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ABSTRACT

We consider the group testing problem, in which one seeks to
identify a subset of defective items within a larger set of items
based on a number of tests. We characterize the information-
theoretic performance limits in the presence of list decoding,
in which the decoder may output a list containing more el-
ements than the number of defectives, and the only require-
ment is that the true defective set is a subset of the list, or
more generally, that their overlap exceeds a given thresh-
old. We show that even under this highly relaxed criterion,
in several scaling regimes the asymptotic number of tests is
no smaller than the exact recovery setting. However, we also
provide examples where a reduction is provably attained. We
support our theoretical findings with numerical experiments.

Keywords: Group testing, information-theoretic limits,
partial recovery, list decoding, strong converse

1. INTRODUCTION

The group testing problem consists of determining a small
subset of “defective” items within a larger set of items. This
problem has a history in areas such as medical testing and
fault detection, and has regained significant attention follow-
ing new applications in areas such as communication proto-
cols [1], pattern matching [2], and database systems [3], and
new connections with compressive sensing [4, 5].

Let the items be labeled as {1, . . . , p}, and let S be the
subset of defective items. Each observation is generated ac-
cording to

Y = 1

{ ⋃
i∈S

Xi = 1

}
, (1)

where the measurement vectorX = (X1, . . . , Xp) ∈ {0, 1}p
indicates which items are included in the test. The goal is to
recover S based on a number n of tests, with the i-th measure-
ment vector being X(i) and the i-th observation being Y (i).
In the non-adaptive setting, all tests must be designed in ad-
vance, whereas in the adaptive setting, one may design the
next test based on the outcomes of all previous tests. We con-
sider a fixed number k of defective items, and assume that the
support set S is uniform over the subsets of {1, . . . , p} with
cardinality k.
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The focus on this paper is on relaxed recovery criteria
compared to the usual exact recovery criterion. Specifically,
we assume that the decoder outputs a list L ⊆ {1, . . . , p} of
cardinality L ≥ k (possibly much larger than k), and all we
require is that it contains at least a proportion 1 − α∗ of S;
hence, the error probability is given by

Pe(L,α
∗) := P

[
|L ∩ S| < (1− α∗)k

]
. (2)

Note that this is distinct from the decoders considered in pre-
vious works that directly output an estimate Ŝ of S. List
decoding can be of direct interest, for instance, in fault detec-
tion, if one is content with discarding some number of non-
defective items as long as most of the defective items are also
discarded. Another use of list decoding is as the first step in
a two-step procedure, where the second step simply tests the
items in the list one-by-one.

In the special case α∗ = 0, corresponding to full recov-
ery with S ⊆ L, we abbreviate Pe(L,α

∗) as Pe(L). In this
case, our setup can be viewed as an analog of list decoding
for channel coding, which has received considerable atten-
tion in the information theory literature (e.g., see [6, 7] and
the references therein).

In summary, the main notations used throughout the rest
of the paper are the number of items p, number of defectives
k, number of tests n, list size L, defective set S, allowed error
fraction α∗, and error probability Pe.

1.1. Previous Work

The information-theoretic limits of group testing have been
studied for decades (e.g., see [8, 9]), and have recently be-
come increasingly well-understood [10–15]. In particular,
when the number of defectives scales as k = O(p1/3), it is
known that the number of tests n∗ required to exactly identify
the defective set satisfies [14]

n∗ =

(
k log2

p

k

)
(1 + o(1)) (3)

in the non-adaptive setting, while in the adaptive setting the
same is true with k = O(pθ) for any θ ∈ (0, 1) [16].

Various partial recovery and list decoding results have
also appeared previously. It was shown in [14] that if L = k
in the above setup (i.e., regular decoding instead of list decod-
ing), then having α∗ > 0 amounts to reducing (3) by at most
a multiplicative factor 1 − α∗. On the plus side, the bound
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then becomes valid when k = O(pθ) for any θ ∈ (0, 1), as
opposed to only θ ≤ 1

3 .
List decoding has been used previously in group testing

for various purposes [4, 17–19], including as an intermediate
step for standard group testing [18], and for combating ad-
versarial noise [17]. The work most relevant to ours is [20],
which shows that when k and L behave as O(1), the required
number of tests remains of the form (3); see also [19] for
a more stringent performance criterion related to the COMP
algorithm [21].

1.2. Contributions

The study of list decoding performance limits with general
scalings k = o(p) is non-trivial compared to k = O(1), and
is the focus of this paper.

Our main findings reveal that the gain is limited in sev-
eral settings, as exemplified in the following example: If k =
O(p1/3) and we set L = Ck for arbitrarily large C, α∗ ∈
(0, 1), and only require an arbitrarily small success rate of ε
(i.e., Pe(L,α

∗) ≤ 1 − ε), then the required number of tests
still only improves on (3) by at most a multiplicative factor of
1− α∗ asymptotically.

On the other hand, we give examples where both partial
recovery and list decoding can strictly reduce the asymptotic
number of tests; in the preceding example, list decoding gives
an improvement whenever L = Θ(k1+δ) for some δ > 0,
with the difference vanishing in the limit as δ → 0.

2. MAIN RESULTS

Here we present and discuss our main results; the proofs are
deferred to Section 3.

2.1. Negative Result

As outlined above, the following theorem reveals a broad
range of scenarios where partial recovery and list decoding
do not help significantly.

Theorem 1. Fix α∗ ∈ (0, 1), and suppose that k ≤ L and
L = o(p). Then in order to obtain Pe(L,α

∗) 6→ 1 as p→∞,
it is necessary that

n ≥ (1− α∗)
(
k log2

p

L

)
(1− o(1)) (4)

even in the case of adaptive tests.

By a comparison with (3), which corresponds to the stan-
dard group testing setting with k = O(p1/3), Theorem 1 can
be viewed negatively for three reasons. First, it shows that al-
lowing a fraction α∗k of the defectives to be missed gives at
most an improvement by 1− α∗. Second, list decoding is of
limited help; in particular, if L = O(k), even with a large im-
plied constant, then there is no gain asymptotically. Finally,
even if one only seeks success a small fraction of the time,
say 0.01, the result remains unchanged. The last of these is
commonly known as the strong converse.

On the other hand, if L is significantly larger than k, e.g.,
k = O(pθ) and L = O(pθ

′
) with θ′ > θ, then (4) indicates

that a constant-factor reduction in n may be possible due to
list decoding; we will shortly see that this is provably true.

Similar observations on partial recovery were made in
[14] in the absence of list decoding, i.e., with L = k. More-
over, setting α∗ = 0 corresponds to the problem studied
in [22, 23], namely, finding a subset of non-defective items
of a given size. The scaling regimes considered in [22, 23]
correspond to a large list size L = Θ(p), and in this case, the
potential gains are much more significant. Our results reveal
the limitations of using smaller list sizes L = o(p).

2.2. Positive Results

Since Theorem 1 gives a necessary condition, we cannot use
it to conclude that partial recovery and list decoding can re-
duce the number of tests. We proceed by showing that both
of these can help in some cases.

The fact that partial recovery can help (even when L = k)
follows directly from the results of [14] and [15]. The former
showed that with Bernoulli tests, the limit (3) can be achieved
for any θ ∈ (0, 1) whenever α∗ > 0. In contrast, [15] shows
that the best possible coefficient to k log2

p
k with Bernoulli

testing tends to∞ as θ → 1. Hence, we conclude that partial
recovery provides an arbitrarily large gain.

We are not aware of any existing results revealing list de-
coding to help when L = o(p), and in fact [20] showed that
the answer is negative when k and L are O(1). The follow-
ing theorem reveals cases where the answer is affirmative,
and moreover, where Theorem 1 is tight. We focus primarily
on the non-adaptive setting with α∗ = 0, but also comment
on allowing adaptivity or α∗ > 0.

Theorem 2. Suppose that k and L satisfy k ≤ L, L = o(p),
and k = O

(√
p
L

)
. Then there exists a non-adaptive group

testing procedure such that Pe(L)→ 0 as p→∞ with

n ≤
(
k log2

p

L

)
(1 + o(1)). (5)

Moreover, if adaptivity is allowed, or if we only require
Pe(L,α

∗) → 0 for some α∗ ∈ (0, 1), then this remains true
even without the condition k = O

(√
p
L

)
.

Observe that if k = O(pθ) and L = O(pθ
′
) with θ′ > θ,

then (3) and (5) have the same scaling laws, but the latter
has a strictly smaller implied constant. A key implication
of this observation is that the coefficient to k log2

p
k with list

decoding can be strictly less than one, even without partial
recovery. This is perhaps unsurprising when L = Θ(p) (e.g.,
L = p trivially gives zero error probability without needing
any tests), but it is non-trivial in the sublinear regime.

We note that in order to satisfy the above condition k =
O
(√

p
L

)
, it suffices that both k and L behave as O(p1/3).

2.3. Noisy Tests

We have focused on the noiseless case for clarity, but analo-
gous results follow in noisy scenarios using analogous tech-



niques to [13, 14, 24]. In particular, in the case of symmetric
Bernoulli noise, where each test outcome is independently
flipped with probability ρ, Theorems 1 and 2 remain true
when the right-hand sides of (4)–(5) are divided by 1−H2(ρ),
where H2 is the binary entropy function in bits.

3. PROOFS

3.1. Proof of Theorem 1

Regardless of adaptivity, the list L at the output of the de-
coder can be viewed as a function of the measurement vector
Y = (Y (1), . . . , Y (n)), and we make this explicit by writing
L(y). We also let S denote the set of subsets of {1, . . . , p} of
cardinality k, and let PY|s denote the distribution of Y given
S = s for some s ∈ S , which is deterministic if the tests are
designed deterministically.

It follows that the probability of correct recovery, denoted
by Pc(L,α

∗) := 1− Pe(L,α
∗), can be written as

Pc(L,α
∗) =

∑
s∈S

1(
p
k

) ∑
y

PY|s(y|s)

× 1{|L(y) ∩ s| ≥ (1− α∗)k} (6)

≤ 1(
p
k

) ∑
y

∑
s∈S

1{|L(y) ∩ s| ≥ (1− α∗)k}. (7)

We proceed by bounding the quantity

N(y) :=
∑
s∈S

1{|L(y) ∩ s| ≥ (1− α∗)k} (8)

for a fixed value of y, which is simply the number of defec-
tive sets of cardinality k that overlap with L(y) in at least
(1 − α∗)k positions. Since |L(y)| = L, a simple counting
argument gives

N(y) ≤
α∗k∑
d=0

(
p− L
d

)(
L

k − d

)
, (9)

where d represents the number of items in the defective set
that are not included in L(y). We can upper bound (9) as
follows:

N(y) ≤ k max
d∈{0,...,α∗k}

(
p− L
d

)(
L

k − d

)
(10)

≤ k max
α∈[0,α∗]

(
p− L
αk

)(
L

(1− α)k

)
. (11)

Applying log
(
A
B

)
≤ B log Ae

B , we obtain

logN(y) ≤ log k + max
α∈[0,α∗]

αk log
(p− L)e

αk

+ (1− α)k log
Le

(1− α)k
(12)

= log k +

(
max

α∈[0,α∗]
αk log

p− L
k

+ (1− α)k log
L

k

)
(1 + o(1)) (13)

= log k +

(
α∗k log

p− L
k

+ (1− α∗)k log
L

k

)
(1 + o(1)) (14)

≤
(
α∗k log

p

k
+ (1− α∗)k log

L

k

)
(1 + o(1)), (15)

where (13) follows since the log p−L
k term dominates log e

α
and log e

1−α due to L = o(p),1 (14) again uses L = o(p),
and (15) follows since log k is dominated by k log p−L

k .
Substituting (15) into (7) and noting that the number of

y sequences is 2n, we find that the following condition is
necessary for Pc(L,α

∗) 6→ 0 as p→∞:

n ≥ log2

(
p

k

)
−
(
α∗k log2

p

k
+ (1− α∗)k log2

L

k

)
(1 + o(1)) (16)

=

(
(1− α∗)k log2

p

k
− (1− α∗)k log2

L

k

)
(1 + o(1))

(17)

=

(
(1− α∗)k log2

p

L

)
(1 + o(1)), (18)

where follows since log2

(
p
k

)
=
(
k log2

p
k

)
(1 + o(1)) when

k = o(p). This concludes the proof.

3.2. Proof of Theorem 2

We arbitrarily partition the items {1, . . . , p} into pk
L groups of

size L
k ,denoted by G1, . . . , Gpk/L. We then perform a “two-

level” group testing procedure, where items in a common
group are always tested together, and another group testing
design for p′ = pk

L items is used to design a procedure that
treats each group as a single item.

Since the original problem has at most k defective items,
there are at most k groups containing one or more defective
items; we refer to these as the defective groups. Using the re-
sults of [14, 15], we know that the smallest set (of groups)
consistent with the observations will equal the true set of
defective groups with probability approaching one, provided
that (i) a Bernoulli testing design is used with

(
k log2

p′

k

)
(1+

o(1)) tests, and (ii) we have k = O((p′)1/3). Substituting the
definition of p′ into (i) yields the condition in (5), and rear-
ranging (ii) gives k = O

(√
p
L

)
, as desired.

It remains to transfer the preceding guarantee to the list
decoding guarantee for our setup. To do this, we simply
use an algorithm that first identifies the defective groups by
choosing the smallest set consistent with the observations,
and then lets the list decoder output be the union of those
groups. Since there are at most k defective groups, and their

1One also needs to consider the possibility ofα→ 0, but sinceL = o(p)
it is easily seen that the maximizing α is bounded away from zero.
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Fig. 1: Empirical performance of the SCOMP algorithm [26] with various
partial recovery levels and non-list decoding (L = k).

size is Lk , the overall list size is at mostL. We can increase the
list size to exactly L by arbitrarily adding additional items,
which cannot reduce the error probability.

In the adaptive case, the claim follows by forming the
groups of size L

k in the same way, but using Hwang’s adaptive
algorithm [25] in the second step, which also succeeds with
probability approaching one when n =

(
k log2

p′

k

)
(1+o(1)).

In the case that we allow for partial recovery with some α∗ ∈
(0, 1), the claim follows again analogously to the above, not-
ing from [14] that the above condition k = O((p′)1/3) is not
needed regardless of how small α∗ is.

Note that the above grouping approach can be used to
convert guarantees for any group testing algorithm into guar-
antees for the list decoding setting.

4. EXPERIMENTS

In this section, we provide some numerical experiments indi-
cating the extent to which partial recovery and list decoding
help in practice, and supporting the results given in Section 2.
We focus on the sequential combinatorial orthogonal match-
ing pursuit (SCOMP) algorithm described in [26], since it
was seen to give state-of-the-art performance while being
computationally efficient. We set the termination condition
of the algorithm to be that the estimated set has cardinality k.

In each of the experiments below, we set p = 4000 and
k = 40, and the empirical probability of correct decoding is
computed by averaging over 5000 trials.

4.1. Partial Recovery

Figure 1 plots the empirical performance of the SCOMP al-
gorithm with the exact recovery criterion, as well as four par-
tial recovery criteria corresponding to different values of α∗.
The behavior is qualitatively as predicted by Theorem 1: In-
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Fig. 2: Empirical performance of the SCOMP algorithm [26] combined
with grouping, with various list-decoder list sizes and a full recovery re-
quirement (α∗ = 0).

creasing α∗ shifts the performance curve to the left, but oth-
erwise leaves it relatively unchanged.

On the other hand, the gap between α∗ = 0 and a small
positive α∗ appears to be slightly larger than expected. This
suggests that although the asymptotics are similar for these
two cases, allowing a small number of errors can improve the
convergence rate and the non-asymptotic performance.

4.2. List Decoding

Figure 2 plots the empirical performance of the SCOMP al-
gorithm with the exact recovery criterion, as well as four list
decoding settings with α∗ = 0. To obtain the latter, we com-
bine SCOMP with the grouping procedure described in Sec-
tion 3.2. Once again, the behavior is as predicted, with larger
list sizes giving a slightly improved performance but the same
general behavior. The gain from increasing the list size ap-
pears to be particularly insignificant when the target success
probability is close to one.

5. CONCLUSION

We have provided novel group testing performance bounds
with list decoding and partial recovery. While our results
provide a broad range of settings where these phenomena do
not improve the asymptotic number of tests compared to the
standard setting, we have also identified cases where they do.
The grouping method used in the proof of Theorem 2 can be
used to transfer guarantees from the standard setting to the
list decoding setting, for any adaptive or non-adaptive group
testing algorithm.

An interesting direction for future research is to further
investigate noisy settings, where one might expect less strin-
gent recovery criteria to be particularly important. The study
of convergence rates to the asymptotic limit would also be of
interest, since the first example in Section 4 suggests that it
may be faster for partial recovery.
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