-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

How Fast can a Distributed Transaction Commit?

) Rachid Guerraoui
Ecole Polytechnique Fédérale de Lausanne
Station 14, CH-1015
Lausanne, Switzerland
rachid.guerraoui@epfl.ch

ABSTRACT

The atomic commit problem lies at the heart of distributed
database systems. The problem consists for a set of pro-
cesses (database nodes) to agree on whether to commit or
abort a transaction (agreement property). The commit de-
cision can only be taken if all processes are initially willing
to commit the transaction, and this decision must be taken
if all processes are willing to commit and there is no failure
(validity property). An atomic commit protocol is said to
be non-blocking if every correct process (a database node
that does not fail) eventually reaches a decision (commit or
abort) even if there are failures elsewhere in the distributed
database system (termination property).

Surprisingly, despite the importance of the atomic commit
problem, little is known about its complexity. In this paper,
we present, for the first time, a systematic study on the time
and message complexity of the problem. We measure com-
plexity in the executions that are considered the most fre-
quent in practice, i.e., failure-free, with all processes willing
to commit. In other words, we measure how fast a transac-
tion can commit. Through our systematic study, we close
many open questions like the complexity of synchronous
non-blocking atomic commit. We also present optimal pro-
tocols which may be of independent interest. In particular,
we present an effective protocol which solves what we call
indulgent atomic commit that tolerates practical distributed
database systems which are synchronous “most of the time”.

1. INTRODUCTION

The use of transactions to ensure the consistency of
distributed databases systems despite concurrency and
failures dates back to the 70’s 3], and is still promi-
nent today. Many modern distributed information sys-
tems are transactional, including HP’s Sinfonia , Ya-
hoo’s PNUTS [5], Google’s Percolator @ and Spanner
[7], Clock-SI [8] and Yesquel [9].

At the heart of those distributed transaction process-
ing systems lies the fundamental atomic commit prob-
lem . To illustrate the nature of the problem, con-
sider a distributed database system that ensures the
serializability of transactions by tracking their concur-
rency conflicts across datacenters (nodes) as in Helios
. In short, each datacenter D votes to abort every
transaction tz that causes a conflict at D. Transaction
tx is committed if no datacenter detects any conflict
involving tz. To orchestrate the termination of tx, co-
ordination is necessary among datacenters: all have to

Jingjing Wang
Ecole Polytechnique Fédérale de Lausanne
Station 14, CH-1015
Lausanne, Switzerland

jingjing.wang@epfl.ch

agree on whether to commit or abort ¢z, despite failures,
and tr cannot be committed if at least one datacenter
votes to abort. This coordination is called a distributed
commit protocol and its complexity impacts the perfor-
mance of the entire distributed database system .

1.1 Problem statement

More specifically, the atomic commit problem consists
for a set of nodes of the distributed database system (we
simply call them processes) to decide whether to abort
or commit a transaction. The decision is based on the
vote of each process about the local faith of the trans-
action. A process votes “no” if the transaction did not
execute correctly at that process (due to a full disk,
a concurrency control problem, etc.). A process votes
“yes” (willingness to commit) if the transaction did ex-
ecute correctly at that process. The processes (a) com-
mit the transaction only if all vote to commit, and (b)
have to commit the transaction if all vote to commit
and there is no failure. This property is usually called

validity . All processes need to agree

on the same decision. This property is called agree-
ment 15]. If one additionally stipulates
that correct processes (those that do not crash) need
to eventually decide (commit or abort) despite failures
(e.g., crashes of other processes), then this property is
called termination , and the resulting problem,
where processes need to ensure validity, agreement as
well as termination, is called non-blocking atomic com-
mit (NBAC) [16]. NBAC has been investigated since
the 70’s by the database and distributed system com-
munities .

In this paper, we present a systematic study of the
time and message complexity of the atomic commit
problem and study the exact tradeoff between robust-
ness and best-case complexity (in the sense of Lamport
[22]), i.e., the complexity of any failure-free execution
where all processes vote to commit. Such executions,
called nice executions in this paper, are arguably the
most frequent in practice and are those for which pro-
tocols are usually optimized.

Not surprisingly, this complexity depends on robust-
ness, i.e., on which property (validity, agreement, ter-
mination) is required in which executions (including less
likely executions with failures). The most robust form
of atomic commit protocol is, roughly speaking, the one


https://core.ac.uk/display/148028033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that tolerates both crash failures (i.e., some process
crashes) and network failures (e.g., a network partition
occurs and later recovers), i.e., all executions with such
failures have to solve NBAC. However, by the impossi-
bility result of consensus 23] [24], this most robust form
has infinite complexity. On the contrary, the least ro-
bust form of atomic commit, of which only failure-free
executions are required to solve NBAC, is clearly easy to
solve in finite complexity. Although there is obviously a
tradeoff between robustness and complexity, the exact
tradeoff was not clear. Furthermore, between the least
and most robust forms of atomic commit, the situation
is more complicated and the complexity results harder
to obtain.

We exhaustively study complexity in the cases be-
tween two extremes, assuming certain robustness of an
atomic commit protocol. More precisely, we determine
the optimal number of message delays/messages in nice
executions of a protocol 7 assuming that, in 7, (1) ev-
ery crash-failure execution satisfies X and (2) every
network-failure execution satisfies Y, where X and Y
are subsets of these three properties: agreement, valid-
ity, and termination. With two kinds of failure-prone
executions (crash-failure and network-failure) and three
properties, we end up with (2%)? = 64 possibilities, as
shown in Table Since a property satisfied in ev-
ery network-failure execution is also satisfied in every
crash-failure execution, the 64 possibilities reduce to 27
different cases, the non-empty cells in Table

1.2 Previous results

Many distributed database systems (Sinfonia [4], Per-
colator [6], Spanner [7], Clock-SI [8] and Yesquel [9],
for instance) guarantee validity and agreement in crash-
failure executions through a two-phase commit (2PC)
protocol [2]. 2PC induces two communication rounds
among processes. Although efficient, 2PC does not solve
NBAC in crash-failure executions since it does not guar-
antee termination. However, NBAC can actually be
solved in crash-failure executions (by a three-phase com-
mit protocol [16], which has only finite complexity).

Except for some results on the number of messages
necessary for synchronous NBAC protocols (which solve
NBAC in every crash-failure execution) [17] 25} [26], the
fundamental question of the complexity of synchronous
NBAC has actually been open for more than three deca-
des [16, [17]. In fact, only the lower bound of 2n — 2
messages in the face of n — 1 crashes [17] was known
until the present paper. Although important, little was
known on the complexity of atomic commit (e.g., when
network failures are also considered) or its tradeoff with
robustness, which we address in this paper.

1.3 Our results

Table [ summarizes our results for the 27 atomic
commit problems considered. Besides the tradeoff be-
tween complexity and robustness (which properties are
required in which execution), we also highlight a trade-
off between time and message complexity. We prove
that in 18 out of 27 problem variants, the optimal num-

ber of message delays and the optimal number of mes-
sages cannot be achieved at the same time.

Among the 27 variants, the most robust one, which we
call indulgent atomic commit, is particularly appealingEI
Indulgent atomic commit captures the best robustness
of a distributed commit protocol, i.e., despite failures,
agreement, validity and termination are still satisfied.
We propose a protocol, which we denote by INBAC,
that matches the lower bound of two message delays
of indulgent atomic commit. Moreover, we prove that
INBAC is optimal in the number of messages among
all delay-optimal indulgent atomic commit protocols.
Thus, in practical distributed database systems that are
synchronous “most of the time” [34]E|, and where prac-
titioners consider violations of timeouts (e.g., due to
network failures), if rare, to be acceptable, INBAC tol-
erates such violations and is also optimal in complexity
for the arguably most frequent executions. Comparing
our INBAC protocol with the popular 2PC protocol,
we show, interestingly, that (1) INBAC has the same
best-case message delay as 2PC if all processes start
spontaneously, and (2) in the special case where at most
one process can crash (among n processes), INBAC and
2PC use 2n and 2n — 2 messages respectively. In this
sense, INBAC may be of independent interest, as a more
robust yet efficient alternative to 2PC for implementing
distributed transactions.

At the same time, we close the question of the com-
plexity of synchronous NBAC (which is one among the
27 cases we consider). We show, for the first time, that
for synchronous NBAC, one message delay is optimal.
We also generalize Dwork and Skeen’s lower bound of
2n — 2 messages |[17] to n — 1 + f messages in the face
of f crashes and propose a matching message-optimal
synchronous NBAC protocol.

1.4 Techniques

We denote a cell in Table[l| by a property pair (X,Y).
(X,Y) is less robust than another pair (U, V) if X CU
and Y C V. Then our proof goes through two main
steps. First, we group the pairs (X,Y’) that give the
same number of message delays/messages in Tableand
prove the lower bound for the least robust pair in each
group. To design matching protocols, by symmetry, we
look for “the most robust pair” in each group. However,
as shown in Table[l] in some groups, there is no “most
robust pair”. Thus, our second step is to choose, in each
group, the pairs that are locally maximal in robustness
and present a protocol that matches the lower bound
for each local maximum.

Three techniques are key to our results.

1. To prove our lower bounds, we introduce and lever-
age the notion of “process reachability”, the ar-
rival of a message m at process ) that makes )

"We define indulgent atomic commit in the same vein as
indulgent consensus [27 |28] protocols like Paxos [29], CHT
|15] and others |30, |31]32,133].

“Tt was experimentally shown, e.g., in [34], that the latency
of a communication round is below some seconds (most of
the time) if the link does not lose too many messages.



Table 1: Complexity of Atomic Commit. NF = network-failure executions; CF = crash-failure executions; A =
agreement; V = validity; T = termination. Fraction d/m in a cell (X, Y) means that the tight lower bounds are
d message delays, m messages respectively if (1) every failure-free execution solves NBAC, (2) every crash-failure
execution satisfies a set X of properties and (3) every network-failure execution satisfies a set Y of properties. For
every empty cell (X, Y), there exists a non-empty cell (Z, Y) such that X UY = Z.

NF g | a \ T AV AT VT AVT

0 1010 1/n—1+f[1/0|1/n—1+f[1/0[1/n—-1+F] 1/n—1+7Ff
A 1/0 1/n—1+f]1/0 2/2n —2+ f
Vv 1/2n —2 1/2n —2 1/2n —2 1/2n —2
T 1/0 1/0[1/n—1+f] 1/n—1+Ff
AV 1/2n —2 2/2n—2+ f
AT 1/0 22n =2+ f
VT 1/2n — 2 1/2n —2
AVT 22n -2+ f

know process P’s vote, which is necessary in the
context of a network-failure execution. (Dwork
and Skeen [17] used “process coloring” in proving
lower bounds for synchronous NBAC. Compared
with our notion, theirs does not distinguish the ar-
rival from the departure of a message, since they
solely focus on crash-failure executions, featuring
bounded message delays.)

2. To design our optimal protocols, we introduce and
leverage “implicit” votes for the willingness to com-
mit. For example, to achieve 0-message protocols,
instead of receiving a message telling process P
process @’s vote, P may know that @ votes 1 by
not receiving a certain message. We support an
optimal nice execution by a complex failure-free
execution that aborts.

3. Another technique we use is “helping”. To reach
the smallest number of messages or message delays
in any nice execution, if some failure occurs, then
processes must ask for help. To enable helping,
backing up votes at other processes is necessary
while sometimes a message of acknowledgement
(that confirms the success of the backup) is also
necessary. Both are key ideas behind INBAC.

The rest of the paper is organized as follows. Section
2 presents the distributed database models we consider
and defines the non-blocking atomic commit problem.
Section 3 establishes our lower bounds. Section 4 de-
scribes atomic commit protocols that meet the lower
bounds. Section 5 presents indulgent atomic commit,
an overview of our protocol INBAC and a proof of its
optimality. Section [6] discusses related work. For space
limitation, we defer the details of our protocols, as well
as some of our proofs, to the appendix.

2. MODELS AND DEFINITIONS

2.1 Processes and channels

We consider a set  of n processes Py, Ps,..., P,
(sometimes also denoted by O, P, @, R). Here pro-

cesses represent database nodes. Processes communi-
cate by exchanging messages, through the network.

We assume that no process deviates from its specifi-
cation and at most f,1 < f < n—1 processes can crash.
After a process crashes, it does not send any message.
If a process does not crash, it is said to be correct.

Communication channels do not modify, inject, dupli-
cate or lose messages. Every message sent is eventually
received.

2.2 Failures and executions

We assume synchronous computation: there is a known
upper bound on the time to execute a local step, which
includes the delivery of a message by a process, its local
processing by that process, as well as the sending of a
message as a consequence of that processing.

Communication is said to be synchronous if there is
a known upper bound on message transmission delays.
Communication is said to be eventually synchronous if
the delay on message transmission might be unbounded
but only until some, possibly unknown, global stabiliza-
tion time (after which there is a known upper bound on
delays)}’| We accordingly consider two kinds of system
models (or simply systems): a synchronous system [17]
and an eventually synchronous system [35], based on
their respective assumptions on communication.

An execution of a synchronous system is either failure-
free or has crash failures: either all processes are cor-
rect, or some process crashes, while all message trans-
mission delays are smaller than some known upper bound
which we denote by U. If, in some execution, some
message transmission delay is greater than U, then the
system is no longer synchronous: we say that a net-
work failure occurs. An execution of an eventually syn-
chronous system can be failure-free, has crash failures,
or network failures. We call a failure-free execution an
execution where no failure occurs, a crash-failure exe-
cution one execution of a synchronous system (where
only crash failures are possible) and a network-failure

3Recall that, in an asynchronous system, without any com-
munication bound, agreement problems like consensus and

NBAC are impossible [24].



execution one execution of an eventually synchronous
system (where network failures are also possible). We
accordingly call a synchronous system and an eventu-
ally synchronous system, a crash-failure system and a
network-failure system, respectively.

2.3 Non-blocking atomic commit

We consider the problem of non-blocking atomic com-
mit (NBAC) in the classical sense of Skeen [16], which
was later refined in [14} |15].

Definition 1 (NBAC [14, |15, [16]). A protocol 7 is an
atomic commit protocol if 7 is defined by two events:

e Propose: P;,i = 1,2,...,n proposes value v = 1
(vote “yes”) or v = 0 (vote “no”).

e Decide: P;,i = 1,2,...,n outputs the decided
value.

An execution of 7 solves NBAC if it satisfies the follow-
ing three propertiesﬂ

o Validity: A process decides 0 only if some process
proposes 0 or a failure occurs. A process decides 1
only if no process proposes 0.

e Termination: Every correct process eventually de-
cides.

e Agreement: No two processes decide differently.

Given a system S (crash-failure or network-failure), 7
solves NBAC in S if every execution of 7 in S solves
NBAC.

(Later in the paper, in Section we will introduce our
new variant of the problem: indulgent atomic commit.)

A comparison with previous definitions from the lit-
erature is now in order. A synchronous NBAC protocol
[16, [17] is a protocol which solves NBAC in a crash-
failure system (and thus the complexity is covered by
our study). In previous impossibility results |14 [36] [37,
27, (28], the definition of validity depended on which fail-
ure may occur. (Strong) validity was considered in the
only case of crash failures, whereas a weak form of va-
lidity, weak validityﬂ was distinguished if a failure could
be a network failure. Definition [I] unifies validity and
weak validity for presentation clarity and consistency
with previous impossibility results.

2.4 Complexity measures

We define a nice execution of an atomic commit pro-
tocol as a failure-free execution in which every process
proposes 1. We study in this paper best-case complez-
ity, i.e., the complexity over nice executions (which are
arguably the most frequent in practice). We consider

4An execution of an atomic commit protocol also satisfies
a property called integrity, i.e., no process decides twice in
any execution. This is immediate to satisfy in our context
so we omit it for presentation simplicity.

SWeak validity allows processes to abort a transaction (de-
cide 0) even if none of them crashes and all of them vote to
commit (propose 1), as long as there is a network failure.

two complexity measures: the number of messages and
the number of message delays. Here (as in Lamport
[22] 138]), for any message m, one message delay is a
period of time between two events: the sending of m
and the reception of m [22] |38]. Thus if local compu-
tation is instantaneous (negligible), and every message
is received exactly one unit of time after it was sent,
then the number of message delays of an execution is
the number of units of time of that execution [22].

3. LOWER BOUNDS

In this section, we establish lower bounds on the num-
ber of message delays, and then lower bounds on the
number of messages.

3.1 Message delays

As shown in Table [T there are two possibilities for
the lower bound on the number of message delays: 1
and 2. There are four non-empty cells in Table [1| of
which the lower bound is 2: (AVT, A), (AVT, AV),
(AVT, AT), and (AVT, AVT). Among them, (AVT, A)
is the least robust. The rest of the non-empty cells have
1 as the lower bound, among which (@, 0) is the least
robust. Thus we need only to prove lower bounds for
two cells: (0, 0), (AVT, A) respectively, as summarized
in Theorem [1

Theorem 1 (Lower bound on message delays). Let P,
and Py be any two subsets of P = {agreement, valid-
ity, termination}. Let m be any protocol that (a) solves
NBAC in every failure-free execution, (b) satisfies Py
in every crash-failure execution and (c) satisfies Py in
every network-failure execution. Let d be the smallest
number of message delays among all nice executions of
. If for m, Py = P =0, then d > 1. If for m, P, =P
and Po = {agreement}, then d > 2.

The proof of the first part of Theorem [l is immedi-
ate: to satisfy validity in every failure-free execution,
no process can decide immediately; i.e., the process has
to wait for at least one message delay to know other
processes’ votes.

The proof of the second part is less obvious, and goes
through an intermediary lemma. This lemma makes
use of the notion of “process reachability”, which we
introduce here and use in all our lower bound proofs.

Definition 2 (Reaching a process). If a protocol in-
structs a process src to send a message m to another
process dest, then we say that src is the source of m and
dest, the destination of m. Let E be any execution. In
E, if src sends m at time ¢, then we may interchange-
ably say that m leaves from src (for dest) at t; if at
time ¢, dest receives m, then we may interchangeably
say that m arrives at dest at t.

Let m = {my, ma,...,m;} be a sequence of messages
such that (a) the source of my is P, (b) the destination
of m; is Q,Q # P, (c) the source sr¢; of m; is the
destination of m;_q fori =2,3,...,1, and (d) m, leaves
from sre¢; later than or at the time at which m;_; arrives
at src; for ¢ = 2,3,...,1. If m exists for two processes



P,Q and [ > 1 in FE, then we say that P reaches @ in
E.

If m; arrives at @) at time t or earlier and m is the
earliest sequence of messages for P (according to t) to
reach @ in E, then we say that P has reached @) at time
tin FE.

If a process P reaches another process @), then it is
possible that, by a sequence of messages, P backs up
P’s vote at (). The intuition of the lower bound in
question, captured by Lemma [I| below, is then for P’s
vote, at least f backups are necessary.

Lemma 1 (Backups). Let 7 be any protocol that solves
NBAC in every crash-failure execution and ensures agree-
ment in every network-failure execution. Let E be any
nice execution of w. Let P decide at time t; in E.
Among the messages whose destination is P, let M be
the set of messages that arrive at P before or at t,. For
each m € M, let t,, be the time at which m leaves from
its source and let to = max,;, e ton -
Then at to, P has reached at least f processes.

Proof. By contradiction. Suppose that at to, P has
reached at most f — 1 processes. Denote by ® the set
of those processes together with P. For any process
Q € ®\{P}, denote by 7¢ the time at which P reaches
Q. We build a crash-failure execution Ej based on FE.
In Ey, P crashes at time 0 (before sending any message).
For @, Ey is the same as E until Q) crashes at 7o (be-
fore sending any message that is expected to send upon
the message received by @ at 7g). In addition, we as-
sume that every message sent after ¢t arrives later than
t1. Moreover, in Ey, P proposes 0, every process other
than P proposes 1 and no process in Q\® crashes. As
|| < fand t; —ty < U, Ep is a legitimate crash-failure
execution of 7.

Since 7 solves NBAC in every crash-failure execu-
tion, any remaining process R € Q\® decides 0 in Ejy.
W.lo.g., let R be the earliest process that decides. De-
note by 3 the time at which R decides. Then we build a
network-failure execution E,syn. based on F' and Ey. In
Easyne, every process proposes 1 and no process crashes.
We construct Eqgsync such that Eggyn. starts as &/ and:

e Every message from P to a process in Q\® arrives
later than max(tq,t3);

e Every message from @ to a process in Q\® sent
after or at time 7¢ arrives later than max(t1,¢3);

e Every message sent after to arrives later than ¢;.

To any process in Q\®, before and at to, E and Eqgynec
are indistinguishable. Since every message sent after ¢,
arrives later than ¢, therefore E,syn. and E are in-
distinguishable for P before and at t;. As a result, P
decides 1 at t;. For R, Egsync is the same as Ey before
and at t3. As a result, R decides 0 at t3.

Clearly, Eqsync is a network-failure execution of m
that does not satisfy agreement. A contradiction. O

Using Lemma [I] we now count the necessary number
of message delays.

Proof. (Proof of the second part of Theorem [I]) Let
to be defined as in Lemma [l| for the earliest process P
that decides in any nice execution. Then for f > 1,
by Lemma [I| at ¢5, at least one message from P must
have arrived while another message just leaves from its
source for P. This, in total, gives at least two message
delays before any process decides. O

3.2 Messages

As shown in Table [I} there are four possibilities for
the lower bound on the number of messages: 0, n—1+f,
2n — 2 and 2n — 2+ f. We group the cells in Table
with the same value, and then prove the lower bound for
the least robust atomic commit in each group. Thus we
need only to prove lower bounds for four cells in Table
@, 0), (V,0), (V, V), and (AVT, A) respectively, as
summarized in Theorem

Theorem 2 (Lower bounds on messages). Let P; and
Py be any two subsets of P = {agreement, validity,
termination}. Let w be any protocol that (a) solves
NBAC in every failure-free execution, (b) satisfies Py
in every crash-failure execution and (c) satisfies Po in
every network-failure execution. Let m be the small-
est number of messages among all nice executions of
w. If form, Py = Py = 0, then m > 0. If for ,
Py = {validity} and Py =0, thenm >n—1+ f. If for
m, P1 = Pg = {validity}, then m > 2n — 2. If for m,
Py =P and Py = {agreement}, then m > 2n — 2+ f.

The proof of 0 message for the cell (0, @) is trivial
and omitted. In what follows, we count the number of
necessary messages in the other three cases separately.

Lower bound of n — 1 + f messages. We gener-
alize here the lower bound of 2n — 2 messages for syn-
chronous NBAC from Dwork and Skeen [17]. As in their
proof, we first present a preliminary lemma, Lemma [2]
which we phrase here in terms of “process reachabil-
ity”. As Lemma [2]is a (straightforward) generalization
of the preliminary lemma in Dwork and Skeen’s proof,
the proof of Lemma [2]is omitted[f]

Lemma 2 (Validity despite crashes). Let w be any pro-
tocol that (a) solves NBAC in every failure-free execu-
tion and (b) ensures validity in every crash-failure exe-
cution. Then in any nice execution of 7, every process
reaches at least f processes.

We then count the number of necessary messages. By
Lemmal2] every process has to reach at least f processes
in every nice execution, which gives at least n — 1 + f
messages to be exchanged. (Lemma [2] is similar to
Lemma [I] except that the former claims the necessity

5We note, however, that the original preliminary lemma in
|17] does not distinguish between the necessity of sending a
message (before a certain point in time) and the necessity
of receiving a message (before a certain point in time). It is
thus only appropriate for a crash-failure execution (as after a
message m is sent, it is predictable that m is received within
some time period) and does not apply, as is, to the setting
of a network-failure execution as we study in the rest of the
paper. Hence the need to rephrase the preliminary lemma.



of f backups while the latter claims the necessity of f
backups before a certain message.)

Lower bound of 2n — 2 messages. Before count-
ing the number of necessary messages, we introduce a
preliminary lemma.

Lemma 3 (Validity in every execution). Let m be any
protocol that that (a) solves NBAC in every failure-free
execution and (b) ensures validity in every network-
failure execution. Then in every nice execution of w,
for any process Q, every other process P reaches @ be-
fore or when Q decides.

Proof. By contradiction. Consider a nice execution F
with two processes P and @ such that P has not reached
@ when @ decides 1. Let Q decide at time t. Let ® be
the set of processes which P has reached before or at t.
For every R € ®, let T be the time at which P reaches
R. Now we build a network-failure execution FEgsync
based on E. In Eqeyne, P crashes before sending any
message, P votes 0 and every other process votes 1.
Clearly, for every process (except P), Eqsync starts as
E; then for every R € ®, we let every message from R
sent at or after 7p arrive later than ¢t. Since in F, Q
does not expect any message from R sent at or after 7p
and @ does not expect any message from P either, then
Q does not distinguish E and E,sy,. and thus decides
1 at t again in Fgeync, which violates validity. O

Now we count the number of necessary messages. Let
R be the latest process that decides in a nice execution.
By Lemma [3] before or when R decides, for any process
Q, every other process P # @ has reached ). As a
result, before or when R decides, at least 2n — 2 mes-
sages are exchanged, which gives the necessary number
of messages.

We note that for atomic commit problems with n —
1 + f messages and 2n — 2 messages as lower bounds,
the lower bound on the number of message delays is 1.
It is easy to show that the lower bound on the number
of messages and that on the number of message delays
cannot achieved at the same time: all those problems
feature validity at least in every crash-failure execution
and thus a 1-delay protocol must use at least n(n — 1)
messages. This shows that for those problems (14 cases
among totally 27 ones which we consider), there is a
tradeoff between the number of messages and that of
message delays.

Lower bound of 2n—2+ f messages. Before counting
the number of necessary messages, we again introduce
a preliminary lemma.

Lemma 4 (Agreement in every execution). Assume
f > 2. Let ™ be any protocol that solves NBAC in every
crash-failure execution and ensures agreement in every
network-failure execution. Let E be any nice execution.
Let P decide at time t1 in E. Among the messages
whose destination is P, let M be the set of messages
that arrive at P before or at t1. For each m € M, let

Table 2: Delay-optimal Protocols. INBAC is a syn-
chronous NBAC protocol. Each protocol achieves its
lower bound in every nice execution.

Cell | AV, AV | AT, AT | AVT, VT | AVT, AVT
Prot. | avNBAC | ONBAC | INBAC INBAC

tm be the time at which m leaves from its source and
to, p = MmaxX;me M b -

Then at ta p in E, every process has reached at least
f — 1 processes.

This is the same class of protocols as considered in
Lemma[ll Lemma[dlis similar to Lemma [[l with the fol-
lowing difference: for every vote, at least f — 1 backups
are necessary (while Lemma [1| considers the backup of
P’s vote alone). The proof of Lemmais also similar to
that of Lemmall] which is omitted for space limitation.

Then we count the number of necessary messages.
Let to p be defined as in the statement of Lemma [4] for
any process P in any execution. Let o = minpegq t2 p.
Then at and after t5, at least n messages have to leave
their sources respectively. Since at t5, every process has
reached at least f — 1 processes, then before or at to,
at least n — 2 4+ f messages have arrived at their des-
tinations respectively. Therefore, at least 2n — 2 4+ f
messages are exchanged in every nice execution.

4. MATCHING PROTOCOLS

In this section, we prove the tightness of the lower
bounds by presenting matching commit protocols. We
do this for the number of message delays and the num-
ber of messages separately.

4.1 Delay-optimal protocols

Recall that in Table [1} there are two possibilities for
the lower bound on the number of message delays: 1
and 2. Recall also that there are four cells in Table [I]
of which the lower bound is 2: (AVT, A), (AVT, AV),
(AVT, AT), and (AVT, AVT), among which the last
one is the most robust. The rest of the non-empty cells
correspond to a lower bound of 1 delay, among which
(AV, AV), (AT, AT) and (AVT, VT) are three local
maximum by the relation of robustness. Thus we need
only to present delay-optimal protocols for four cells, as
summarized in Table Pl as well as in Theorem [3

Theorem 3 (Delay-optimal protocols). Let Py and P
be any two subsets of P = {agreement, validity, termina-
tion}. Let m be any protocol that (a) solves NBAC
in every failure-free execution, (b) satisfies Py in ev-
ery crash-failure execution and (c) satisfies Pa in every
network-failure execution. Let d be the smallest number
of message delays among all nice executions of w. If
d = 1, then it is possible that Py = Py = {agreement,
validity}, or Py = Po = {agreement, termination}, or
Py = P and Py = {validity, termination}. If d = 2,
then it is possible that Py = Py = P.

Among the protocols of Table 2, INBAC solves what
we call indulgent atomic commit, which we will discuss



in Section ONBAC is an optimal protocol also for
the number of messages, which we will discuss with
other message-optimal protocols. For space limitation,
we only sketch the other two protocols here.

1NBAC. During a failure-free execution of INBAC, a
process (a) sends its vote to every process, (b) collects
all n votes, (c) sends the logical AND of all n votes
to every process, and then (d) decides. Thus in every
failure-free execution (as well as in every nice execu-
tion), every process decides the logical AND of all n
votes within one message delay. It is easy to verify that
every failure-free execution solves NBAC.

In other executions, every process starts by sending
its vote to every (other) process, but then since failures
may occur, a process P may collect fewer than n votes
at the end of the first message delay. If so, P waits
for the logical AND of all n votes sent (at the end of
the first message delay) by another process. Denoted
by [D, d] the message that contains the logical AND of
all n votes. If P receives any [D, d] before or at the
end of the second message delay, then P proposes d to
consensus uc; otherwise, P proposes 0 to uc. Then P
waits for a decision dec of uc. Here and later in this pa-
per, we consider the consensus as defined in Definition
(which is deferred to Section E] By the termination
property of consensus in a network-failure execution, uc
eventually decides dec. Then P decides the same dec
for INBAC. The full description of INBAC and its full
proof of correctness are deferred to Appendix

avINBAC. As INBAC, avNBAC starts by having ev-
ery process send its vote to every other process. Unlike
INBAC, avNBAC does not require termination if a fail-
ure occurs; thus every process decides if and only if it
collects all the votes at the end of the first message de-
lay. The full description of avNBAC, which is similar
to that of INBAC, is omitted.

4.2 Message-optimal protocols

As shown in Table [I} there are four lower bounds on
the number of message delays: 0, n — 1+ f, 2n — 2,
and 2n — 2 + f. Similarly, we group the cells of which
the lower bound takes the same value in Table [I} and
find the most robust one or the local maximum in each
group. Thus we need only to present message-optimal
protocols for six cells, as summarized in Table |3 as well
as in Theorem [l

Theorem 4 (Message-optimal protocols). Let Py and
Py be any two subsets of P = {agreement, validity,
termination}. Let m be any protocol that (a) solves
NBAC in every failure-free execution, (b) satisfies Py
in every crash-failure execution and (c) satisfies Py in
every network-failure execution. Let m be the smallest
number of messages among all nice executions of mw. If
m = 0, then it is possible that Py = Py = {agreement,
termination}. If m =n — 1+ f, then it is possible that

"Consensus in this sense is sometimes called uniform con-
sensus in the literature [39].

Table 3: Message-optimal Protocols. Name avNBAC is
abused as the meaning is clear in the context. Protocol
(n-1+f)NBAC is a synchronous NBAC protocol. Each
protocol achieves its lower bound in every nice execu-
tion.

Cell | AT, AT AV, A AVT, T
Prot. | ONBAC aNBAC (n-1+f)NBAC
Coll | AV, AV | AVT, VT AVT, AVT
Prot. | avNBAC | (2n-2)NBAC | (2n-2+{)NBAC

P1 = {agreement, validity} and P2 = {agreement}, or
Py =P and Py = {termination}. If m = 2n — 2, then
it is possible that P1 = Py = {agreement, validity}, or
P1 = P and P2 = {walidity, termination}. If m =
2n — 2+ f, then it is possible that P; = Py = P.

For space limitation, we sketch only ONBAC, (n-1+f)-
NBAC, and (2n-2)NBAC, since avNBAC is similar to
(2n-2)NBAC while aNBAC and (2n-2+f)NBAC are close
to (n-1+f)NBAC. The full descriptions of the protocols
and their full proofs of correctness are deferred to Ap-

pendix [E]

ONBAC. At the beginning of any execution of this pro-
tocol, a process which votes 1 does not send any mes-
sage, while a process which votes 0 sends [V, 0] to every
(other) process. As a result, after one message delay,
n processes are divided into three categories: (1) those
who vote 0, (2) those who vote 1 and receive [V, 0],
and (3) those who vote 1 but do not receive any mes-
sage. The last category thus decides 1 at the end of the
first message delay, while the other two propose a value
to consensus uc later. The second category also sends
[B, 0] to every other process. Those who receive [V, 0]
or [B, 0] but have not decided yet acknowledge to the
corresponding sender. Therefore, if a process in cate-
gories (1) and (2) receive n — 1 acknowledgements, then
it proposes 0 to uc, and 1 otherwise. Note that since
the third category does not acknowledge, if the third
category is not empty, then all processes would decide
1 in this case, satisfying agreement.

For best-case complexity, it is easy to see that in ev-
ery nice execution, no message is ever sent, and fur-
thermore, every process decides after one message de-
lay. ONBAC achieves the lower bound on the number
of messages and that on the number of message delays
at the same time. As a result, for the 4 cases (among
27 cases) covered by this protocol (using the robustness
relation), no tradeoff is necessary.

(n-14+f)NBAC. During every nice execution of this
protocol, the communication steps among processes is
totally ordered. The totally-ordered sequence is: P,
Ps,..., P, and subsequently Py, P,...,P;. Then (a)
Py starts by sending P;’s vote to Py; (b) each process
in the sequence, upon the receipt of its predecessor’s
message, sends the collection of the votes so far to its
successor except Py which is at the end of the sequence;
(c) (after the latest time at which Py may receive its



message) every process noops for f 4+ 1 message delays;
and (d) during nooping, a process does not receive any
message and thus decides 1. Then during every nice
execution, n — 1 + f messages are exchanged.

In other executions, if a process votes 0, then the pro-
cess does not send any message to the successor when
it first occurs in the sequence. If a process P does not
receive its predecessor’s message, then P does not send
any message to its successor as well except that P is
in the suffix P,, P1, P»,..., Ps. In the suffix, if P does
not receive its predecessor’s message or receives 0 from
its predecessor, then P sends 0 to every other process.
Subsequently, if any process receives a message of 0,
then the process sends 0 again to every other process.
At the end, if a process has ever received a message of
0, then it decides 0 (and 1 otherwise).

(2n-2)NBAC. During every nice execution, (a) every
process sends its vote to P, spontaneously, (b) then P,
sends the logical AND of all n votes to every process
and (c) every process noops for f + 1 message delays
and decides 1. In every crash-failure execution, while
nooping, if a process does not receive any message from
P,, or receives a message of 0 from any process, then
the process sends 0 to every process. In every execu-
tion, a process decides at the end of nooping. A process
decides 1 only if it finds all n votes to be 1 from P,
and no message of 0 arrives during nooping. Nooping
for f + 1 message delays ensures that at least one pro-
cess succeeds in notifying every correct process in any
crash-failure execution, to ensure agreement.

S. INDULGENT ATOMIC COMMIT

In this section, we present our INBAC protocol. IN-
BAC solves indulgent atomic commit as defined below.
We believe this protocol to be of practical relevance for
it is suited to practical distributed database systems
which are synchronous “most of the time”.

Definition 3 (Indulgent atomic commit). A protocol
7 solves indulgent atomic commit if it satisfies the fol-
lowing:

o Every network-failure execution of 7 solves NBAC.

Indulgent atomic commit is the most robust atomic
commit problem in Table[ll For this problem, we show
that our INBAC protocol is optimal in the number of
message delays, as well as in the number of messages
given that optimal number of message delays. To give
the intuition behind the optimal protocol, we first prove
the lower bounds on the number of messages, and then
sketch the optimal protocol. For space limitation, the
full description of our INBAC protocol is deferred to

Appendix [A]
5.1 Lower bounds

We prove a lower bound on the number of messages
exchanged given two message delays (which is optimal
as shown in Theorem (1)) during any nice execution ac-
tually for a less robust problem (than indulgent atomic
commit), as stated in the following theorem.

Theorem 5 (Lower bound on messages given fewer
than three message delays). Let m be any protocol that
(a) solves NBAC in every crash-failure execution, and
(b) satisfies agreement in every network-failure execu-
tion. Let E be any nice execution of m where every
message s transmitted after an exact message delay U.
W.lo.g., E starts at time 0. If every process decides
at or before 2U in E, then at least 2fn messages are
exchanged in E.

Note that for this less robust problem as well as indul-
gent atomic commit, 2n — 2 + f messages are optimal.
Thus Theorem [falso demonstrates the tradeoff between
the number of messages and that of message delays for
this less robust problem, indulgent atomic commit and
other related problems (in total 4 cases out of 27 ones
which we consider).

To prove the lower bound of 2fn messages, we look
for two non-overlapping sets of messages A; and A5 such
that every message in A; precedes some message in Ag
in any nice execution. To describe the relation between
those messages precisely, we again apply the notion of
“process reachability” introduced in Definition [2] and
complete the terminology.

Definition 4 (Reaching a process: complete terminol-
ogy). Let E be any execution. Let m = {mq,mao,...,m;}
be a sequence of messages in F such that (a) the source
of my is P, (b) the destination of m; is Q,Q # P,
(c) the source sre; of m; is the destination of m;_;
for i = 2,3,...,1, and (d) m; leaves from src; later
than or at the time at which m;_; arrives at src; for
i=23,...,1L

Recall that (as defined in Definition [2]) if m; arrives
at @ at time t or earlier and m is the earliest sequence
of messages for P (according to t) to reach @ in E, then
we say that P has reached ) at time ¢ in FE.

For any two processes P and Q, if there are two se-
quences of messages m! = mi,mi, ... 7mll1 and m? =
m3,m3,...,m7, such that (a) the source of mj and the
destination of mj, is P, (b) the source of mi and the
destination of m/} is Q, (c) m{ leaves from @ later than

or at the time at which mj, arrives at @, and (d) mj,
arrives at some time ¢ or earlier, then we say that P
reaches @ and subsequently @ reaches P before time ¢
(including t).

More generally, given three processes P, @ and R,
if there are two sequences of messages m! = mi, mi,

..,m; and m® = m7,m3,...,m7, such that (a) the
source of mj is R, (b) the destination of m7, is P, (c)
the source of m? and the destination of m; is Q, (d)

m? leaves from @ later than or at the time at which
my, arrives at @, and (e) m7, arrives at some time ¢ or
earlier, then we say that R reaches @ and subsequently
Q reaches P before time ¢ (including t)ﬂ

8The time ¢ mentioned in Deﬁnitionis only for convenience
of our proof: the time is assumed to be an accurate global
clock, but no process necessarily has access to the global
clock.



Recall that if a process P reaches another process @,
then it is possible that by a sequence of messages, P
backs up P’s vote at (). (Lemma [l| actually captures
the intuition of backups.) Similarly, if P reaches @ and
subsequently @ reaches P, then it is possible that by
a sequence of messages, () acknowledges the backup of
P’s vote at Q. Then Lemma [5| below essentially says
that at least f processes must send acknowledgements
that confirm the success of the backup, the intuition for
our proof of lower bound.

Lemma 5 (Quick acknowledgements). Let m be any
protocol that (a) solves NBAC in every crash-failure ex-
ecution, and (b) satisfies agreement in every network-
failure execution. Let E be any nice execution of w. Let
P decide at some time ty in E. Let © be such set of pro-
cesses that VQ € O, Q satisfies that before t1 (including
t1) in E, P reaches Q, and subsequently @) reaches P.
Among the messages whose destination is P, let M be
the set of messages that arrive at P before or at ty. For
each m € M, let t,, be the time at which m leaves from

its source and let to = maxXeaq tn -
If ty < 2U, then |©] > f.

The sufficient condition in Lemma [5]is actually non-
trivial: if P decides in two or three message delays, then
f acknowledgements for one backup are necessary.

Proof. (Proof sketch of Lemma [5| The full proof is de-
ferred to Appendix ) The number of acknowledge-
ments is closely related to how quickly P can decide in
a nice execution. In a network-failure system, P may
be incorrectly detected as having crashed, be unaware
of the incorrect detection and still decide quickly. Sup-
pose that only s, for some s < f, acknowledgements are
sufficient for decision. Then P’s quick decision might
put agreement at risk, since if all those s processes as
well as P crash, no process will be able to recover P’s
quick decision.

However, if P decides slowly and P expects a mes-
sage from some process R in order to decide, then some
process (@~ might notice the crash detection of P (or
Q). (We consider the worst scenario where n > 3 here.
If n < 2, then the proof could be easier.) Then @~
might report it to P via R, and as a result, P may no-
tice the incorrect crash detection of itself and wait for
others (instead of taking a decision). If t3 < 2U, then
there is no guarantee for Q= to inform P of this incor-
rect detection in time since Q~ notices the detection
at the earliest at U, Thus t5 < 2U is indeed a suffi-
cient condition for P to be considered quick to require
f acknowledgements. O

Given Lemmal5] it is easy to see that certain messages
do follow an order in any nice execution and because of
the inherent order, there exist two non-overlapping sets
of messages in any nice execution of a 2-delay protocol.

9Yet the question whether f acknowledgements are neces-
sary if a process decides after more than three message de-
lays remains open. The reason why it may be possible to
use fewer than f acknowledgements is also explained in the
proof sketch of Lemma

We now prove our Theorem [5, the lower bound on the
number of messages.

Proof. (Proof of Theorem [5}) Consider any process P
and let ¢t; be the time at which P decides. Among the
messages whose destination is P, let M be the set of
messages that arrive at P before or at ¢;. For each
m € M, let t,, be the time at which m leaves from
its source and let t2 = max,,em tyn- Then to = U
and t; = 2U . By Lemmal[I] at least f messages leave
from P at time 0, and by Lemmal[p] at least f messages
arrive at P at time 2U. This, in total, gives at least
2fn messages during any nice execution. O

5.2 Optimal protocol

We present here a protocol, which we denote INBAC,
and which is delay-optimal as well as message-optimal
given the optimal number of message delays.

We start by looking at what happens in nice execu-
tions of INBAC (which actually follows Lemma [1| and
Lemma ; then we explain in other executions, how
INBAC uses an underlying consensus module to solve
agreement. The module solves consensus in a network-
failure system |23 35} [12], which we recall in Definition
Many solutions to consensus have been devised, e.g.,
Paxos and its variants |29} 40] , but the correctness of
INBAC or the best-case complexity of it does not rely
on a particular algorithm. The modular approach (us-
ing consensus as a service) has been also taken in other
distributed algorithms (21}, 41].

The state transition of a process in both executions
(nice or not) is illustrated in Figure (1] For space limita-
tion, the detailed protocol, the proof of its correctness,
and the proof of one necessary lemma for the design of
the protocol are deferred to Appendix [A] Appendix
and Appendix [C-2] respectively.

Definition 5 (Consensus [23]). A consensus protocol
is defined by two events: propose, by which a process
proposes a value v = 0 or 1, and decide, which outputs
a decision to the process; furthermore, every execution
satisfies the following properties: termination, agree-
ment (similar to those properties of NBAC) and the
following wvalidity property:

o Validity: If a process decides v, then v was pro-
posed by some process.

For simplicity, for time 2U or earlier in INBAC, ev-
ery process sends a message or decides at multiples of
U, i.e., at time 0, U or 2U.

Overview of INBAC.

- Nice execution. Every nice execution E of INBAC
starts by Pi, Ps, ..., P, sending their votes simultane-
ously. At time 0, every process P sends P’s vote to
f processes. We say that those f processes are P’s
backup processes. At time U, each of P’s backup pro-
cesses sends P’s vote back to P as an acknowledge-
ment. INBAC chooses the set Bp of P’s backup pro-
cesses as follows: for P € {Pri1,Pjyo,..., P}, Bp =
{P1, Py, Py} for P € {P1, P,..., P}, Bp = {P1,



fcorrect acks ?

Y, N
AND(n votes)
Y,

propose self € {P/+1' o PJ? |

ask for more acks
and wait until > n-f’
messages

| have asked for more acks? {

AND(n votes)
\ v
propose 0
to cons
i Y

to cons
Figure 1: State transition after 2U

decide the same
decision of cons

Py, ..., Pri1}\{P}. Clearly, a process may backup more
than one vote. In fact, at time U, P’s backup process
sends to P a set V of the votes received as an acknowl-
edgement of the successful backup of each vote in V.
(This is a necessary design, which we summarize later
in Lemma@. Thus at time 2U, P decides if P receives
f correct acknowledgements (from P’s f backup pro-
cesses where a correct acknowledgement from process
B € Bp includes @Q’s vote for all @ such that B € Bg).
Obviously, in a nice execution, or more generally, in
an execution where messages arrive in time, at 2U, P
knows every process’ vote and is able to decide properly.
- Consensus to the rescue. Now in an execution
E~ in which some process crashes, or some message is
delayed, P can propose a value to consensus (we say
that P may cons-propose a value) and wait for the de-
cision of the consensus. We first explain when P cons-
proposes a value and then explain which value P cons-
proposes. Now, at 2U, if P receives at least one ac-
knowledgement from a process in { Py, Ps, ..., Py}, then
P cons-proposes a value immediately at 2U. Other-
wise, P asks Pri1,Prio,..., P, for the acknowledge-
ments which Pri1, Prya,..., P, have received. To be
more specific, if P is a process in {Py, P», ..., Py}, then
P can always cons-proposes a value at 2U in E~. If not
and if at 2U, P indeed receives no acknowledgement
from any process in {Pi,Ps,..., P}, then P eventu-
ally receives acknowledgement messages from n — f out
of n processes and then may cons-propose a value. At
the point when P is ready to cons-proposes a value, P
looks for every process’ vote in the acknowledgement
messages which P has received so far. If P finds that
every process’ vote is 1, then P cons-proposes 1; other-
wise, P cons-proposes 0.

The state transition of P in F and in E~ is illustrated
in Figure[ll We use there the following notations: AN D
denotes the logical AND of those 0’s and 1’s as votes; Y
and N are the abbreviated for yes and no respectively;
sel f denotes P, the process in question; ack denotes an
acknowledgement; cons denotes consensus (which is not
invoked if no process crashes and every message arrives
in time).

Some remarks on the protocol are in order. Clearly,
the strategy of decisions of our INBAC protocol is in-
dependent of the underlying consensus algorithm. In
addition, INBAC encourages processes to propose 1 to
consensus by looking at every process’ vote in the ac-
knowledgements received.

Best-case complexity. We now count the number of
messages and that of message delays. Since in every nice
execution every process decides at 2U, then the number
of message delays meets the lower bound (Theorem [1).
As for the number of messages in any nice execution,
at time 0, for every process P, f messages leave from
P; at time 2U, exactly f messages arrive at the same
process PE (This is because in INBAC, a backup pro-
cess sends the acknowledgement of several votes V' in
one message). Therefore, among n processes, 2fn mes-
sages are exchanged in F, which meets the lower bound
on the number of messages in Theorem This opti-
mal result shows that both lower bounds are tight, as
summarized in Theorem [6l

In the version as described above, the complexity of
INBAC of a failure-free execution in which some pro-
cess votes 0 is the same as the complexity of any nice
execution. We remark that our protocol INBAC may
accelerate such failure-free execution by doing the fol-
lowing: if a process P votes 0, then P sends its vote to
every process and decides 0 at the very beginning (and
in the meantime, a process @ # P who receives one vote
of 0 decides 0 immediately). Then a failure-free execu-
tion in which some process votes 0 can terminate at the
end of the first message delay, which is faster than any
nice execution.

Theorem 6 (Message-optimal indulgent atomic com-
mit given two message delays). Given any protocol that
solves consensus in a network-failure system, INBAC
solves indulgent atomic commit, and during every nice
execution of INBAC, (a) any process decides after two
message delays, and (b) n processes exchange 2fn mes-
sages.

Proof sketch of correctness. (The full proof is de-
ferred to Appendix ) Obviously, every crash-failure
execution of INBAC satisfies validity. Every such exe-
cution also satisfies termination because, only a process
in {Pyy1, Pr42, ..., P,} might wait, but such wait even-
tually terminates given that at most f processes might
crash. Thus as long as a consensus protocol satisfies
termination in any crash-failure system, INBAC also
terminates in any crash-failure system.

Every execution of INBAC satisfies agreement given
that consensus satisfies agreement and validity. We can
show that by contradiction. If two processes decide dif-
ferently, then the one which decides 1 must receive all
the acknowledgements which it expects at 2U while the

10A message whose source and destination is the same does
not need to be sent over the network; such a message arrives
immediately and is not counted in the messages exchanged
among the n processes.



one which decides 0 must have 0 as a decision of con-
sensus. However, the one which decides 1 must have
observed that (a) every process proposes 1, and (b) ev-
ery process has f successful backups of its vote; thus
as a result, no process can propose 0 to consensus. A
contradiction.

Finally, as we claimed in the beginning of this section,
we note a necessary design for the optimal protocol. We
show in Lemma [f] that f — 1 acknowledgements of other
processes’ votes are necessary. The proof of Lemma [5]is
similar to the proof of Lemma [5] which is thus deferred
to Appendix As both Lemma [f] and Lemma [6] are
necessary in designing message-optimal protocols, e.g.,
given three message delays, they may be of independent
interest and worth mentioning here.

Lemma 6 (Quick acknowledgements of other votes).
Let w be any indulgent atomic commit protocol. Let E
be any nice execution of w. Let P decide at some time tq
in E. Let process R # P. Let © be such set of processes
that VQ € O, Q satisfies that before t1 (including t1) in
E, R reaches Q, and subsequently QQ reaches P. Among
the messages whose destination is P, let M be the set
of messages that arrives at P before or at t1. For each
m € M, let t,, be the time at which m leaves from its

source and let to = maX,eaf tm -
If ty < 2U, then |©] > f — 1.

6. RELATED WORK

6.1 Complexity of commit protocols

The study of atomic commit problems dates back to
Skeen [16]. Later, substantial refinement [11, |14} [15]
has been made, leading to the properties of NBAC we
consider in this paper.

Complexity measures. We consider two measures of
complexity: the classical notion of number of messages,
and the number of message delays, following the com-
plexity study by Lamport of consensus [22]. The use of
this complexity measure (message delays) is justified by
the general context of an arbitrary (asynchronous) sys-
tem (considering network-failure executions) in [22] and
in this paper. Unlike |17, 18], we do not consider the
number of steps as a measure of time. In |17} 18], steps
were defined for synchronous systems and do not fit a
general asynchronous setting. (In addition, since steps
and message delays measure time differently, even for
the special case of synchronous NBAC, the results on
number of steps in |17, [18] and our results on message
delays are uncomparable.)

Complexity results. The most closely related works
to ours are (a) Dwork and Skeen’s lower bound on the
number of messages [17], |25 26] and (b) Charron-Bost
and Schiper’s bound on the number of rounds |39 (of
which the tightness was shown by Dutta et al. [42]).
Both works focus on synchronous NBAC, while our study
is for an arbitrary (asynchronous) system as well as an
arbitrary combination of properties of NBAC. For the
special case of synchronous NBAC, we are the first to

present a tight lower bound on both the number of mes-
sages and that of message delays.

Compared with previous work, we generalize Dwork
and Skeen’s necessary and sufficient number of mes-
sages when at most n — 1 processes may crash among
n processes to an arbitrary number of crashes. Still
for the special case of synchronous NBAC, we make
Charron-Bost and Schiper’s lower bound on time com-
plexity more precise. They showed a lower bound of
two rounds. In their model, one round consists of one
send phase and one receive phase [39} 43]. Thus a lower
bound of two rounds only says that the number of send
phases or receive phases is at least two: it does not
articulate which one. Combined with our tight lower
bound of one message delay, we get a clear picture of
the time complexity of synchronous NBAC protocols:
a process can decide at the earliest by the end of the
first message delay, and if so, it has to send messages
before its decision. In other words, for any synchronous
NBAC protocol, before any process decides, two send
phases and one receive phase are necessary. (The tight
two-round protocol of [42] needs at least two message
delays and thus does not help to get such a picture.)

To the best of our knowledge, the present paper is the
first to study the complexity of atomic commit problems
in a systematic way. For indulgent atomic commit, the
most robust among atomic commit problems we study,
no (non-trivial) lower bound on the number of message
delays or the number of messages was known until this
paperE Table 4] summarizes the complexity results of
previous work and the present paper. The number of
message delays for previous work is left blank.

6.2 Commit protocols

Two-phase commit (2PC) [2] distinguishes one pro-
cess as the leader, which is a single point of failure in
the sense that if it crashes, every other process is block-
ing in the fear of disagreement [16]. To circumvent this,
Skeen |16] proposed three-phase commit (3PC), which
adds one message delay and 2n — 2 messages over 2PC,
along with a termination protocol. However, as several
papers |19} [21] pointed out, 3PC (as well as many of its
variants) does not solve the potential conflict between
two backup leaders at the same time given by the ter-
mination protocol in crash-failure executions. Gray and
Lamport [21] proposed PazosCommit based on Paxos
consensus [29] to solve the disagreement of non-unique
leaders in network-failure executions. They also pro-
posed faster PaxosCommit [21], an optimization of Pax-
osCommit, removing one message delayE Both Pax-

1Based on Charron-Bost and Schiper’s two-round lower
bound, Gray and Lamport |21 informally argued that two
message delays should be optimal for indulgent atomic com-
mit. However, by the model of rounds [39, 43|, two rounds
only imply a bound of one message delay.

12Gray and Lamport [21] pointed out a possible optimization
(without details) for an atomic commit protocol, MD3PC,
proposed in [20]. Then MD3PC achieves the same number
of message delays and messages as faster PaxosCommit. As
MD3PC and faster PaxosCommit are equally efficient in nice
executions, MD3PC is omitted from the discussion.



Table 4: Complexity of Indulgent Atomic Commit, and Synchronous NBAC with f Crashes

Indulgent atomic commit
(this paper)

Sync. NBAC
(this paper)

Sync. NBAC

#delays

2

1

[17, 25| [26, 39, [42]

#messages

2n—2+ f (for f > 2)

n—1+Ff

2n — 2 (when f=n—1) |17, [25] |26]

Table 5: Complexity of INBAC, (n-1+f)NBAC, INBAC, 2PC, PaxosCommit and faster PaxosCommit

INBAC (n-1+f)NBAC | INBAC 2PC 2] | Paxos- Faster Paxos-
(this paper) | (this paper) (this paper) Commit [21] | Commit [21]
#delays 1 2f+n—1 2 2 3 2
#messages | nZ —n f+n—1 2fn 2n — 2 nf+2n—2 | 2fn+2n
9f 2
Atomic Sync. Sync. Indulgent Blocking | Indulgent Indulgent
commit NBAC NBAC

osCommit [21] and faster PaxosCommit [21] solve in-
dulgent atomic commit.

Table |5[summarizes the time and message complexity
of our INBAC, our two optimal synchronous NBAC pro-
tocols: (n-1+f)NBAC and INBAC, 2PC, PaxosCom-
mit, and faster PaxosCommit. To enable a fair com-
parison, we assume that each protocol starts when n
processes send messages spontaneouslyﬁ

Clearly, our (n-1+f)NBAC and 1INBAC protocols are
the best regarding messages and message delays respec-
tively. Among indulgent atomic commit protocols, in
the special case of f = 1, INBAC performs the best re-
garding both messages and message delays (for n > 2),
and performs almost as efficiently as 2PC. Still among
indulgent atomic commit protocols, PaxosCommit and
our INBAC protocol show a tradeoff between time and
message complexity: for f > 2,n > 3, PaxosCommit is
better in messages while our INBAC protocol is better
in message delays. On satisfaction of properties, our
(n-1+f)NBAC and INBAC protocols and 2PC show
a tradeoff between agreement and termination. 2PC
guarantees agreement in an arbitrary (asynchronous)
system (considering a network-failure execution) but
not termination even if only crash failures are possi-
ble. On the other hand, (n-1+f)NBAC and 1INBAC
terminate despite f crashes but an execution in an ar-
bitrary (asynchronous) system may violate agreement
(due to the use of noops for (n-1+f)NBAC and due to
the optimal delay for INBAC respectively).

On a technical level, while solving the same problem,
faster PaxosCommit and our INBAC protocol differ sig-
nificantly in how they achieve two message delays: the
design of INBAC follows immediately the proof of the
lower bounds (Lemmal[l]and Lemmal[5]) and does not in-
voke consensus in any nice execution, while faster Pax-
osCommit uses Paxos consensus in a non-black-box way
in every execution.

13Thus 1 delay from 2PC and 2 delays from PaxosCommit
and faster PaxosCommit are removed respectively, while n—
1 messages are removed from the three protocols respectively
from their original counting.

6.3 Low-latency commit protocols with weak
semantics

As observed in [44], 1-delay commit protocols pro-
posed in [45, 46| assumes that all processes propose 1
before an execution starts. Jiménez-Peris et al. pro-
posed a commit service which has the same latency as
2PC but allows a process to decide twice and differ-
ently. MDCC [47] proposed a variant of Paxos to co-
ordinate transactions assuming all processes vote the
same. Replicated Commit [48] executed also the Paxos
protocol to commit transactions, assuming here that
the votes from a majority of processes are already suffi-
cient to commit. All these protocols solve different (and
weaker) problems than classical atomic commit.

Calvin [49] eliminated the explicit commit protocol
by using a deterministic locking scheme, using only one
message to notify the decision; in fact, NBAC is only
solved in failure-free executions where one message de-
lay is (not surprisingly) sufficient. Helios [10] com-
mits a distributed transaction if no conflict involving
the transaction is detected across datacenters. Helios
considers both failure-free and network-failure execu-
tions. In failure-free executions, optimal commit la-
tency is achieved. In network-failure executions, the
scheme proposed is far from the optimal in terms of
complexity. Our INBAC protocol may be adapted to
the needs of Helios with better complexity.

7. CONCLUDING REMARKS

We present the first systematic study of the (time
and message) complexity of atomic commit. We give
a collection of lower bounds and matching protocols,
by which we also close many questions on atomic com-
mit. Some questions remain open. For example, for the
tradeoff between time and message complexity, the opti-
mal number of messages given greater than two message
delays for indulgent atomic commit is not yet clear (al-
though we close the question for two message delays).



8. REFERENCES

[1] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger, “The notions of consistency and predicate
locks in a database system,” Commun. ACM,
vol. 19, no. 11, pp. 624-633, 1976.

[2] J. Gray, “Notes on data base operating systems,”
in Operating Systems, An Advanced Course, 1978,
pp- 393-481.

[3] C. Mohan, B. Lindsay, and R. Obermarck,
“Transaction management in the r* distributed
database management system,” ACM Trans.
Database Syst., vol. 11, no. 4, pp. 378-396, 1986.

[4] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,
and C. Karamanolis, “Sinfonia: A new paradigm
for building scalable distributed systems,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp.
159-174, 2007.

[5] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen,

N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” Proc.
VLDB Endow., vol. 1, no. 2, pp. 1277-1288, 2008.

[6] D. Peng and F. Dabek, “Large-scale incremental
processing using distributed transactions and
notifications,” in OSDI ’10, pp. 1-15.

[7] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,

C. Frost, J. J. Furman, S. Ghemawat,

A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao,

L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,

R. Wang, and D. Woodford, “Spanner: Google’s
globally distributed database,” ACM Trans.
Comput. Syst., vol. 31, no. 3, pp. 8:1-8:22, 2013.

[8] J. Du, S. Elnikety, and W. Zwaenepoel, “Clock-si:
Snapshot isolation for partitioned data stores
using loosely synchronized clocks,” in SRDS 13,
pp. 173-184.

[9] M. K. Aguilera, J. B. Leners, and M. Walfish,
“Yesquel: Scalable sql storage for web
applications,” in SOSP ’15, pp. 245-262.

[10] F. Nawab, V. Arora, D. Agrawal, and
A. El Abbadi, “Minimizing commit latency of
transactions in geo-replicated data stores,” in
SIGMOD ’15, pp. 1279-1294.

[11] V. Hadzilacos, “On the relationship between the
atomic commitment and consensus problems,” in
Proceedings of the Workshop on Fault-Tolerant
Distributed Computing, 1990, pp. 201-208.

[12] R. Guerraoui, “Revisiting the relationship
between non-blocking atomic commitment and
consensus,” in WDAG 95, pp. 87-100.

[13] B. Charron-Bost, “Agreement problems in
fault-tolerant distributed systems,” in SOFSEM
01, pp. 10-32.

[14] R. Guerraoui, “Non-blocking atomic commit in
asynchronous distributed systems with failure
detectors,” Distrib. Comput., vol. 15, no. 1, pp.
17-25, 2002.

[15] R. Guerraoui, V. Hadzilacos, P. Kuznetsov, and
S. Toueg, “The weakest failure detectors to solve
quittable consensus and nonblocking atomic
commit,” SIAM J. Comput., vol. 41, no. 6, pp.
1343-1379, 2012.

[16] D. Skeen, “Nonblocking commit protocols,” in
SIGMOD ’81, pp. 133-142.

[17] C. Dwork and D. Skeen, “The inherent cost of
nonblocking commitment,” in PODC' 83, pp.
1-11.

[18] K. V. S. Ramarao, “Complexity of distributed
commit protocols,” Acta Informatica, vol. 26,
no. 6, pp. 577-595, 1989.

[19] I. Keidar and D. Dolev, “Increasing the resilience
of atomic commit, at no additional cost,” in
PODS 795, pp. 245-254.

[20] R. Guerraoui, M. Larrea, and A. Schiper,
“Reducing the cost for non-blocking in atomic
commitment,” in ICDCS 96, pp. 692—-697.

[21] J. Gray and L. Lamport, “Consensus on
transaction commit,” ACM Trans. Database Syst.,
vol. 31, no. 1, pp. 133-160, 2006.

[22] L. Lamport, “Lower bounds for asynchronous
consensus,” Distrib. Comput., vol. 19, no. 2, pp.
104-125, 2006.

[23] L. Lamport, R. Shostak, and M. Pease, “The
byzantine generals problem,” ACM Trans.
Program. Lang. Syst., vol. 4, no. 3, pp. 382-401,
1982.

[24] M. J. Fischer, N. A. Lynch, and M. S. Paterson,
“Impossibility of distributed consensus with one
faulty process,” J. ACM, vol. 32, no. 2, pp.
374-382, 1985.

[25] V. Hadzilacos, “A knowledge-theoretic analysis of
atomic commitment protocols,” in PODS ’87, pp.
129-134.

[26] O. Wolfson and A. Segall, “The communication
complexity of atomic commitment and of
gossiping,” SIAM J. Comput., vol. 20, no. 3, pp.
423-450, 1991.

[27] R. Guerraoui, “Indulgent algorithms (preliminary
version),” in PODC ’00, pp. 289-297.

[28] R. Guerraoui and N. Lynch, “A general
characterization of indulgence,” ACM Trans.
Auton. Adapt. Syst., vol. 3, no. 4, pp. 20:1-20:19,
2008.

[29] L. Lamport, “The part-time parliament,” ACM
Trans. Comput. Syst., vol. 16, no. 2, pp. 133-169,
1998.

[30] G. Taubenfeld, “Computing in the presence of
timing failures,” in ICDCS 06, pp. 16-16.

[31] P. Dutta and R. Guerraoui, “The inherent price of
indulgence,” Distrib. Comput., vol. 18, no. 1, pp.
85-98, 2005.

[32] R. Guerraoui and M. Raynal, “The information
structure of indulgent consensus,” IEEE Trans.
Comput., vol. 53, no. 4, pp. 453-466, 2004.

[33] L. Sampaio and F. Brasileiro, “Adaptive indulgent
consensus,” in DSN’05, pp. 422-431.



[34] O. Bakr and I. Keidar, “Evaluating the running
time of a communication round over the internet,”
in PODC 02, pp. 243-252.

[35] C. Dwork, N. Lynch, and L. Stockmeyer,
“Consensus in the presence of partial synchrony,”
J. ACM, vol. 35, no. 2, pp. 288-323, 1988.

[36] T. D. Chandra and S. Toueg, “Unreliable failure
detectors for reliable distributed systems,” J.
ACM, vol. 43, no. 2, pp. 225-267, 1996.

[37] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The
weakest failure detector for solving consensus,” J.
ACM, vol. 43, no. 4, pp. 685-722, 1996.

[38] L. Lamport, “Time, clocks, and the ordering of
events in a distributed system,” Commun. ACM,
vol. 21, no. 7, pp. 558-565, 1978.

[39] B. Charron-Bost and A. Schiper, “Uniform
consensus is harder than consensus,” J.
Algorithms, vol. 51, no. 1, pp. 15 — 37, 2004.

[40] R. D. Prisco, B. Lampson, and N. Lynch,
“Revisiting the paxos algorithm,” Theoretical
Computer Science, vol. 243, no. 1, pp. 35 — 91,
2000.

[41] R. Guerraoui and A. Schiper, “The generic
consensus service,” IEEE Trans. Softw. Eng.,
vol. 27, no. 1, pp. 29-41, 2001.

[42] P. Dutta, R. Guerraoui, and B. Pochon, “Fast
non-blocking atomic commit: an inherent
trade-off,” Inform. Process. Lett., vol. 91, no. 4,
pp- 195 — 200, 2004.

[43] N. A. Lynch, Distributed Algorithms. Morgan
Kaufmann Publishers Inc., 1996.

[44] M. Abdallah, R. Guerraoui, and P. Pucheral,
“One-phase commit: does it make sense?” in
ICPADS 98, pp. 182-192.

[45] Y. J. Al-Houmaily and P. K. Chrysanthis, “An
atomic commit protocol for gigabit-networked
distributed database systems,” J. Syst. Architect.,
vol. 46, no. 9, pp. 809 — 833, 2000.

[46] J. W. Stamos and F. Cristian, “A low-cost atomic
commit protocol,” in SRDS 90, pp. 66-75.

[47] T. Kraska, G. Pang, M. J. Franklin, S. Madden,
and A. Fekete, “Mdcc: Multi-data center
consistency,” in FuroSys ’13, pp. 113-126.

[48] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal,
and A. El Abbadi, “Low-latency multi-datacenter
databases using replicated commit,” Proc. VLDB
Endow., vol. 6, no. 9, pp. 661-672, 2013.

[49] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi, “Calvin: Fast
distributed transactions for partitioned database
systems,” in SIGMOD ’12, pp. 1-12.

[50] C. Cachin, R. Guerraoui, and L. Rodrigues,
Introduction to Reliable and Secure Distributed
Programming, 2nd ed. Springer Publishing
Company, Incorporated, 2011.

APPENDIX

A. INBAC

We describe here our INBAC protocol in detail. Some
preliminary remarks are in order. (a) We assume that
every process knows its own ID stored in the local vari-
able i of that process. (b) We assume that a message de-
livery event has a higher priority than a timeout event;
i.e., if both events occur at a process, the process is
first triggered by the delivery event and then the time-
out event. (¢) Sometimes a process is triggered by both
the delivery of some message m and a logical condi-
tion ¢; we assume that if m arrives earlier than when
¢ is satisfied, then m (as well as the delivery of m) is
queued to wait for the satisfaction of ¢. (d) This pro-
tocol satisfies some properties in every crash-failure ex-
ecution and thus we assume that one unit at the timer
at every process is set to the known upper bound of the
message delay of a given crash-failure system. (Clearly,
in a network-failure execution of the protocol, message
delays might violate the upper bound, and as a result,
although the timer timeouts, a process does not receive
the message which it sets the timer to wait for.) (e) The
timer starts at time 0 when every process proposes its
value. (f) Sending messages and processing messages
are considered negligible in time. For the other pro-
tocols, we do not repeat these remarks when they still
apply.

The pseudo code which we use to describe INBAC
(and all the other protocols described in the later sec-
tions) follows the approach of Cachin et al. [50]. The
pseudo code uses “callbacks”: an algorithm is described
as a set of event handlers where a process reacts to in-
coming events by possibly triggering new events.

The communication channels are abstracted as a mod-
ule called PerfectPointToPointLinks, denoted by pl. The
module defines two events: <pl, Send|r, m> and <pl,
Deliver|s, m>, where r is the receiver of the sending
event, s is the sender of the message delivery event and
m represents the message. The timer is abstracted as
a module called Timer, denoted by timer. The module
defines two events: <timer, Timeout> and set timer,
where timer timeouts at the time set previously. A
timer may be set several times at one process. The uni-
form consensus (defined in Definition [5, which termi-
nates in every network-failure execution) is abstracted
as a module called IndulgentUniformConsensus, denoted
by iuc. The module defines two events: <iuc, Propose |
v> and <iuc, Decide | d>, where v is the value proposed
to tuc and d is the decision of iuc.

Finally, we also abstract indulgent atomic commit as
a module called IndulgentNonBlockingAtomicCommit,
denoted by inbac. The module defines two events (in
addition to event <inbac, Init> which performs the ini-
tialization of the module once for all): <inbac, Propose
| v> and <inbac, Decide | d> where v is the value pro-
posed to indulgent atomic commit and d is the decision
of indulgent atomic commit.

Note that the name of a module is considered as an
identifier. The existence of multiple copies of the same



module is possible in one algorithm. For example, later
in protocol aNBAC, two timers are used and identified
by different names.

Implements:
IndulgentNonBlockingAtomicCommit, instance inbac.

Uses:
PerfectPointToPointLinks, instance pl.
Timer, instance timer.
IndulgentUniformConsensus, instance iuc.

upon event <inbac, Init> do
phase := 0;
proposed := FALSE;
decided := FALSE;
collection0 := (;

collectionl := ()
collection_help := (;
wait :== FALSE;

val = L;

decision := 1
proposal := 1;

ent = 0;

cnt_help := 0;

upon event <inbac, Propose | v> do
val := v;
forall g € {Py, ..., Py} do
trigger <pl, Send | g, [V, v]>;
if 1 < ¢ < f then
trigger <pl, Send | Pri1, [V, v]>;
if1 < ¢ < f+1 then
set timer to 1;

else
set timer to 2;
phase := 1;

upon event <pl, Deliver | p, [V, v]> and phase = 0 do

collection0 := collection0 U {(p, v)};
upon event <timer, Timeout> and phase =0and 1 < ¢
< fdo

forall ¢ € 2 do

trigger <pl, Send | g, [C, collection0]>;
phase := 1;
set timer to 2;

upon event <timer, Timeout> and phase = 0 and ¢
=f+1do
forall g € {P1, P», ..., P} do
trigger <pl, Send | ¢, [C, collection0]>;
phase 1= 1;
set timer to 2;

upon event <pl, Deliver | p, [C, collection]> do
collection1 := collectionl U {(p, collection)};
cnt = ent + 1;

upon event <timer, Timeout> and phase = 1 and not de-

cided and not proposed and > f + 1do
phase := 2;
collection_val := U, o\c coltectiont ©
collection0 := collection0 U collection_val U {(sel f, val)};
if collectionl = {(P;, ¢;) |1 < j < f}wherec; =
{(Pk, valy) |1 < k < n}foreveryj, 1 < j < f(with
valy, being the proposal of Py) then
decision 1= AND;< < pvaly;
decided := TRUE;
trigger <inbac, Decide | decision>;
else if ent > 1 then
if for every process Py, 1 < k < n, Jvaly, s.t. (Py,val)

< U(P,C)E collectionl € then
proposal := AND< < npvaly;
proposed := TRUE;
trigger <iuc, Propose | proposal>;

else
proposed := TRUE;
trigger <iuc, Propose | 0>;

else

wait := TRUE;

forall ¢ € {Pfi1, Pfyo, ..., P,} do
trigger < pl, Send | ¢, [HELP]>;

upon event <pl, Deliver | p, [HELP]> and phase =
2andi > f+1do
trigger < pl, Send | p, [HELPED, collection0]>;

upon event <pl, Deliver | p, HELPED, collection]> and
i > f+1do
collection_help = collection_help U collection;
cnt_help := cnt_help + 1;

upon cnt + cnt_help > n — f and wait and not pro-
posed and not decided and i > f+ 1 do
wait ;= FALSE;
if collectionl = {(Pj, ¢;)|1< j < f} wherec; =
{(Pk, valy) |1 < k < n}foreveryj, 1< j < f(with
valy, being the proposal of Py) then
decision := ANDi< p< nvaly;
decided := TRUE;
trigger <inbac, Decide | decision>;
else if ent > 1 then
if for every process Py, 1 < k < n, Jvaly s.t. (P,

Va‘lk) € U(p,c)e collectionl ¢ then
proposal := ANDi< p< pvaly;
proposed := TRUE;
trigger <iuc, Propose | proposal>;

else
proposed := TRUE;
trigger <iuc, Propose | 0>;

else
if collection_help = {(Py, val;) |1 < k < n} where
valy, is the proposal of P, then
proposal := ANDi< < pvaly;
proposed := TRUE;
trigger <iuc, Propose | proposal>;
else
proposed := TRUE;
trigger <iuc, Propose |0 >;



upon event <timer, Timeout> and phase = 1 and not de-

cided and not proposed and 1< < f do
if collectionl = {(P;, ¢;) |1 < 5 < f+
1} where ¢; = {(Pg, valg) |1 < k < n} for ev-
eryj, 1< j < fandepyr = {(Py, valy) |1 < k < f}
(with valg being the proposal of Py) then

decision := ANDi< < nvalg;

decided := TRUE;

trigger <inbac, Decide | decision>;

return;

if for every process Py, 1 < k < n, Jvaly s.t. (Pg,valy)

€ U(p,c)e collectionl € then
proposal := ANDi< < nval;
proposed := TRUE;
trigger <iuc, Propose | proposal>;
else
proposed := TRUE;
trigger <iuc, Propose | 0>;

upon event <iuc, Decide | v> and not decided do
decided := TRUE;
trigger <inbac, Decide | v>;

B. CORRECTNESS OF INBAC

Proof. (Proof of Theorem @) First, we prove that every
execution of INBAC satisfies the agreement property.

Agreement. By contradiction. Suppose that in some
execution F, two different processes P and ) decide
differently. Suppose further that P decides 1 and @
decides 0. Given that consensus satisfies the agreement
property, at least one of P and @’s decisions is not a
result of the decision of the consensus.

If neither of P and @Q’s decisions is a result of the
decision of the consensus, then either process decides
the value of its local variable decision. Since decision
is assigned as the AND of the n processes’ votes to inbac
at every process, P and () must agree on their decisions,
which contradicts our assumption. If P’s decision is
a result of the decision of the consensus, then by the
validity property of consensus, some process R proposes
1 to iuc. Therefore R’s local variable proposal is 1,
which is equal to the AND of the n processes’ votes
to inbac. Now that @Q’s decision is equal to its local
variable decision, which is the AND of the n processes’
votes to inbac, P and () must agree on their decisions,
which contradicts our assumption.

As a result, @’s decision must be a result of the de-
cision of the consensus while P’s decision must not be.
Now P’s local variable decision is 1. Therefore, ev-
ery process proposes 1 to inbac and at the same time, if
any process assigns a value to its local variable proposal
or decision, it can only assign a 1. Since Q’s deci-
sion is a result of the consensus, by the validity prop-
erty of consensus, some process R (not necessarily Q)
proposes 0 to consensus. First, we assume that P €
{Pf+1,Pr12,..., P,} and examine whether R exists.
As P decides 1, variable collection0 at every process in

{P1,Ps,...,Ps}is {(Pr,valy)|l < k < n}. Therefore,
R §§ {Pl, P, ... ,Pf}. Ie, R € {Pf+1, Pf+2, RN Pn}
Then variable cnt at R must be 0 and thus for R to
propose 0, R must have cnt_help = n — f, ie., ev-
ery process in {Pri1, Prio,...,P,} has sent to R their
variable collection0. As a result, P has also sent its
collection0, which is updated to {(Py,vali)|l <k <n}
when phase = 2. This leads R to propose 1 to consen-
sus. A contradiction.

Now we assume that P € {P,P5,..., Py} and ex-
amine whether R exists. Similarly, variable collection0
at every process in {Pi, P, ..., Ps} is {(Px,valy)|l <
k < n}. Moreover, variable collection0 at Py in-
cludes {(Px,val)|l < k < f} as a subset. Again, R
must belong to {Pfi1,Pft2,...,P,}. For R to pro-
pose 0, R must have cnt_help = n — f, i.e., every pro-
cess in {Pri1,Pryo,...,P,} has sent to R their up-
dated variable collectionQ, the union of which is equal
to {(Pr,valg)|l < k < n}. (Variable collection0 at
every process in {Pyy1, Pria, ..., Py} is updated to in-
clude its own vote.) This again leads R to propose 1 to
consensus. A contradiction.

Next, we prove that every network-failure execution
of INBAC satisfies the wvalidity property, and the termi-
nation property.

Validity. Clearly, the validity property can be separated
into the commit-validity property: if a process decides
1, then every process proposes 1; and the abort-validity
property: if a process decides 0, then some process pro-
poses 0 or a failure occurs. The proof here (and the
proofs for the correctness of protocols later) proves that
the protocol satisfies the commit-validity property and
the abort-validity property respectively.

Commit-Validity. Suppose that some process P decides
1. If P’s decision is a result of the decision of the consen-
sus, then since consensus satisfies the validity property,
some process R (not necessarily P) must propose 1 to
consensus. Since variable proposal at R is equal to the
AND of the n votes, every process proposes 1 to inbac.
If P’s decision is not a result, then variable decision at
P is equal to the AND of the n votes, which implies
that every process proposes 1 to inbac.

Abort-Validity. Suppose that process P decides 0. If P’s
decision is equal to variable decision at P or variable
proposal at some other process R, then some process
must propose 0 to inbac. If not, then some process R
(not necessarily P) must have proposed 0 to consen-
sus in the case where some value is missing in variable
collection_help or the collection [, . e otection1 € at 1.
This indicates that some message does not arrive before
the timer issues a timeout event, which is set to the up-
per bound of the message delay. Then, in a network-
failure system, we can safely conclude that a failure oc-
curs. Thus the abort-validity property is satisfied.

Termination. By contradiction. Suppose that some cor-



rect process P does not decide. P assigns phase to 1
in finite time. Then P is triggered by the event that
the timer issues a timeout and phase = 1, when P
has not proposed to consensus or decided in inbac. If
P e {P,Ps,...,Ps}, then since consensus iuc satisfies
the termination property in a network-failure system,
P eventually decides in inbac. A contradiction. If P €
{P41,Ps+s2,..., Py}, then P assigns phase to 2 in finite
time. In fact, every correct process in {Pyy1, Prio, ...,
P, } assigns phase to 2 in finite time. Since P does not
decide, thus by the termination property of iuc in a
network-failure system, P must assign wait to TRUE
and wait for the condition cnt+cnit_help > n— f to sat-
isfy. If the condition is satisfied and the corresponding
event is triggered, then P eventually decides in inbac.
In other words, for P to not decide, the condition should
never be satisfied.

However, when wasit is assigned to TRUE, cnt is 0.
Only the message of [C, *] increments ent. Since P €
{Pf+1,Prt2,...,P,}, then the message of [C, *| that
arrives at P can only be from a process in {Py, Py, ...,
Py}, each correct process of which must send [C, *] to
P. On the other hand, cnt_help at P is incremented if a
message from a process in {Pyi1, Pryo,. .., P,} arrives.
Every correct process in { Py1, P2, ..., Py} also must
send message [HELPED, *] to P. As at most f pro-
cesses can crash and messages eventually arrive at their
destinations respectively, cnt + cnt_help is eventually
equal to or greater than n — f. In other words, the con-
dition is eventually satisfied. A contradiction.

Finally, since consensus satisfies the termination prop-
erty in an network-failure system (assuming a majority
of correct processes), INBAC also satisfies the termina-
tion property in an network-failure system (assuming a
majority of correct processes).

Therefore, given that consensus can be implemented
for a network-failure system, protocol INBAC (i.e., in-
stance inbac) solves indulgent atomic commit. O

C. PROOFS OF LEMMAS

C.1 Proof of Lemma

By contradiction. Suppose that |©| < f — 1. Denote
by ® the set of P and the processes which P has reached
at t3. For each process () € O, denote by 7¢g the time
at which P reaches @Q in F. For each process Q~ €
®\(OU{P}), denote by 7- the time at which P reaches
Q  in E.

We build a crash-failure execution Ey based on FE.
In Ey, P crashes before sending any message (i.e., P
crashes at time 0). For @, Ey is the same as F until @
crashes and () crashes before sending any message that
is expected to send upon the message(s) received by @
at 7o (i.e., @ crashes at 7g). For every other process
R, Ey is the same as E until some process in © U {P}
timeouts at some process not in © U {P}.

Now we construct Fy after some process timeouts as
follows. First, we consider the earliest timeout. The
earliest timeout occurs at a process in ®\(QU{P}). (By

Lemmall] [®\{P}| > f. As [©] < f—1, @\(OU{P})
is non-empty.) Let Q~ € ®\(© U {P}) be the process
at which the earliest timeout occurs. Denote by t35 at
which the earliest timeout occurs. Clearly, t3 > U. If
@)~ sends any message m; upon the timeout event, then
we assume that mj arrives at its destination at time
t3+U. Second, any other message that is different from
E due to the timeout events arrives in a delay similarly,
i.e., with the same message delay U. Finally, every mes-
sage that is sent after to arrives later than ¢;. Moreover,
in Fy, P proposes 0, every other process proposes 1 and
no process in Q\(© U{P}) crashes. As |O] < f—1 and
ty —ty < U, Ey is a legitimate crash-failure execution of
7. Any remaining process R € Q\(OU{P}) decides 0 in
Ey. W.lo.g., let R be the earliest process that decides.
Denote by t4 the time at which R decides.

Then based on E and Ey, we build a network-failure
execution Egeync. In Eygypne, every process proposes 1
and no process crashes. Therefore, Fqsyn. starts as E.
Then we construct Egsyne such that:

e Every message from P to a process in Q\(OU{P})
arrives later than max(t,t4);

e Every message from @ to a process in Q\(©U{P})
sent after or at 7 arrives later than max(t1,%4);

e Every message from a process in ®\(© U{P}) to P
arrives later than max(ty,t4);

e Every message from a process Q~ in ®\(OU{P}) to
@ sent after or at 7 arrives later than max(t1,t4).

e Fvery message sent after ¢o arrives later than ¢;.

In addition, the rest of the messages which are com-
municated among Q\(© U {P}) are (sent/received) the
same as Fy after the first timeout event. This first time-
out event occurs at the same time t3 at @~ in both
Eisync and Ey. Process (@~ might send some message
my due to the timeout event. (If @ is not a process in
P\ (O U {P}), then m; arrives later than ¢; according
to the construction, which makes certainly P’s decision
the same as in E.)

If my is sent to P or @, then we assume that m,
arrives later than tq; if m; is sent to some process O
in Q\(© U {P}), then my arrives at t3 + U and thus O
can only send some message mso (due to mq) after or at
ts+U. Asty3 > U, t3+ U > 2U > t; and therefore,
my also arrives later than t;. Thus any message that is
different from E due to the timeout events arrives later
than ¢;. Then Fqsyn. and E are indistinguishable for P
before and at t;. As a result, P decides 1 at t;.

Process R is among Q\(© U {P}). For R, Eqsync is
the same as F before and at t4. As a result, R decides
0 at t4.

Clearly, Eqsync is a network-failure execution of m
that does not satisfy the agreement property. A con-
tradiction to the assumption that 7 solves indulgent
atomic commit.

C.2 Proof of Lemma

By contradiction. Suppose that |0 < f — 2. Denote
by 7¢g the time at which R reaches ) in F. Denote by
7p the time at which R reaches P in E. Denote by ®



the set of R and the processes which R has reached at
ta. Denote by 7o~ the time at which R reaches Q= for
each process @~ € (O U {P,R}) in E.

We build a crash-failure execution Ey based on FE.
In Ey, R crashes before sending any message (i.e., R
crashes at time 0). For @, Fy is the same as F until @
crashes and () crashes before sending any message that
is expected to send upon the message(s) received by @
at 7g (i.e., Q crashes at 7g). For P, Ey is the same
as E until P crashes before sending any message that
is expected to send upon the message(s) received by P
(i.e., P crashes at 7p). For every other process O, Ej is
the same as E until some process in @©U{P, R} timeouts
at some process not in © U {P, R}.

Now we construct Fjy after some process timeouts
as follows. First, we consider the earliest timeout. If
@\ (©U{P, R}) is empty, the earliest timeout occurs at
a process later than t5. If ®\(©U{P, R}) is non-empty,

the earliest timeout occurs at a process in @\ (OU{ P, R}).

Let @~ be the process at which the earliest timeout oc-
curs. Denote by t3 at which the earliest timeout occurs.
Certainly, whether @~ € ®\(©U{P, R}) or not, t5 > U.
W.lo.g., we assume that @~ € ®\(O U {P, R}). If Q~
sends any message m; upon the timeout event, then we
assume that m, arrives at its destination at time t34+U.
Second, any other message that is different from E due
to the timeout events arrives in a delay similarly, i.e.,
with the same message delay U. Finally, every message
that is sent after t5 arrives later than ¢;.

Moreover, in Ey, R proposes 0, every other process
proposes 1 and no process in Q\(0© U {P, R}) crashes.
As |©] < f—2and t; —ta < U, Ep is a legitimate
crash-failure execution of 7. Any remaining process O €
O\(©U{P, R}) decides 0 in Ey. W.Lo.g., let O be the
earliest process that decides. Denote by t4 at which O
decides.

Then based on F and Ey, we build a network-failure
execution Egeync. In Eygyne, every process proposes 1
and no process crashes. Therefore, E,syn. starts as E.
Let Q1 = Q\(O U {P,R}). Let & = ®\(O U {P, R}).
Then we construct Egsyne such that:

e Every message from R to a process in ; arrives
later than max(t1,t4);

e Every message from @) to a process in {2 sent after
or at 7¢ arrives later than max(ty,t4);

e Every message from P to a process in {2; sent after
or 7p arrives later than max(t1,t4).

e Fvery message from a process in ®; to R arrives
later than max(t1,t4);

e Every message from a process @~ in ®; to @) sent
after or at 7o arrives later than max(t1,%s).

e Every message from a process @~ in ®; to P sent
after or at 75— arrives later than max(t1,t4).

e Fvery message sent after ¢t arrives later than ¢;.

In addition, the rest of the messages which are com-
municated among Q\(O© U {P, R}) are (sent/received)
the same as in Fy after the first timeout event. This

timeout event occurs at the same time t3 at Q~ in both
Easyne and Ejy.

Process )~ might send some message m; due to the
timeout event. If m; is sent to P, @ or R, then we
assume that my arrives later than t¢y; if m; is sent to
some process O in Q\(© U {P, R}), then O can only
send some message mo after or at t3+ U. As t3 > U,
ts + U > 2U > t, and therefore, mo also arrives later
than ¢;. Thus any message that is different from E due
to the timeout events arrives later than ¢;. Then E,sync
and E are indistinguishable for P before and at ¢;. As
a result, P decides 1 at ty.

Process O is among Q\(©U{P, R}). For O, E sync is
the same as Ey before and at t4. As a result, O decides
0 at t4.

Clearly, Egsyne is a network-failure execution of 7
that does not satisfy the agreement property. A con-
tradiction to the assumption that 7 solves indulgent
atomic commit.

D. DELAY-OPTIMAL PROTOCOL

In this section, we present INBAC that (a) solves
NBAC in every crash-failure execution, (b) satisfies va-
lidity and termination in every network-failure execu-
tion and (c) decides in one message delay in every nice
execution.

Implements:
1NonBlockingAtomicCommit, instance Inbac.

Uses:
PerfectPoint ToPointLinks, instance pl.
Timer, instance timer.
UniformConsensus, instance uc.

upon event <Inbac, Init> do
phase := 0;
proposed := FALSE;
decided := FALSE;
decision := L;
collection0 := (J;
collectionl = {;

upon event < Inbac, Propose | v> do
decision := v;
forall ¢ € Q2 do
trigger <pl, Send | ¢, [V, v]|>;
set timer to 1;

upon event <pl, Deliver | p, [V, v]> do
collection0 := collection0 U {p};
decision := decision AND v;

upon event <timer, Timeout> and phase = 0 do
if collection0 = € then
forall ¢ € Q do
trigger <pl, Send | ¢, [D, decision|>;
if not decided then
decided := TRUE;



trigger <Inbac, Decide | decision>;
else
phase := 1;
set timer to 2;

upon event <pl, Deliver | p, [D, d]> do
collectionl := collectionl U {p};
decision := d;

upon event <timer, Timeout> and phase = 1 do
if not decided then
if collectionl = () then
decision := 0;
proposed := TRUE;
trigger <uc, Propose | decision>;

upon event <uc, Decide | d> do
if not decided then
decided := TRUE;
trigger <Inbac, Decide | d>;

Proof. (Proof of correctness of INBAC.)

Termination. Every correct process proposes a value
and sets a timer when phase = 0. When the timer
timeouts, every correct process either decides, or sets
again the timer and assigns phase = 1. When the timer
timeouts again, the correct process proposes a value to
uc. Thus, by the termination property of consensus,
every correct process decides.

Commit-Validity. If process P decides 1, then by the
validity property of consensus and the protocol itself,
there exists process @ (not necessarily P) who sends
[D, 1] in phase 0 and therefore every process proposes
1. In other words, a failure occurs. Thus, the commit-
validity property is satisfied.

Abort-Validity. If process P decides 0, then either some
process P decides 0 in phase 0, which implies that some
process proposes 0, or by the wvalidity property of con-
sensus, some process () proposes 0 to uc in phase 1,
which implies that ) receives fewer than n messages in
phase 0. Thus, the abort-validity property is satisfied.

Agreement. By contradiction. Suppose that two differ-
ent processes P and @ decide 1 and 0 respectively, in
a crash-failure execution. Then by the commit-validity
property and the abort-validity property, every process
proposes 1 and some process crashes before () decides.
By the agreement property of consensus, P and @ can-
not both follow the decision of uc to decide. Thus P
decides 1 in phase 0 and @ decides 0 as a decision of uc.

Since P decides in phase 0, P succeeds in sending
[D, 1] to every other process. Moreover, since every pro-
cess proposes 1 to 1nbac, no process sends [D, 0] after
the first message delay. Thus thanks to the synchronous
communication, every process that has not decided yet
receives [D, 1] and proposes 1 to uc. Thus by the va-
lidity property of consensus, @ cannot decide 0 as a
decision of uc. A contradiction. O

E. MESSAGE-OPTIMAL PROTOCOLS

E.1 ONBAC

Here we present our ONBAC protocol. For ONBAC,
every failure-free execution solves NBAC, every network-
failure execution satisfies agreement and termination,
and n processes exchange 0 message in every nice exe-
cution.

Implements:
0MessageAtomicCommit, instance Onbac.

Uses:
PerfectPoint ToPointLinks, instance pl.
UniformConsensus, instance uc.
Timer, instance timer.

upon event <0Onbac, Init> do

myvote = L;
myack = (J;
decided := FALSE;
zero := FALSE;
phase := 0;

upon event <0Onbac, Propose | v> do
myvote 1= v;
if v = 0 then
forall ¢ € Q do
trigger <pl, Send | q, [V, 0]>;
set timer to time 1;
phase := 1;

upon event <pl, Deliver| p, [V, v]> and phase = 1do
zero := TRUE;
trigger <pl, Send | p, [ACK]>;

upon event <pl, Deliver | p, [B, b]> and phase = 2 do
if not (myvote = 1 and decided) then
trigger <pl, Send | p, [ACK]>;

upon event <pl, Deliver | p, [ACK]|> do
myack = myack U {p};

upon event <timer, Timeout> and phase = 1 do
phase = 2;
if zero = FALSE and myvote = 1 then
decided := TRUE;
trigger <Onbac, Decide | 1>;
else if zero = TRUE and myvote = 1 then
forall ¢ € Q do
trigger <pl, Send | q, [B, 0]>;
set timer to time 3;
else
set timer to time 2;

upon event <timer, Timeout> and phase = 2 do
if myack C € then
trigger <uc, Propose | 1>;
else
trigger <uc, Propose | 0>;



upon event <uc, Decide | d> and not decided do
trigger <Onbac, Decide | d>;
decided := TRUE;

Proof. (Proof of correctness of ONBAC.)

Termination. Every correct process P proposes a vote
v and sets timer to 1. Then when timer first timeouts,
P either decides, or again sets timer. At the second
timeout of timer, every correct process (which has not
yet decided) proposes to uc, which eventually decides
by the termination property of uc in a network-failure
execution.

Commit-Validity. We only need to prove validity in ev-
ery failure-free execution. If in a failure-free execution,
a process P decides 1, then either P decides 1 at the first
timeout or P decides the decision of consensus wuc. If
P decides at the first timeout, then P does not receive
any message [V, 0], which implies that every process
proposes 1. If P decides the decision of uc, then some
process @ proposes 1 at )’s second timeout. Either Q’s
vote is 0 or @ receives a message [V, 0] before the first
timeout. In either case, message [V, 0] is sent to all
process when the local variable phase at every process
is 1. Then in a failure-free execution, no process decides
at the first timeout. However, for @) to propose 1, again
in a failure-free execution, there must be some process
R such that R’s vote is 1 and R has decided at the first
timeout, which leads to a contradiction. Therefore P
cannot decide the decision of uc in a failure-free exe-
cution. As a result, every process proposes 1, which
satisfies commit-validity.

Abort-Validity. We only need to prove validity in every
failure-free execution. If a process P decides 0, then
some process () has proposed 0 to uc. Then ) has
votes 0 or has received a vote of 0, which satisfies the
abort-validity property.

Agreement. By contradiction. Suppose that E is a
network-failure execution in which two processes P and
Q@ decide differently. W.l.o.g., P decides 1 and @Q de-
cides 0. Thus @’s decision must be a decision of uc
while P’s decision is not. Then some process R must
have proposed 0 to uc. As a result, R has timer timeout
twice at itself. Suppose that the vote of R to the com-
mit protocol is 0. Then the second timeout is at time 2.
We argue that R cannot receive P’s acknowledgement
of R’s message [V, 0] at the second timeout. If so, P’s
local variable zero turns true before P’s first timeout,
which contradicts to P’s decision of 1. Thus, the vote
of R to the commit protocol can only be 1, and R’s
second timeout is at time 3. Similarly, we argue that
R cannot receive P’s acknowledgement of R’s message
[B,0] at the second timeout. If so, P’s local variables
phase = 2 and decided = FALSE must hold when P
sends the acknowledgment, which again contradicts to
P’s decision of 1 (without invoking wc). O

E.2 Message-optimal protocol for synchronous
NBAC: (n-1+f)NBAC

We start with a notation convention: symbol % repre-
sents modulo in the protocol except that if the remain-
der is 0, the result of % is n instead of 0. We also use
symbol % in the next protocol, where we do not repeat
the notation convention. We change the timer slightly
from the other protocols: the timer here starts at time
1 when the first sending event happens.

Implements:
NonBlockingAtomicCommit, instance nbac.

Uses:
PerfectPointToPointLinks, instance pl.
Timer, instance timer.

upon event <nbac, Init> do
decision := L;
decided := FALSE;
delivered := FALSE;
phase := 0;

upon event <nbac, Propose | v> do
decision := wv;
if i = 1 then
trigger <pl, Send | Py, decision>;
if i = 1 then
set timer to time n + 1;
phase := 2;
else
set timer to time ;
phase := 1;

upon event <pl, Deliver | p, v> do
decision := decision AND v;
if phase < 2 then
if p = P(i—l)%n then
delivered := TRUE;
else if not decided then
forall ¢ € Q2 do
trigger <pl, Send | q, decision>;

upon event <timer, Timeout> and phase = 1 do

if delivered = FALSE then

decision := 0;
if decision = 1 then

trigger <pl, Send | Pit1)%n, decision>;
else if : = n then

forall ¢ € Q2 do

trigger <pl, Send | q, decision>;

delivered := FALSE;
if+ > f + 1then

set timer to time n 4+ 2f + 1;

phase := 3;

else
set timer to time n + ;
phase := 2;



upon event <timer, Timeout> and phase = 2 do

if delivered = FALSE then

decision := 0;
if decision = 1 and ¢ # f then

trigger <pl, Send | P 41)%n, decision>;
if decision = 0 then

forall ¢ € Q do

trigger <pl, Send | q, decision>;

delivered := FALSE;
set timer to time n 4+ 2f 4+ 1;
phase := 3;

upon event <timer, Timeout> and phase = 3 do
decided := TRUE;
trigger <nbac, Decide | decision>;

Proof. (Proof of correctness of (n-1+f)NBAC.)

Termination. When a process proposes a value or its
local timer timeouts, it assigns a value to phase. Each
time a process assigns a value to phase, it sets a timer.
Since every correct process proposes a value, then every
correct process enters phase 3 and has timer timeout at
n—+2f+ 1. Every correct process decides at n+2f + 1.

Commit-Validity. We only need to prove validity in ev-
ery crash-failure execution. If process P decides 1, then
at time n+2f+1, P’s local variable decision = 1. This
leads to three facts: (a) that P has received no 0 from
other processes; (b) that P’s local variable delivered is
TRUE when the timeout event for phase 1 (and if P
is among P, P, ..., Ps, P’s local variable delivered is
TRUE when the timeout event for phase 2 occur at P);
and (c) that P proposes 1. If P is among P1, P, ..., Py,
then according to (b), P has received 1 at phase 2, which
implies that every process proposes 1. If P is P,, then
according to (b), P has received 1 at phase 1, which im-
plies that every process proposes 1. If P is not among
Py, P, ..., Py, P,, then according to (a), P does not re-
ceive 0 from P,, P1,...,Prattimen+1,...,n+ f+1
respectively. Since at most f processes can crash, one
process @ among P, Pi, ..., Ps is instructed by the pro-
tocol to not send 0 to P. This implies that @) has re-
ceived 1 at phase 2 if Q) is among P, P»,...,P; or Q
has received 1 at phase 1 if @ is P,. Therefore, every
process proposes 1.

Abort-Validity. We only need to prove validity in every
crash-failure execution. If process P decides 0, then
P’s local variable decision = 0. Then either (a) P has
proposed v = 0, or (b) P has received 0 from other
processes, or (¢) P’s local variable delivered is FALSE
when the timeout event for phase 1 or the timeout event
for phase 2 occurs at P.

If P receives 0 from another process @, then since a
process only sends its local variable decision to other
processes (if it sends any message), w.l.0.g., we may as-
sume that @ is the earliest process that has local vari-
able decision = 0. As a result, either () has proposed
v = 0, or @’s local variable delivered is FALSE when
the timeout event for phase 1 or the timeout event for

phase 2 occurs at Q.

Then, to examine the abort-validity property, we need
only to examine the case where delivered is FALSE for
@, and case (c) for P. Let P; be either process. As
delivered is FALSE, P; does not receive any message
from P;_1)%, before the timeout event for phase 1 or
the timeout event for phase 2 occurs. At the same time,
for 2 <4 < n, P;_1)%, is instructed by the protocol to
send a message to Pjy, in phase 1 if Py, Ps,..., P;_o
do not crash and Py, Ps,...,P;_1 propose 1; for i =1,
Pi_1)%n is instructed by the protocol to send a message
to Pjy, in phase 2; and for 2 < ¢ < f, P_1)%, is
instructed by the protocol to send a message to Pjy,
in phase 2. As delivered is FALSE, then some process
crashes or some process proposes 0.

In conclusion, the abort-validity property is satisfied.

Agreement. By contradiction. Suppose that two differ-
ent processes P and @ decide 1 and 0 respectively in
a crash-failure execution. Then by the commit-validity
property and the abort-validity property, every process
proposes 1 and some process crashes before () decides.

Since () decides 0, then (Q’s local variable decision is
assigned to 0 at some point in phase 1, phase 2, or phase
3. Suppose that Q) assigns decision to 0 in phase 1. If
Q # P, then @ refuses to send a message, which would
lead P to decide 0; if @ = P,, then @ sends 0 to P,
which would also lead P to decide 0. A contradiction.
Suppose that @ assigns decision to 0 in phase 2, then @
also sends 0 to P, which would again lead P to decide
0. A contradiction.

Suppose that @ assigns decision to 0 in phase 3, then
(Q only does the assignment at time n+2f + 1 or later.
Otherwise, since both P and @ are alive at n + 2f +
1, when @ sends decision to P after the assignment,
then the network could schedule the message so that P
receives 0 before time n + 2f + 1 and decide 0 at time
n+2f + 1. Now that ) does the assignment at time
n+2f+1, some process must send 0 to @) at time n+2f
or later. In fact, in order for @ to receive 0, between
time n+ f and time n+2f, there must be at least f+41
process that try to send 0 to every process. However,
those processes all fail to send 0 to P. This gives a
contradiction: f 4 1 processes must have crashed (to
make all those attempts fail) while at most f processes
may crash. O

E.3 aNBAC

Similar to (n-1+f)NBAC, the timer is slightly changed:
the timer here starts at time 1 when the first sending
event happens.

Implements:
ANonBlockingAtomicCommit, instance anbac.

Uses:
PerfectPoint ToPointLinks, instance pl.
Timer, instance timer.
Timer, instance timer0.



upon event <anbac, Init> do
decision := 1;
decided := FALSE;
delivered := FALSE;
phase := 0;
vote := 1;
delivered_V := FALSE;
collection_V = (;
collection_B := (;
noop := FALSE;
phasel = 0;

upon event <anbac, Propose | v> do
decision := wv;
vote := v;
if : = 1 then
trigger <pl, Send | Ps, decision>;
if i = 1 then
set timer to time n + 1;
phase := 2;
else
set timer to time 1;
phase := 1;
if v = 0 then
forall ¢ € Q do
trigger <pl, Send | g, [V, 0]>;
set timer( to time 3;
else
set timer(0 to time 2;

upon event <pl, Deliver | p, [V, 0]> do
decision := 0;
delivered_V = TRUE;
trigger <pl, Send | p, [ACK, V]>;

upon event <pl, Deliver | p, [B, 0]> do
decision := 0;
trigger <pl, Send | p, [ACK, B]>;

upon event <timer0, Timeout> and vote = 1 and de-
livered_V and phase0 = 0 do
forall ¢ € Q2 do
trigger <pl, Send | g, [B, 0]>;
set timer0 to time 4;
phasel = 1;

upon event <pl, Deliver | p, [ACK, V]> do
collection_V := collection_V U {p};

upon event <pl, Deliver | p, [ACK, B]> do
collection_B := collection_B U {p};

upon event <timer0, Timeout> and vote = 0 do
if collection_V = Q and decided = FALSE then
decided := TRUE;
trigger <anbac, Decide | 0>;
else
noop := TRUE;

upon event <timer(0, Timeout> and vote = 1 and de-

livered_V and phase0 = 1 do
if collection_.B = 2 and decided = FALSE then
decided := TRUE;
trigger <anbac, Decide | 0>;
else
noop := TRUE;

upon event <pl, Deliver | p, v> do
decision := decision AND v;
if phase < 2 then
if P = P(ifl)%n then
delivered := TRUE;
else if not decided then
forall ¢ € Q2 do
trigger <pl, Send | q, decision>;

upon event <timer, Timeout> and phase = 1 do

if delivered = FALSE then

decision := 0;
if decision = 1 then

trigger <pl, Send | P i1y%n, decision>;
else if : = n then

forall ¢ € Q do

trigger <pl, Send | q, decision>;

delivered := FALSE;
ifi > f + 1then

set timer to time n + 2f + 1;

phase := 3;

else
set timer to time n + ;
phase := 2;

upon event <timer, Timeout> and phase = 2 do

if delivered = FALSE then

decision := 0;
if decision = 1 and ¢ # f then

trigger <pl, Send | Pit1)%n, decision>;
if decision = 0 then

forall ¢ € Q2 do

trigger <pl, Send | q, decision>;

delivered := FALSE;
set timer to time n + 2f + 1;
phase := 3;

upon event <timer, Timeout> and phase = 3 and not de-
cided do
if decision = 1 and not noop then
decided := TRUE;
trigger <anbac, Decide | decision>;

Proof. (Proof of correctness of aNBAC.)

Termination. We only need to prove that a process
decides in a failure-free execution. Clearly, a process
proposes a vote before or at time 1. If every process
proposes 1, then every process eventually timeouts at
time n 4+ 2f + 1, and noop is never assigned to TRUE.
In a failure-free execution, every process has their local
variable delivered to be TRUE at their timeout. As
a result, at time n + 2f + 1, every process decides 1.
Otherwise, if some process votes 0, then every process



who votes 0 timeouts at time 3 and decides while every
process who votes 1 timeouts eventually at time 4 and
also decides, Thus every process decides in a failure-free
execution.

Commit-Validity. We only need to prove validity in ev-
ery crash-failure execution. If process P decides 1, then
P decides at time n 4+ 2f + 1 when P’s local variable
decision = 1 and noop is FALSE. Since decision =
1, this leads to three facts: (a) that P has received
no 0 from other processes; (b) that P’s local variable
delivered is TRUE when the timeout event for phases
1 or 2 occurs at P; and (c) that P proposes 1. If P is
P, then according to (b), P has received 1 at phase 1,
which means that the logical AND of all votes is 1 and
every process proposes 1. If P is among Pi, P, ..., Py,
then according to (b), P has received 1 at phase 2, which
implies that every process proposes 1. If P is not among
P, P, ..., Ps, P,, then according to (a), P does not re-
ceive 0 from P,, Py,...,Prat timen+1,...,n+ f+1
respectively. Since at most f processes can crash, at
least one process ) among P,, Py, ..., Py is instructed
by the protocol to not send 0 to P. This implies that Q
has received 1 at phase 2 if Q is among Py, P, ..., Py
or @ has received 1 at phase 1 if Q is P,. Therefore,
every process proposes 1.

Abort-Validity. We only need to prove validity in every
crash-failure execution. If process P decides 0, then P
only decides 0 at time 3 or at time 4. Then P either
has voted 0, or has received a vote of 0 from some other
process. Therefore, the abort-validity property is satis-
fied.

Agreement. By contradiction. Suppose that two differ-
ent processes P and @ decide 1 and 0 respectively, in
a network-failure execution. Then P decides at time
n+2f+ 1 and @ decides at time 3 or at time 4.
When @ decides at time ¢ (t = 3 or 4), Q must have
received an [ACK, V] or [ACK, B] from each process
before or at t. On the other hand, when P decides, P’s
local variable decision is 1, which means that P has
not received any message [B, 0] or [V, 0] before or when
P decides. Sincen+2f+1>24+2+1=5>1t, P
cannot manage to send [ACK, V] or [ACK, B] so that
receives the message before or at t. A contradiction. [

E4 (2n-2)NBAC

As in (n-14+f)NBAC, the timer here starts at time 1
when the first sending event happens.

Implements:
(2n-2)MessageAtomicCommit, instance (2n-2)nbac.

Uses:
PerfectPointToPointLinks, instance pl.
Timer, instance timer.

upon event <(2n-2)nbac, Init> do
votes 1= 1;

received_B := FALSE;
phase := 0;
collection = {P;};

upon event < (2n-2)nbac, Propose | v> do
votes := votes AND v;
if1 < ¢ < n-1then
trigger <pl, Send | P,, [V, v]>;
set timer to time 3;
else
set timer to time 2;

upon event <pl, Deliver | p, [V, v]> do
votes := wvotes AND v;
collection = collection U {p};

upon event <timer, Timeout> and phase =0 andi =
n do
if votes = 1 and collection = §2 then
forall ¢ € Q do
trigger <pl, Send | q, [B, 1]>;
else
votes = 0;
forall ¢ € Q2 do
trigger <pl, Send | q, [B, 0]>;
set timer to time 3 + f;
phase := 1;

upon event <timer, Timeout> and phase =0and 1 <
i < n—1do
if received_B = FALSE then
forall ¢ € Q do
trigger <pl, Send | q, [B, 0]>;

votes = 0;
set timer to time 3 + f;
phase = 1;

upon event <pl, Deliver | p, [B, v]> do
recetved_B := TRUE;
votes = v;
if votes = 0 then
forall ¢ € Q2 do
trigger <pl, Send | q, [B, 0]>;

upon event <timer, Timeout> and phase = 1 do
trigger <(2n-2)nbac, Decide | votes>;

Proof. (Proof of correctness of (2n-2)NBAC.) We show
that every crash-failure execution of (2n-2)NBAC solves
NBAC. While doing so, we show that every execution
of (2n-2)NBAC satisfies validity and termination. Re-
call that in every crash-failure execution, every message
arrives in time while in an execution, timeouts may be
violated.

Termination. KEvery correct process decides at time
3+ f.

Commit-Validity. In every execution, if a process P de-
cides 1, then at time 3 + f, the local variable votes is



1. If P = P,, then at time 2, P must have received
all n votes which are all 1. If P # P,, then at time 3,
P must have received a message [B, 1] from P,,, which
implies that all processes vote 1.

Abort-Validity. In every execution, if a process P de-
cides 0, then at time 3 + f, the local variable votes is
0. If P = P,, then P votes 0, or receives a vote of 0
at time 2, does not receive some vote at time 2 or re-
ceives a message of [B, 0] (but sends a message of [B,
1] at time 2). The last two imply the crash of some
process or the delay of some message. If P # P,, then
P votes 0, receives a message of [B, 0] from P,, at time
3, or does not receive any message from P, at time 3,
or receives a message of [B, 0] from some process (but
receives a message of [B, 1] from P, at time 3). The last
two imply the crash of P, or the delay of some message
from P,. Therefore, in every execution, if a process de-
cides 0, then some process proposes 0 or a failure occurs.

Agreement. By contradiction. Suppose that F is a
crash-failure execution such that two processes P and Q)
decide differently. W.l.o.g., P decides 1 and @ decides
0. Then by the commit-validity property, every process
votes 1. If P = P,, then P has received all votes from
all processes; since P decides at time 3+ f, P manages
to send [B, 1] to every process and then @ should decide
1, which leads to a contradiction. If P # P,, then P
does not receive any message [B, 0] and moreover, P re-
ceives [B, 1] at time 3 from P,. Clearly, For @ to decide
0, P, must have crashed while sending [B,1] at time 2.
(Otherwise, all have received [B,1], none sends message
[B, 0] and then all decide 1. A contradiction.) Now that
P, crashes, @ must have received message [B, 0] later
than time 2 + f. (Otherwise, P would receive a mes-
sage of [B, 0] from @ earlier than or at time 3 + f and
thus decides 0, which is a contradiction.) Then between
time 2 and time f 4 2, at least f + 1 processes manage
to send message [B,0] to some process and then crash,
which contradicts the fact that at most f processes may
crash. O

E.5 avNBAC

As (n-1+f)NBAC, the timer here starts at time 1
when the first sending event happens.

Implements:
AVMessageAtomicCommit, instance avnbac.

Uses:
PerfectPoint ToPointLinks, instance pl.
Timer, instance timer.

upon event <avnbac, Init> do
votes := 1;
received_B := FALSE;
collection = {P;};

upon event <avnbac, Propose | v> do
votes := wvotes AND v;

if1 < ¢ < n-1then
trigger <pl, Send | Py, [V, v]>;
set timer to time 3;

else

set timer to time 2;

upon event <pl, Deliver | p, [V, v]> do
votes := wvotes AND v;
collection = collection U {p};

upon event <timer, Timeout> and phase =0 andi =
n do
if collection = € then
forall ¢ € Q do
trigger <pl, Send | q, [B, votes|>;
trigger <awnbac, Decide | votes>;

upon event <timer, Timeout> and phase =0and 1 <
i < n-—1do
if received_B = TRUE then
trigger <avnbac, Decide | votes>;

upon event <pl, Deliver | p, [B, v]> do
recetved_B := TRUE;
votes = v;

Proof. (Proof of correctness of avNBAC.)

Termination. For every correct process P, P proposes
a vote and sets a timer. Then in a failure-free exe-
cution, P, delivers every vote from every other pro-
cess before or at time 2 and decides at time 2, while
P;ie{1,2,...,n— 1} delivers [B, b] before or at time
3 and decides at time 3.

Commit-Validity. 1f a process P decides 1, then P,
must have received all n votes which are all 1. Le., ev-
ery process proposes 1.

Abort-Validity. If a process P decides 0, then P,, must
have received all n votes among which at least one is 0.
I.e., some process proposes 0.

Agreement. By contradiction. Suppose that E is a
network-failure execution such that two processes P and
@ decide differently. W.l.o.g., P decides 1 and ) decides
0. However, since both P and @ should decide the log-
ical AND of all n votes, thus P and @ cannot decide
differently. A contradiction. O

E.6 (2n-2+f)NBAC

We describe our (2n-2+f)NBAC protocol. Here if
f —1 = n, then the condition f — 1 < i < n—11is
never fulfilled no matter what ¢ is (and thus the related
events are never triggered). As (n-1+f)NBAC, we also
change the timer slightly from the other protocols: the
timer here starts at time 1 when the first sending event
happens.

Implements:



(2n-2+f)MessageAtomicCommit, instance (2n-2+f)nbac.

Uses:
PerfectPointToPointLinks, instance pl.
Timer, instance timer.
UniformConsensus, instance uc.

upon event <(2n-2+f)nbac, Init> do
votes 1= 1;
recetved_V := FALSE;
received_B := FALSE;
recetved_Z = FALSE;
phase = 0;
decided := FALSE;
proposed := FALSE;

upon event < (2n-2+f)nbac, Propose | v> do
votes := votes AND v;
if i = 1 then
trigger <pl, Send | Py, [V, v]>;
set timer to time n + 1;
phase := 1;
else
set timer to time i;

upon event <pl, Deliver | p, [V, v]> and phase =0 do
votes := votes AND v;
received_V = TRUE;

upon event <timer, Timeout> and phase = 0 do
if received_V = TRUE then

if i = n then
trigger <pl, Send | Py, [B, votes]>;
else
trigger <pl, Send | Pit1, [V, votes]>;
else
votes = 0;

if proposed = FALSE then
trigger <uc, Propose | 0>;
proposed := TRUE;
set timer to time n + ;
phase := 1;

upon event <pl, Deliver | p, [B, b]> and phase = 1 do
votes := wvotes AND b;
received_B := TRUE;

upon event <timer, Timeout> and phase = 1 and ¢
f do
if received_B = TRUE then
trigger <pl, Send | P11, [B, votes]>;
if decided = FALSE then
trigger < (2n-2+f)nbac, Decide | votes>;
decided = TRUE;
else
votes := 0;
if proposed = FALSE then
trigger <uc, Propose | 0>;
proposed := TRUE;
phase = 2;

upon event <timer, Timeout> and phase =1 and 7
n do
if received_B = TRUE then
if decided = FALSE then
trigger < (2n-2+f)nbac, Decide | votes>;
decided := TRUE;
if f > 2then
trigger <pl, Send | Py, [Z, votes]>;
else
if proposed = FALSE then
trigger <uc, Propose | votes>;
proposed := TRUE;

upon event <timer, Timeout> and phase =1 and 1 <
i< f-—1do
if received_B = TRUE then
trigger <pl, Send | P11, [B, votes]>;
else
votes = 0;
if proposed = FALSE then
trigger <uc, Propose | 0>;
proposed := TRUE;
set timer to time 2n + i;
phase := 2;

upon event <timer, Timeout> and phase = 1 and f+
1< i < n-1do
if received_B = TRUE then
trigger <pl, Send | P;y1, [B, votes]>;
if decided = FALSE then
trigger < (2n-2+f)nbac, Decide | votes>;
decided := TRUE;
else
forall¢g € {P, P, ..., P, P,} do
trigger <pl, Send | ¢, [HELP]>;

upon event <pl, Deliver | p, [HELP]> and ¢ = n and
phase = 1 do
trigger <pl, Send | p, [HELPED, votes|>;

upon event <pl, Deliver | p, [ HELP]|>and1 < i < f
and phase 2 do
trigger <pl, Send | p, [HELPED, votes|>;

upon event <pl, Deliver | p, [HELPED, v]> and not pro-
posed do

trigger <uc, Propose | v>;

proposed := TRUE;

upon event <pl, Deliver | p, [Z, z]> and phase = 2 do
votes := wvotes AND z;
received_Z = TRUE;

upon event <timer, Timeout> and phase =2 and 1 <
i< f—1do
if received_Z = TRUE then
if decided = FALSE then
trigger < (2n-2+f)nbac, Decide | votes>;
decided = TRUE;



if f — 1 >4 + 1then
trigger <pl, Send | P11, [Z, votes]>;
else
if proposed = FALSE then
trigger <uc, Propose | votes>;
proposed := TRUE;

upon event <uc, Decide | d> and not decided do
trigger < (2n-2+f)nbac, Decide | d>;
decided := TRUE;

Proof. (Proof of correctness of (2n-2+f)NBAC.)
Termination. Consider any crash-failure (or network-
failure) execution E. In E, every correct process pro-
poses a vote. For a correct process P;,i € {f,n}, the
timer eventually timeouts at time n + 4; at time n + 4,
P; either decides without invoking uc in (2n-2+f)NBAC
or proposes a value to uc. For a correct process P;,i €
{1,2,...,f — 1}, P; eventually timeouts at time 2n +
i; at time 2n + ¢, P; decides without invoking uc or
proposes a value to uc. For a correct process P;,i €
{f+1,f4+2...,n—1}, P, eventually timeouts at time
n + i; at time n + i, P; either decides at time n + i
or queries Py, P, ..., P, P, for help. If P, is correct,
then P, eventually assigns 1 to phase; if a process in
{P1, Pa,...,Ps} is correct, then the process eventually
assigns 2 to phase. Since at most f processes may
crash, then at least one process in {Pi, P», ..., Ps, P,}
is correct and therefore P; receives at least one message
[HELPED, *] and then proposes a value to uc. Thus by
the termination property of uc in a crash-failure system
(or in a network-failure system), every correct process
decides in F.

Commit-Validity. In every execution, if a process P
decides 1, then P’s decision is either a decision of uc
or not. If P’s decision is not a decision of uc, then
P decides its local variable votes = 1 and there are
four possibilities for P when P decides: (1) P = Py,
phase = 1, received_B is TRUE; (2) P = P,,, phase =
1, received_B is TRUE; (3) P € {Pf11, Pyy2,..., Prn_1}
phase = 1, received_B is TRUE; (4) P € {P, Ps,. ..,
Py_1}, phase = 2, received_Z is TRUE. By the proto-
col, in each of the four possibilities, votes is the logical
AND of all n votes and thus every process proposes 1.
If P’s decision is a decision of uc, then some process
proposes votes = 1 or v = 1 to uc and therefore there
are three possibilities when @ proposes: (1) Q = P,,
phase = 1, received_B is FALSE, received_V is TRUE
and @ proposes votes; (2) Q € {Pr+1, Pr+2,...,Po1}y
phase = 1, received_B is FALSE, @ delivers message
[HELPED, v] from some process p € {P1, Ps,..., Py,
P,} and @ proposes v; (3) Q@ € {P1,Ps,...,Pr_1},
phase = 2, received_Z is FALSE, received_B is TRUE,
received_V is TRUE, and @ proposes votes. By the
protocol, in each of the three possibilities, votes or v is
the logical AND of all n votes and thus every process
proposes 1.

Abort-Validity. In every execution, if a process P de-

)

cides 0, then P’s decision is either a decision of uc or
not. If P’s decision is not a decision of uc, then P
decides its local variable votes = 0; since wvotes is the
logical AND of all n votes and thus some process pro-
poses 0. If P’s decision is a decision of uc, then some
process @) proposes 0 to uc. If Q) proposes @Q’s local vari-
able votes, then again votes is the logical AND of all n
votes and thus some process proposes 0. If Q proposes v
where @ delivers message [HELPED, v] from some pro-
cess p € {P,Ps,...,Ps,P,}, then there are two possi-
bilities when @ proposes to uc: (1) p = P,, phase =1,
received_V is FALSE; (2) p € {Py, P»,..., Ps}, phase
=2, received_B is FALSE. We note that by the proto-
col, in every crash-failure execution where no process
crashes, neither (1) nor (2) occurs. As a result, if (1)
or (2) occurs, then some process must have crashed
or some message must have been delayed. If @ pro-
poses 0 to uc, then there are three possibilities when
Q proposes 0 to uc: (1) Q € {P», P3,...,P,}, phase
= 0, received_V is FALSE; (2) Q = Py, phase = 1,
received_B is FALSE; (3) Q € {P1, P», ..., Py_1}, phase
= 1, received_B is FALSE. By the protocol, in every
crash-failure execution where no process crashes, none
of the three possibilities occurs. As a result, if (1) or (2)
occurs, then some process must have crashed or some
message must have been delayed.

Agreement. By contradiction. Suppose that F is an
execution such that two processes P and @ decide dif-
ferently. W.l.o.g., P decides 1 and @ decides 0. Then
by the agreement property of uniform consensus, at
least one of P and @’s decisions is not a decision of
uc. If P’s decision is a decision of uc, then @Q’s deci-
sion is not a decision of uc; however, by the proof of
the commit-validity property above, every process pro-
poses 1 and thus when @) decides, @)’s local variable
votes = 1, which leads to a contradiction. If P’s de-
cision is not a decision of uc, then by the proof of the
commit-validity property above, every process proposes
1 and moreover, @’s decision must be a decision of uc;
as a result, some process R proposes 0 or v to uc. When
P decides, if a process in {P;, P,,..., Py} has not yet
crashed, then its local variables phase = 2, received_B
is TRUE (when phase is assigned to 2), received_V is
TRUE (when phase is assigned to 2); if a process in
{Pf41,Pfi2,..., Py} has not yet crashed, then its lo-
cal variables phase = 1, received_V is TRUE (when
phase is assigned to 1). Therefore, R cannot propose
0 when at R, phase = 0 or 1; since received_V and
received_B can only be assigned to TRUE by the pro-
tocol (except for initialization), no process would send
message [HELPED, 0] to R and thus R cannot propose
v = 0. As a result, R does not exist, which gives rise to
a contradiction.

O



	Introduction
	Problem statement
	Previous results
	Our results
	Techniques

	Models and Definitions
	Processes and channels
	Failures and executions
	Non-blocking atomic commit
	Complexity measures

	Lower Bounds
	Message delays
	Messages

	Matching Protocols
	Delay-optimal protocols
	Message-optimal protocols

	Indulgent Atomic Commit
	Lower bounds
	Optimal protocol

	Related Work
	Complexity of commit protocols
	Commit protocols
	Low-latency commit protocols with weak semantics

	Concluding Remarks
	References
	INBAC
	Correctness of INBAC
	Proofs of Lemmas
	Proof of Lemma 5
	Proof of Lemma 6

	Delay-optimal protocol
	Message-optimal protocols
	0NBAC
	Message-optimal protocol for synchronous NBAC: (n-1+f)NBAC
	aNBAC
	(2n-2)NBAC
	avNBAC
	(2n-2+f)NBAC


