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Introduction and objectives
Context
I Recover high-quality image x ∈ RN from undersampled measurements

y ∈ RM, measured with linear operator A ∈ RM×N

y = Ax + n
I Assume x is sparse in a dictionary Ψ ∈ RN×L (L > N) ú CS
Goal: High-quality recovery with few iterations
Strategy: Sparsity Averaging for Reweighted Analysis (SARA) [1]

min
x∈RN
||WΨ†x||1 + 1

2||Ax − y ||22 (1)

I Ψ ∈ RN×L, L = qN is a concatenation of q bases Ψq and W ∈ RL×L

I W ∈ RL×L is block-diagonal made of q blocks (N × N) with positive entries
I Drawback: Reweighted-`1 algorithms take “forever” due to multiple updates
of the weights

I Proposition: Learn weight matrix W using DNN so that no update required

Proposed approach
I Unfolding strategy [2]: each iteration of FISTA [3] mapped to a DNN
I Learned Extended FISTA, coined LEFISTA
Require: G = 1

LAT , S =
(
I− 1

LATA
)
,W,Ψ, y , L ≥ λmax
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,T , q

initialization: i = 1, t0 = 1, x−1 = x0 = 0
repeat

ti ←
1+
√

1+4t2i−1
2 , αi ← ti−1−1

ti
, βi ← 1 + αi

zi ← βiSxi−1 − αiSxi−2 + Gy
for k = 1 to q do

xi ← xi + Ψk√qsoft
(

Ψ†k√qzi ; 1
LWk

)
end for
i ← i + 1

until i = T
return (xi)T
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Figure LEFISTA network architecture: (top) 4-first layers (bottom) non-linearity f

Learning and image reconstruction processes
Learning the weight matrix
I Training set made of P pairs

(
yp, x?p

)P
p=1, x?p the ref., yp the measurements

I Objective: find W which minimizes the `2-loss function ú BPTT
Image reconstruction
I GPU RAM limitations ú patches ú block-compressed sensing (BCS)
I A ∈ RMB×N2

B on patches of size NB × NB pixels (64×64)
I Image split into B non-overlapping patches, compressed with A
I Apply LEFISTA forward to reconstruct image with W learned in training phase

Network training
I TensorFlow implementation: https://github.com/dperdios/lefista
I Trained on NVIDIA Titan X GPU card
I Different layer number T tested (30, 40, 50), best is 50 (LEFISTA-LN50)
I Mini-batch learning: 43 560 patches from 1200 images ILSVRC 2014 ImageNet
I Optimizer: Adam, learning rate: 10−5, batch size: 32, epoch number: 20

Experimental settings
I Ψ: concatenation of 8 wavelet bases (db 1 to db 8), decomposition level: 2
I A: Gaussian random matrix, with the measurement rate MB/N2

B
I Quality evaluated in terms of PSNR and SSIM
I Comparison to a tiled version of SARA and BCS algorithms

Performance evaluation

Figure Test images reconstructed for a measurement rate MB/N2
B = 0.3 (first row) with tiled SARA

and (second row) with LEFISTA (50 layers)

Table Comparison of LEFISTA (50 layers) against tiled SARA and BCS algorithms

Algorithm
Measurement rate

PSNR [dB] SSIM [–]
0.1 0.3 0.5 0.1 0.3 0.5

Barbara
Tiled SARA 16.15 24.90 29.70 0.38 0.79 0.91
BCS-SPL-DWT 21.87 24.31 27.06 0.40 0.61 0.75
BCS-SPL-DDWT 22.11 24.74 27.84 0.40 0.62 0.76
MS-BCS-SPL-DWT 22.17 24.86 27.99 0.41 0.63 0.77
LEFISTA-LN50 22.77 25.73 29.29 0.61 0.79 0.90

Goldhill
Tiled SARA 18.56 29.76 33.19 0.45 0.81 0.90
BCS-SPL-DWT 24.57 30.40 33.06 0.42 0.68 0.80
BCS-SPL-DDWT 25.18 30.45 33.11 0.42 0.68 0.80
MS-BCS-SPL-DWT 26.74 30.57 33.19 0.44 0.68 0.80
LEFISTA-LN50 26.77 30.93 34.17 0.66 0.83 0.91

Peppers
Tiled SARA 18.71 32.81 35.35 0.44 0.84 0.90
BCS-SPL-DWT 27.73 33.38 35.92 0.45 0.65 0.76
BCS-SPL-DDWT 28.09 33.52 36.26 0.45 0.65 0.77
MS-BCS-SPL-DWT 28.22 33.63 36.33 0.45 0.65 0.77
LEFISTA-LN50 28.45 33.72 36.34 0.77 0.87 0.91

Conclusion and perspectives
I FISTA with a sparsity prior in a concatenation of wavelet bases Ψ mapped to a
DNN ú LEFISTA

I Used to learn the weight matrix W of a weighted `1-minimization problem
I Once trained, much faster than reweighted `1 with promising results
I Future work:

I Learn non-linearities (e.g. prox., compression)
I Address blocking artifacts
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