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Abstract 
Definition of single spikes from multiunit spike trains plays a 
critical role in neurophysiology and in neuroengineering. 
Moreover, long period analysis are needed to study synaptic 
plasticity effects and observe the long and medium term 
development on which all Central Nervous System (CNS) 
learning functions are based. Therefore, the increasing 
importance of long period recordings makes necessary on-line 
and real time analysis, memory use optimization and data 
transmission rate improvement. A threshold-amplitude spikes 
detection method is chosen and 5 noise level estimate methods 
were developed. Than APs are bundled to group using principal 
component analysis and classified (hierarchical classifier). The 
system has lot of applications like high-throughput 
pharmacological screening and monitoring effects. 

1 Introduction 

Neuron is the most important elaboration unit in the Central 
Nervous System (CNS). 
In the last decade, studies on neuronal physiology and plasticity 
have provided a detailed picture of the molecular mechanisms 
underlying the modulation of neuronal activity. On the contrary, 
the functional mechanisms which control the network properties 
remain poorly understood, and represent a new frontier in the 
neuroscience [10]. 
The majority of the neurons of the CNS communicate by means 
of electric pulses, called action potentials. These brief voltage 
spikes can be recorded with conventional electrodes, such as 
micropipettes, which are able to acquire also the signals of a 
single neuron. On the other side, the number of simultaneous 
measurements is limited by the employment of micropipettes, 
because of the difficult placement of more than two 
micropipettes on the same slide [7]. 
New technologies have been developed in order to overcome 
the experimental difficulties which limit the number of neurons 

studied at the same time, the temporal constraints due to the 
placement of the electrodes and the mechanical damage of the 
cells during the functional study. In this context, 
MicroElectrode Arrays (MEA) have been designed [6]. Planar 
MEA, like electrodes matrixes, have been spread for the first 
time in the 1970s. By the means of MEA, it can be possible to 
study the properties of a complex neural network, not only the 
signals of a single neuron. These devices, produced by means of 
photolithographic techniques, are slides which integrate 60 
microelectrodes on the surface. 
Electrodes and neurons are not coupled, also in low density 
neuronal culture, because of MEA spatial resolution (100µm – 
200µm), but each electrode records the electric potential 
variations in the local region, where generally there are a lot of 
neurons. Therefore, the detection of neural spike activity using 
a MEA is a technical challenge in order to study the main brain 
functions and to discover the functional structure of the 
neuronal network, i.e. how the neurons are connected and 
organized. Indeed, it is a primary step in order to obtain an 
appropriate neural network model, which represents the 
robustness, the versatility, and the sensitive responses of the 
mammalian nervous system [4, 5].  
To approach this goal, it is necessary to distinguish the activity 
of each neuron; this means to detect the neural signal from 
background noise and, then, to recognise the different sources.  
Moreover, long period analysis are needed to study synaptic 
plasticity effects and observe the long and medium term 
development on which all CNS learning functions are based. 
Therefore, the increasing importance of long period recordings 
makes necessary on-line and real time analysis, memory use 
optimization and data transmission rate improvement.  
The present study can be included into this research field; it 
deals with the design of software for the on-line detection and 
classification of neural spikes, able to distinguish the activity of 
single cells from the signals recorded by MEA. 
The system has lot of applications, from high-throughput 
pharmacological screening, towards neuropharmacology and 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148027981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


monitoring effects of drugs and toxins (neurotoxicity), to 
staminal cells excitability researches. 

2 Methods 

An amplitude-threshold spikes detection algorithm and a 
hierarchical classifier were developed in Matlab 7.1 (The 
Mathworks, Natick, MA) environment. 

2.1 Spikes detection 

In literature there are many algorithms proposed to detect spikes 
from signals recorded by MEA electrodes. 
The spikes detection algorithm here described is structured as 
follows: first the signal is band-pass filtered with a 2nd order 
Butterworth filter (150Hz - 2500Hz); then, both positive and 
negative threshold values are determined as a multiple of noise 
level estimate. Finally, positive APs over positive threshold and 
negative APs under negative threshold are detected and 
validated to prevent double detections of unitary events. A 
detected peak is tested in ±1ms window, checking if it is the 
highest peak of either polarity and if the 50% of its amplitude is 
higher than other peak of the same polarity. 
A significant improvement suggested in this work, is a 
qualitative evaluation of APs amplitude; spike detection 
algorithm make out 3 threshold values (i.e. two bits output), 
multiplying the noise level estimated with 3 factors. The 
smallest threshold not only discriminates between APs and 
background noise, but also identifies little peaks. Otherwise 
medium and high thresholds (multiples factors equal to 7 and 
10) recognize middle and tall peaks.  
Five noise level estimation algorithms, some suggested by 
literature [8, 9], some modified were developed. Then, their 
performances were compared with statistical analysis, to select 
the best solution. 
The noise level can be calculated as follows. 
(a) BandFlt, based on the algorithm described in [8, 9], detects 
spikes if the filtered stream exceeds a given multiple (supposed 
equal to 4) of the estimated Root Mean Square (RMS) noise. 
Three hundred 10ms windows of data are read; for each of these 
windows the RMS values are calculated. The results are sorted, 
and the final estimate of noise level is the 25th percentile of the 
values collected. Positive and negative threshold values are 
equal and fixed. 
(b) Limada, described in [8, 9] like BandFlt, splits the data 
stream into 10ms windows, and determines the 2nd (V.02) and 
30th (V.30) percentiles of the distribution of voltages found in 
each window. Then, it performs two tests: it checks if the ratio 
between V.02 and V.30 is smaller than 5 (i.e. no actual spike in 
the window) and if the absolute value of V.30 is significantly 
non-zero (i.e. data in the window are not blanked out). If both 
tests are passed, the window is considered ‘clean’. Noise level 
initialization value is defined after that 100 clean windows are 
collected; then the current noise level estimate is updated as 
described in Equation (1): 

noise_est(k) =0.99*noise_est(k-1) +0.01*|V.02 | (1) 
where k is the current iteration index. 
Positive and negative threshold values are computed by 
multiplying noise level estimate by 4. Their values are equal 
and adaptive. 
(c) Another adaptive algorithm suggested by literature [8, 9] 
and developed in this work is AdaFlt; it divides signal into 
10ms windows and 128 windows of data are read. For each of 
these windows, the maximum and minimum values are 
measured; then, results are sorted, and 40th percentile of both 
collections is computed (M.4 and m.4). The noise level 
initialization estimates for upward (noise_estp) and downward 
spikes are based on the result. Thresholds are computed by 
multiplying noise level estimate by 2. While running, AdaFlt 
keeps collecting minima and maxima in 10ms windows, 
although it uses only one in ten windows. Whenever 128 
windows have been collected, positive and negative thresholds 
are updated as shown in Equation (2) and Equation (3), 
respectively 

noise_estp(k) =0.9*noise_estp(k-1) +0.1*M.4  (2) 
noise_estn(k) =0.9*noise_estn(k-1) +0.1*m.4 . (3) 

(d) AdaFlt was modified into AdaFlt 128: the former adapts 
thresholds after 1280 windows, the latter after 128. Therefore 
AdaFlt 128 is faster and more adaptive than AdaFlt, but it 
suffers more for noise fluctuations. 
(e) The last algorithm developed in this work is Band Flt 
VHDL, devised as BandFlt adaptive properties improvement. It 
splits the data stream into 10ms windows, calculates the RMS 
values for each of the initial 100 windows and determines the 
25th percentile of RMS distribution (N.25). Noise level 
initialization value is defined. Then the current noise level 
estimate is updated as described in Equation (4): 

noise_est(k) =0.9*noise_est(k-1) +0.1*N.25 . (4) 
Algorithms performances were statistically evaluated using a 
simulated neuronal signal. The simulated signal was artificially 
made up of both positive and negative triangular waves (each 
wave is composed by 20 samples); the intensity peaks range 
from 40 to 100µm. Apart from these simple waves, the 
simulated signal is characterised by complex waves, formed by 
2 overlapped and temporally shifted triangular waves, 
representing multi-shaped AP in neuronal culture activity. The 
full amount of spikes that algorithm should detect of simple and 
complex waves, representing valid spikes, is 600.  
A white Gaussian noise was used to simulate real background 
noise. First, it was band-pass filtered (2nd order Butterworth) 
between 150Hz and 2.5kHz, then normalized and overlapped to 
simulated signal. The Signal to Noise Ratio (SNR) is equal to 
5dB, like real neuronal culture signals SNR. 
Algorithms performances were evaluated performing a 
Screening Test that determines true and false positive (TP/FP) 
and true and false negative (TN/FN) values. Sensibility (Se), 
specificity (Sp), positive predicted value (PPV) and negative 
predicted value (NPV) were computed by means of Screening 
Test results. 
 



2.2 Spikes classification 

After detecting temporal occurrences of APs, validated 
waveforms must be extracted from signal in 2ms windows and 
then classified. The background assumption is that neurons 
usually generate APs with a characteristic shape; so the aim of 
classification is correlating source with a characteristic 
waveform.  
The classification algorithm proposed in this work is based on 
principal component analysis (PCA) and hierarchical 
classification. The former finds an ordered set of orthogonal 
basis vectors that capture the directions in the data of largest 
variation [2]. The latter is a method of cluster analysis; it splits 
N observations (i.e. neuronal waveforms) into a series of m 
clusters, where m can range from 1 (all observations grouped 
into one cluster) to N (each observation is a cluster). The 
strength of this technique is that it provides the possibility of 
increasing or decreasing the number of clusters depending on 
the required level of aggregation [3]. 

3 Results 

3.1 Spikes detection 

Algorithms Screening Tests were performed; results are 
reported in Table 1. 
It’s known by literature that BandFlt underestimates noise level; 
therefore it identifies a lot of FP. On the other hand it produces 
noise level values more stable than standard deviation [8, 9]. 
Limada is more reliable than BandFlt in order to identify the 
threshold. It is an adaptive method, necessary for real time 
analysis. The main disadvantage is that it needs approximately 
5s of signal to initialize threshold and computes a lot of FN. 
AdaFlt finds a lot of FN caused by threshold excessively slow 
variation. On the other hand AdaFlt 128 is faster and more 
adaptive than AdaFlt; it identifies a few number of FN caused 
by noise fluctuations. Finally, BandFlt VHDL method is like to 
BandFlt but it is adaptive and finds less FP than BandFlt. 
 

 Band 
Flt Limada AdaFlt AdaFlt 

128 
Band 
FltVhdl 

TP 598 583 524 584 599 
FP 85 1 2 1 67 
TN 599315 599399 599398 599399 599333 
FN 2 17 76 16 1 

 
Table 1: This table reports algorithms Screening Test results. 
 
Sensibility (Se), specificity (Sp), positive predicted value (PPV) 
and negative predicted value (NPV) were computed by means 
of Screening Test results. In this work only Se (Figure 1) and 
PPV (Figure 2) evaluations are described, because of other 
parameters not significant statistics.  
 

 
Figure 1: Here algorithms sensibility values are compared. 
 

 
Figure 2: This figure shows the evaluation of positive predicted 
values between algorithms. 

3.2 Spikes classification 

To get APs separated groups, the data are projected along the 
first two principal components (Figure 3); it’s known from 
literature [1, 2] that 1st and 2nd component eigenvalues can 
represent, alone, the useful characteristics for classification. 
Then, hierarchical classifier yields an accurate classification 
(Figure 4). The classification is satisfying: every cluster 
contains at least two points and distances between each 
barycentre are bigger than statistical data dispersion. 

 
Figure 3: Data projected along the first two principal 
components. 



 
Figure 4: Hierarchical classifier output. 

4 Conclusions 

Definition of single spikes from multiunit spike trains plays a 
critical role in neurophysiology and in neuroengineering; 
indeed, it permits to understand how much information is 
encoded by single neurons in a neuronal network. Moreover, 
the possibility to develop a bidirectional communication 
between electronic devices and neuronal networks provides 
great perspectives in neuroengineering. Traditionally, the 
functional properties of neurons and neuronal networks have 
been investigated using conventional electrodes, such as glass 
micropipettes, thus allowing neurophysiologists to disclose a 
detailed picture about the single cell properties. Thirty years ago 
Micro-Electrode Array devices (MEAs) have been developed as 
tools providing distributed information about learning, memory 
and information processing in a cultured neuronal network. 
Recent applications of these technologies, above all long period 
analysis, have the problem of the recording and storage of the 
huge amount of data processed. 
A threshold-amplitude spikes detection method is chosen to 
make software simpler allowing on-line detection and real time 
analysis. 5 noise level estimate methods were developed. 
Band Flt finds the most number of FP but not too much FN; it 
has high sensibility but the PPV means a low probability of an 
AP correct detection. Therefore, this method is not very 
selective but true spikes aren’t lost. The same consideration 
could be written about Band Flt VHDL.  
On the other hand, Limada finds the most number of FN, 
because it uses part of the signal to compute the initialised 
thresholds, FP value is very small, sensibility and PPV are very 
high. It means that algorithm is very selective but huge amount 
of data could be lost. The same consideration could be written 
about AdaFlt 128.  
BandFlt VHDL has the highest performances in order to do 
long period recordings of neuronal cultures, allowing on-line 
and real time analysis and optimizing memory occupation.  
After spike detection, the software described above, bundles to 
group (PCA) and classifies APs (hierarchical classifier). The 
classification is satisfying. 

The system has lot of applications, from high-throughput 
pharmacological screening, towards neuropharmacology and 
monitoring effects of drugs and toxins (neurotoxicity), to 
staminal cells excitability researches. 
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