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Abstract

This paper analyses and compares different policy scenarios as well as discusses price elastic-
ities and willingness to pay and to accept using revealed preference data from the French new-car
market in 2014 by means of a cross-nested logit (CNL) model. We focus particularly on electric
and hybrid vehicles. We use interactions between the cost (both fixed and running costs) and the
household income in order to analyze the sensitivity towards different policy scenarios per income
level.

Results show that the willingness to pay and to accept obtained in our study are consistent
with the real market conditions. We also find that the most effective scenario in order to increase
the market shares of new sold electric vehicles is that of a major technological advance such as a
decrease in price due to cheaper manufacturing costs and an increase in driving range, rather than
a policy-based scenario. Also, the market segment that has more potential to increase the market
shares of electric vehicle purchase is the middle-income level.

In the paper, we discuss how to overcome the difficulties of working with revealed preference
data, and propose a new method to impute the attributes of the unchosen alternatives, based on the
empirical distributions observed in the data.

Keywords: car-type choice, policy analysis, revealed preference data, cross-nested logit
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1 Introduction
The automobile sector is of interest for both the public and the private sectors. Governments and other
public actors need to understand the car market in order to have valid forecasts of energy consumption,
emission levels and even tax revenue. By means of these forecasts they can also derive optimal policy
measures to, for instance, promote the use of electric vehicles to reduce emissions.

It is also interesting for private companies. The interest from automobile firms is obvious, but the
car market is linked to many other sectors such as those providing the raw materials (steel, chemicals,
textiles) and those working with automobiles such as repair and mobility services. Moreover, accord-
ing to the European Commission, “the EU is among the world’s biggest producers of motor vehicles
and the sector represents the largest private investor in research and development (R&D)” 1

In order to satisfy the needs of these public and private actors it is important to model car owner-
ship, which has many dimensions. Car ownership models can be classified based on several criteria
according to de Jong et al. (2004) such as: i) the inclusion of supply and demand, ii) the aggregation
level, iii) the time representation (dynamic or static), iv) the time horizon (long-term or short-term
forecasts), v) the inclusion of car-use and other socioeconomic characteristics, and vi) the type of
market (private or business cars) among others. In this paper we focus on the demand side of private
cars, in a disaggregate and static framework where we include socioeconomic characteristics of the
car buyers. The objective is to have long-term forecasts. This is known as static disaggregate car-type
choice models.

Our goal is to use revealed preference data to estimate these type of models. This allows to have
more realistic demand indicators compared to the ones obtained with stated preference data, such as
predicted market shares under several scenarios, willingness to pay and to accept several car attributes
and price elasticities. We are particularly interested in the demand for hybrid and electric vehicles.
Using RP is more challenging. The main difficulties are to define the choice set and to define the
attributes of the unchosen alternatives. The main contribution of the paper is the way how we define
the attributes of the unchosen alternatives. We use the empirical distribution of the attributes and draw
from them.

The remaining of the paper is structured as follows. Section 2 contains a brief literature review,
which is followed by the description of the data used in the paper, and how it is aggregated into dif-
ferent choice alternatives in Section 3. In Section 4 we discuss the adopted methodological approach,
the results of which are discussed in Section 5. The application of the model is discussed in Section 6.
We finalize the paper with some concluding remarks and future research directions in Section 7.

2 Literature Review
As mentioned in Section 1, we focus on static disaggregate car-type choice models. The first study
dealing with this type of models was performed by Lave & Train (1979). For a complete review of the
literature on car ownership the reader is refered to de Jong et al. (2004) and more recently to Anowar
et al. (2014).

1http://ec.europa.eu/growth/sectors/automotive

1



Although it is clear that a choice of a private car is a discrete choice, there does not seem to be
consensus in the literature about the definition of the choice set. The two main approaches are defined
below. The first approach considers that a car is characterized by its make, model, engine and vintage
(Birkeland & Jordal-Jorgensen, 2001). Then, for a given year, there may be over 1,000 alternatives. In
this case, sampling of alternatives is usually required for the estimation of the model, although recent
developments in model estimation (Mai et al. , 2015) allow to estimate large scale MEV models.

The second approach prefers an aggregate representation. For example Page et al. (2000) char-
acterize a car by its engine size and fuel type. They have nine alternatives for petrol and seven for
diesel. It greatly simplifies the specification and estimation of the model. A similar aggregation of
alternatives is used by Hess et al. (2012). This approach is also justifiable from a behavioral point of
view, arguing that decision-makers do not explicitly consider large choice sets.

The most popular model in this context is logit (Wu et al. , 1999; Choo & Mokhtarian, 2004).
However, the Independence from Irrelevant Alternatives (IIA) property of logit, may lead to counter-
intuitive results when alternatives share unobserved attributes. It is likely to happen in car-type choice
no matter which of the previous two approaches is chosen. Other models have been considered, such
as mixtures of logit models, (Brownstone & Train, 1998; McFadden et al. , 2000; Potoglou, 2008),
nested logit models (Berkovec & Rust, 1985; McCarthy & Tay, 1998; Mohammadian & Miller, 2002,
2003; Cao et al. , 2006) and cross nested logit models (Hess et al. , 2012).

The interest in electric and hybrid vehicles has risen in the past years, through the analysis of
stated preferences data (Glerum et al. , 2014; Hackbarth & Madlener, 2016; Beck et al. , 2013, 2016;
Daziano, 2013; Hackbarth & Madlener, 2013; Daziano & Achtnicht, 2014; Brownstone & Train,
1998; Train, 1980). Massiani (2014) describes some of the most important limitations of the stated
preference surveys being used currently in the literature, and questions the policy recommendations
that can be obtained from them. Studies carried out with revealed preference data are generally
quite old, and do not focus on electric and alternative fuel vehicles, mainly because of limitation of
these vehicles in revealed preference data. Some examples include Berry et al. (1995, 1998); Train
(1986); Berkovec (1985); Train & Winston (2007). In these studies aggregation of alternatives is
used. Berkovec & Rust (1985) instead use sampling of alternatives, where 14 out of 785 alternatives
are sampled for estimation. The main difficulty when using revealed preference data is to impute
the attributes of the unchosen alternatives, in particular if there is an aggregation of alternatives.
The studies cited above deal with it by imputing mean values of the attributes for each unchosen
alternative.

We fill the gap in the literature by proposing an alternative way of imputing the attributes of the
unchosen alternatives, based on multiple imputation using the empirical distributions of the attributes
for each alternative. To the best of our knowledge, it is also the first study of car-type choice to focus
on electric and hybrid vehicles in the context of the whole market using revealed preference data.
Due to the lack of variability in the autonomy (the range) of electric vehicles that are currently in the
market, we need to take the value of the willingness to pay for range from the literature. By doing this
we are able forecast the impact of an increase of the range on the market shares of electric vehicles.
We validate our model with demand indicators such as market shares, elasticities and willingness to
pay and to accept.
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3 Data and data aggregation
We use a dataset reporting sales of new cars in France in 2014. Each observation corresponds to
the purchase of a new car. The dataset reports over 40,000 purchases. However, after selecting
the variables that we use in the model and removing the missing values for any of them, 18,804
observations are used for this study. It is left for future work to recover some of these missing values.

In our approach we decide to consider a car-type as a combination between a market segment and
a fuel type. The market segments are full, luxury, medium, multipurpose vehicles (MPV), off-road and
small2. The fuel types considered are diesel, petrol, electric and hybrid. Table 1 gives some examples
of cars belonging to each market segment.

Market segment Car

Full
Ford Taurus
Toyota Avalon
Hyundai Grandeur

Luxury
Mercedes-Benz S-Class
Audi A8
BMW 7 Series

Medium
Opel Astra
Honda Civic
Audi A3

Multipurpose vehicle
Renault Espace
Volkswagen Sharan
Mercedes-Benz Vito

Off-road
Land Rover Freelander
Chevrolet Captiva
BMW X5

Small
Opel Corsa
Ford Fiesta
Toyota Yaris

Table 1: Examples of cars that belong to each market segment.

Out of the 18,804 observations, only 657 report the purchase of a hybrid vehicle. Moreover, they
are always combined with either diesel or petrol. Consequently, we consider hybrid as a market
segment rather than as a fuel type. Therefore, we have a total of 15 alternatives summarized in
Table 2, together with the number of observations corresponding to each alternative after removing
any missing values. Note that we should have 21 alternatives (3 fuel types multiplied by 7 market

2These segments are derived from the European Commission’s segmentation
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segments). The six missing alternatives are the combinations of electric vehicles with any market
segment except small. This is because these alternatives do not exist in the French market. The only
exception is electric luxury vehicles, that do exist (e.g: Tesla), but represent a negligible part of the
car market. For this reason, we decide to remove this alternative (electric luxury) from the analysis.

Alternative Market segment Fuel type Nbr. of obs.

1 Full Diesel 323
2 Luxury Diesel 178
3 Medium Diesel 2,226
4 MPV Diesel 1,375
5 Off-road Diesel 2,044
6 Small Diesel 5,538
7 Hybrid Diesel 161
8 Full Petrol 68
9 Luxury Petrol 54
10 Medium Petrol 663
11 MPV Petrol 310
12 Off-road Petrol 265
13 Small Petrol 5,037
14 Hybrid Petrol 496
15 Small Electric 66

Total 18,804

Table 2: List of alternatives in the choice set and number of observations (after removing missing values).

From this definition of alternatives, it is obvious that alternatives that share either fuel type or
market segment share unobserved attributes. Figure 1 proposes a correlation structure derived from
the multi-dimensional nature of the choice set presented in Table 2. This correlation structure is used
in the cross nested logit model presented in Section 4.

We assume that our dataset is representative of the population of new car buyers from an exoge-
nous point of view (i.e: from a socioeconomic point of view). It is important to note that it might not
be representative of the whole French population, but this is not an issue. For the representativeness of
the choices, we are able to replicate the real market shares by applying the correction of the alternative
specific constants as described by Train (2009).

4 Methodological approach and model specification
This section contains the methodological approach used to estimate the choice model. We define the
choice model used in Section 4.1 followed by the model specification, the nesting structure and the
definition of the variables used in Section 4.2. We finalize by describing how we import the parameter
associated with range from the literature in Section 4.3.
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Figure 1: Cross nested structure.

4.1 Choice model
The choice models used in our study are both a logit model and a cross nested logit. We consider the
logit model to be the benchmark in order to show the importance of accounting for the correlation
across alternatives. We use the cross nested model in the application of the model.

The cross nested logit model allows to overcome the IIA property. Suppose that the choice set
C is formed by M nests, C1, C2, ..., CM. The parameters αim represent the degree of membership of
alternative i to nest Cm. For identification purposes it is bounded between 0 and 1 and the

∑M
m=1 αim =

1, ∀i. The expression of the choice probabilities for a cross nested logit model are:

P(i | Cn) =
M∑
m=1

(∑
j∈Cn α

µm
µ

jm eµmVjn
) µ
µm

∑M
p=1

(∑
j∈Cn α

µp
µ

jp eµpVjn
) µ
µp

· α
µm
µ

im eµmVin∑
j∈Cn α

µm
µ

jm eµmVjn
, (1)

where Cn is the choice set of individual n, µ is the scale parameter of the model, normalized to 1, and
µm, m = 1, ...,M are the scale parameters of each nest, estimated from the data. For details on the
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normalization of the µ parameters, and a more detailed analysis of the cross-nested logit model, the
reader is referred to Bierlaire (2006) and Abbe et al. (2007).

4.2 Definition of variables and model specification
We consider a logit and a cross nested logit model, with a linear in parameter specification for the
utility functions. Table 3 shows the variables considered in the model. They are divided in (i) attributes
of the recently purchased car and (ii) socioeconomic characteristics of the main driver of the car and/or
her household. It is important to note that the car attributes are those reported by the individuals, and
not catalog attributes.

Variable Definition

A
ttr

ib
ut

es price Purchase price after discounts and government schemes [e]
cons Fuel consumption [l/100km]
max_power Engine power [bhp]
range_EV Reported average range achieved from a full charge [km]

So
ci

oe
co

no
m

ic
ch

ar
ac

te
ri

st
ic

s

agglomeration 1 if main driver lives either in a city or in the suburbs
town_rural 1 if main driver lives either in a town, village or rural area
university 1 if education level of main driver is at least a bachelor degree
nbr. cars Total number of cars in regular use in the household
nbr. adults Number of adults in the household (including main driver)
nbr. child. Number of children in the household (aged 18 or less)
income 10 if annual gross household income ≤ 10 [ke]

15 if annual gross household income ∈ [10, 20) [ke]
25 if annual gross household income ∈ [20, 30) [ke]
35 if annual gross household income ∈ [30, 40) [ke]
45 if annual gross household income ∈ [40, 50) [ke]
55 if annual gross household income ∈ [50, 60) [ke]
65 if annual gross household income ∈ [60, 75) [ke]
87.5 if annual gross household income ∈ [75, 100) [ke]
112.5 if annual gross household income ∈ [100, 125) [ke]
150 if annual gross household income ∈ [125, 175) [ke]
200 if annual gross household income ≥ 175 [ke]

Table 3: Definition of the variables used in the model.

Since the dataset consists of revealed preference choices, we have no direct access to the attributes
of the unchosen alternatives and they have to be imputed. The state-of-the-art is to impute the attribute
of an unchosen alternative as the mean of that attribute from the chosen alternatives (Train, 1986;
Berkovec, 1985). In other words, if an individual chose a small petrol car, the max_power of the off
road petrol car is usually imputed as the mean max_power of the observed off road petrol cars. In this
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paper, instead, we perform multiple imputation (see, for example, Schafer (2000)), by considering
the empirical distribution of each attribute for a given alternative. This distribution consists in the
observed values of other people’s chosen alternatives. Algorithm 1 shows how, where K is the number
of multiple imputations,N is the set of respondents, Cn is the set of alternatives available to individual
n (as discussed in Section 3) and Y is the set of cars 3. We define t : Y → Cn as the function that maps
each car with its car-type such that t(y) = i if car y belongs to alternative (car-type) i. Note that t(·)
is surjective but not injective. This is, each car belongs to a car-type, and two different cars can belong
to the same car-type. We estimate the model repeatedly with the different datasets D1, ..., Dk built
as defined by Algorithm 1. We denote by θ̂k the maximum likelihood estimates of the parameters
obtained using dataset Dk. Therefore, we obtain a distribution of the model parameters rather than a
point estimate.

Data: number of multiple imputations K, set of respondents N, set of alternatives Cn, set of
cars Y, vector of attributes for each car xy

Result: Datasets D1, ..., Dk containing attributes of chosen and unchosen alternatives
begin

for k = 1 : K do
for n ∈ N do

for i ∈ Cn do
if individual n chose alternative i then

attributes of alternative i← attributes of chosen car
else

select randomly (with equal probability) a car y such that t(y) = i
attributes of alternative i← attributes of car y

end
end

end
Dk ← attributes of chosen and unchosen alternatives

end
end

Algorithm 1: Attributes of all alternatives.

Tables 4 and 5 show the model specification. Note that both price and fuel consumption are
interacted with income. The fuel consumption is also multiplied by the mean fuel price (diesel or
petrol), calculated for 2014 in France (Institut national de la statistique et des études économiques,
2016c). Petrol price is denoted as pp and diesel price is denoted as pd in the table. The rest of the
variables appear linearly in the model. Note that some of them are rescaled for numerical reasons.
Note also that the specification of the utility functions is the same for the logit, and the cross nested
logit models.

3Here, a car is defined by a combination of make-model-type. The alternatives are car-types, as defined in Table 2.

7



Pa
ra

m
et

er
1

2
3

4
5

6
7

8

A
SC

i
1

in
th

e
ut

ili
ty

fu
nc

tio
n

of
al

te
rn

at
iv

e
i
∈
(2
,1
5
),

0
in

th
e

re
st

β
pr

ic
e_

in
c i

pr
ic

e i
·1
0
0

in
co

m
e

in
th

e
ut

ili
ty

fu
nc

tio
n

of
al

te
rn

at
iv

e
i,

0
in

th
e

re
st

β
in

c_
fu

ll
in

co
m

e
1
0
0
0
0

0
0

0
0

0
0

in
co

m
e

1
0
0
0
0

β
in

c_
lu

xu
ry

0
in

co
m

e
1
0
0
0
0

0
0

0
0

0
0

β
in

c_
m

ed
iu

m
0

0
in

co
m

e
1
0
0
0
0

0
0

0
0

0

β
in

c_
M

PV
0

0
0

in
co

m
e

1
0
0
0
0

0
0

0
0

β
in

c_
of

fr
oa

d
0

0
0

0
in

co
m

e
1
0
0
0
0

0
0

0

β
in

c_
hy

br
id

0
0

0
0

0
0

in
co

m
e

1
0
0
0
0

0
β

nb
r_

ad
ul

ts
_s

m
al

l
0

0
0

0
0

nb
r.

ad
ul

ts
0

0
β

nb
r_

ch
ilr

en
_s

m
al

l
0

0
0

0
0

nb
r.

ch
ild

.
0

0
β

nb
r_

ca
rs

_l
ux

0
nb

r.
ca

rs
0

0
0

0
0

0
β

nb
r_

ca
rs

_h
yb

ri
d

0
0

0
0

0
0

nb
r.

ca
rs

0
β

un
iv

er
si

ty
0

0
0

0
0

0
un

iv
er

si
ty

0
β

to
w

n_
ru

ra
l_

E
V

0
0

0
0

0
0

0
0

β
to

w
n_

ru
ra

l_
hy

br
id

0
0

0
0

0
0

to
w

n_
ru

ra
l

0

β
co

ns
o_

in
c

co
ns
1
·p

d·
1
0
0

in
co

m
e

co
ns
2
·p

d·
1
0
0

in
co

m
e

co
ns
3
·p

d·
1
0
0

in
co

m
e

co
ns
4
·p

d·
1
0
0

in
co

m
e

co
ns
5
·p

d·
1
0
0

in
co

m
e

co
ns
6
·p

d·
1
0
0

in
co

m
e

co
ns
7
·p

d·
1
0
0

in
co

m
e

co
ns
8
·p

p·
1
0
0

in
co

m
e

β
m

ax
_p

ow
er

m
ax

_p
ow

er
1

1
0

m
ax

_p
ow

er
2

1
0

m
ax

_p
ow

er
3

1
0

m
ax

_p
ow

er
4

1
0

m
ax

_p
ow

er
5

1
0

m
ax

_p
ow

er
6

1
0

m
ax

_p
ow

er
7

1
0

m
ax

_p
ow

er
8

1
0

β
ra

ng
e_

E
V

0
0

0
0

0
0

0
0

Ta
bl

e
4:

M
od

el
sp

ec
ifi

ca
tio

n
(p

ar
t1

/2
).

8



Pa
ra

m
et

er
9

10
11

12
13

14
15

A
SC

i
1

in
th

e
ut

ili
ty

fu
nc

tio
n

of
al

te
rn

at
iv

e
i
∈
(2
,1
5
),

0
in

th
e

re
st

β
pr

ic
e_

in
c i

pr
ic

e i
·1
0
0

in
co

m
e

in
th

e
ut

ili
ty

fu
nc

tio
n

of
al

te
rn

at
iv

e
i,

0
in

th
e

re
st

β
in

c_
fu

ll
0

0
0

0
0

0
0

β
in

c_
lu

xu
ry

in
co

m
e

1
0
0
0
0

0
0

0
0

0
0

β
in

c_
m

ed
iu

m
0

in
co

m
e

1
0
0
0
0

0
0

0
0

0

β
in

c_
M

PV
0

0
in

co
m

e
1
0
0
0
0

0
0

0
0

β
in

c_
of

fr
oa

d
0

0
0

in
co

m
e

1
0
0
0
0

0
0

0

β
in

c_
hy

br
id

0
0

0
0

0
in

co
m

e
1
0
0
0
0

0
β

nb
r_

ad
ul

ts
_s

m
al

l
0

0
0

0
nb

r.
ad

ul
ts

0
0

β
nb

r_
ch

ilr
en

_s
m

al
l

0
0

0
0

nb
r.

ch
ild

.
0

0
β

nb
r_

ca
rs

_l
ux

nb
r.

ca
rs

0
0

0
0

0
0

β
nb

r_
ca

rs
_h

yb
ri

d
0

0
0

0
0

nb
r.

ca
rs

0
β

un
iv

er
si

ty
0

0
0

0
0

un
iv

er
si

ty
un

iv
er

si
ty

β
to

w
n_

ru
ra

l_
E

V
0

0
0

0
0

0
to

w
n_

ru
ra

l
β

to
w

n_
ru

ra
l_

hy
br

id
0

0
0

0
0

to
w

n_
ru

ra
l

0

β
co

ns
o_

in
c

co
ns
9
·p

p·
1
0
0

in
co

m
e

co
ns
1
0
·p

p·
1
0
0

in
co

m
e

co
ns
1
1
·p

p·
1
0
0

in
co

m
e

co
ns
1
2
·p

p·
1
0
0

in
co

m
e

co
ns
1
3
·p

p·
1
0
0

in
co

m
e

co
ns
1
4
·p

p·
1
0
0

in
co

m
e

0

β
m

ax
_p

ow
er

m
ax

_p
ow

er
9

1
0

m
ax

_p
ow

er
1
0

1
0

m
ax

_p
ow

er
1
1

1
0

m
ax

_p
ow

er
1
2

1
0

m
ax

_p
ow

er
1
3

1
0

m
ax

_p
ow

er
1
4

1
0

m
ax

_p
ow

er
1
5

1
0

β
ra

ng
e_

E
V

0
0

0
0

0
0

ra
ng

e_
E

V
1
0
0

Ta
bl

e
5:

M
od

el
sp

ec
ifi

ca
tio

n
(p

ar
t2

/2
).

9



Nesting structure The nesting structure is defined as in Figure 1, where the numbered circles rep-
resent the 15 alternatives, the oval shape boxes represent the nest related to the market segment,
and the rectangle boxes represent the nests related to the fuel type. We define one membership
parameter, αMS, that defines the membership to the market segment nests (the ones surrounded by
a rounded rectangle). Then, 1 − αMS gives the membership to the fuel type nests. More gen-
eral specifications were tested, but the resulting models were not identified. This is a strong as-
sumption, and more investigation is left for future research. We define also five scale parameters,
µk, k ∈ {medium, offroad, small, diesel, petrol}. µelectric has to be normalized to one, because it
only contains one alternative. µ`, ` ∈ {hybrid, MPV, luxury, full} are normalized to one because they
reach the lower bound when we try to estimate them.

4.3 Parameter associated with range for electric vehicles
Due to the lack of variability in the range of electric vehicles in the data, the parameter βrange_EV
can not be estimated with sufficient precision. Since the willingness to pay for range is well studied in
the literature based on stated preference data, and is known to be one of the determinants of electrical
vehicle purchase, we import it from the literature and use it in our model. Dimitropoulos et al.
(2013) perform a meta-analysis based on 129 willingness to pay estimates and find that consumers
are willing to pay between 66 and 75US$ on average for a 1-mile increase in range, which is equivalent
to between 30.8 and 35.0e/km 4. For the results shown in Sections 5 and 6, we consider the value
34e/ km. We note WTP(rangelit) = 34.

From the definition of willingness to pay for range (since alternative 15 is the one related to electric
vehicles) we obtain:

WTP(range15,n) = −

∂V15,n
∂range15,n
∂V15,n
∂pricein

= −
βrange_EV · incomen
100 · βprice_inc_15

, (2)

and by equalizing WTP(rangelit) = WTP(range15,n):

βrange_EV = −34 · 100 · βprice_inc_15
incomen

. (3)

We define βrange_EV as defined in Equation (3) and estimate all the parameters simultaneously.

5 Results
The estimation results for both the logit and the cross nested logit models are reported in Table 6. The
reported parameters are the means of the parameters obtained with the 50 realizations of the multiple
imputation method. The t-tests are computed from the standard errors, and the standard errors of each

4For the change in units, we consider the mean exchange rate between US$ ande for 2014 which is 1.33$/e according
to the European Central Bank.
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parameter sp are obtained from the empirical distribution of the estimates as follows:

sp =

√√√√ 1

K− 1

K∑
k=1

(θ̂kp −
¯̂
θp)2, (4)

where K is the number of multiple imputations, θ̂kp is the value of the parameter at imputation k, and
¯̂
θp =

1
K

∑K
k=1 θ̂

k
p.

Logit CNL
mean param. t-test 5 mean param. t-test 5

ASC2 -1.90 -57.8 -1.86 -38.3
ASC3 2.44 119 2.20 18.3
ASC4 1.87 79.6 1.78 21.3
ASC5 1.94 85.9 1.88 18.1
ASC6 3.64 136 2.99 23.4
ASC7 0.207 8.09 0.295 8.83
ASC8 -2.38 -112 -2.26 -54.1
ASC9 -3.10 -79.3 -3.07 -37.4
ASC10 1.20 61.1 1.43 13.7
ASC11 0.465 21.1 0.417 11.3
ASC12 -0.283 -13.4 0.389 2.20
ASC13 3.44 127 2.81 19.0
ASC14 1.23 45.8 1.14 21.8
ASC15 0.0968 3.62 -0.0533 -0.225
βinc_full 0.143 79.4 0.120 24.6
βinc_luxury 0.204 107 0.179 33.6
βinc_medium 0.0155 10.1 0.00875 4.55
βinc_MPV 0.0605 41.9 0.0375 16.9
βinc_offroad 0.117 73.0 0.0693 17.4
βinc_hybrid 0.0939 53.3 0.0614 16.4
βnbr_adults_small -0.0911 -39.2 -0.0687 -10.2
βnbr_chilren_small -0.235 -196 -0.190 -14.6
βnbr_cars_lux 0.291 85.8 0.295 20.9
βnbr_cars_hybrid -0.260 -131 -0.240 -43.2
βuniversity 0.180 52.8 0.175 34.6
βtown_rural_EV 0.556 130 0.546 44.5
βtown_rural_hybrid -0.270 -70.2 -0.234 -20.4

5The reported t-tests are against zero for all parameters except for the µ parameters. For the µ parameters, the reported
t-tests are against one.
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βprice_inc_1 -0.128 -67.9 -0.119 -56.7
βprice_inc_2 -0.102 -56.4 -0.0950 -37.2
βprice_inc_3 -0.109 -54.4 -0.0805 -15.9
βprice_inc_4 -0.134 -65.0 -0.118 -24.4
βprice_inc_5 -0.116 -62.8 -0.0959 -21.7
βprice_inc_6 -0.107 -38.2 -0.0778 -18.4
βprice_inc_7 -0.169 -96.7 -0.168 -63.9
βprice_inc_8 -0.0717 -31.2 -0.0690 -31.6
βprice_inc_9 -0.136 -52.0 -0.122 -51.0
βprice_inc_10 -0.112 -39.4 -0.0819 -14.6
βprice_inc_11 -0.140 -62.8 -0.130 -63.2
βprice_inc_12 -0.0995 -37.6 -0.0981 -21.3
βprice_inc_13 -0.0948 -26.4 -0.0672 -15.2
βprice_inc_14 -0.146 -58.2 -0.131 -37.9
βprice_inc_15 -0.507 -75.8 -0.428 -67.6
βconso_inc -0.105 -8.74 -0.0718 -7.30
βmax_power 0.0565 43.1 0.0456 20.3

µmedium - - 1.67 3.49
µoffroad - - 1.39 2.37
µsmall - - 1.91 2.38
µdiesel - - 6.34 1.83
µpetrol - - 3.25 5.68
αMS - - 0.589 11.9

Table 6: Mean of the parameter estimates. Number of multiple imputations: K=50.

Unless pointed out, the following interpretations are valid for both the logit and the cross nested
logit models.

Income The interactions between the income level and the market segment have the expected rela-
tive magnitudes. The normalized market segment is small. Therefore, the interpretation of the results
is that people with larger income levels have a larger preference towards luxury vehicles, then full,
followed by offroad and hybrid, with almost the same magnitude. The less preferred alternatives, all
else being equal, for people with larger income are MPV, then medium and the less preferred is the
reference level small.

Other socioeconomic characteristics We also model the effects of number of children, of adults
and of vehicles in a household, the education level and the residence location.

From the negative values of βnbr_adults_small and βnbr_children_small we can conclude that
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the more people live in a household (either adults or children), less likely it is no have a small vehicle
compared to households with less people. Moreover, the number of children has a stronger effect in
the decrease of the probability of buying a small vehicle than the number of adults.

From the estimation results we can also conclude that the larger the number of cars in a household,
the more likely it is to buy a luxury car (since βnbr_cars_lux > 0). Similarly, the larger the number of
cars in a household, the less likely it is a hybrid one (βnbr_cars_hybrid < 0). From the positive value
of βuniversity we can conclude that individuals who go to university are more likely to buy hybrid
and pure electric vehicles compared to people that do not go to university. For the residence location,
we find a surprising result: individuals living in towns or rural areas are more likely to buy an EV
than those living in a city or in the suburbs (βtown_rural_EV > 0). For hybrid cars it is however the
opposite: individuals living in cities and suburbs are more likely to buy one than those living in towns
or rural areas (βtown_rural_hybrid < 0).

Price interacted with income Both pairwise t-test comparisons between the parameter estimates,
and a likelihood ratio test reject the hypothesis of generic price parameters. All the price parameters
are negative, as expected, and individuals are more sensitive to high prices for electric vehicles (al-
ternative 15) than to any other alternative (since βprice_inc_15 is the largest parameter in absolute
value).

Other attributes of the alternatives The fuel consumption is multiplied by 1.48 e/`, that is the
mean petrol price in France in 2014 for the petrol alternatives, and by 1.29 e/`, that is the mean
diesel price in France in 2014 for the diesel alternatives (Institut national de la statistique et des études
économiques, 2016c). The variable is therefore a proxy to the running costs. We interact it with the
household income analogously as we do for price (or the fixed cost). As expected βconso_inc is
negative, meaning that all else being equal, individuals prefer cars with less fuel consumption. We
also model the engine power, that has a positive effect. All else equal, individuals prefer vehicles with
more power, as expected.

Nest and membership parameters The five reported nest parameters are significantly different
from one, meaning that the alternatives that belong to them share unobserved attributes. However, the
other five nest parameters are to be fixed to one. µelectric is fixed to one because it only contains one
alternative, so it can not be identified. The other four (µfull, µluxury, µMPV, µhybrid) are fixed to
one because when we try to estimate them they reach the lower boundary 1.

The membership parameter αMS is between 0 and 1 and it represents how much (out of one)
an alternative is explained by the market segment. The fact that it is larger than 0.5 means that an
alternative belongs more to its corresponding market segment than to its corresponding fuel type.
Note that we consider the same membership parameter to market segment and to fuel type for all the
alternatives.
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6 Application of the model
In this section we apply the model described above in order to obtain demand indicators such as price
elasticities (Section 6.1), aggregate market shares under different policy scenarios (Section 6.2) and
willingness to pay and to accept (Section 6.3). We consider only the cross-nested logit.

For the application of the model, instead of doing multiple imputation (as we do in the estimation
process) we impute each attribute of an unchosen alternative by the mean value of each attribute for
the chosen alternatives 6. In other words, for an individual n that chose alternative i, the values of an
attribute of the unchosen alternative j, xjn are imputed as the average of attribute x of those individuals
who chose alternative j, x̄j. Moreover, in order to replicate the correct market shares in the base case,
we need to calibrate the alternative specific constants as described by Train (2009, p. 67).

6.1 Price elasticities
Let pin be the current value of the price variable, and p+jn = pjn + ∆pjn the future value. Keeping
all other variables at their current values, we denote Pn(i) the choice probability of alternative i and
P+n (i) = Pn(i) + ∆Pn(i) the choice probability involving p+jn. The disaggregate arc elasticity for
individual n is defined as follows:

E
∆Pn(i)
∆pjn

=
∆Pn(i)

Pn(i)
· pjn
∆pjn

, ∀i = 1, ..., 15,∀j = 1, ..., 15, (5)

If i = j in Equation (5) then it is called the direct arc elasticity, and otherwise the cross arc elasticity.
In our application, the alternative scenario is a decrease of 20% of alternative j, ∆pjn = −0.2 · pjn.
Results for each pair (i, j), i = 1, . . . , 15, j = 1, . . . , 15 are shown in Table 7.

i
j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -0.998 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109
2 0.00412 -1.09 0.00412 0.00414 0.00414 0.00413 0.00412 0.00412 0.00412 0.00412 0.00412 0.00412 0.00412 0.00412 0.00412
3 0.0198 0.0198 -0.413 0.0198 0.0198 0.0199 0.0198 0.0198 0.0198 0.305 0.0198 0.0198 0.0198 0.0198 0.0198
4 0.102 0.102 0.102 -0.704 0.109 0.190 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102
5 0.0540 0.0540 0.0540 0.0603 -0.686 0.0601 0.0540 0.0540 0.0540 0.0540 0.0540 0.364 0.0540 0.0540 0.0540
6 0.151 0.151 0.151 0.195 0.155 -0.309 0.151 0.151 0.151 0.151 0.151 0.151 0.252 0.151 0.155
7 0.00651 0.00651 0.00651 0.00651 0.00651 0.00651 -1.09 0.00651 0.00651 0.00651 0.00651 0.00651 0.00651 0.00651 0.00651
8 0.000747 0.000747 0.000747 0.000747 0.000747 0.000747 0.000747 -0.661 0.000747 0.000747 0.000747 0.000747 0.000747 0.000747 0.000747
9 0.00160 0.00160 0.00160 0.00160 0.00160 0.00160 0.00160 0.00160 -1.770345 0.00160 0.00165 0.00165 0.00184 0.00163 0.00160

10 0.00152 0.00152 0.0239 0.00152 0.00152 0.00152 0.00152 0.00152 0.00152 -0.534 0.00152 0.00152 0.00154 0.00152 0.00152
11 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 -0.765 0.0199 0.0217 0.0199 0.0199
12 0.00388 0.00388 0.00388 0.00388 0.0294 0.00388 0.00388 0.00388 0.00389 0.00388 0.00391 -0.785 0.00411 0.00390 0.00388
13 0.0863 0.0863 0.0863 0.0863 0.0863 0.143 0.0863 0.0863 0.0864 0.0872 0.0891 0.0877 -0.214 0.0879 0.0881
14 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0141 0.0140 0.0149 -0.748 0.0140
15 0.00407 0.00407 0.00407 0.00407 0.00407 0.00426 0.00407 0.00407 0.00407 0.00407 0.00407 0.00407 0.00424 0.00407 -1.29

Table 7: Direct and cross arc elasticities for each pair of alternatives.

The diagonal values are negative, as should be, and the off-diagonal values are positive. Therefore,
decreasing the price of an alternative i increases the probability of choosing alternative i and decreases
the probabilities of choosing all other alternatives. Moreover, by means of the cross nested logit, we

6We also try multiple imputation, but the results do not change significantly, and considering it in this way saves time
in the analysis.
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get more realistic substitution patterns, compared to what we could obtain using a logit model. The
ranges of the direct elasticities found are in line with what is reported by Train & Winston (2007)
(between -1.7 and -3.2 depending on the model they use). Berry et al. (1998) report direct elastic-
ities that are a lot larger in absolute value, going up to -126 for some vehicles. However, the cross
elasticities reported by Berry et al. (1998) are close to what we find. For example, the cross elasticity
between the Mazda 323 (that belongs to the medium market segment) and the Nissan Maxima (that
belongs to the market segment full) is reported to be 0.056. We obtain a value of 0.0198.

As an illustration of the substitution patterns obtained thanks to the CNL specification, we analyze
the elasticities related to alternative 3, the medium diesel. Figure 2 shows the values of the price arc
elasticities obtained for alternative medium diesel, namely E∆Pn(3)∆pjn

, j = 1, . . . , 15. We see that when
the price of medium diesel is decreased, the largest arc cross elasticity is for alternative 10 (medium
petrol). In other words, by making medium diesel cars cheaper, we attract medium-petrol buyers more
than any of the other vehicle car-types. Due to the IIA property, this analysis could not be done with
a logit model.
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Figure 2: Price arc cross elasticities for medium diesel (E∆Pn(3)∆pjn
).

6.2 Comparing different future scenarios
For the forecasting exercise we consider three scenarios. The first one, denoted by do nothing sce-
nario, corresponds to a foreseeable future where no specific policy is implemented. The second one,
denoted the tax scenario, uses the same assumptions as the do nothing scenario, plus an increase of the
registration tax for internal combustion vehicles of 10% and an increase in the fuel price. Finally, the
technological innovation scenario uses the same assumptions as the do nothing scenario, plus a de-
crease in the price of electric vehicles of 15% and an increase of the range of these vehicles by 100%.
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They are all considered to be related to a five-years horizon. The socioeconomic characteristics of
new car buyers are assumed to remain unchanged.

The mean value of fuel consumption decreased from 6.95l/100km in 2010 to 6.49l/100km in
2015 (Comité des Constructeurs Français d’Automobiles, 2016). This represents a 7% decrease. We
assume that the decrease in a five-years time horizon will be the same. For the price, in the do
nothing scenario, motivated by the decrease of the bonus-malus in France from 2015 to 2016 from
4000e to 1000e for rechargeable hybrids and from 2000e to 750e for other hybrids (Ministère
de l’environnement, de l’énergie et de la mer, 2016), we assume an increase of 2500e of the price
of all hybrid vehicles. Moreover, for the tax scenario we assume that an increase in the registration
tax will render internal combustion vehicles 10% more expensive. For the technological innovation
scenario we assume that an improvement in the manufacturing process will render electric vehicles
15% cheaper. For the electric vehicle’s range in both the do nothing and the tax scenarios, we assume
that within five years the range will increase of 50km for all vehicles. This is in line with the ranges for
the Nissan leaf comparison between 2011 (117km) and 2016 (172km) (U.S. Department of Energy,
2016). For the technological innovation scenario we assume that the ranges for all electric vehicles
on the market are doubled. Finally, for the fuel price, we assume that the petrol and diesel prices
will be the same, as the French government has reported that they would like the difference between
both prices to decrease (Sud Ouest, 2015). We assume that the taxes are constant in the do nothing
and technological innovation scenarios, and use the forecast for the price of imported fuel (European
Comission, 2011), resulting in 2.44e/l. For the tax scenario we use the same import price, and
increase the taxes by 50% which results in 3e/l. These assumptions are summarized in Table 8.

Do nothing scenario Tax scenario Technological innovation
scenario

Max. power - - -

Fuel cons. 7% decrease in fuel consump-
tion (alt 1-14)

7% decrease in fuel consump-
tion (alt- 1-14)

7% decrease in fuel consump-
tion (alt. 1-14)

Price - Hybrid vehicles (alt 7 and
14) 2500 emore expensive

- Hybrid vehicles (alt. 7 and
14) 2500 emore expensive
- Internal combustion engine
vehicles (all alt. except
7,14,15) 10% more expensive

- Hybrid vehicles (alt. 7 and
14) 2500 emore expensive
- Electric vehicles (alt. 15)
15% cheaper

Range +50km +50km 100% increase

Fuel price diesel=petrol=2.44e/` diesel=petrol=3e/` diesel=petrol=2.44e/`

Table 8: Description of the different tested scenarios.

We compute the market shares of each alternative for each scenario. They are reported in Table 9.
In order to interpret these results, we focus on the electric vehicle alternative and plot the market
shares per income level and scenario. This is shown in Figure 3. There are 11 income levels as shown
in Table 3 and they are labeled from Income 1 for the lowest income level, to Income 11 for the
highest. Indeed, all the scenarios have an increase in the share of new sold electric vehicles, and the
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Do nothing 1.22 0.546 4.13 14.5 7.74 35.6 0.552 0.126 0.140 0.366 2.48 0.618 30.0 1.75 0.303
Tax 1.16 0.517 4.11 13.9 7.41 36.2 0.574 0.120 0.125 0.363 2.34 0.593 30.5 1.83 0.333
Techno. innov. 1.24 0.552 4.13 14.5 7.87 34.8 0.551 0.132 0.144 0.379 2.54 0.645 30.5 1.74 0.362
Base 1.24 0.554 4.17 14.6 7.93 35.3 0.598 0.130 0.143 0.366 2.50 0.627 29.8 1.84 0.274

Table 9: Predicted market shares for each alternative and scenario in percentages.
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Figure 3: Market shares for the electric vehicle alternative for the base case and each of the scenarios, per
income level

most effective scenario is the one with a major technological advance. It is also very interesting to note
how the increase in market share is higher for medium income levels rather than low or high income
levels. In other words, people with lower income levels can still not afford the electric vehicles, and
people with higher income levels are less attracted by the improvements.

We repeat the analysis for hybrid vehicles. Figure 4(a) shows the hybrid diesel and Figure 4(b)
shows the hybrid petrol. In both cases, the share is a growing function of the income. However,
for the hybrid diesel alternative, the market shares in the defined scenarios actually decrease for all
income levels. This indicates that without the subsidies given today, the sales of hybrid diesel cars
would decrease. For the petrol case, with the tax scenario, the market shares increase slightly for all
income levels, but they decrease in both the do nothing and the technological innovation scenarios.
We can conclude that unless internal combustion engine (ICE) cars are made more expensive (like in
the tax scenario), the combination of increasing the fuel price and decreasing the subsidies for hybrid
vehicles does not allow the new sales market shares of these alternatives to increase.

It is important to note that these predicted market can only be calculated using revealed preference
data for the sample enumeration. Indeed, the values of the attributes in stated preferences data are
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(a) Hybrid diesel
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(b) Hybrid petrol

Figure 4: Market shares for hybrid vehicles for the base case and each of the scenarios, per income level.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean

Fuel cons. [e/ (`/1000km)] 7.76 9.74 11.50 7.83 9.65 11.90 5.51 15.39 8.73 12.97 8.17 10.83 15.82 8.14 - 10.28
Max power [e/ bhp] 24.41 30.66 36.18 24.64 30.38 37.46 17.35 42.21 23.96 35.57 22.40 29.71 43.39 22.32 6.80 28.50

Table 10: Willingness to accept for fuel consumption and willingness to pay for maximum power for each
alternative.

engineered by the experimental design, and do not represent any market reality. Note also that the
shares refer to the reference population, that is the set of people buying a new car during a given year.

6.3 Willingness to pay
We compute the marginal willingness to pay for an increase of maximum power and the willingness
to accept an increase in fuel consumption, which have the following expressions

WTP(max_powerin) = −
∂Vin

∂max_powerin
∂Vin

∂pricein

= −βmax_power·income
1000·βprice_inc_i

,

WTA(consin) =
∂Vin

∂consin
∂Vin
∂price in

= 10·price(fuel)·βconso_inc
βprice_inc_i

.

(6)

Results are summarized per alternative in Table 10. By considering an individual who drives 13000km
(which is the mean mileage in France in 2014 for private vehicles (Institut national de la statistique
et des études économiques, 2016a)) and who keeps the car for 5.4 years (Institut national de la statis-
tique et des études économiques, 2016b), she would be willing to pay 735e more for a car that is 1

`
1000km

more efficient. For the maximum power our results show that an individual is willing to pay
2580emore for a car that has 100bhp more of maximum power, if all else is equal. Both results are
in line with what is observed in the new car market. This indicates that the new car market is close to
equilibrium.
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7 Conclusions and future work
In this paper we have developed a CNL model for car type choice for new buyers, using revealed
preference data. A multiple imputation method has been applied for the attributes of the non chosen
alternatives. We have used the estimated model to study the effects of several policy scenarios in
the market shares of different car-types with a special focus on electric vehicles. The results are in
line with the market share variations obtained in other models using revealed preference data (but not
focusing on electric vehicles). We also computed price elasticities, that are in line with values found
in the literature, and willingness to pay and to accept values, that are in line with what is observed in
the new vehicle market.

By using revealed preference data we have encountered two major difficulties. The first relates to
the definition of the choice set. We aggregated several make-model-type of cars into fifteen alterna-
tives defined as a combination of a market segment (full, luxury, medium, MPV, offroad and small)
and a fuel type (diesel, petrol, hybrid, electric). This definition of the alternatives makes it natural to
estimate a cross nested logit model, since alternatives that share either market segment or fuel type
share unobserved attributes. The results confirm that the cross nested logit model is better than the
logit model both in terms of fit and in terms of realistic behavioral results.

The second major difficulty of using RP data related to the definition of the attributes of the
unchosen alternatives. To the best of our knowledge, it is the first time that the empirical distributions
of the attributes of the alternatives are used to impute the attributes of the unchosen alternatives. This
is computationally slow, but much more realistic than considering the mean of the attributes of the
chosen alternatives, as was done in the literature in the past.

This methodology, however, is not free of limitations. As for any choice experiment, we are not
able to estimate a parameter if the attribute related to it has very little variability. In our data, this is
the case for the range of electric vehicles. EVs represent a very small part of the 2014 car market in
France, and therefore, the reported ranges do not allow to estimate the sensitivity to the autonomy of
electric vehicles. In order to overcome this problem, we use the willingness to pay for range reported
in the literature.

Out of the three tested scenarios, the most effective in order to increase the use of electric vehicles
is the technological innovation scenario. The results we obtain are also divided per income levels.
The income level that would increase the market share of EV the most is income level number 4,
which corresponds to an annual gross household income of between 30,000 and 40,000 e.

Some improvements in the presented research would include weighting the alternatives by the
amount of different number of vehicles that they contain, as done in Train (1986). Moreover, the
variables related to the attributes of the alternatives could contain measurement errors, since they con-
sist of reported values (instead of catalog values), which might cause endogeneity. Auxiliary models
for the car attributes can be estimated and integrated with the choice model to solve this issue. Our
framework allows for these auxiliary models to be included easily. Moreover, these auxiliary models
would also allow to recover observations containing missing attributes. Finally, a future research di-
rection would be to take into account the price endogeneity as in Berry et al. (1995). New results by
Mai et al. (2015) show that it might be feasible to estimate the model over the full set of alternatives,
without the need for either aggregation or sampling of alternatives. It would also be interesting to
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estimate the same model over the full set of alternatives and compare the results obtained with the
two approaches.
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