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Abstract— This paper presents an approach to provide de-
mand response services with buildings. Each building receives a
normalized signal that tells it to increase or decrease its power
demand, and the building is free to implement any suitable
strategy to follow the command, most likely by changing some
of its setpoints. Due to this freedom, the proposed approach
lowers the barrier for any buildings equipped with a reasonably
functional building management system to participate in the
scheme. The response of the buildings to the control signal
is modeled by a Gaussian Process, which can predict the
power demand of the buildings and also provide a measure
of its confidence in the prediction. A battery is included in
the system to compensate for this uncertainty and improve
the demand response performance of the system. A model
predictive controller is developed to optimally control the
buildings and the battery, while ensuring their operational
constraints with high probability. Our approach is validated
by realistic co-simulations between Matlab and the building
energy simulator EnergyPlus.

I. INTRODUCTION

Electric grids are undergoing a substantial change in
scale and complexity. The growing addition of renewable
energy sources and distributed storage systems, and the mass
adoption of electric vehicles will all contribute to the sig-
nificant increase in complexity and volatility of future grids.
Demand response (DR), or demand side management (DSM)
in general, represents a significant but still underutilized
resource for supplying reliability services to the grid. A wide
range of DR programs and approaches have been offered by
utilities or investigated by researchers [1].

We are interested in a demand tracking control problem in
which an energy customer adjusts its power demand in real
time to track a reference demand signal, often for a limited
window of time. Let rt denote the reference demand at time
step t ≥ 0. Here, time is discretized in equal intervals of
length T > 0, and the power demand is averaged over each
interval. The sampling time T may vary between application
and customer types, from seconds in fast Ancillary Services
to minutes in slow DR with commercial buildings [2].

Consider an aggregation of commercial buildings as an
energy customer to track a reference demand signal. This
is generally achieved by controlling the heating, ventilating,
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and air-conditioning (HVAC) systems of the buildings as
the HVAC system is often the largest electricity load in a
commercial building. However, other building systems such
as the lighting system can also be manipulated to adjust
the whole building power demand. A common approach
adopted by many research works is to identify a detailed
mathematical model of the building’s HVAC system and
the building’s thermal model, then use an optimization-
based method to directly control certain field devices, such
as dampers, pumps, or fans [3]. While these methods can
achieve the best performance, they are expensive for several
reasons: (a) they require a major retrofit of the building to in-
stall sensors, actuators, and other equipment; (b) they require
upgrading the building energy management system (BEMS)
to collect data and implement new control logics, which will
incur significant cost; (c) they require detailed modeling of
the building’s thermal dynamics and HVAC system, which
is time consuming and costly [4]. For these reasons, their
benefits may not be attractive enough considering the cost
and effort of deployment, especially for existing commercial
buildings. Consequently their penetration into practical, real-
world applications is still at a low level.

A much simpler, hence more practical, approach to DR
with buildings is by global setpoint change rules, i.e., certain
global setpoints in the HVAC system are adjusted according
to predefined rules to change the building’s power demand.
Such rules can include setbacks for thermostat setpoints, the
supply air temperature setpoint and the chilled water supply
temperature setpoint, and also fixed dimming levels of lights.
Specifically, in the “Global Temperature Adjustment” (GTA)
strategy, the thermostats of the building’s zones are governed
by one or a few global setpoints, which are manipulated to
receive the change in power demand of the HVAC system [5].
The simplicity of this approach makes it very cost-effective
and practical, hence it is widely adopted in practice. This
approach can be enhanced by learning a model from the
setpoint change to the building’s power demand, then using
this model to devise good setpoint values. This requires
either an upgrade of the BEMS for learning and optimization
software, or services from an external provider. In the latter
case, the fact that an external party has access to internal
data of the BEMS, for model identification and operational
purposes, and can impose direct setpoint changes in the
system might cause reluctance of the building’s operator.

We propose a simpler approach to overcome these prac-
ticality issues. An artificial DR control signal ut ∈ [−1, 1] is
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Fig. 1. Architecture of the demand tracking system. In blue are control
signals, while in black are physical or measurement signals. Each building
implements its own DR rule, hidden from the controller, to respond to the
DR control signal u.

sent to the BEMS at each time step t, which requests it to
relatively increase (when ut > 0) or decrease (when ut < 0)
its power demand, or to keep the nominal operational setting
(when ut = 0). The maximum upward and downward power
demand adjustments are expected to be attained at ut = 1
and ut = −1 respectively. Each building is free to implement
any suitable rules to respond to the request, e.g., by adjusting
its global temperature setpoint proportionally to ut (GTA
strategy). These rules are assumed to be designed to satisfy
all operational constraints of the building, e.g., maintaining
the occupant comfort, while reacting appropriately to ut.
An aggregator learns a data-driven Gaussian Process (GP)
model of how the buildings respond to the DR control
signal. A GP model is a non-parametric statistical model,
which can predict the building power demand in response
to ut and also provide a measure of its confidence in the
prediction. This model is used to calculate the DR control
signal sent to the buildings in real time, in order to track
the reference demand signal. We note that the DR rules
implemented at the building to respond to the DR control
signal are completely unknown to the aggregator. To improve
the tracking performance, an auxiliary battery is employed
and controlled by the aggregator to compensate for prediction
uncertainty of the model. The overall system architecture is
depicted in Figure 1.

Advantages: The proposed scheme will be simple to
deploy since it is based on the rule-based DR and does
not require specialized software in the BEMS except for a
communication channel to receive the DR control signal.
Furthermore, the aggregator does not need access to any
internal data of the BEMS, nor direct change of any setpoints.
This ensures data confidentiality and operational safety of the
building system, which are much preferred by the building’s
operator. Finally, since each building’s energy system and
requirements are unique, the abstract interface between the
buildings and the aggregator by a simple DR control signal
removes the need for customizing the aggregator’s design to
each and every building. Therefore, the aggregation, learning,
and control algorithms can be applied to a wide range of
building types without modifications.

Related Work: A comprehensive review of building mod-
eling and control methods can be found in [3] and the
references therein. A broad range of data-driven modeling,
assessment, and control methods for DR with buildings have

been investigated in the literature. Regression trees were
used in [6] to model and compute setpoint schedules of
buildings for DR. Regression and GP models were inves-
tigated for forecasting short- and long-term building energy
consumption in [7]. Simulation studies with EnergyPlus and
regression models were used in [8] to quantify the flexibility
of buildings for DR using setpoint change rules. The authors
of [9], after comparing four data-driven inverse modeling
methods for building energy predictions, concluded that
the Gaussian approaches were accurate and highly flexible,
and the uncertainty measures could be helpful for certain
applications involving risks.

The rest of this paper is organized as follows. In Section II,
a data-driven modeling method for predicting building power
demand based on Gaussian Processes will be presented.
Section III develops a model predictive control formulation
for the demand tracking problem using the Gaussian Process
model. The proposed scheme is illustrated and validated by
a detailed simulation case study in Section IV.

II. GAUSSIAN PROCESSES FOR DEMAND PREDICTION

A. Introduction to Gaussian Processes

This section briefly introduces Gaussian Process (GP)
modeling with applications in control. For more details, we
refer the reader to [10] for general GP discussions and [11]
for applications of GPs in dynamic systems.

A GP can be viewed as an extension of the multivariate
Gaussian distribution to functions. It is a collection of ran-
dom variables, any finite number of which have a joint Gaus-
sian distribution. Specifically, consider noisy observations y
of an underlying function f : Rn 7→ R through a Gaussian
noise model: y = f(x) + N

(
0, σ2

n

)
, x ∈ Rn. Given the

regression vectors X = [x1, . . . , xN ] and the corresponding
observed outputs Y = [y1, . . . , yN ]T , we wish to find the
distribution of the output y? corresponding to a new input
vector x?. Assuming a GP structure y ∼ GP(µ, k; θ), y is
fully specified by its mean function µ(x) and covariance
function k(x, x′),

µ(x) = E[f(x)]

k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] + σ2
nδ(x, x

′)

where δ(x, x′) is the Kronecker delta function. The hyper-
parameter vector θ parameterizes the mean and covariance
functions. The covariance matrix K is defined to have
elements Kij = k(xi, xj).

The covariance function k(x, x′) indicates how correlated
the outputs are at x and x′. Intuitively speaking, k(·, ·) relates
nearby inputs (in a sense defined by the covariance function)
so that they will give similar predictions. This is an advantage
of GP modeling as it specifies the structure of the covariance
matrix of the input variables rather than a fixed structural
input–output relationship. It is therefore highly flexible and
can capture complex behavior with fewer parameters. There
exists a wide range of covariance functions and combinations
to choose from [10].

Given the training data, the hyperparameters can be esti-
mated by maximizing the likelihood: arg maxθ Pr(Y |X, θ).



Once the hyperparameters are determined, the GP can be
used to predict the distribution of the output y? corresponding
to a new input vector x?: y? ∼ N

(
y?, σ

2
?

)
, where

y? = gm(x?) := µ(x?) +K?K
−1(Y − µ(X)) (1a)

σ2
? = gv(x?) := K?? −K?K

−1KT
? (1b)

K? = [k(x?, x1), . . . , k(x?, xN )],K?? = k(x?, x?). (1c)

A key advantage of GP regression is that it provides
the predictive posterior distribution of the output instead
of a point estimate. This posterior distribution carries the
full information of the prediction, including for example its
confidence level. While the predicted mean is often used
as the best guess of the output, the full distribution can be
used in a meaningful way. In our method, the variance of the
predictive distribution is incorporated into the optimization to
control the system with a quantifiable confidence guarantee.

1) Gaussian Processes for Dynamical Systems: As GPs
can be used to model nonlinear functions, they are suitable
for modeling dynamical systems. This is achieved by feeding
delayed input and output signals back to the model as
regressors [11]. In such cases, the model is said to be
autoregressive, whose current output depends on its past
inputs and outputs. Specifically, in control systems, it is
common to use as the regressors of a dynamical GP
xt=[yt−ly , . . . , yt−1, ut−lu , . . . , ut, wt−lw , . . . , wt−1, wt]

where t denotes the time step, u the control input, w the
exogenous disturbance input, y the (past) output. Here, ly , lu,
and lw are respectively the lags for autoregressive outputs,
control inputs, and disturbances. Note that ut and wt are
the current control and disturbance inputs. The vector of all
autoregressive inputs can be thought of as the current state
of the model. A dynamical GP can then be trained from data
in the same way as any other GPs.

When a GP is used for control or optimization, it is usually
necessary to simulate the model over a finite number of
future steps and predict its multistep-ahead behavior. Because
the output of a GP is a distribution rather than a point esti-
mate, the autoregressive outputs fed to the model beyond the
first step are random variables, resulting in more and more
complex output distributions as we go further. Therefore, a
multistep simulation of a GP involves the propagation of
uncertainty through the model. There exist several methods
for uncertainty propagation in GPs [12], [11]. We mention
here two simulation methods for autoregressive GPs.

• The Monte-Carlo method obtains samples of the output
distribution under input uncertainty, which can be seen
as a Gaussian mixture. This Gaussian mixture becomes
more complex in later steps of the simulation, therefore
efficient numerical algorithms must be implemented.
This method can achieve good prediction accuracy at the
expense of high computational load. It is also general,
i.e., it can be used with any covariance functions.

• The zero-variance method does not propagate uncer-
tainty. At each step, the autoregressive outputs are
replaced by their corresponding expected values. Ob-
viously, this method will underestimate the variances

of the output distributions. However, its computational
simplicity is attractive, especially in optimization ap-
plications where the GP must be simulated for many
times. In such cases, if the prediction error caused by
not propagating uncertainty is insignificant, the zero-
variance method can and should be used. For more
detailed discussions on this topic, see [11], [12].

B. Data-driven Modeling of Building Power Demand with
Gaussian Processes

As introduced in Section I, in our proposed scheme, each
building implements its own rule to respond to the DR
control signal u. Because the specific rules are unknown
to the aggregator, we employ a data-driven GP regression
approach to learn from experiment data a black-box model of
the building power demand in response to the DR signal. The
data-driven GP modeling approach consists of the following
steps.

1) Experiment and data collection: In this step, data
are collected from experiments with the actual buildings.
A test DR signal, which is generated randomly or follows
a predefined pattern, is sent to the buildings. Their power
demands in response to the test signal are recorded, together
with other measurements such as the climate condition (e.g.,
the ambient air temperature and humidity). These additional
inputs represent the exogenous disturbances w to the model,
while u will be the DR signal input and y the power
demand output. Data points are associated with the time-
stamps at which they are collected, which include the time
of day, the day of week, and the full date. The time-stamps
usually reveal the usage or load patterns of the buildings and
therefore are important features of the model.

The experiment typically lasts several weeks to collect
enough data. In general, more experiment data and a broader
spectrum of the inputs, especially of the disturbances, can
increase the prediction accuracy and confidence of the GP.
Because our control scheme does not directly change the
building setpoints nor control its equipment but lets the
building controller apply its own appropriate rules, the
experiment will not adversely affect the building’s operation
or the comfort of its occupants. The experiment may be
repeated seasonally to adjust the model.

2) Feature selection: Because buildings are dynamical
systems, an autoregressive GP is usually needed to model the
response from the DR control signal to the power demand.
Often we do not know a priori what the lag values are
and which of the above inputs are relevant to predicting the
output. Feature selection concerns with selecting the relevant
inputs for the model. GPs provide an automatic tool for
determining the relevance of each input, using Automatic
Relevance Determination (ARD) covariance functions. An
ARD covariance function has a length scale hyperparameter
for each input, which indicates how much the input value
must vary to significantly influence the output value. An
input with a very large length scale is irrelevant to the
model. Therefore, we can train a GP with all the inputs
up to maximum lag values and with an ARD covariance



function, then remove the irrelevant inputs. This feature
selection method will be demonstrated in the case study.

3) Model selection, training and validation: The mean
function µ(x) is often chosen to be zero, though other options
can be useful in certain cases [10]. Selecting the covariance
function of the GP often requires domain insights and trial-
and-error. Common choices are the Squared Exponential
(SE) covariance function with ARD

k(x, x′) = σ2
f exp

[
− 1

2

∑D
d=1

(
xd−x′

d

λd

)2]
(2)

and the Rational Quadratic (RQ) covariance function

k(x, x′) = σ2
f

[
1 + 1

2α

∑D
d=1

(
xd−x′

d

λd

)2]−α
(3)

Here, α, σf and λd (length scales) are hyperparameters, and
D is the input dimension. Periodic behaviors can be modeled
with periodic covariance functions [10].

The experiment data collected in the first step are parti-
tioned into two separate sets: a training data set and a testing
data set. The GP’s hyperparameters are tuned on the training
data. The resulting GP is then validated on the testing data.
Several covariance functions can be compared based on their
validation results to select the best model. If the results are
unsatisfactory, we may need to go back to an earlier step,
for example to change the covariance function structure or
to select a different set of inputs.

III. DEMAND TRACKING CONTROL

This section formulates a model predictive control (MPC)
approach for the demand tracking problem. The control
system consists of three main components shown in Figure 1:
• A collection of buildings which respond to a DR control

signal by unknown but fixed rules, resulting in demand
variations. Their responses are modeled by a GP.

• A battery whose state of charge (SoC) can be measured
and whose charge/discharge power can be controlled.
The battery helps improve the tracking quality by ab-
sorbing the output uncertainty of the GP.

• A controller which receives the demand tracking request
from the utility and computes the DR signal to the
buildings and the power of the battery to optimally track
the reference demand signal.

We first present the models and notations used in this sec-
tion, followed by the formulation of the controller. Illustrative
simulation results will be discussed in Section IV.

A. Building’s Demand Response Model

In Section II-B we discussed how a GP could be trained
to learn the buildings’ aggregate demand response to the DR
signal from experiment data. The GP can predict the expected
demand as well as provides probabilistic information about
its prediction in the form of the variance. As we will show
later, this additional information is invaluable in the tracking
control method, particularly for controlling the battery.

We will use the subscript notation •τ |t to denote the value
of a variable at time step τ given the current information
available at t. It is a measured value if τ < t, e.g.,

yt−1|t is the measured power demand in the previous time
step. When τ ≥ t, the value is predicted, e.g., yt|t is the
predicted power demand in the current time step. At τ ,
the input vector xτ |t of the GP consists of the measured
and predicted outputs yτ |t = [yτ−ly|t, . . . , yτ−1|t], control
inputs uτ |t = [uτ−lu|t, . . . , uτ |t], and disturbances wτ |t =
[wτ−lw|t, . . . , wτ |t], as well as the time value τ :

xτ |t =
[
yτ |t,uτ |t,wτ |t, τ

]
.

The GP regression (1) gives us the distribution of the power
demand yτ |t ∼ N (yτ |t, σ

2
y,τ |t) where

yτ |t = gm(xτ |t), σ2
y,τ |t = gv(xτ |t). (4)

Note that xτ |t may contain predicted values. In particular:
• Control inputs uk|t, for k ≥ t, are decision variables.
• We assume that predicted disturbances wk|t, for k ≥ t,

are available, e.g., from short-term forecasts.
• Predicted outputs yk|t, for k ≥ t, are random variables

at previous steps. Here, we adopt the zero-variance
simulation method for simplicity, i.e., yk|t take the
predicted means yk|t, which are deterministic values.
Uncertainty propagation can be incorporated for more
accurate predictions as discussed in Section II-A, how-
ever the following derivations will be more complex.

As it is assumed that the DR rule of each building is
designed to be compliant with its own operational require-
ments, there are no further constraints on the GP except that
u is in the range [−1, 1].

B. Battery’s Model and Constraints

For simplicity, we assume an ideal lossless battery model
st+1 = st + Tbt (5)

where bt is the battery’s power during the time step t and
s is the battery’s SoC. Here, b is positive if the battery is
charging and negative if discharging. The battery is subject
to two operational constraints: its power must be bounded
by bmin ≤ b ≤ bmax, and its SoC must stay in a safe range
[smin, smax] where smax is the fully-charged level and smin

is the lowest safe discharged level.

C. Tracking Constraint

The link between the buildings and the battery is the
tracking constraint, which states that their total power p =
y + b should track the reference power demand r. In this
way, the battery serves two purposes:
• Because its power can be controlled precisely, it helps

reject the uncertainty of the GP, i.e., it compensates for
the discrepancy between the predicted power by the GP
and the actual power.

• It acts as an energy buffer to increase the tracking
capability of the controller.

Although ideally pt should track rt exactly at any time
t, this strict constraint may be infeasible in certain circum-
stances, for example when r is outside the DR capability
of the system. Therefore, we introduce a slack variable δt,
which is the tracking error: δt = rt − pt. The controller
tries to keep δ = 0, however when exact tracking is



TABLE I
CATEGORIZATION OF VARIABLES; t ≤ τ ≤ t+H − 1; k < t.

Decision variables Deterministic: uτ |t, δτ |t
Exogenous variables Deterministic: rτ |t, wτ |t
Current states Deterministic: yk, uk, wk, st
Derived variables Random: yτ |t, bτ |t, sτ+1|t

impossible, it will maintain the operational safety of the
system while keeping the tracking errors as small as possible.
This objective will be reflected in the cost function. In this
formulation, we consider δ as a decision variable and write
the battery power in terms of the reference r, the building
power y, and the slack δ:

bt = rt − δt − yt. (6)
This equation is made possible by the fact that the battery
can be controlled precisely in real-time.

D. Model Predictive Tracking Control

We adopt the MPC approach [13] to solve the demand
tracking problem. At the core of the MPC are the models
of the system, which are used to predict future system states
given the current state and current and forecast future inputs.
Suppose the current time step is t and the MPC horizon is
H > 0. To formulate the MPC, the equations predicting the
values of the system’s variables over the horizon must be
derived, based on the system models. We first categorize all
variables into: decision variables, which we aim to compute;
exogenous variables, such as the disturbances; current states,
i.e., available measurements at the current time t; and derived
variables, which are computed from the other variables.
We also differentiate between deterministic and random
variables. Table I summarizes this categorization. Note that
for simplicity the exogenous variables, namely the future
reference signal r and disturbances w, are assumed to be
deterministic, meaning that we know their future values ex-
actly, e.g., from accurate short-term forecasts. Uncertainties
in these variables can be incorporated into the formulation
as follows: uncertainty in r will increase the variance of b,
and uncertainties in w will propagate to y through the GP.

Formulating the MPC then amounts to deriving the dis-
tributions of the derived random variables conditioned on
the other variables. For example, we wish to derive the
probability distribution of each yτ |t given the current states
and all decision and exogenous variables. For notational
brevity, we will drop the conditioning part of the notations
and simply write Pr(yτ |t), with the implicit interpretation
that it is a conditional probability.

1) Predicted Power Demands of Buildings: At each time
step τ in the horizon, the predicted output is given by Eq. (4).
Recall that only the predicted output means are propagated.
Therefore yτ |t is independent of the realization of the random
variables yτ |t in previous steps. It follows that the random
variables yτ |t, for all t ≤ τ ≤ t + H − 1, are conditionally
independent given the non-derived variables. Consequently,
the sum of any subset I ⊆ {t, . . . , t + H − 1} of them is
also a Gaussian random variable∑

τ∈I yτ |t ∼ N (
∑
τ∈I yτ |t,

∑
τ∈I σ

2
y,τ |t). (7)

2) Predicted Battery Power and SoC: From Eq. (6), the
predicted battery power at time τ ≥ t has the Gaussian
distribution bτ |t ∼ N (bτ |t, σ

2
b,τ |t), where

bτ |t = rτ − δτ |t − yτ |t, σ2
b,τ |t = σ2

y,τ |t. (8)

The battery’s dynamics in Eq. (5) result in the future bat-
tery’s SoC as, for τ ≥ t, sτ+1|t = st +T

∑τ
k=t(rk− δk|t)−

T
∑τ
k=t yk|t. It follows that sτ+1|t ∼ N (sτ+1|t, σ

2
s,τ+1|t)

where
sτ+1|t = st + T

∑τ
k=t bk|t, σ

2
s,τ+1|t = T 2

∑τ
k=t σ

2
y,k|t (9)

in which Eq. (7) is used to derive the variance.
Recall that the battery’s power and SoC are bounded (see

Section III-B). In the probabilistic setting of the MPC, these
constraints lead to corresponding chance constraints. We
wish to guarantee that at each time step, the power and SoC
constraints are satisfied with probability at least (1− εp) and
at least (1−εs), respectively, where 0 < εp, εs ≤ 1

2 are given
constants. Specifically, for each τ in the horizon,

Pr
(
bmin ≤ bτ |t ≤ bmax

)
≥ 1− εp (10a)

Pr
(
smin ≤ sτ |t ≤ smax

)
≥ 1− εs (10b)

where bτ |t and sτ |t are Gaussian random variables whose
means and variances are given in Eqs. (8) and (9).

3) Objective Function: The tracking controller aims to
minimize the tracking error δτ |t, therefore we select the
quadratic objective function to minimize J =

∑t+H−1
τ=t δ2τ |t.

We may also consider additional objectives, such as reduc-
ing the battery’s charge–discharge frequency to improve its
lifetime. These objectives can be encoded as extra weighted
terms to the above tracking objective function. In this paper,
we will only consider the tracking objective.

4) MPC Formulation: Putting everything together, we
obtain the following stochastic MPC formulation:

minimize
u(·),δ(·)

J =
∑t+H−1
τ=t δ2τ |t

subject to Equations (4), (8), (9)
Chance constraints (10)
uτ |t ∈ [−1, 1], ∀t ≤ τ ≤ t+H − 1

At each t, the above optimization is solved to find optimal
DR signal u?τ |t and optimal slacks δ?τ |t, t ≤ τ ≤ t+H − 1;
of which the first optimal decisions u?t|t and δ?t|t are applied.
At the next time step t + 1, the optimization is repeated
with newly available information (i.e., new measurements
and updated forecasts) and the shifted horizon [t+ 1, t+H].

The above MPC formulation is difficult to solve due to the
two-sided chance constraints (10). In a recent work [14], it
has been shown that any two-sided linear chance constraint
of the form Pr(a ≤ xT ξ ≤ b) ≥ 1 − ε is convex in a, b
and x given that ε ≤ 1

2 . Here, a ∈ R, b ∈ R, x ∈ Rn,
and ξ is a known jointly Gaussian vector. Furthermore, there
exists a computationally tractable second-order cone (SOC)
approximation of this chance constraint, stated in Lemma 1.

Lemma 1 (Adapted from [14, Lemma 16]): Let
ξ ∼ N (µ,Σ) be a jointly distributed Gaussian random
vector with known mean µ and covariance matrix Σ, and
0 < ε ≤ 1

2 . Let LLT = Σ be the Cholesky decomposition of



Σ, and Φ−1(·) the inverse cumulative distribution function
of the standard Gaussian distribution. The following
constraints, with the auxiliary variable γ and ε? = ε/1.25,

γ ≥ ‖LTx‖2, a− b ≤ 2Φ−1(ε?/2)γ

a− µTx ≤ Φ−1(ε?)γ, µTx− b ≤ Φ−1(ε?)γ

is an SOC approximation that guarantees
Pr(a ≤ xT ξ ≤ b) ≥ 1− ε.

This result allows us to conservatively approximate the
chance constraints (10). We first rewrite, for each τ , bτ |t =

bτ |t+σy,τ |tξ using Eq. (8), where ξ ∼ N (0, 1). Then (10a) is
equivalent to Pr(bmin− bτ |t ≤ σy,τ |tξ ≤ bmax− bτ |t) ≥ 1−
εp, which is approximated by Lemma 1 as, ∀τ ∈ [t, t+H−1],

bmin − bτ |t ≤ Φ−1(ε?p)σy,τ |t, (11a)

bτ |t − bmax ≤ Φ−1(ε?p)σy,τ |t, (11b)

bmin − bmax ≤ 2Φ−1(ε?p/2)σy,τ |t. (11c)
Here ε?p = εp/1.25, and the auxiliary variable γ can be
dropped for γ = ‖σy,τ |t‖2 = σy,τ |t.

Similarly, (10b) is approximated by first rewriting sτ |t =
sτ |t+στ |tξ, where στ |t is the vector [σy,t|t, . . . , σy,τ |t]

T , and
ξ ∼ N (0, I) is a vector of (τ − t+ 1) independent standard
Gaussian random variables. Applying Lemma 1, we obtain
the following constraints for all t ≤ τ ≤ t+H − 1, with the
auxiliary variable γτ and ε?s = εs/1.25,

γτ ≥ ‖στ |t‖2, smin − smax ≤ 2Φ−1(ε?s/2)γτ (12a)

smin−sτ |t ≤ Φ−1(ε?s)γτ , sτ |t−smax ≤ Φ−1(ε?s)γτ (12b)

The final MPC formulation with chance constraint approx-
imations is given below:

minimize
u(·),δ(·)

J =
∑t+H−1
τ=t δ2τ |t (13)

subject to Equations (4), (8), (9)
Constraints (11), (12)
uτ |t ∈ [−1, 1], ∀t ≤ τ ≤ t+H − 1

Due to the GP model (4), the optimization problem (13) is
a non-convex nonlinear program, which can be solved by a
nonlinear optimization solver such as IPOPT [17].

IV. SIMULATION CASE STUDY

A. The Case Study

In this case study, we deployed a group of three buildings:
a medium office building, a large hotel, and a supermarket.
These buildings are modeled in EnergyPlus, taken from
the U.S. Department of Energy’s Commercial Reference
Building Models (http://energy.gov/eere/buildings/commercial-
reference-buildings). EnergyPlus is a high-fidelity whole build-
ing energy simulation software popularly used in research
and industry. The library of reference building models rep-
resent roughly 70% of commercial buildings in the U.S.
and are highly realistic. Therefore, we may consider these
models as real physical buildings. Each building model was
modified to receive global temperature setpoints from a rule-
based DR controller. An aggregator, developed in Matlab,
receives whole building power demand measurements from

the EnergyPlus models and computes and sends a single DR
signal to all three local DR controllers. This co-simulation
of multiple EnergyPlus and Matlab instances were developed
and deployed with the OpenBuildNet framework [15] on two
networked computers.

Each local DR controller implements a simple GTA strat-
egy, which adjusts the global thermostat setpoints propor-
tionally to the DR control signal by −2u (°C). Specifically,
the setpoint is raised by up to 2°C to reduce cooling power
demand when u < 0, or lowered by up to -2°C to increase
demand when u > 0, compared to the nominal setpoint
(u = 0). Here we assume that the ±2°C GTA is within
the operational range and acceptable comfort range of each
building. The sampling time T is 15 minutes. The weather
profile was of Chicago (U.S.), which is available from the
standard EnergyPlus’ weather dataset. All analyses and sim-
ulations were performed for the summer weather, however
similar results could be obtained for other seasons following
the same approach. The usage patterns of the buildings,
represented by various schedules (occupancy, equipment
operation, etc.), were included in the EnergyPlus models.
On a regular summer day, the nominal aggregate demand of
the three buildings peaks at between 700 and 800 kW.

B. Gaussian Process Model Development

This section reports the development of a GP model for
the collective demand response behavior of the buildings.

1) Experiment : An experiment was carried out by sim-
ulating the building models and their DR rules with i.i.d.
uniformly random DR signal ut ∈ [−1, 1] during the first
four weeks of June. The aggregator was not active during the
experiment. Besides the excitation signal u, only three mea-
surements were collected from EnergyPlus at each time step:
aggregate power of the buildings, outside air temperature and
humidity. The experiment data was partitioned into two sets:
75% of the data points, or three weeks of data, for training
and the rest for validation. Because the measurements have
vastly different scales (e.g., u ∈ [−1, 1] while y is in the
hundreds of kW), they were normalized into the range [−1, 1]
for model training purpose, and the validation results were
de-normalized for reporting purpose.

2) Feature Selection: We observed that for each building,
its operation schedules were similar between weekdays but
were reduced significantly on Saturdays and switched off on
Sundays. Hence, its response to the DR signal was similar
between weekdays but very different between a weekday and
a non-weekday. We could train a single model which takes
into account the day of week, or train a model for weekdays
and another model for non-weekdays. The second option was
adopted since the accuracy of the specialized models would
be higher than that of a universal model. In fact, we would
only perform the study for weekdays because on weekends,
the DR capability of the buildings was severely limited. The
day of week input was thus excluded as it was unnecessary.

We chose an autoregressive GP with candidate inputs
xt = [yt−ly , . . . , yt−1, ut−lu , . . . , ut, wt−lw , . . . , wt, ~t]



where y is the power demand, u the DR control signal, w
the disturbances, and ~t ∈ [0, 24] the current hour-of-day.
Here, y and u are scalars, while w = [θ, η] where θ and η
are respectively the ambient air temperature and humidity.

The lags ly , lu, lw are unknown in advance. To select the
relevant features, we used the SE covariance function with
ARD (2) to train models with different orders, compared
them on the validation dataset and examined their input
length scales. Three initial GP models Mn of order n =
2, 3, 4, with ly = n, lu = lw = n − 1, were considered.
The log likelihood of the identified model `1 was maximized
during the training. For validation, three performance mea-
sures on the mean predictions were calculated: the root mean
squared error (RMSE), the standardized mean-squared error
(SMSE), and the mean standardized log loss (MSLL). Details
on these measures can be found in [11, p. 78]. Essentially,
the smaller they are, the better the predictions are.

The feature selection results are reported in Table II, in
which extremely large length scales are replaced by ∞ and
some of them are excluded due to lack of space. Observe
that past weather conditions have infinitesimal influence on
the current power demand. By examining the length scales,
we determined the lag orders are: ly = 3, lu = 1, lw = 0.

3) Covariance Selection : As mentioned earlier, the usage
patterns of the buildings during weekdays are periodic. With
this insight, we selected the covariance function as the
product k(x, x′) = knt(xnt, x

′
nt)k~(~, ~′), where knt is a

covariance function for non-temporal inputs xnt and k~ is
a periodic covariance function for the temporal input ~;
x = [xnt, ~]. Covariance selection was performed by trying
different choices for knt and k~ and selecting the one with
the best performance on validation data. Finally, we selected
the SE covariance function for knt and the periodic RQ
covariance function for k~.

4) Model Validation: The final GP model was validated
on the testing dataset, resulting in good performance scores:
RMSE = 14.579 (kW), SMSE = 0.0055, MSLL = −2.4358.
To test the model for multistep-ahead predictions, two 24-
hour-ahead prediction simulations were performed. The first
simulation used the Monte-Carlo method with 400 samples
per step, and the second simulation used the zero-variance
method. The results are reported in Figure 2, which plot the
true values yt, the predicted mean yt and 95% confidence
intervals (2σ), and the absolute residuals |et| = |yt − yt|. In
both cases, the prediction accuracy was good. Figure 2c plots
the difference between the output standard deviations σMC

and σZV of the two methods. The error was small, averaged
at 1.04 (kW), hence the variance estimates obtained by the
zero-variance method were sufficiently accurate. Therefore,
this method could be used for predicting future outputs in
control and optimization.

C. Demand Tracking Control Simulation Results

In this simulation study, we considered a DR event lasting
for four hours between 13:00 and 17:00 on July 7th. This
day is outside the training period for the GP model and
has an unusually high outside air temperature profile, which
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(a) Monte-Carlo simulation results.
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(b) Zero-variance simulation results.
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Fig. 2. 24-hour ahead simulation results.

prompts the DR event. During the event, the system was
requested to track a reference demand signal which was
∆P (kW) below the baseline demand. The baseline was
obtained by simulating the buildings in their nominal modes
on the same day; alternatively, it could be calculated by
simulating the GP with a zero DR control signal. Given ∆P ,
the reference signal is rt = p?t−∆P when t is between 13:00
and 17:00, where p?t is the baseline demand. The chance
constraint thresholds were both 90%, i.e., εp = εs = 0.1.

The aggregator’s MPC formulation (13) was implemented
in Matlab with CasADi [16] and IPOPT [17] for solving
the nonlinear program. Using the OpenBuildNet framework,
we performed many simulations for different ∆P values,
different battery sizes, and three different horizons H =
4, 8, 12 (respectively 1, 2, 3 hours). The MPC problem size
depends on the horizon H and is largest when H = 12. On
an Apple Mac Pro 2013 with Matlab 2015b and utilizing
only one CPU core, the largest MPC problem took less than
a minute to solve at each time step, which was fast enough
given the sampling time of 15 minutes.

Figure 3 illustrates the simulation results for ∆P = 69kW,
H = 8, bmax = 30kW, battery size smax = 50kWh, and
the initial battery SoC at half capacity. The top figure plots
the baseline p? (dashed line), the reference r (solid line),
and the buildings’ aggregate power y (dash-dotted line). The



TABLE II
FEATURE SELECTION RESULTS: λx,i IS THE LENGTH SCALE OF INPUT x(t− i); RELEVANT FEATURES ARE HIGHLIGHTED.

Model `1 RMSE SMSE MSLL λy,4 λy,3 λy,2 λy,1 λu,3 λu,2 λu,1 λu,0 λθ,1 λη,1 λθ,0 λη,0

M2 4151 21.31 0.0119 -2.0456 28.14 6.04 26.28 7.95 ∞ ∞ 3.70 12.75
M3 4188 21.15 0.0118 -2.0923 63.32 24.07 4.71 ∞ 35.32 6.79 ∞ ∞ 3.51 11.20
M4 4224 20.80 0.0114 -2.1655 470.34 72.11 26.63 4.78 ∞ ∞ 49.59 6.92 ∞ ∞ 3.97 11.73
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Fig. 3. Simulation results for ∆P = 69 kW: power (top), DR signal
(second), battery power (third), battery SoC (bottom).

DR event period is shaded. Observe that the buildings alone
could not track the reference exactly: yt > rt, the dash-dotted
line is above the solid line during the DR event. This slack
between the buildings’ power and the reference was fully
compensated by the battery as shown in the third figure, and
the system successfully tracked the reference demand.
The battery SoC is plotted in the bottom figure.

The flexibility of the system, i.e., the maximum reduction
∆P it is able to track exactly, is determined by the MPC
horizon H and the battery size. By performing many sim-
ulations, we were able to find the system’s flexibility for
various combinations of H and battery size, summarized in
Figure 4. Obviously, as the battery size or the MPC horizon
increases, the flexibility also increases. However, we found
that increasing the battery size, hence its cost, significantly
(50kWh to 75kWh to 100kWh) did not result in significant
increases in the DR flexibility. Increasing the MPC horizon,
on the other hand, could achieve similar increases in the DR
flexibility while being much easier and cheaper to implement.

V. CONCLUSIONS

This paper presented a data-driven approach to provide
demand response services, in particular reference demand
tracking, with buildings and energy storage. The key advan-
tage of the proposed scheme is its simplicity in implementa-
tion. It requires minimal changes in the building’s equipment
and energy management system. Furthermore, it achieves
a separation of concerns between the building’s level and
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Fig. 4. Flexibility for different MPC horizons H and battery sizes smax.

the aggregator’s level through an abstract DR control sig-
nal and through the use of Gaussian Process models. We
showed that a GP model trained on experiment data could
achieve accurate predictions of a building’s power demand
with a quantifiable confidence measure. We developed an
MPC formulation for the aggregator’s algorithm and showed
the effectiveness of the proposed approach in a realistic
simulation case study.

Several extensions are currently being pursued. We are
developing an analytical method to quantify the system’s
flexibility without resorting to brute-force simulations. Un-
certainty propagation will be incorporated into the scheme
for more accurate predictions with the GP. Large-scale
distributed optimization algorithms for controlling a large
number of buildings and batteries to provide DR services are
being investigated. Finally, we will study the effectiveness
of the proposed approach for other demand response and
ancillary service applications.
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