaccuracy of the
line tension. Comparison of parameter-free theory
and experiment for four other alloys (NiCo, NiFe,
NiCoFe, NiCoCr) [96] at T' = 293K are shown in
Fig. and again the overall agreement is very
good, with accuracy levels similar to those achieved
in the simpler dilute binary alloys [I7, [18]. The the-
ory also preserves the observed ordering of strength
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versus composition, with the ternary NiCoCr alloy
having the highest strength, for instance.

In addition to the good quantitative agree-
ment with experiments, the theory answers many
open questions about strengthening in HEAs: (i)
strength does not directly depend on the number
of components N, and is not necessarily maximized
by the equi-atomic composition, (ii) the strongest
and most temperature-insensitive materials are
achieved by maximizing the concentration-weighted
mean-square misfit volume quantity and/or increas-
ing the shear modulus, and (iii) the stacking fault
energy has little influence on strength. These in-
sights provide a basis for computationally-guided
design of higher-strength many-component random
alloys. This is discussed further below.

6. Discussion

The new strengthening model presents possibil-
ities for alloy design while pointing to additional
topics for future work. We discuss these issues here.

6.1. Identification of promising materials

Having demonstrated that the present model is
robust and predictive, the identification of new
promising materials becomes reachable. The full


http://dx.doi.org/10.1016/j.actamat.2016.09.046

S 0| T=293K /c?f
: /

> 4 O

2 A7

b:s 80 B D // T
— 7/ NiCo A\v4
*g , / d FeNi A
% 40 | e N%CoFe O |
5 Y NiCoCr <>
= i NiCoFeCr )
= 0 NiCoFeCrMn O

0 40 80 120
Predicted Calloy (MPa)

Figure 12: Experimental [95, [06, [O7] versus predicted
strengths for several HEAs in the Ni-Co-Fe-Cr-Mn family
at T = 293K, after subtraction of the Hall-Petch contribu-
tion to the strength. The dashed line of slope of unity is a
guide to the eyes.

theory does not have any adjustable parameters;
all inputs - elastic constants, Burgers vector, and
the more complex line tension, dislocation core
structure, and solute/dislocation interactions - can,
in principle, be computed. If computed from re-
liable ab initio methods, then systematic explo-
ration of compositional phase space, through high-
throughput computing of model inputs accompa-
nied by application of the model to predict strength,
will allow for the creation of “design maps” for new
materials. Such an approach is then coupled with
predictions of alloy phase stability through well-
established thermodynamic modeling.

For dilute alloys, ab initio computation of dislo-
cation core structure and solute/dislocation interac-
tion is accessible with high accuracy, as described in
the partner Overview article [25]. The line tension
is computable from either empirical potential simu-
lations (given good interatomic potentials) or from
DFT-parameterized line tension models [82], [T03].
New alloy design can therefore be undertaken based
on the full version of the strengthening model of
Eqgs. , and .

For non-dilute alloys such as HEAs, the prob-
lem is more complex due to the high number of
components and the chemical, structural, and pos-
sible magnetic disorder in such materials. How-
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ever, the model here, using an effective matrix
material and including first-order local fluctua-
tions around the average, provides a formal base-
line. Properties of the effective matrix and disor-
der are challenging for ab initio calculations, but
techniques such as the Virtual Crystal Approxima-
tion [62] and the Coherent Potential Approxima-
tion [63, [64], [104] 105 [106], and the use of Spe-
cial Quasi Random structures [I07, 108] provide
directions for progress. Direct calculations of av-
erage properties, such as Cjj, b, AV, JZVW, and
ysr are currently feasible (see Refs. [I00, 101]) and
provide the inputs needed for application of the
simplified elasticity model. The precise disloca-
tion core structure, direct solute/dislocation core
interactions U™ (z;, y;, 2k ), and dislocation line ten-
sion, are all far more challenging, and perhaps pro-
hibitively expensive, to compute. However, well-
validated empirical potentials for alloys, tuned us-
ing DFT inputs, may allow all model inputs to be
computed with reasonable accuracy [60} [65]. The
availability of such potentials is not sufficient at
the present time, however. Thus, ab initio-based
design is likely best pursued using the elasticity-
based model (Eqgs. (24)-(26))) with dislocation struc-
tures parameterized by b, ysr and yysp, and a
line tension scaled by pb?. Within this simpli-
fied elasticity model, higher strengths will gener-
ally be obtained for a larger solute misfit parameter

9 1/2
[Zn Cn (Avn + U2AVW,):|
s of less importance. New alloys designed using
the elasticity-based theory with computable mate-
rial inputs will, while not exact, provide a clear
physical framework for identifying promising com-
positions to achieve higher-performance HEAs, aut-
enitic stainless steels, etc.

and/or larger p, with

6.2. Fuilures of the theory

The present theory has been shown to be quanti-
tatively predictive across a range of systems. How-
ever, as mentioned earlier in section |5 the theory
fails for dilute Al-Fe binary alloys strength [I7].
The DFT computations for Fe/dislocation interac-
tion energies are similar to, albeit slightly larger
than, the results for Al-Mn [I7]. The measured
strengths of Al-Fe at Fe contents of 10-50 ppm are,
while small, roughly 10 times larger than predicted
by the theory. Analysis of the DFT provides no in-
sights into the reasons for this failure of the theory.
Investigations into other possible effects (e.g. inter-
action of Fe with O or other impurities, formation
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of strong Fe-Fe pairs, etc. see further discussions)
remains to be done. As a practical matter, we have
fit the theory to the Al-Fe binary response to obtain
fitted values for AE,/ct/? and 7,0/c*?, and have
then used these parameters to successively predict
strengths in nominal binary alloys that contain Fe
at tens of ppm levels by treating them as ternary
alloys (Al-Cu-(Fe), Al-Cr-(Fe), commercial Al-Mg-
(Fe)). Nonetheless, the failure of the theory in this
one case shows that the strengthening mechanism
envisioned in the theory may not be applicable even
when first-principles DFT results do not indicate
any anomalous behavior in the solute/dislocation
interaction energies.

6.3. Contribution of screw dislocations to solute
strengthening

In the present model, the alloy strength has been
predicted while focussing only on the energetics and
motion of the edge dislocation. Simulations using
EAM potentials show comparable energies and/or
strengths for screw and edge dislocations in fcc solid
solution alloys [38] 8T, [T09]. TEM observations of
dislocation microstructures in fcc materials are also
fairly isotropic [20], i.e. having equal proportion of
edge and screw dislocation segments. Argon [20]
suggested that the line connectivity of the edge and
screw components should provide some average of
the individual mobilities. Yasi. et al. [39] computed
the solute/dislocation interactions of solutes with
basal edge and screw dislocations in hcp Mg, and
found they are comparable in magnitude. In fact,
the present theory does not exclude screw disloca-
tions from consideration, and the entire model can
be applied to screw dislocations. This was pursued
by Ma et al., who showed strengthening of the screw
dislocation in Al to be fairly comparable to that of
the edge [75]. This result would seem surprising at
first, since the screw dislocation has no long-range
pressure field to interact with the solute misfit vol-
ume. However, three other factors are important
in the quantitative magnitude of the strengthen-
ing: we, I', and the Peierls stress. The line tension
for the screw dislocation is much larger than that
for the edge, and this should increase the energy
barriers for screw motion. The screw core is less
dissociated than the edge core, and in Al one might
expect w, to scale with the partial separation (as
the partial separation is not very large), with the
strength increasing with decreasing w,.. The zero-
temperature Peierls stress of fcc dislocations tends
to be somewhat larger than that of the edge, and
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this also reduces the difference between the two
cases. Therefore, while full computations for the
screw must be performed to determine the relative
strengthening of the screw versus the edge, existing
evidence suggests that they are roughly comparable
(as compared to bce metals where the screw Peierls
stress is much lower than that of the edge). Fur-
ther investigations of the respective role of edge and
screw dislocations remain of high interest.

6.4. Strengthening in other materials

The model presented in the paper is also applica-
ble to interstitial solid solutions in low-Peierls stress
alloys, provided the dislocation core structure is not
too strongly modified by the solute(s). A few com-
plications arise, as such properly enumerating all
the possible solute sites, accounting for the interac-
tions between the deviatoric misfit strains (due to,
e.g., tetragonal distortions generated by interstitial
solutes) and the deviatoric dislocation stress field,
and accounting for the various orientations of such
configurations. Forthcoming work will present some
analysis of these issues in the context of Hydrogen
in Ni, but in general the complications present no
theoretical or conceptual difficulties.

In materials such as bcce alloys, the Peierls stress
of the pure material (or the effective matrix ma-
terial) is high. Thus, solutes can soften and
strengthen, and various models have been devel-
oped to account for the role of solutes on the tem-
perature and strain-rate dependent motion of dis-
locations in these materials. However, remain-
ing within the generally-accepted kink-pair nucle-
ation model for screw motion in bcc materials,
the present theory points toward another possi-
ble avenue for analysis of the solute strength-
ening/softening, particularly in non-dilute alloys.
This is a topic for future work.

We also remind ourselves that an underlying as-
sumption of the present class of models is that so-
lutes do not significantly distort the dislocation core
structure of the matrix material (or effective ma-
trix) [8, 9 I0]. When such large distortions do oc-
cur, they are accompanied by large reductions in
the system energy, e.g. large solute/dislocation in-
teraction energies. In such cases, the “strong pin-
ning” Fleischer-Friedel models may become opera-
tive, with individual solutes in the very core of the
dislocation providing much stronger pinning than
that of the collective effect of the surrounding so-
lutes.
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6.5. Flow stress in atomistic simulations

Direct modeling of solute strengthening by
Molecular Dynamics (MD) simulations is tempting
but not obvious. Numerical simulations of solute
strengthening has lead to the identification of im-
portant trends and understandings: contribution to
the strength of solutes in planes away from the glide
plane, role of the screw vs. edge dislocations, role of
solute pairs when the solute concentration increases
and the reference is taken from a pure elemental
matrix, etc. [37, 38, I, 109, 110]. However, MD
simulations, even using empirical potentials, suffer
from important limitations, which make difficult to
compare simulation results to (i) analytical models
and (ii) real material strength.

Direct MD simulations cannot capture the evo-
lution of very long, wavy dislocations (L > (),
having energy barrier of the order of 0.7-1.1eV, at
typical experimental strain-rates. Instead, we ad-
vocate the study of single segments of length ¢ ~ (.,
at which length the dislocation remain straight as
they move through the field of solutes. The cor-
responding theory in this case is slightly different
but remains analytical. We used this approach
for model Fe-Ni-Cr alloys modeled with an EAM
potential [TT1] and demonstrated good agreement
between direct simulations and model predictions
[61]. While care must be taken, such studies vali-
date crucial aspects of the theory (internal length
scale and average flow stress versus alloy composi-
tion). In general, further work to understand the
ability and/or limitation of direct MD simulations
to determine the strengths relevant to real materi-
als remains a fruitful area.

Solid solutions as random alloys

A strong assumption in both historical models
and the strengthening model presented in this pa-
per is the representation of the solid solution as a
random alloy. Although this can be a good ap-
proximation for some alloys (e.g. in HEAs [112]),
short range order (SRO), i.e. correlations between
the chemical occupancy of the atomic sites, can ex-
ist in materials. Evidence of SRO on the strength
has been experimentally demonstrated for instance
in NiAl fec solid solution alloys [113] [1T4]. As com-
pared to the fully random case, SRO would affect
the strength in two different ways: modified statis-
tics and existence of non-negligeable solute/solute
interactions. This would possibly induce an addi-
tional softening/strengthening effect [I13]1T5][116].
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Inclusion of SRO can be performed within the
framework of the current model, in principle. A
more-complex energetic model is required, and ap-
propriate treatment of the statistics in the short-
range-ordered solid solution is challenging, but the
current model provides the baseline to include those
effects.

7. Summary

In this overview, we have summarized the ex-
tensive recent progress in modeling of solid solu-
tion strengthening, within the Labusch-type weak-
pinning model for metallic alloys, accounting for
multiple solutes at arbitrary composition. The de-
tailed model makes contact with the historical mod-
els, and provides many insights about the physics
of the strengthening, including identifying (i) con-
ditions under which stress equivalency is upheld,
(ii) a clear physical origin of the observed high-T
“plateau”, (iii) those materials parameters that are
the key quantities for strengthening, and (iv) the
role of stacking fault energy, to name a few. Ap-
plication of the model to low-Peierls stress mate-
rials shows its predictive capacity, for both dilute
and concentrated alloys,. These validations, each
revealing some new features, opens the way for de-
sign of optimized solute-strengthened alloys. The
model also provides a baseline to consider short-
range ordering effects, interstitial solutes (if they
do not modify strongly the dislocation core struc-
ture), and other crystallographic structures, all of
which will be pursued in our future work.
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AppendixA. Role of the dislocation core
structure

In the various applications shown in this paper,
we have seen that the dislocation core structure is
important, and this has been raised by other au-
thors [39, [75]. To study its influence, we thus pa-
rameterize the Burgers vector distribution along the
glide plane by two Gaussian peaks, each of standard
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Figure A.13: Minimized dislocation structural coefficients
(a) fi(we) for zero-temperature strength 7,0 appearing in
Eq. , and (b) f2(wc) for the energy barrier AFE}, appear-
ing in Eq. , vs. d the dissociation distance of an fcc edge
dislocation, related to «gr and isotropic elastic constants
through the elasticity relation d = ub(2+v)/(247(1—v)ysk).

deviation o, separated by a stacking fault of width
d, as follows

Y I e I
P 1C=0) e C

k=—0o0

(A1)

where z; = nb/2 with n = 0,+1,42... is the po-
sition along the glide plane. Atomistic studies of
fce dislocations in various materials (Al, Ni, Fe-Ni-
Cr alloys) showed that typical o values range from
1.25b to 2.5b, and scale with ub?/ (47(1 — v)yusr),
with yysr the unstable stacking fault energy [61].
Fixing ¢ = 1.5b, the dimensionless pressure field
f(x;,y;) can then be computed, and the minimized
quantities in brackets in Eqgs. and are cal-
culated versus d, as shown in Fig[A13] Isotropic
elasticity [40] yields d = %%
dislocation.

When both gaussian peaks are well separated,
i.e. when d > 10b, there are two minimum en-

for an edge
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ergy configurations leading to two different mini-
mized coefficients for both zero-temperature stress
and energy barrier. The first minimized core coef-
ficients in Eqs. and associated to 7,01 and
AFEy, are nearly independant of d. For typical elas-
tic moduli, the strength is thus independent of vgg
for yvsp < 100 mJ /mz. The second minimum en-
ergy configuration, associated to a larger w,, with
low 7402 and high AFEy,, provides a “plateau” stress
relevant only at very high temperatures, which ap-
pears to be more sensitive to the exact value of the
stacking fault energy (see the former discussion on
Mg alloys). For low-to-intermediate temperatures,
the simplified theory of Eqgs. and with co-
efficients fi(w.) ~ 0.35 and fao(w.) ~ 5.7 is fully
analytic and predictions require only elastic mod-
uli, lattice constants, and misfit volumes versus al-
loy composition. This is valid for low stacking fault
energy materials, such as fcc high entropy alloys,
austenitic stainless steels, or cupper alloys, for in-
stance. When d < 10b on the other hand, the two
gaussian peaks in the Burgers vector distribution
start to overlap. The minimized core coeflicients
are not independant of d anymore, and thus the ex-
act value of ygp matters for both core coefficients
in 740 and AL, for all the range of temperature.
As it can be seen in Fig. there is a transi-
tion between a regime having two minimum energy
configurations and only one minimum energy con-
figuration (like in Al alloys).

This simple model of two gaussian peaks for the
Burgers vector distribution of the dissociated dis-
location allows us to understand the exact role of
the stacking fault energy in predicting the strength
and its temperature evolution. Other mathematical
expressions could be used to parameterize the Burg-
ers vector distribution, like the Peierls-Nabarro de-
scription [26], or discrete spread-core models [17].
They would lead to the same conclusions about the
importance of the dissociation distance on the alloy
strength.
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