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III. RELATED WORK

Crowdsourcing has found many applications in multimedia,

computer vision, and digital humanities. Below, we list several

successful cases, before discussing the main challenges related

to the task design, and the resulting annotation reliability.

Crowdsourcing in Multimedia and Computer Vision. Several

widely-used benchmarks have been produced via crowdsourc-

ing for recognition, detection, segmentation, and attribute

annotation tasks. These large-scale datasets enable to train

more capable models in multimedia and vision[43], [32].

Crowdworkers motivated by monetary rewards (in crowd-

sourcing platforms) as well as volunteers have been able to

generate adequate quality of content for generic object, scene,

and action recognition. There has been further crowd content

generation studies in sketch recognition [14] and even in

specialized areas such as biomedical imaging [21], [22], [28]

and astronomy [17].

Task Design. Gottlieb et. al. discuss the key elements in

designing crowdtasks for satisfactory outcomes, even for rel-

atively difficult tasks [20]. They emphasize the importance of

clear instructions, feedback mechanisms, and verification by

qualified annotators.

The typical crowdsourcing tasks follow an annotation-

correction-verification scheme. However, it may be challeng-

ing to apply this scheme to segmentation tasks [6]. Especially,

in our case, the annotators may not be familiar with the

hieroglyphic signs, or their perception of the shapes may differ

substantially, as workers might not have been exposed to such

visual data. In order to guarantee satisfactory outcomes, the

verification step may require an expert.

Crowdsourcing in Digital Humanities. Digitization and tran-

scription of historical documents with the help of crowdwork-

ers is a widely-studied task in Digital Humanities. A well-

known application of this task is the “re-captcha” paradigm

that utilizes automated document analysis methods while keep-

ing human intelligence in the loop [51]. Several decades of the

New York Times’ archives have been digitized in this way. In

similar transcription tasks [10], [9], and in archaeological re-

search on a participatory web environment [5], crowdsourcing

enabled to bring valuable historical sources to the digital era

for better preservation of cultural heritage as well as for further

analysis.

In preliminary work [7], we investigated the perception of

glyph shape by non-experts, e.g. whether they saw closed

contours as a separate glyph, or how they combined visual

components, assessing it in a controlled setting. The crowd-

workers were asked to localize glyphs with bounding boxes

in 50 glyph-blocks collected from monuments. Two scenarios

were considered, either by providing the number of glyphs

within a block or not. Using Amazon Mechanical Turk as

platform, block-based and worker-based objective analyses

were performed to assess the difficulty of glyph-block content

and the performance of workers. The results suggested that a

crowdsourced approach could be feasible for glyph-blocks of

moderate degrees of complexity. In this paper, we significantly

go beyond our first attempt, by designing an entirely new task

that exploit catalog information, visual examples, and glyph

(a) (b)

(c) (d) (e)

Fig. 3: The top row shows a cropped glyph-block (B1 from

fifth page and second t’ol of the Dresden codex) and its

cleaned image. The bottom row shows the individual glyphs

in the block. These are produced by experts.

variants that guide non-experts to produce arbitrary shape

segmentations, and use it to segment over 9000 individual

glyphs.

Glyph and Shape Recognition. For Maya glyph recogni-

tion, several shape representations have built upon traditional

knowledge-driven descriptors [41], [26]. These representations

are based on bag-of-words (BoW) that output the frequency

histograms of local shape descriptors. As shown in a similar

study on Egyptian glyphs [18], HOOSC [41] was a competitive

candidate among other traditional shape descriptors.

On the other hand, for shape encoding with neural networks,

a single-layer sparse autoencoder, which encodes the same

local regions as HOOSC, was shown to be competitive for

10-class monumental glyph classification task [8]. However,

this shallow representation was not representative enough for

other tasks, i.e. the sketch classification task proposed in [14].

Due to the scarcity of the strokes in thin sketch drawings and

the high variety of the drawings, the BoW frequencies of the

simple edge encodings in the shallow sparse encoder were

harder to capture than thicker glyph strokes. Complementary to

this finding, the “Sketch-a-Net” [54] illustrated that a modified

version of the AlexNet (in multiple scales and multiple tempo-

ral channels) can achieve high performance on the 250-class

sketch dataset of [14]. This model has fewer feature maps, yet

larger first layer convolution kernels compared to the AlexNet

[29], which is designed for natural images.

In the context of Maya glyph-block retrieval, Roman-Rangel

showed that the middle-layer activations (conv5) of VGG

[46] outperform both the last-layer activations (fc-7), and the

bag-of-words representation of a traditional shape descriptor

(HOOSC) [40]. This is a motivating point for learning the

representations for Maya glyphs, and taking advantage of

existing pretrained networks.

IV. DATASETS

The data in our work are the glyph-blocks from three Maya

Codices. To provide supervision to non-experts in our task, we

also use the glyph signs from the Thompson and Macri-Vail

catalogs. The details of these datasets are given below.
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TABLE I: The number of elements in the three codices (DRE:

Dresden, MAD: Madrid, PAR: Paris).

# pages # blocks # glyphs

# glyphs with

annotation and

source image

DRE 72 2924 6932 6439

MAD 100 3254 7429 6910

PAR 18 774 1620 1373

ALL 190 6952 15981 14722

A. Maya Codex Glyphs

Our sources are high-resolution digital images from the

three existing Codices (Dresden [1], Madrid [2], and Paris

[3]), cropped to smaller units (pages, t’ols, and glyph-blocks),

and annotated with metadata. Images and annotations were

all provided by project partners in epigraphy. The metadata

of each glyph-block contains the name of the codex, page

number, t’ol number, reading order, and relative location in the

t’ol (row and column order, i.e., A1, B2, etc.). The metadata of

each glyph in each glyph-block contains its reading order, its

sign code from various catalogs (Thompson [47], Macri-Vail

[35], Evrenov [15], and Zimmermann [56]), its phonetic value,

and its damage level. The latter ranges from 0 (undecipherable)

to 4 (high quality), and indicates how identifiable the glyph is

according to the expert.

Table I summarizes the number of elements available from

the three Codices. Some pages of the Codices are highly

damaged. Even though there are, respectively, 76, 112, and 22

pages in our database, we only list the number of pages that

have at least one recognizable glyph in Table I. Similarly, we

have the records of 7047 glyph-blocks in total, however only

6952 of them have at least one recognizable glyph. In total,

14722 glyphs have known catalog annotations with cropped

glyph-block images.

Note that the epigraphy experts have not provided the indi-

vidual glyph images for all these glyphs, as the segmentation

of Codices into individual glyphs is demanding in terms of

time and effort. The experts upscale and apply some prepro-

cessing (i.e. unsharpening, and binarization) to block images

with commercial tools, which requires manual handling of

each block. Furthermore, deciding annotations of glyphs for

several catalogs, assigning identifiability ranking, and pro-

viding spellings are quite time-consuming. As the experts’

focus is on decipherment, only a very small proportion of

individual glyph segmentations has been previously produced

by them [26]. At the large scale, the experts provided only the

cropped block images (as in Fig. 3a) without binarization. The

details of this raw glyph-block dataset are documented in [25].

Therefore, in order to obtain the individual glyph regions in the

blocks, we designed a segmentation-oriented crowdsourcing

task.

B. Catalog Signs

The documentation of the ancient Maya writing started

during the Spanish conquest of Yucatan in the XV Ith century.

The first incomplete alphabet [12], [49] was created by asking

two locals how to write Spanish characters in Maya language

[52]. In the 1960s, Evrenov’s [15] and Thompson’s [47]

sign catalogs became important sources, suggesting syllabic

readings rather than character correspondences of the signs.

For historical reasons, Thompson’s taxonomy (main and affix

syllabic signs) became more influential than Evrenov’s. With

the advancement of the understanding of the semantics of the

signs, more modern catalogs emerged [34], [35].

The Thompson catalog has three main categories: affix,

main, and portrait signs. Macri-Vail taxonomy has 13 main

categories [35]. Six of them (animals, birds, body parts, hands,

human faces, and supernatural faces) are grouped semanti-

cally. There is a main category for numericals signs that are

composed of dots and bars. The rest are grouped based on

visual elements (square signs divided based on symmetry, and

elongated signs divided based on the number of components.

Since Thompson’s catalog was highly adopted for a long

time and Macri-Vail’s catalog has a modern taxonomy with

a focus on Codices signs, we use these two resources. The

fundamental difference between them is the emphasis given

to visual appearance and to semantics. Thompson is known to

categorize the glyphs with respect to similarity based on hand-

prepared graphic cards. Macri-Vail consider co-occurrences of

the signs and modern knowledge of the semantics and usage

of some signs rather than visual cues only. This leads to a

higher visual within-class dissimilarity of Macri-Vail signs.

For instance, the variants in the AMB category are spread

over three Thompson categories (T534 main sign, T140 and

T178 affix signs.

The individual glyph variants that we used in our work were

obtained through manual segmentation of high-quality scanned

pages of these two catalogs by the partners in epigraphy. As

some of the numeric signs were missing in these catalogs, we

manually generated them by combination of dots and lines

from existing number signs.

Utilizing these variants in a crowdsourcing task has not been

previously attempted. Gathering crowd-generated assessments

of the similarity between glyph variants and codex glyph

samples is valuable in terms of eliminating one-man errors

and providing finer-grained class information.

V. CROWDSOURCING TASK

Automatic glyph recognition starts with obtaining seg-

mented, cleaned, and binarized glyph data. We investigated

whether the first part of this preprocessing task (glyph seg-

mentation) can be crowdsourced. In our work, non-experts

were asked to segment individual glyphs from the original

glyph-block sources. Our experimental design evolved over

three stages (preliminary, small, large). In the preliminary

stage, we segmented few glyphs (27 from randomly-chosen

10 blocks) with two different task designs. This stage helped

to define a final task design. The small stage consists of

segmenting glyphs that have ground truth (a subset of glyphs

from [26]). This stage helped to judge which catalog was

more helpful to non-experts in our task. At the large stage,

we conducted the segmentation task for over 10K glyphs.

In this section, we explain the process that led to the design

of the final task. First, we describe the requirements and
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present the platform used for experiments. We then discuss

the early experience on the task design. We finally describe

the final version of the task.

A. Requirements

Given the annotations in the glyph-blocks (provided by

epigraphy experts), and the example sign variants (taken

from the catalogs), we expect crowdworkers to segment each

individual sign in a block. As Maya glyphs can be found

in articulated forms, i.e. hand signs, cropping glyph regions

via bounding boxes may end up with inclusion of some parts

of the neighbor glyphs. Therefore, for better localization, we

designed the segmentation process to be done as free-polygons

rather than bounding boxes.

To guide the process, we show workers the different variants

of the sign to be segmented. As validation information, we

would like to know what sign variant the annotator chose as

template to segment each glyph, and how similar the chosen

variant and the marked region. This can be used to verify the

expert annotations and detect outliers, in case when none of

the provided sign variants match the block content. To account

for this, we propose a ”None” option along with the existing

sign variants.

Another point to analyze is the perception of damage by

non-experts. Even though experts have provided a damage

score for each glyph, this score shows how decipherable the

glyph is, and so it is affected by the glyph co-occurrence and

semantics. Non-expert perception of damage depends solely

on visual appearance. This helps to obtain a damage score

that is not affected by prior expert knowledge. The score can

also be used as a hint to assess the task difficulty.

The difficulty of our task is not uniform across categories.

According to the visual similarity to the variants and the

damage of the glyph, the task can be ambiguous. To assess

this, we ask workers to provide a score for the task difficulty.

B. Platform

Terminology. We utilized the Crowdflower (CF) platform for

our experiments. In CF terminology, a job refers to the whole

annotation process. An annotation unit is called task. A page

is a set of unit tasks that a contributor needs to complete to get

paid. Nt denotes the number of tasks in a page. The number of

judgments per task Nj corresponds to the number of workers

that should annotate a single task. Workers in CF are called

contributors. There are three levels of contributors. The level

of a contributor is based on the expertise and performance in

previous tasks.

To set up a job, a job owner must first define the dataset to

be annotated. The job owner designs the task by specifying the

queries that the contributors are asked to complete. The queries

in the task can vary from simple text input to performing

image annotations. After the task design is finalized, the

job owner can curate test questions (TQ) to enable the quiz

mode in the job to ensure the quality of the results. Test

questions are prepared by the job owner by listing acceptable

answers for each query in the task. If the contributor gives an

answer out of the acceptable answers, the contributor fails the

test question. For the image annotation query, the job owner

provides a ground truth polygon over the image and sets a

minimum acceptable intersection-over-union (IU) threshold.

The IU measure between segment S and ground truth G is

defined as follows:

IU =
|S ∩G|

|S ∪G|
. (1)

If a contributor marks a region whose overlap with the ground

truth region is below the IU threshold, the contributor fails

the test question and cannot take on more tasks in the job.

Contributors have to pass one page of the task in quiz mode

before being admitted to the work mode, in which they work

on the actual set of questions (AQ) and get paid. There is

also a test question on each page in work mode. This check

is effective to eliminate random answers.

The platform provides other quality control checks. Job

owners can set the minimum time to be spent on the task,

the minimum accuracy that a contributor needs to achieve,

and the maximum number of tasks that can be annotated by

a contributor. After creating the answers for the test questions

and fixing the job settings, the job owner launches the job,

and can monitor the progress of the crowd workers.

Channels. CF has its own subscribers, referred to as the

Crowdflower-elite (CF-elite) channel. Apart from that, workers

from other crowdsourcing platforms (also called channels)

can also link their accounts and work on available CF jobs.

This allows crowd diversity in the platform. These external

platforms can be large-scale, with global subscribers such as

ClixSense, or can be medium- or small-scale with a focused

crowd in particular countries. The choice of platforms is given

to the job owner.

C. Preliminary Stage: Design Experiences.

In the preliminary stage, we conducted four experiments

before deciding the final task design and settings. The different

settings are given in Table II, and discussed below.

Block-based design vs. glyph-based design. In the first two

experiments, the initial design (shown in Fig. 4) aimed to

collect all glyph segmentations of a glyph-block in the same

task (one glyph after another in separate drawing panels). This

initial design proved to be confusing. Some workers marked

all the glyph regions in the first drawing pane, instead of

drawing them separately. Another source of confusion was

the order of the glyphs. Learning from this, we simplified

the task as individual glyph drawing. As a result, the average

f-measure between the convex hull of a crowd-generated

segmentation and the ground truth improved by more than

10% (see Table II), when moving from multi glyph annotations

to the single glyph case. More specifically, the f-measure of

segment S and ground truth G is defined based on precision

p and recall r as follows:

f = 2 ∗
p ∗ r

p+ r
, p =

|S ∩G|

|S|
, r =

|S ∩G|

|G|
. (2)

Number of glyph variants. We limited the number of glyph

variants shown to the contributors to keep them focused on the
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Fig. 5: Final task design. Glyph variant images are provided

by Carlos Pallán Gayol.

In the first one, based on the shown variants, contributors were

asked to segment (draw a tight free-hand polygon) a similar

region in the glyph-block. In the second part, contributors were

asked to indicate which variant they used as template to do

the segmentation, and to rate how similar the variant was to

the segmented region, how damaged the glyph region was,

and how easy it was to complete the task. These ratings are

designed on a scale between 1 and 5.

2) Training: We provided a detailed description of the

tasks, a how-to Youtube video, and positive/negative examples

of segmentation, example of damage levels, and explained that

segmentation quality would be checked.

3) Drawing: We used the image annotation instance tool in

Crowdflower for free polygon drawing over the glyph-block

images. This tool allows correction and multiple polygons,

which is useful for glyph repetition cases.

4) Evaluation: We selected the quiz mode for the jobs: we

provided tasks with known answers (ground truth polygons)

and a quality threshold on intersection-over-union (IU) mea-

sure (see Section V-B) to filter out spammers and increase

quality.

VI. EXPERIMENTAL PROTOCOL

Given the decisions made during the preliminary stage, we

first conducted the small-scale stage over the glyphs which

have ground truth, and then we run the large-scale stage. This

section explains the settings of these two stages.

TABLE III: Experimental settings for the small-scale stage

(S-1 and S-2) and the large-scale stage (L-1 and L-2).

Exp.
Cat.

Var.

# Judg.

per

task

(Nj)

# Tasks

per

page

(Nt)

Pay.

per

page

($)

# pages
IU

th.

S-1 T 5 2 0.10 338 0.7

S-2 MV 5 2 0.10 344 0.7

L-1 MV 2 4 0.16 1670 0.7

L-2 MV 2 4 0.16 1732 0.8

A. Small-scale stage

In this stage, we run two experiments whose parameters are

summarized in Table III. For the 823 individual glyphs (322

blocks) that have expert ground truth masks, we set up the

task with Thompson (T) and Macri-Vail (MV) references of

the glyphs. In other words, we display the glyph variants from

either the Thompson or the Macri-Vail catalogs.

In both cases, the number of judgments Nj was set to

5. The minimum acceptable IU score was set to 0.7. The

minimum time to be spent on a page was set to 30 seconds.

The maximum number of judgments by a single contributor

was set to 12. As a result, a single contributor annotated 5

glyphs from the actual target set and also answered 7 test

questions.

B. Large-scale stage

In this stage, we define the job for all annotated glyphs

for which no expert segmentation is available. To reduce

the annotation cost and having confirmed that in general

most of the glyphs had a high segmentation consensus (see

small-scale stage analysis in Section VII-A), we decided to

collect only two judgments per glyph, and collect more only

if disagreement was detected. We decided to exclude the

following glyphs from the annotation:

Too damaged glyphs according to the damage scores by

the expert and visual post-inspection of a team member,

Repetition cases (multiple instances of the same glyph in

the block),

Infix cases (two separate glyphs merged by modern

decipherment for semantic reasons).

As a result, we obtained 10126 glyphs to be annotated (out

of 14722 glyphs from the available segmented glyph-block

images).

For this stage, we only relied on the Macri-Vail catalog

which is a more modern resource in epigraphy.

We set the minimum IU threshold to 0.7 for the first

half of the glyphs (5000 glyphs) and 0.8 for the rest. This

threshold ensured that the contributors did a good job on the

test questions, and presumably on the actual questions, so

that high consensus on the collected segmentations for each

glyph can be obtained. We observed that we need contributors

with higher performance, as we depend on the segmentations

coming from only two contributors per glyph in this setting.

That is why we increased the minimum IU threshold for the

second half of the glyphs. The minimum time spent on the task
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(a) (b)

(c) (d)

Fig. 6: Distributions of average ratings in the small-scale stage

with Thompson (blue) and Macri-Vail variants (yellow).

was set to 30 seconds. The maximum number of judgments

by a single contributor was set to 48.

C. Segmentation Evaluation Procedure

Evaluation was performed by comparing the ground truth

of the glyphs with the crowd segmentations for the small-

scale stage. This is detailed in Section VII-A. For the large-

scale stage, we compare the segmentations of the contributors

against each other. We also checked problematic cases in

which the f-measure agreement was less than 0.8 among

contributors as an internal task in Crowdflower platform.

VII. CROWDSOURCED ANNOTATION ANALYSIS

In this section, the crowd annotations for the small-scale

and large-scale stages are presented in terms of the analysis

of ratings and segmentations.

A. Small-Scale Stage

As described in Section VI-A, we conducted two exper-

iments in small-scale stage, with Thompson (T), and with

Macri-Vail (MV) references of the glyphs. We analyze the

annotations from these experiments w.r.t. four aspects: variant

selection, damage rating, segmentation analysis, and sensitivity

to the number of annotators.

1) Variant Selection: We compare the agreement for the

variant selection in the two experiments. First, note that the

MV catalog contains the glyph variants from both codices and

monuments, whereas the variants in the Thompson catalog

come only from monuments. Typically, monumental glyphs

have more details and are visually more complex than codical

glyphs. In this sense, the variants from the Thompson catalog

are in general more different from the codices glyphs than the

MV variants.

The final variant for each glyph was selected by majority

voting among the contributors’ responses. Fig. 6a shows the

(a) (b) (c)

Fig. 7: (a) Convex hull of the ground truth for the glyph

on the right (red line, blue filling), (b) gray-scale image

of the aggregated segmentations, and (c) final aggregated

segmentation.

(a) (b)

Fig. 8: (a) The f-measure distributions of overlap between

crowd segmentations and ground truth in actual question set

(AQ, blue) and test question set (TQ, orange) with the MV

variants in the small-scale stage. (b) The mean f-measure

agreements for the glyphs in large-scale stage.

percentage of contributors that selected the most-voted variant

for the experiments with the Thompson (blue) and Macri-

Vail (yellow) variants. We observe that all of the contributors

agreed on a variant for 67.2% of the glyphs when the MV

variants (yellow) were shown (61.2% for the T case).

Fig. 6b shows the histogram of the number of variants for

the annotated glyph categories. The median values are 2 and

4 for T (blue) and MV (yellow) variants, respectively. Thus,

even though there were in general more variants available, for

the MV cases full agreement was higher (Fig. 6a).

A related result is illustrated in Fig. 6c. Contributors gave

higher ratings of visual similarity to the MV variants rather

than T variants (2.98 vs. 2.46 mean similarity). Moreover, the

contributors found the task harder in the case of T variants

(Fig. 6d). These differences in similarity and difficulty ratings

were significant as measured with Kolmogorov-Smirnov non-

parametric hypothesis testing [36].

In summary, we observed that MV-variant tasks are rated

easier, and reach higher consensus rates than the T-variant

cases.

2) Damage Rating: The average damage ratings (scale 1 to

5) by the crowd and the damage rating assigned by the experts

are considerably different. For the experts, more than 90% of

the glyphs in this set were easily recognizable (5 in the range 1

to 5). However, the damage perception of the non-experts was

focused around the middle of the scale. For 64% of the glyphs,

the contributors selected “moderate-damage” (3 in the range

1 to 5) for both T and MV cases. This can be interpreted as

the raw block crops being visually noisy in most of the cases,

even though for the experts the glyphs are in good conditions

to be identified.
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(a) S vs. GT (b) S-CH vs. GT-CH

Fig. 9: Sorted average f-measure of aggregated segmentations for the unique glyph categories in the small-scale stage. Green

and red lines indicate overall mean and median values, respectively.

TABLE IV: Average f-measure values of aggregated segmen-

tations obtained with Thompson (T) and Macri-Vail (MV)

variants in small-scale stage for test questions (TQ) and actual

questions (AQ).

Catalog

Variants
Set

S vs. GT

(%)

S-CH vs.

GT-CH (%)

T TQ 65.7 96.6

MV TQ 65.5 97.3

T AQ 59.1 87.5

MV AQ 59.9 88.6

T All 60.2 89.0

MV All 60.8 89.9

3) Segmentation Analysis: For each glyph, an aggregated

mask is generated from the crowd segmentation masks, such

that at least half of the contributors (i.e, at least 3) marked an

image point as belonging to the glyph region as illustrated in

Fig. 7.

The evaluation is performed by comparing (1) the aggre-

gated segment against the binary ground truth (S vs. GT);

and (2) the convex hull of the aggregated segment against the

convex hull of the ground truth (S-CH vs. GT-CH). Results are

shown in Table IV. We observed that most of the contributors

mark the glyph regions without going into fine contour details,

as it can be quite time-consuming. This is acceptable, as the

main interest is in the regions with the target glyph rather

than with very detailed contours. Therefore, we decided to

use convex hulls for further evaluation in Figs 8-9.

Table IV summarizes the comparative segmentation perfor-

mance with the help of the two catalogs. It is observed that the

MV variants helped to bring out marginally better aggregate

segmentations. The table also reports the mean scores when

we consider the glyphs used as test questions (TQ) and actual

questions (AQ) as separate sets. The f-measure distributions

of TQ and AQ sets in the MV variants cases are plotted in

Fig. 8 (the T variants case is similar and thus not shown). We

observe that the majority of the glyphs are well segmented.

As we manually chose the test questions to be relatively easy

to annotate, we observe a higher mean f-measure for TQ

compared to AQ.

Fig. 9 illustrates the boxplots of the sorted average f-score

values of 122 non-numerical MV classes (left for S vs. GT,

and right for S-CH vs. GT-CH). While most of the classes are

well segmented, few of them have low average f-measure (5

classes have an average f-measure less than 40%). We observe

that these classes are visually more complex and composed of

several parts. When using the convex hull comparison, only

ten classes have an average f-score less than 70%.

4) Sensitivity to The Number of Annotators: We simulated

the performance for the case of fewer annotators. Fig. 10

shows the average f-measure values for the aggregated masks

with different number of segmentations (2-5). We aggregated a

maximum of 10 combinations of randomly selected segmenta-

tions, and took the mean f-score of these aggregated masks for

each glyph. Obtaining aggregated masks with 3 segmentations

(MV-3) rather than 5 (MV-5) resulted in a marginal decrease

in the average f-score (blue to pink bars).

Furthermore, we analyzed the intersection of two segmenta-

tions either for the randomly selected ones (MV-2 yellow bars)

or in the case of above 0.8 f-measure agreement (MV-2 green

bars). In the latter case, we obtained very similar average f-

score results to the ones with 3-segmentations. The standard

deviation of the f-measures obtained with randomly sampled

2-annotations are below 0.1 and are usually acceptable. These

observations motivated us to perform the large-scale stage with

two annotations per glyph and validate the segmentation when

the agreement was higher than 0.8.

5) Conclusion: 368 and 397 unique contributors partic-

ipated to the small-scale stage for the T-variant and MV-

variant cases, respectively. The corresponding average number

of glyph annotations per contributor were 7.3 and 8.9 (median

5 and 6, respectively). This evaluation shows that the defined

task is simple enough for a non-expert to produce satisfactory

results. Even though the contributors may get confused, overall

the performance was high enough to proceed with the large-

scale stage.

Fig. 10: Mean f-measure values of the aggregated masks

obtained using 5 (blue), 3 (pink), 2 (yellow) segmentations,

and 2 segmentations that have at least 0.8 f-measure agreement

(green) per glyph with MV variants.
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TABLE VI: Average classification accuracies on the original

sets with a linear SVM (S) and the shallow CNN (N) in Fig.13.

Original Sampling
Number of classes

10 30 50 100 150
Model S N S N S N S N S N

HOOSC 70.1 69.8 57.4 57.8 49.5 50.1 44.0 43.1 39.7 40.3

HOG 67.2 71.1 52.8 56.8 46.0 50.3 41.8 44.5 39.2 41.4

SaN B 81.6 85.7 70.5 76.7 63.5 71.6 58.2 66.0 56.1 63.4

SaN RGB 84.4 88.6 74.7 81.0 70.2 77.0 65.2 73.0 62.5 70.1

VGG16 92.0 91.8 89.9 89.0 86.6 84.2 82.6 82.3 80.0 79.2
R50 75.7 81.7 65.4 72.9 51.8 68.1 46.0 63.2 41.5 59.5

set of glyphs, we sampled 10% of the HOOSC descriptors of

each glyph to build the dictionary by applying k-means with

4000 cluster centers.

After computing the dictionary with vocabulary size 4000,

we assign each HOOSC descriptor of each glyph to their

closest cluster center (or word in the dictionary) with L1

distance. Therefore, for each glyph, we obtain a codebook that

corresponds to the frequencies of closest words of its HOOSC

descriptors in the dictionary. The final representation HOOSC-

BoW has 4000 dimensions.

Multi-Level HOG Descriptor Extraction. We concate-

nated the histogram of orientation features at two-levels. We

computed the HOG with 13 × 13 and 24 × 24 pixels cell

sizes and 4 blocks in each cell with 9 orientations. Since

our images have 224 pixel image size, we ended up with

16× 16 + 8× 8 = 320 cells, and 320 ∗ 4 ∗ 9 = 11520 feature

dimension for each image.

Normalization. Due to the nature of the BoW computa-

tion, i.e. hard-assignment, the HOOSC-BoW representation

is distributed among the 4000 dimensions with a constraint

on the dimensions summing up to 1. A normalization of

this representation with a scaling factor is needed to obtain

a reasonable comparison with CNN activations. Therefore,

we first normalized the BoW vectors of each glyph with the

corresponding max value, i.e. making the max value of each

vector equal to 1, and then scaled the BoW vectors with a

constant scalar to match the maximum activation value of the

pretrained CNN features. A similar normalization is applied

to the HOG features.

Classification. The HOOSC-BoW and multi-level HOG

features are used as input to a shallow neural network (Fig. 13)

with two fully-connected (FC) layers. The first FC layer

has 1024 filters. We applied ReLU activation between two

FC layers as well as batch normalization [27], and dropout

[24] method with 0.5 rate. The final class probabilities are

determined by the softmax activation at the end. Additionally,

we assessed the representations with a standard linear support

vector machine (SVM) as well.

2) Pretrained CNN Features: CNNs pretrained on large-

scale datasets, i.e. ImageNet, are used as feature extractors

by feedforwarding the image of interest, and gathering the

activations at different layers of the network [13], [44], [53],

[48], [39], [55]. The penultimate activations before softmax

classifier have been reported as good baselines for transferring

knowledge in several vision tasks [13], [44]. Furthermore, the

middle-layer activations are more generic than the last-layer

Fig. 14: Partial visualization of the 2S2 glyphs via t-SNE

algoritm shows the separation of glyphs corresponding to two

different variants (see Fig.12b, blue cluster for the first, pink

cluster for the second variant).

ones, and may be more applicable to the data with different

nature (e.g. man-made vs. natural objects) [53].

With this motivation, we forward the glyph segments in

our dataset through a pretrained network, and collect the

activations at the end of the last convolutional block. We

consider these activations as our pretrained CNN features.

Considered Networks. We considered the VGG-16 network

[46] and ResNet-50 [23] pretrained on ImageNet dataset, and

the Sketch-a-Net [54] pretrained on 250-class binary sketch

images [14].

VGG-16 is a 16-layer CNN model, shown to be competitive

on the ImageNet dataset before the inception module and

residual connections were introduced. We passed our RGB

glyph images from the pretrained VGG-16, and extracted the

activations from the last (5th) convolutional layer. Similarly,

for the ResNet50, we extracted the activations from the last

global average pooling layer (just before the FC layer and

softmax classifier).

Sketch-a-Net (SaN) is adapted from the AlexNet model [29]

for handling sparse sketch images. We retrained the single-

scale single-channel version of the SaN model: adding batch

normalization (BN) layer [27] after each convolutional and

dense layer. The modified SaN obtained competitive results on

a random split of the sketch dataset (72.2% accuracy). We used

this model to extract the activations of the binarized version of

our glyph images. Similarly, we retrained another SaN with the

fake-colored sketch images (filled with same RGB values that

are used to populate our glyph dataset). We passed our glyph

TABLE VII: Average accuracies on the original test sets for

pretrained features, when the shallow CNN networks were

trained on the undersampled vs. oversampled sets.

Number of classes
Model 10 30 50 100 150

Undersampling
(on training)

SaN RGB 87.9 76.6 67.6 54.6 29.1
VGG16 91.3 84.8 78.0 64.1 35.2

R50 79.4 63.8 51.4 35.9 16.5

Oversampling
(on training)

SaN RGB 95.6 93.0 91.5 90.0 71.4
VGG16 97.0 96.1 95.0 93.6 80.6

R50 93.5 90.2 88.2 86.1 62.0
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images (either binary or RGB) through these networks, and

extracted the activations from the 6th convolutional block. To

assess these representations, the same classifiers were applied

as noted in Section VIII-B1.

C. Classification Results

Table VI shows the average accuracies among 5-fold ex-

periments with original sampling in different settings. As

the number of classes increases and the number of samples

per class decreases, the classification problem becomes more

challenging. With 200 glyphs per class in the 10-class exper-

iment, we obtained 91.8% average accuracy with the VGG-

16 pretrained features. For the 150-class case, we obtained

79.2% accuracy (random guess would be 0.66%). Table VI

confirms the competitiveness of the pretrained CNN features,

that are learned from large-scale datasets, compared to tradi-

tional shape descriptors. Among the pretrained net features,

the VGG-16 activations provide the best results. Furthermore,

Table VII points out that oversampling during training helps

all the models and improve over undersampling with a large

margin. These results both show the challenges and complexity

of our dataset and encourage further work in the future.

D. Visual Analysis with t-SNE

To further understand the characteristics of the curated

dataset, we mapped the segmented glyph samples to a 2-

D space in terms of visual similarity (obtained via meth-

ods mentioned above). This mapping is realized via the t-

distributed Stochastic Neighborhood Embedding (t-SNE) [50].

The visualization enables to see all the samples of the same

category that are scattered in a quantitative manner. This

visualization could help to assess the glyphs in the “gray areas”

(highly-discussed with scholars in terms of identification), as

the glyphs are mapped to a visual similarity context. This

visualization can also help experts in catalog design, as the

main variations of the sign categories are clustered together

thanks to this mapping.

Fig. 14 presents a visualization of the set of segmented

glyphs from the 2S2 class displayed via t-SNE algorithm

over the last convolutional layer activations from the Sketch-

a-Net pretrained on 250-class-sketch data. In this example, it

is interesting to notice the separation of the glyph instances

corresponding to the different variants.

IX. FINAL CONCLUSIONS

In this work, we achieved the segmentation of Maya glyphs

from three codices (Dresden, Madrid, and Paris) with the help

of crowdworkers. The main conclusions are as follows:

Task design. As the data target does not come from

everyday objects, guiding non-experts is essential to obtain a

satisfactory outcome. From our experience with the task design

in the preliminary stage, we observed that a simpler and fo-

cused task design (to segment individual glyphs rather than all

glyphs in a block) and clear instructions were indispensable.

Catalog choice. From the small-scale stage, we concluded

that the variants from the MV catalog matched a higher

percentage of the glyph instances compared to the variants

from the T catalog. This enabled non-experts to reach a higher

consensus on the “closest-looking” variant, and obtain higher

agreement (average f-measure). Furthermore, we observed that

workers found the task easier with MV variants. These results

were to some degree expected as monumental glyphs were the

main source of Thompson catalog variants.

Non-expert behavior analysis. We pointed out the main

challenges that workers faced during the task, such as visual

within-class dissimilarities or between-class similarities, and

the effect of damage. These challenges affect the segmentation

outcome. However, they are inherent to the data.

Maya codical glyph corpus. This work generated over

9K individual glyphs from the three Maya codices along

with the corresponding metadata, such as similarity rating of

the instances to the MV variants. The dataset will be made

publicly available.

Baseline classification. We presented baseline results for

classification tasks on the new dataset. These results illustrate

that the new dataset is challenging, and that transfer learning

methods with deep neural networks are promising.
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