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Abstract— The optimal power flow (OPF) problem, a funda-
mental problem in power systems, is generally nonconvex and
computationally challenging for networks with an increasing
number of smart devices and real-time control requirements. In
this paper, we first investigate a fully distributed approach by
means of the augmented Lagrangian and proximal alternating
minimization method to solve the nonconvex OPF problem
with a convergence guarantee. Given time-critical requirements,
we then extend the algorithm to a distributed parametric
tracking scheme with practical warm-starting and termination
strategies, which aims to provide a closed-loop sub-optimal
control policy while taking into account the grid information
updated at the time of decision making. The effectiveness of
the proposed algorithm for real-time nonconvex OPF problems
is demonstrated in numerical simulations.

I. INTRODUCTION

One fundamental problem in the optimization and control
of power systems is the optimal power flow (OPF) problem,
which seeks to optimize an objective such as generation
cost or power loss under certain network constraints such
as voltage operation limits and device capacities. The OPF
problem is generally nonconvex, and thus NP-hard. Various
OPF algorithms have been developed based on convex re-
laxations, which are appealing for some particular networks
where the relaxation is exact, i.e. the optimal solution of the
convex relaxed problem is also a solution of the original OPF
problem [17], [18]. However, solving the OPF problem in the
case of general networks remains an open and challenging
problem.

In addition to non-convexity, the size of the OPF prob-
lem poses another challenge to future grid control. Smart
devices such as controllable loads and storage elements are
increasingly integrated into power grids. On one hand, these
devices assist to shave the peak load and compensate for
the uncertainties of the electricity demands and renewable
energy generations [9], but on the other hand, they inevitably
increase the scale and complexity of the OPF problem.

The OPF problem is traditionally solved by a Newton-
Raphson method in a centralized manner [14]. However, a
distributed method that allows for more agents to simultane-
ously participate in the computations is highly desirable for
scalability. Some distributed algorithms based on semidefi-
nite programming (SDP) or second-order cone programming
(SOCP) relaxations for OPF problems have been developed
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for the cases where tight convexification holds [7], [16], [21].
Nevertheless, for the general networks where the convex
relaxation is inexact, decomposition needs to take place at the
nonconvex level. Recently, [19] and [12] proposed distributed
nonconvex OPF algorithms via an alternating minimization
method combined with sequential convex approximation or
trust region method respectively, but their uses in the real-
time scenario are hampered by their reliance on a large
number of coordinations between subsystems.

In this work, we aim at solving the nonconvex OPF
problem in real-time, as more frequent solutions are re-
quested by power networks with increased penetration of
renewable energy resources [9]. To achieve this goal, we
first tackle the nonconvex OPF problem by a distributed
approach with a convergence guarantee. We then further
speed it up with practical warm-starting, termination and
tuning strategies with the purpose of providing a closed-
loop suboptimal control policy, while taking into account the
updated grid information at (or close to) the time of decision
making. The main contribution of the paper lies in applying
the distributed optimization techniques in [2], [11], [13] to
the real-time nonconvex OPF problems where the convex
relaxation approach [8], [17], [18] fails.

The paper is organized as follows. Section II introduces
the formulation of OPF problems. The real-time distributed
OPF algorithms are then presented in Section III and tested
in Section IV. We finally conclude the paper in Section V.

II. PROBLEM FORMULATION

In this section, we introduce the formulation of the non-
convex AC OPF problems considered in the paper.

A. Power Flow Model

We consider a radial power network T := (N , ε) con-
sisting of a set of buses N := {0, ..., n} and a set of lines
ε := {1, ..., n}. We index the root node by 0, and denote the
rest by N+ := N\{0}. In the network, each bus i ∈ N+ has
a set of neighboring buses, including a unique ancestor Ai
and a set of children Ci := {C1i, C2i, . . . , Cri, . . . CRi},
and each line i ∈ ε connects bus i and bus Ai. For each bus
i ∈ N , we denote by Vi the complex voltage, and define
vi := |Vi|2. We also denote by si = pi + jqi the power
injection at bus i where pi and qi represent the real and
reactive power respectively. At the substation bus, the voltage
V0 is fixed while the power injection s0 is fully flexible to
feed the network. For each line i ∈ ε, let Zi = Ri + jXi

denote the complex impedance and Si = Pi + jQi denote
the power flow from bus i to bus Ai. Also, let Ii denote the
complex current on the line from bus i to bus Ai, and define
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Fig. 1. Notations in a radial power network

Li := |Ii|2. The notation of variables is summarized in the
table below. The lowercase corresponds to the bus while the
uppercase corresponds to the line.

Bus i ∈ N vi pi qi
Line i ∈ ε (Bus i-Ai) Li Pi Qi

Given the network topology T , the impedance Z and the
substation voltage v0, the power flow in a radial network can
be described by the branch flow model [3], [4] as follows:

vAi
= vi − 2(RiPi +XiQi) + Li(Ri

2 +Xi
2) (1a)∑

Cri∈Ci

(PCri − LCriRCri) + pi = Pi (1b)∑
Cri∈Ci

(QCri − LCriXCri) + qi = Qi (1c)

Pi
2 +Qi

2 = viLi (1d)

B. OPF Problem

Two types of constraints commonly exist in grid operation.
The first type regards the power injection constraints on the
controllable devices at each bus. Suppose that a number
of Ki devices such as load, generator and energy storage
elements are installed at bus i, the total power injection at
this bus is as follows [8]:

pi =

Ki∑
k=1

pi,k, qi =

Ki∑
k=1

qi,k (2)

Let pgen
i (t) and qgen

i (t) denote the active and reactive power
injection, respectively, from a generator at time t ∈ T , which
are bounded by:

pgen
i
≤ pgen

i (t) ≤ p̄gen
i (3a)

qgen
i
≤ qgen

i (t) ≤ q̄gen
i (3b)

For a storage element at bus i, let ebat
i (t) denote the amount

of energy storage and pbat
i (t) denote the discharge rate from

the battery to the network at time t ∈ T . The dynamics
of the battery are modeled to follow a first-order difference
equation with constraints:

ebat
i (t+ 1) = ebat

i (t)− pbat
i (t)∆t (4a)

ebat
i ≤ ebat

i (t) ≤ ēbat
i (4b)

pbat
i
≤ pbat

i (t) ≤ p̄bat
i (4c)

Another operational constraint is on the voltage that is
regulated within a range. Suppose that the voltage lower
bound and upper bound are defined as vi, v̄i respectively,
the voltage at bus i is constrained by

vi ≤ vi ≤ v̄i (5)

For example, if the allowable voltage deviation is 5% from
the nominal, then the voltage at bus i ∈ N+ is regulated in
a per unit range 0.952 ≤ vi ≤ 1.052.

The optimal power flow (OPF) problem typically has an
objective function related to the power injections at buses and
the currents on the lines, such as minimizing the real power
generation or total power losses. Moreover, the objective
function is usually an aggregate of the local cost at each
agent. In this work, we focus on the following objective
function:

f(p) =

T∑
t=1

∑
i∈N

{i2(t)(pgen
i (t))2 + {i1(t)pgen

i (t) (6)

where {i2(t) and {i1(t) are the terms associated with gener-
ation price at bus i at time t. For a network equipped with
smart devices such as storage elements or controllable loads,
the quadratic cost function tends to shave the peak load and
flatten the generation profile, which are favorable for the
efficiency of conventional power plants [10].

To summarize, the OPF problem for radial networks is
formulated as below:

OPF: min (6)

over v, L, P,Q, p, q

s.t. (1), (2), (3), (4), (5)

The equality constraint (1d) is nonconvex. By relaxing
this constraint, one can obtain a second-order cone program
(SOCP) and gain higher numerical efficiency. However, the
solution of the relaxed problem can be infeasible for the grid
operation when violating (1d). A detailed analysis regarding
the possible inexactness can be found in [15].

III. REAL-TIME DISTRIBUTED OPF ALGORITHMS

In this section, we first review a proximal regularized
block-coordinate descent method, and then apply it to the
nonconvex OPF problem. Subsequently, practical accelera-
tion strategies are proposed for the real-time grid operation.

A. Preliminary

The proximal regularized block-coordinate descent
method is a powerful framework for solving the minimization
problem of a nonconvex function satisfying the Kurdyka-
Lojasiewicz property [2]. It tackles the problem of the
following structure:

min
x

g(x1, . . . , xp) +

p∑
i=1

hi(xi)

where vector x = (x1, . . . , xp) belongs to the space Rn1 ×
· · · × Rnp , g is a C1 continuous function with locally
Lipschitz continuous gradient, and hi : Rni → R ∪ {+∞},



i = 1, 2, . . . , p is a proper lower semicontinous function. It
is proven in [2] that a bounded sequence {xk1 , . . . , xkp}k∈N
generated by an inexact block-coordinate descent algorithm
converges to a critical point of g(x1, . . . , xp) +

∑p
i=1 hi(xi)

under the following two assumptions:

Assumption 1: (sufficient decrease) For aki > 0, the
following inequality condition holds:

hi(x
k+1
i ) + g(xk+1

1 , . . . , xk+1
i−1 , x

k+1
i , . . . , xkp) +

aki
2

∥∥xk+1
i − xki

∥∥2

≤ hi(xki ) + g(xk+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , x

k
p).

(8)
Assumption 2: (relative error tolerance) For bki > 0 and

the subgradient vk+1
i ∈ ∂hi(xk+1

i ), the following inequality
condition holds:∥∥vk+1
i +∇xi

g(xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
p)
∥∥ ≤ bki ∥∥xk+1

i − xki
∥∥ .

(9)
Let us also define the proximal operator and indicator

function for the remainder of the paper. Let f : Rn →
R∪{+∞} be a proper lower semicontinuous function which
is bounded from below, and α > 0 a positive parameter. The
proximal operator of f with coefficient α is defined as

proxfα(x) := arg min
y

f(y) +
α

2
‖y − x‖2

An indicator function of a closed subset Ω of R is defined
as

δΩ(x) :=

{
0 ifx ∈ Ω
+∞ ifx /∈ Ω

B. OPF Decomposition

The OPF problem formulated in Section II has the follow-
ing properties that facilitate decomposition:

• The objective function (6) is fully decomposable to each
bus in the network.

• The equality constraints (1a - 1c) are linearly coupled
between neighboring buses.

• The rest of equality and inequality constraints (1d - 4)
are private at each bus.

Inspired by [20], we first decouple the coupling constraints
(1a - 1c) by introducing a set of slack variables xA,i and
xC,i := (xC1,i, xC2,i, . . . , xCr,i, . . . ) at bus i as local esti-
mates of the coupling variables associated with its neighbors,
i.e. an ancestor Ai and a group of children Ci. Thus, each
bus i manages a set of local variables xi := (xB,i, xA,i, xC,i)
as follows:

xB,i :=(v
(x)
i , L

(x)
i , P

(x)
i , Q

(x)
i , p

(x)
i , q

(x)
i )

xA,i :=v
(x)
A,i ≡ v

(x)
Ai

xCr,i :=(L
(x)
Cr,i, P

(x)
Cr,i, Q

(x)
Cr,i) ≡ (L

(x)
Cri

, P
(x)
Cri

, Q
(x)
Cri

)

where {·}(x) represents local variables.
As the local variables xA,i, xC,i estimated at bus i should

be in consensus with the corresponding variables xAi , xCi

estimated at the adjacent bus Ai and Ci, a set of slack

variables in charge of communication are defined at the
neighborhood around each bus i:

zi := (v
(z)
i , L

(z)
i , P

(z)
i , Q

(z)
i )

where {·}(z) represents consensus variables.
With these additional variables, the OPF problems can be

decomposed and reformulated into the following form:

min
N∑
i=1

fi(xi) (11a)

s.t. Aixi = bi i ∈ N (11b)

xTi Eixi = 0 i ∈ N (11c)
xB,i = zi, xA,i = zAi

, xC,i = zCi
i ∈ N (11d)

xi ∈ Ωi i ∈ N (11e)

where Aixi = bi corresponds to the local linear equality
constraints (1a-1c), (2), (4a), xTi Eixi = 0 corresponds to
the nonlinear equality constraint (1d), and Ωi represents the
local inequality bounds (3), (4b-4c), (5) associated with xi.

C. Distributed OPF Algorithm

To tackle the nonconvex OPF problem, we first use the
classical augmented Lagrangian method as the outer frame of
our algorithms. The augmented Lagrangian associated with
the OPF problem (11) is as follows:

Lρ(x, z;µ, γ, λ) =f(x) + µ(Ax− b) + γ(x>Ex) + λ(x− z)

+
ρ

2
‖Ax− b‖2 +

ρ

2

∥∥x>Ex∥∥2
+
ρ

2
‖x− z‖2

(12)

subject to x ∈ Ω, where Ω := Ω1 × · · · × Ωn, ρ > 0
is a penalty parameter, x := (x1, . . . , xn) is the group of
local variables, z := (z1, . . . , zn) is the group of consensus
variables, µ := (µ1, . . . , µn), γ := (γ1, . . . , γn), λ :=
(λ1, . . . , λn) are Lagrange multipliers associated with the
constraints (11b-11d). Specifically, λi := (λB,i, λA,i, λC,i),
where λB,i, λA,i, λC,i correspond to the three different con-
sensus constraints associated with (11d).

The standard augmented Lagrangian algorithm solves (11)
by the primal-dual sequences:
• Primal update:

{xk+1, zk+1} := arg min
x∈Ω,z

Lρk(x, z;µk, γk, λk) (13)

• Dual update:

µk+1 := µk + ρk(Axk+1 − b) (14a)

γk+1 := γk + ρk(xk+1>Exk+1) (14b)

λk+1 := λk + ρk(xk+1 − zk+1) (14c)

where k is the iteration indicator.
The dual update is a simple algebraic calculation, which

can be split down to each bus for parallel computing. On
the contrary, the primal update is a joint minimization of a
nonconvex function over two coupling blocks of variables
x and z, which is not easy to solve. We will next apply



the proximal block-coordinate descent method to tackle the
primal update in a distributed and efficient way.

As described in Section III-B, L(x, z) is fully decompos-
able within the variable block x and z:

L(x, z) =

N∑
i=1

Lx,i(xi, z) =

N∑
i=1

Lz,i(x, zi)

where Lx,i and Lz,i are the local augmented Lagrangian
functions for the local variables xi and consensus variables
zi at bus i respectively:

Lx,i(xi, z) = fi(xi) + µi(Aixi − bi) +
ρ

2
‖Aixi − bi‖2

+ γi(x
>
i Eixi) +

ρ

2

∥∥x>i Eixi∥∥2

+ λi(xB,i − zi) +
ρ

2
‖xB,i − zi‖2

+ λA,i(xA,i − zAi) +
ρ

2
‖xA,i − zAi‖

2

+
∑

Cri∈Ci

(λCr,i(xCr,i − zCri) +
ρ

2
‖xCr,i − zCri‖

2
)

Lz,i(x, zi) = −λi(zi − xB,i) +
ρ

2
‖zi − xB,i‖2

− λCr∗,Ai(zi − xCr∗,Ai) +
ρ

2
‖zi − xCr∗,Ai‖

2

−
∑

Cri∈Ci

(λA,Cri(zi − xA,Cri) +
ρ

2
‖zi − xA,Cri‖

2
)

+ fi(xi) + µi(Aixi − bi) +
ρ

2
‖Aixi − bi‖2

+ γi(x
>
i Eixi) +

ρ

2

∥∥x>i Eixi∥∥2

where {·}Cr∗,Ai
refers to a specific child variable estimated

at bus Ai that corresponds to the variable at bus i.
It can be noticed that Lx,i is a nonconvex function of

xi and Lz,i is a convex function of zi. Inspired by [6], we
tackle the primal update (13) by the following alternating
minimization scheme:

xm+1
i ∈ arg min

xi∈Ωi

〈xi − xmi ,∇xiLx,i(xmi , zm)〉

+
cmi
2
‖xi − xmi ‖

2
, i ∈ N

(15)

zm+1
i ∈ arg min

zi

Lz,i(xm+1, zi) +
dmi
2
‖zi − zmi ‖

2
, i ∈ N

(16)

where m is the iteration indicator, cmi > 0 and dmi > 0
are the regularization coefficients. In practice, the coefficient
dmi can be taken as a small constant, and cmi can be deter-
mined by a backtracking procedure to satisfy the following
condition:

Lx,i(xm+1
i , zm) + α

∥∥xm+1
i − xmi

∥∥2

≤ Lx,i(xmi , zm) + 〈xm+1
i − xmi ,∇xi

Lx,i(xmi )〉+
cmi
2

∥∥xm+1
i − xmi

∥∥2

(17)

where α > 0 is a small positive constant.

Proposition 1: Suppose that (17) holds. Then the mini-
mization steps (15) and (16) satisfy the inequality (8) and
(9).

Proof: The x-update (15) implies

〈xm+1
i − xmi ,∇xiLxi(x

m
i )〉+

cmi
2

∥∥xm+1
i − xmi

∥∥2
+ δΩi(x

m+1
i ) ≤ δΩi(x

m
i )

(18)

As the coefficient cmi satisfies (17), we have

δΩi
(xm+1
i ) + Lx,i(xm+1

i ) + α
∥∥xm+1

i − xmi
∥∥2

≤ δΩi
(xm+1
i ) + Lx,i(xmi ) + 〈xm+1

i − xmi ,∇xi
Lx,i(xmi )〉+

cmi
2

∥∥xm+1
i − xmi

∥∥2

(19)

Substituting (18) into the right side of (19), one obtains

δΩi
(xm+1
i ) + Lx,i(xm+1

i ) + α
∥∥xm+1

i − xmi
∥∥2 ≤ δΩi

(xmi ) + Lx,i(xmi )

(20)

By summing up (20) for all the buses, the sufficient decrease
assumption (8) is satisfied.

The optimality condition of (15) is

∃vm+1
i ∈ ∂δΩi

(xm+1
i ),

∇xiLx,i(xmi ) + cmi (xm+1
i − xmi ) + vm+1

i = 0

Then we have∥∥vm+1
i +∇xi

Lx,i(xm+1
i )

∥∥
≤
∥∥vm+1
i +∇xiLx,i(xmi )

∥∥+
∥∥∇xiLx,i(xm+1

i )−∇xiLx,i(xmi )
∥∥

= cmi
∥∥xm+1

i − xmi
∥∥+

∥∥∇xi
Lx,i(xm+1

i )−∇xi
Lx,i(xmi )

∥∥
≤ (cmi + Li)

∥∥xm+1
i − xmi

∥∥
where Li is a Lipschitz constant of Lx,i(xi). The x-update
(15), therefore, satisfies the relative error assumption (9).

For the z-update, (16) directly implies

Lz,i(zm+1
i ) +

dmi
2

∥∥zm+1
i − zmi

∥∥2 ≤ Lz,i(zmi )

Additionally, the optimality condition of (16) suggests that

∇ziLz,i(zm+1
i ) + dmi (zm+1

i − zmi ) = 0,

which implies
∥∥∇ziLz,i(zm+1

i )
∥∥ ≤ dmi

∥∥zm+1
i − zmi

∥∥.
Thus, the z-update satisfies (8) and (9) as well.

Algorithm 1 Distributed OPF Algorithm
1: Inputs:

grid infomation, inner loop terminiation tolerance ε,
outer loop termination tolerance η

2: Initialize:
z, µ, γ, λ, choose ρ > 0, β > 1

3: repeat
4: repeat
5: xprev, zprev ← x, z
6: x← update xi in parallel (15)
7: z ← update zi in parallel (16)
8: until ‖(x− xprev, z − zprev)‖ ≤ ε/ρ
9: µ, γ, λ← update µi, γi, λi in parallel (14)

10: ρ← βρ
11: until

∥∥(Ax− b, x>Ex, x− z)
∥∥

2
≤ η

Combining (12-17), our distributed algorithm for the non-
convex OPF problem is presented in Algorithm 1. The outer



loop employs the classical augmented Lagrangian method
with a growing penalty parameter ρ and a tightening pri-
mal update tolerance ε, while the inner loop follows the
proximal regularized alternating minimization framework. As
the augmented Lagrangian with a box constraint (12) is a
semi-algebraic polynomial function satisfying the Kurdyka-
Lojasiewicz (KL) property [5], Algorithm 1 has the following
convergence properties.

Theorem 1: The sequence {xm, zm} generated by the
inner loop of Algorithm 1 converges to a critical point of
Lρ(x, z;µ, γ, λ) + δΩ(x), and it has a finite length.

Proof: The sequence {xm, zm} is constrained by (1-5),
and thus Lρ(x, z;µ, γ, λ) + δΩ(x) is bounded from below.
Based on Proposition 1, the inner loop of Algorithm 1 is
a two-block case of the inexact regularized Gauss-Seidel
method, which is proven to converge by Theorem 6.2 in
[2].

Theorem 2: The sequence {xk, zk, µk, γk, λk} generated
by the outer loop of Algorithm 1 converges to a KKT point
of Lρ(x, z, µ, γ, λ) + δΩ(x).

Proof: Based on Theorem 1, a proof for the outer loop
convergence can be found in [11].

From the computational perspective, Algorithm 1 enables
efficient computation at all the agents simultaneously. The
x-update (15) minimizes the proximal regularization of the
nonconvex Lρ(x) linearized at the point xm, and it can be
further split into a forward-backward scheme at each bus i:

xm+1
i = prox

δΩi
cmi

(
xki −

1

cmi
∇xi
Lx,i(xmi , zm)

)
The backward proximal mapping to the indicator function
δΩi(xi) is a projection to a box constraint that has a
closed form solution. The z-update (16) can be viewed as
a communication step of local variable estimates among the
neighborhood around each bus i. It minimizes a regularized
quadratic function, the solution of which is a system of
linear equations and thus can be recovered in closed form
as well. As these computations are distributed to each agent,
Algorithm 1 is expected to be scalable for large power
networks.

D. Real-time Distributed Parametric Tracking

As the OPF problem needs to be solved more and more
frequently in a power network with the growing penetration
of renewable energy resources, in this section we further
investigate practical acceleration strategies with the purpose
of providing a highly feasible and suboptimal solution within
a limited number of iterations for real-time closed-loop grid
operation.

A short-term demand forecast provided by the state-of-art
techniques has around 2% - 4% mean absolute percentage
error (MAPE) in 24 hours [22], which indicates that the up-
dated demand information of a new OPF problem generally
does not differ significantly from the demand predicted at
the previous time step. This motivates us to initialize the

distributed computation for a new OPF problem from the
solution of the previous one:

z0
t ← z†t−1, (µ

0
t , γ

0
t , λ

0
t )← (µ†t−1, γ

†
t−1λ

†
t−1)

where zt and λt are the consensus variable and multiplier of a
new OPF problem solved at time t, and {·}†t−1 represents the
solution of the previous problem. If the prediction horizon
of a multi-stage OPF covers a daily period of time such
as 24 hours, we can even warm-start the new problem
by the shifted solution of the previous problem to fully
take advantage of the solution match. This online warm
initialization is expected to provide a good initial guess for
solving the new OPF problem, and hence accelerate the
online algorithmic performance.

In spite of warm-initialization, Algorithm 1 may still
require longer computational time than allowed in the real-
time scenario, as the fact that the distributed algorithm based
on the first order method generally needs a considerable
number of iterations and that the network communication
operates at a limited rate much slower than the on-chip
exchange. When truncating the iterations of Algorithm 1
is necessary, we would reduce the number of outer loop
iterations but maintain the number of inner loop iterations,
meanwhile enlarging the penalty parameter ρ in order to
provide a highly feasible and suboptimal OPF solution within
a limited number of iterations.

Algorithm 2 Distributed OPF Parametric Tracking Scheme
1: Inputs:

grid infomation, allowed number of iterations M,K
new parameters, old solution zKt−1, µ

K
t−1, γ

K
t−1, λ

K
t−1

2: Initialize:
z0
t ← zKt−1, (µ

0
t , γ

0
t , λ

0
t )← (µKt−1, γ

K
t−1λ

K
t−1)

choose ρ > 0
3: for k = 1, 2, . . . ,K do
4: for m = 1, . . . ,M do
5: xm ← update xi in parallel (15)
6: zm ← update zi in parallel (16)
7: end for
8: xk ← xM , zk ← zM

9: µk, γk, λk ← update µi, γi, λi in parallel (14)
10: end for

By integrating the initialization and termination strategies
into our scheme, a distributed parametric tracking algorithm
is presented in Algorithm 2 for the real-time OPF problem.
The outer loop of the tracking scheme consists of a fixed
number of primal-dual sequences, while the inner loop
solves the nonconvex primal update approximately by a fixed
number of proximal alternating minimization steps. Provided
that the change of OPF parameters, i.e. the load profile and
the battery state, over time is relatively slow, it is proven in
[13] that the tracking error of Algorithm 2 has the following
property:

‖ ŵt+1 − w∗t+1 ‖2 ≤ βw(ρ,M) ‖ ŵt − w∗t ‖2
+ βs(ρ,M) ‖ st+1 − st ‖2

(21)



where

βw(ρ,M) = C1(1 + ρC2)(1 +
C3

ρ
)M
− 1

2(3
np−1−1) + C3/ρ

βs(ρ,M) = C1(1 + ρC2)C3M
− 1

2(3
np−1−1) + C3C4/ρ

Here, ŵt is the solution at time t, w∗t is the KKT point closest
to ŵt, st is the parameter of the OPF problem, np ≥ 2 is
the number of primal variables, M is number of inner loop
iterations, and C1, C2, C3, C4 are constants.

It can be noticed in (21) that in order to ensure the
stability of tracking error, βw(ρ,M) and βs(ρ,M) need
to be sufficiently small. This motivates us to enlarge the
penalty parameter ρ and the number of inner loop iterations
M . By doing so, the contraction of the tracking error is
theoretically guaranteed, and thus a series of safety-critical
tracking solutions can be provided to the real-time OPF
problems.

Remark 1: The number of inner loop iterations M that
bounds βw and βs to a sufficiently small magnitude needs to
grow nonlinearly when the problem dimension np increases.
However, the choice of M is restricted by the given compu-
tational time and network communication rates in practice.

IV. NUMERICAL EXAMPLES

Numerical simulation results are presented in this section
to demonstrate that
• Algorithm 1 is capable of solving general nonconvex

OPF problems, for which the convex relaxation ap-
proach in [8] fails to provide a feasible solution.

• Algorithm 2 is capable of providing a highly feasible
and suboptimal closed-loop control policy for the OPF
problems in real-time grid operation.

Algorithm 1 and 2 are tested on a 9-bus network with
24-hour prediction horizon involving around 4600 variables
and 1600 constraints. The network instance is obtained from
the test case in [15]. The demand profiles are generated as
the product of the static network demand and the normalized
hourly demand statistics of European countries [1]. A battery
with 0.6 p.u. capacity is artificially inserted into the network,
and its stored energy is set to be 0.2 p.u. at 0h every day.

A. Offline algorithm convergence

Given plenty of offline computational time, we first solve
the nonconvex OPF problem to optimality with Algorithm 1.
The initial penalty parameter is set as ρ = 1 with a growing
factor β = 1.1. The stopping criterion are set as η = 10−4

and ε = 10−4. Figure 2 shows the feasibility residual and
objective value against the outer loop iterations. The feasi-
bility error is defined as r =

∥∥(Ax− b, x>Ex, x− z)
∥∥

2
and

the relative objective difference is defined as f(x)/f(x̂)−1.
Here, x is the OPF solution from Algorithm 1 and x̂ is the
solution of the corresponding convex relaxed problem [8]. It
can be seen that after 60 outer loop iterations Algorithm 1
converges to a solution that satisfies the feasibility tolerance
r = 10−4. In addition, it ends up with an objective value
about 2.8% higher than that of a convex relaxed solution,
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Fig. 3. Closed-loop grid operation controlled by Algorithm 2

which suffers large feasibility error r = 26.6 due to its
violation of the nonconvex equality constraint (1d).

B. Online closed loop operation

For the online grid operation, we assume a 24h demand
forecast service updated on an hourly basis, and solve the
OPF problems with the updated grid information at each
hour repeatedly. The demand forecast error is artificially
created by shifting the demand periodically with a random
perturbation up to 4%. Figure 3 shows the performance of
Algorithm 2 with 10 outer loop iterations, maximum 500
inner loop iterations and a penalty parameter ρ = 1. It can
be seen that under the closed loop control of Algorithm 2 the



operations of the generators and batteries are different from
the day-ahead scheduling and adapt to the online demand
changes. We can also observe that the feasibility errors of the
truncated real-time solutions remain at a relatively low level,
significantly better than the solution of the convex relaxation
approach. This demonstrates the potential of Algorithm 2 in
providing a highly feasible and sub-optimal control policy
for the real-time grid operation.

V. CONCLUSION

Distributed algorithms based on the augmented La-
grangian method and proximal alternating minimization tech-
niques were proposed to address the nonconvex OPF problem
whenever the convex relaxation fails to be exact, either
in a network with mesh topology or in a radial network
where the convexified OPF solution violates the noncon-
vex constraint. Compared with centralized approaches, our
distributed algorithms split the computations to each agent,
hence are more scalable and privacy-sensitive. Furthermore,
the proposed real-time OPF tracking scheme can potentially
provide a highly feasible solution within a limited number of
agent coordinations when feasibility prioritizes, meanwhile
sub-optimally controlling power flow and smart devices for
closed-loop grid operation in real-time.
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