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Introduction and objectives Experimental settings
Context » W: concatenation of 8 wavelet bases (db 1 to db 8), decomposition level: 2
» Recover high-quality image x € R" from undersampled measurements » A: Gaussian random matrix, with the measurement rate Mg/N3
y € RY, measured with linear operator A € R"*¥ » Quality evaluated in terms of PSNR and SSIM
y=Ax+n » Comparison to a tiled version of SARA and BCS algorithms
» Assume X is sparse in a dictionary W € RV*E (L > N) < CS
Goal: High-quality recovery with few iterations Performance evaluation

Strategy: Sparsity Averaging for Reweighted Analysis (SARA) [1]
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» U e RVXL | = gl is a concatenation of g bases V,and W € REXE

» W € R*Lis block-diagonal made of g blocks (N x N) with positive entries

» Drawback: Reweighted-¢; algorithms take “forever” due to multiple updates
of the weights

» Proposition: Learn weight matrix W using DNN so that no update required

Proposed approach

» Unfolding strategy [2]|: each iteration of FISTA [3] mapped to a DNN
» Learned Extended FISTA, coined LEFISTA
Require: G =7AT.S= (1—JATA) W, V,y, L > X\, (ATA), T, q
initialization: i =1, t1=1,x_1=x=0
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Figure Test images reconstructed for a measurement rate Mg/N3 = 0.3 (first row) with tiled SARA
and (second row) with LEFISTA (50 layers)
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W, Conclusion and perspectives
Figure LEFISTA network architecture: (top) 4-first layers (bottom) non-linearity f » FISTA with a sparsity prior in a concatenation of wavelet bases W mapped to a
DNN = LEFISTA
Learning and image reconstruction processes » Used to learn the weight matrix W of a weighted ¢;-minimization problem
Learning the weight matrix » Once trained, much faster than reweighted ¢; with promising results
.. : P :
» [raining set made of P pairs (yp, x*) , X, the ref., y, the measurements > Future work.. . _
| P/p=1" P » Learn non-linearities (e.g. prox., compression)
» Objective: find W which minimizes the ¢,-loss function < BPTT » Address blocking artifacts
Image reconstruction
» GPU RAM limitations = patches = block-compressed sensing (BCS) References
MBXN2 . .
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» TensorFlow implementation: https://github.com/dperdios/lefista
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