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Abstract—This work presents an algorithmic scheme for
solving the infinite-time constrained linear quadratic regulation
problem. We employ an accelerated version of a popular proximal
gradient scheme, commonly known as the Forward-Backward
Splitting (FBS), and prove its convergence to the optimal solution
in our infinite-dimensional setting. Each iteration of the algorithm
requires only finite memory, is computationally cheap, and makes
no use of terminal invariant sets; hence, the algorithm can be
applied to systems of very large dimensions. The acceleration
brings in ‘optimal’ convergence rates O(1/k2) for function values
and O(1/k) for primal iterates and renders the proposed method
a practical alternative to model predictive control schemes for
setpoint tracking. In addition, for the case when the true system
is subject to disturbances or modelling errors, we propose an
efficient warm-starting procedure, which significantly reduces the
number of iterations when the algorithm is applied in closed-loop.
Numerical examples demonstrate the approach.

Index Terms—Constrained LQR, Alternating minimization,
Operator splitting

I. INTRODUCTION

An important extension of the famous result of [1] on the
closed form solution of the infinite-horizon linear quadratic
regulation (LQR) problem is the case where input and state
variables are constrained. This problem is computationally
significantly more difficult and has been by and large ad-
dressed only approximately. A prime example of an approx-
imation scheme is model predictive control (MPC), which
approximates the infinite-time constrained problem by a finite-
time one. Stability of such MPC controllers is then typically
enforced by adding a suitable terminal constraint and a ter-
minal penalty. The inclusion of a terminal constraint limits
the feasible region of the MPC controller, and, consequently,
the region of attraction of the closed-loop system. In practical
applications, this problem is typically overcome by simply
choosing a “sufficiently” long horizon based on process insight
(e.g., dominant time constant). Closed-loop behavior is then
analyzed a posteriori, for instance by exhaustive simulation.

There have been few results addressing directly the infinite-
horizon constrained LQR (CLQR) problem. Among the most
well-known efforts are the works [2], [3] and [4]. The authors
of [2] suggest a scheme for offline computation of a sufficient
horizon length. The solution of the corresponding quadratic
program (QP) is then equivalent to the original infinite dimen-
sional problem. The reported results are somewhat conserva-
tive, while the offline part of the proposed algorithm can be
computationally prohibitive since it involves the solution of a
possibly nonconvex problem, the computation of a positively
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invariant set as well as a vertex enumeration problem. The
authors of [3] extend the work of [5] by solving a sequence
of QPs of finite horizon length, which is monotonically non-
decreasing. After each QP has been solved, the inclusion of
the final state in a positively invariant set associated to the
optimal unconstrained LQ controller is checked; if the final
state is not included in the set, the horizon was insufficient
and has to be increased. Finally, the authors in [4] employ
parametric quadratic programming and a reachability analysis
approach to compute the least conservative horizon length
that ensures optimal infinite horizon performance. Although
this work provides the exact necessary horizon length for the
feasible set of initial states, it suffers from tractability issues
since it is based on state-space partitioning and thus can only
be applied to small systems.

Our approach is inspired by the framework of proximal
gradient methods, a class of algorithms known for their
simplicity when it comes to solving convex optimization
problems with simple constraints [6]. From this family of
algorithms, we use the (accelerated) version of the Forward-
Backward Splitting method ((A)FBS) (see, e.g. [7, Chapter 25]
and [8]). The idea is to condense the problem and describe
it in terms of its input variables, then formulate the dual of
the corresponding (infinite-dimensional) QP, and apply the
(A)FBS method to solve it. More specifically, the method
decomposes the QP into two subproblems, the first one being
an infinite-dimensional least squares problem and the second
one a simple clipping of an infinite sequence to the non-
positive orthant. The subproblems are solved repeatedly (with
the solution of one influencing the cost function of the other)
until convergence to the solution of the original problem. This
is in contrast to the approach of [3], which requires the solution
of a sequence of constrained QPs. We show that both sub-
problems of the proposed algorithm can be solved tractably
(which is not a priori obvious since we are working with
infinite sequences), the first one by solving a finite-dimensional
system of linear equations (with the possibility to pre-factorize
the matrices) and the second one by simple clipping of finitely
many real numbers on the non-positive real line. Convergence
of the scheme (with rate O(1/k2) for function values and
O(1/k) for primal iterates) to the optimal infinite-horizon
sequence is guaranteed under mild assumptions. Therefore the
proposed algorithmic scheme provides a means to compute the
solution of the infinite-horizon constrained LQR problem with
guaranteed convergence.

This work is based on our recent result in [9], where the
same problem is solved by employing a primal-dual scheme,
the Alternating Minimization Algorithm (AMA) [10], which
is equivalent to FBS. The approach is equivalent to splitting
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the infinite-horizon constrained LQR problem into an uncon-
strained LQR problem and a proximal minimization problem.
In the current work, the result is developed in both theoretical
and practical directions. From the theoretical perspective, we
(i) drop the limiting assumption for positive-definiteness of the
state penalty matrix Q that existed in [9], and, more impor-
tantly, we (ii) prove convergence of an accelerated counterpart
of the original FBS method, a fact that enables a (significantly)
faster convergence rate. From the practical perspective, we
provide a fully implementable method, competitive for real-
time control. We (i) eliminate the need for knowledge of
uncomputable quantities, (ii) propose computationally efficient
ways to solve the optimization subproblems and (iii) propose
a warm-starting scheme that performs well in practice.

The paper is organized as follows: In Section II we introduce
the problem of interest. In Section III the problem is expressed
in terms of its dual variables by means of the proximal splitting
framework. In Section IV we present the accelerated forward-
backward splitting algorithm to solve the problem and show
that each iteration of the algorithm can be carried out tractably.
The convergence proofs for this scheme are given in Section V,
while Section VI discusses the computational aspects that
make the algorithm practical to use. Section VII presents two
numerical examples: A toy example of an unstable system
with two states and one control input illustrates the main
features of the algorithm. Subsequently, we demonstrate the
practical applicability of the algorithm on a linearized model of
a quadcopter with 12 states, 4 inputs and polytopic constraints.
Finally, Appendices A and B provide the proofs for the results
presented in Section V.

II. PROBLEM STATEMENT

The constrained regulation problem for a linear time invari-
ant (LTI) system can be written in the general form

minimize (1/2)
∞∑
i=0

x>i Qxi + u>i Rui

subject to xi+1 = Axi +Bui, i ∈ N
x0 = xinit

Cxxi ≤ cx
Cuui ≤ cu ,

(1)

with variables xi ∈ Rn and ui ∈ Rm, and data cx ∈ Rpx and
cu ∈ Rpu .

We make the following standing assumptions:
Assumption 1: The pair (A,B) is stabilizable, the optimal

value of problem (1) is finite, the set

X := {x ∈ Rn | Cxx ≤ cx}

contains the origin in its interior, the matrix Cu has full column
rank, the matrix Q is positive semidefinite and R is positive
definite.

Remark 1 (Stability): Clearly, under Assumption 1, if the
problem (1) is feasible and the pair (A,

√
Q) detectable, then

the control sequence optimal in (1) is stabilizing. Therefore,
there is no need to enforce stability in an ad hoc way as
is commonly done when the infinite-time problem (1) is
approximated by a finite-time one solved in a receding horizon
fashion.

From now on we write infinite sequences and infinite-
dimensional operators in bold font.

The problem can be rewritten in the dense form, i.e., by
writing the states as functions of the inputs. This is done by
defining the operators

A =

 A
A2

...

 , B =


B 0 0 · · ·
AB B 0 · · ·
A2B AB B · · ·

...
...

...
. . .

 ,

Q = diag(Q,Q, . . .) , R = diag(R,R, . . .) ,

Cx = diag(Cx, Cx, . . .) , cx = (cx, cx, . . .) ,

Ci =

[
ei ⊗ Cu
[CxB]i

]
, ci =

[
cu

cx − CxAixinit

]
,

H = B?QB +R, G = A?QB, F̄ = A?QA+Q ,

C =
[
C?

1 C?
2 . . .

]?
, c = [c?1, c

?
2, . . .]

? , (2)

where we denote by diag(·, ·, . . .) the operator that forms a
block diagonal matrix of the provided arguments, ei the (in-
finite dimensional) row vector with only one nonzero element
equal to one at position i, by [·]i the ith block row of size
px×∞ of the corresponding operator and by ? the adjoint of an
operator (i.e., the infinite-dimensional analogue of transpose;
see Appendix A for a brief introduction to operators). Using
the above, (1) can be written in the form

minimize (1/2)u?Hu+ h?u+ r
subject to Cu ≤ c ,

(3)

where h = G?xinit, r = (1/2)x?initF̄ xinit, u is the infinite
sequence u := [u?0, u

?
1, . . .]

? and H : Hu → Hu, C : Hλ →
Hu, c ∈ Hλ, where H’s are suitable Hilbert spaces specified
next: Any sequence

z := (z0, z1, . . .)

is viewed as an element of an l2-weighted (or l2w) real Hilbert
space Hz (see Appendix A, Definition 1) induced by the inner
product

〈z,y〉 =

∞∑
i=0

wiz>i yi , ∀y ∈ Hz, z ∈ Hz , (4)

where w is an appropriately chosen weight (see Appendix A,
Definition 1). The norm of any z ∈ Hz is thus given by

‖z‖Hz :=
√
〈z, z〉 =

√√√√ ∞∑
i=0

wi‖zi‖22 .

Unless stated otherwise, for the rest of the paper by a Hilbert
space we mean the l2w real Hilbert space as just introduced.
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III. DUALIZATION

Before proceeding to the reformulation of problem (3), we
revisit some material related to proximal algorithms and dual-
ity. To this end, we denote the family of functions F : Hz → R
that are closed, proper and convex by F ∈ Γ0(Hz), where
R := R ∪ {+∞}. For F ∈ Γ0(Hz), its proximal operator
prox F : Hz → Hz is defined as

prox F (y) := argmin
z

{
f(z) + (1/2)‖z − y‖2

}
. (5)

The operator is evaluated at a given point y and looks for a
minimizer that makes a compromise between the minimizer
of the function F and the point y.

Consider, now, the case that we want to minimize F (z) =
f(z) + g(z), f ∈ Γ0(Hz) is differentiable and g ∈ Γ0(Hz).
The proximal gradient method is the iteration

zk+1 := prox ρkg
(
zk − ρk∇f(zk)

)
. (6)

The algorithm converges for ρk > 0, either constant or
determined by line search methods. The proximal gradient
method is one among many proximal algorithms that enable
the solution of a composite convex optimization problem
using only function and gradient evaluations. These algorithms
have recently gained more ground in the control community
due to their simplicity (see, e.g., [11]). The work [6] provides
a comprehensive treatment of these methods.

Our purpose is to use (an accelerated variant of) the proxi-
mal gradient method on the dual of problem (3). This can be
derived by making use of conjugate duality (see, e.g., Chapter
7, [12]). By defining

f(u) = (1/2)u?Hu+h?u+r, g(Cu−c) = δ−(Cu−c)
(7)

and δ−(·) being the indicator function for the nonpositive
orthant, we can rewrite (3) as

min
u
{f(u) + g(Cu− c)}

and then express the Lagrange dual problem by using the dual
variable λ as

max
λ

{
min
u
{f(u) + 〈c−Cu,λ〉} − g(λ)

}
⇔

max
λ

{
−max

u
{〈C?λ,u〉 − f(u)} − g(λ) + 〈λ, c〉

}
⇔

max
λ
{−f?(C?λ)− g(λ) + 〈λ, c〉} ,

The solution can be derived by solving

min
λ
{f?(C?λ) + g(λ)− 〈λ, c〉} . (8)

The function involved in the minimization problem (8) is

f?(C?λ) = (1/2)〈C?λ,H−1C?λ〉 (9)

− 〈C?λ,H−1h〉+ (1/2)〈h,H−1h〉 − r .

Finally, the problem we are interested in solving can be cast
in a more compact form as:

minimize F (λ) := h?(λ) + δ−(λ), (10)

with variables λ, h?(λ) = f?(C?λ)− 〈λ, c〉 a differentiable
function in Γ0(Hλ), and δ−(λ) ∈ Γ0(Hλ). Now (6) can be
applied to solve (10).

Before proceeding, we elaborate on the reasons why the
original problem (1) had to be reformulated in order to solve
it. There are two reformulations, namely, posing the problem
as a function of the input sequences only, resulting in (3), and
dualization of (3), resulting in (10). The reason for considering
the condensed formulation is the need for strong convexity of
the primal objective, which implies the Lipschitz continuity of
∇h?(·) [7, Corollary 18.16]. By using the condensed form we
avoid the restrictive assumption of Q � 0 required in [9].

The reason for considering the dual problem is simplicity in
the evaluation of the proximal operator of the function δ−(·),
which is a simple projection on the non-positive orthant (i.e.,
componentwise clipping) as opposed to the primal case where
one would have to project on a generic polytope of the form
Cu ≤ c.

Both steps are crucial for successfully applying the
Forward-Backward Splitting (FBS) method, as presented and
analyzed in [7, Theorem 25.8]

IV. SOLUTION USING AFBS
Problem (10) is a composite minimization problem (i.e.,

a minimization of a sum of a smooth and a non-smooth
function) and will be solved using an accelerated forward-
backward splitting (AFBS) method, which is an accelerated
variant of the forward-backward splitting proposed in [7,
Theorem 25.8]. The acceleration comes from a Nesterov-like
momentum sequence from [13].

This modification allows acceleration of the FBS method in
a very simple manner and adds practically zero computational
complexity per iteration, in comparison to the original version.
The idea can be traced back to Polyak and the so called heavy
ball methods [14] for minimizing a smooth convex function
f(·):

λ̂k = λk + αk(λk − λk−1)

λk+1 = λ̂k − ρk∇f(λk) ,

where αk ∈ [0, 1) is an extrapolation factor and ρk a stepsize
parameter. This seemingly small change of updating the new
iterate as a linear combination of the two previous iterates
greatly improves the performance of the original gradient
scheme.

In his seminal paper [15], Nesterov modified the heavy ball
method by simply evaluating the gradient at the extrapolated
point λ̂k instead of λk. In addition, he proposed a special
formula for computing the relaxation sequence (αk)k∈N, re-
sulting in an optimal convergence rate for the scheme. Sub-
sequently,Nesterov’s results were extended in several ways,
lately handling the minimization of the sum of a smooth and
a nonsmooth function [16].

The acceleration that optimal first order methods enjoy
comes solely from the additional momentum of the minimizer
sequence due to the relaxation sequence αk. Among the many
works that derived optimal relaxation sequences similar to that
of Nesterov, a distinguished one is that of Beck and Teboulle
in [17], who used Nesterov’s framework to accelerate the FBS
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method. The resulting algorithm, commonly known as FISTA
(Fast Iterative Shrinkage Thresholding Algorithm) gives an
optimal, 1/k2 convergence rate in terms of the function values.
This result has valuable practical and theoretical implications,
however, convergence of the iterates of the FISTA algorithm
has not yet been proven. Building upon FISTA, Lorenz and
Pock suggest in [8] a modified version of the method that
achieves weak convergence of the iterates to the solution of
the optimization problem in a Hilbert space setting.

The several ‘optimal’ relaxation sequences have been put
under a common framework in the recent work [13]. The
authors showed that any sequence (tk)k∈N of the form tk =
k+a−1
a , with a ≥ 2 satisfies the inequality (tk)2 − tk ≤

(tk−1)2, k ≥ 2. Then the sequence defined as αk = tk−1
tk+1

allows for the optimal O(1/k2) convergence rate in terms of
the function values, starting from t1 = 1, and using a constant
stepsize ρ ∈ (0, 1/Lf ], where Lf is the Lipschitz constant
of ∇f(·). In addition, weak convergence of the iterates is
achievable for any choice a > 2. Any such scheme is optimal
in the sense that, for every iterate k, there exists a problem
which has a lower complexity bound of the same order.
We denote the algorithm emanating from this scheme the
Accelerated Forward-Backward Splitting (AFBS) algorithm,
and write it down for problem (10) as follows:

Algorithm 1 AFBS for Problem (10)
0: Initialize λ0 = 0, a > 2, α0 = 0,
Lh? ← a Lipschitz constant of ∇h?.

repeat
1: αk = k−1

k+a , k ≥ 1

2: λ̂
k

= λk + αk(λk − λk−1)

3: λk+1 = min
{
λ̂
k
− (1/Lh?)∇h?(λ̂

k
), 0
}

until termination condition is satisfied.

The iterative scheme above is very simple: in this case the
AFBS boils down to a variant of the fast projected gradient
method as proposed by Nesterov [18]. In order to apply
algorithm (1), we need to be able to
• evaluate the gradient of h?(·)
• represent λk and λ̂

k
using a finite amount of memory.

The remaining steps of the algorithm are simple scalar or
vector updates or componentwise clipping on the non-positive
orthant (Step 3), both of which can be carried out inexpen-
sively provided that λk can be represented using finite amount
of memory.

In the rest of the text PLQ and KLQ will denote the positive-
semidefinite solution to the discrete-time algebraic Riccati
equation and the corresponding LQ optimal state feedback
matrix associated with the matrices (A,B,Q,R).

We start by finding the gradient of h?(·). To this end, define
the Lagrangian of the (infinite dimensional) problem (3),
written in its equivalent sparse form and truncated at any
T ≥ 0, as

L(u,x, λ̂|T ) = x>T PLQxT (11)

+

T−1∑
i=0

x>i Qxi + u>i Rui − wi
[
Cxxi − cx
Cuui − cu

]>
λ̂i.

Lemma 1: If λ̂ is such that λ̂i = 0 for all i ≥ T , then

[∇h?(λ̂)]i = wi
[
Cxx̂i − cx
Cuûi − cu

]
, (12)

where

(x̂, û) = argmin
u,x

{L(u,x, λ̂|T ) | (13)

xi+1 = Axi +Bui, x0 = xinit}

for i ∈ {0, . . . , T}, and

x̂i = (A+BKLQ)i−T x̂T , ûi = KLQx̂i

for i > T .
Proof: This is a standard result from duality (see, e.g.,

[19, Chapter 5]), noticing that the minimization in (13) is
equivalent to the minimization of the Lagrangian of (3) under
the assumption that λ̂i = 0 for all i ≥ T .
Lemma 1 gives us a way to compute the gradient of h?.
Clearly, this gradient is an infinite sequence and therefore
cannot be stored directly, but it is available to us explicitly
for i ∈ {0, . . . T} and implicitly, through the dynamics of the
system x̂+ = (A+BKLQ)x̂, for i > T .

Now we show that λk and λ̂
k

can be represented using a
finite amount of memory.

Lemma 2: If λk and λ̂
k

are generated by Algorithm 1, then
for each k there exists a T k <∞ such that λki = 0 and λ̂ki = 0
for all i ≥ T k.

Proof: We have λ0
i = 0 and λ̂0

i = 0 for all i ≥ 0 and
hence T 0 = 0. Assume now k > 0 and λki = 0 and λ̂ki = 0
for all i ≥ T k. Then, evaluating ∇h?(λk) using Lemma 1
with T = T k, we see that the sequence (x̂i, ûi) is generated
by the unconstrained LQ controller for i > T k and hence
converges to the origin. Since the set X has the origin in the
interior we conclude that there exists a time T̂ k+1 <∞ such
that Cxx̂i ≤ cx and Cuûi ≤ cu for all i ≥ T̂ k+1. We define
T k+1 = max{T k, T̂ k+1}. In view of (12), we conclude that
λ̂
k
− 1
Lh?
∇h?(λ̂

k
) ≥ 0 for all i ≥ T k+1. Therefore, in view of

Step 3 of Algorithm 1, we have λk+1
i = 0 for all i ≥ T k+1.

Finally, λ̂
k+1

is a linear combination of λk and λk+1 and
hence λ̂k+1

i = 0 for all i ≥ T k+1.
To determine T k+1 computationally (given T k and x̂k+1

and ûk+1) we simply find the first time TS that x̂k+1
i enters a

given subset S, with 0 ∈ intS, of the maximal positively
invariant set of the system x̂+ = (A + BKLQ)x̂ subject

to the constraint
[
CuK
Cx

]
x̂ ≤

[
cu
cx

]
. The time T k+1

is then equal to the first time no less than T k such that
Cxx̂

k+1
i+1 ≤ cx and Cuû

k+1
i ≤ cu simultaneously hold for all

i ∈ {T k+1, . . . , TS}. More formally, we have the equality

T k+1 = min
{
T ≥ T k | ∃TS s.t. Cxx̂

k+1
i+1 ≤ cx,

Cuû
k+1
i ≤ cu ∀ i ∈ {T, . . . , TS},

and x̂k+1
TS ∈ S

}
. (14)

Remark 2 (Computation of T k): In practice, to determine
T k+1 after solving (13), we iterate forward the system dynam-
ics x̂+ = (A + BKLQ)x̂ starting from the initial condition
x̂k+1
Tk+1

until x̂k+1
i ∈ S.
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Remark 3 (Set S): The set S is determined offline and
is not required to be invariant. A good candidate is the
set {x | x>PLQx ≤ 1} scaled such that it is included

in
{
x |
[
CuK
Cx

]
x ≤

[
cu
cx

]}
, or any subset of this set

containing the origin in the interior.
Now we are ready to formulate an implementable version

of the abstract algorithm 1:

Algorithm 2 AFBS for the CLQR problem
Require: xinit, Q � 0, R � 0, Cu of full column rank

a: Determine PLQ, KLQ solving the unconstrained LQR
problem associated with the matrices (A,B,Q,R).

b: Determine a set S, with 0 ∈ intS, included in
any positively invariant set for the system
x+ = (A+BKLQ)x subject to the constraint[
CuK
Cx

]
x ≤

[
cu
cx

]
. See Remark 3.

c: Initialize λ0 = 0, T 0 = 0, w = min
{

1, 1
λ2
max(A)

}
, a > 2, α0 = 0

L0 > 0 or Lh? ← a Lipschitz constant of ∇h? (optional).
for k = 0, . . . do

1: αk = k−1
k+a , k ≥ 1

2: λ̂ki = λki + αk(λki − λ
k−1
i ), i = 1, . . . , T k

3: Set

(x̂k+1, ûk+1) = argmin
u,x

{L(u,x, λ̂
k
|T k) |

xi+1 = Axi +Bui, x0 = xinit},
i = 0, . . . , T k,

x̂k+1
i+1 = (A+BKLQ)x̂k+1

i , i > T k

4: Determine T k+1 (see Remark 2)
6: Choose stepsize ρ (see Remark 4)

7: Set λk+1
i = min

(
λ̂ki − ρk+1wi

[
Cxx̂

k+1
i − cx

Cuû
k+1
i − cu

]
, 0

)
.

8: If termination condition is satisfied, solve KKT system
(see Remark 6)

end for

Remark 4 (Stepsize): In Step 6 of the algorithm, a stepsize
is selected. One option is to fix a constant stepsize ρ = 1/Lh? ,
which needs a global Lipschitz constant of ∇h?(·). This can
be computed offline (see Section VI-A). Alternatively, one can
use a backtracking stepsize rule, inspired from [17], which
can be used in combination with the global estimate. The
procedure is analyzed in Section VI.

Remark 5 (Role of the weight w): It is worth mentioning that
working in the weighted Hilbert space l2w is much more than a
mathematical formalism and has serious practical implications.
In the case of unstable systems, a nontrivial sequence of
weights has to be chosen such that the growth of the largest
unstable eigenvalue of the state matrix A is bounded by a faster
decaying sequence so that the operator C remains bounded,
an assumption necessary for applying the proposed method.
At the same time the sequence of weights will act as a left
preconditioner of C, hence a left and right preconditioner on
the Hessian operator of the quadratic form in (10). This scaling
can seriously affect the numerical performance of the proposed
algorithms, as we will see in subsequent sections. Note that

for stable systems the sequence can be trivially set to 1, hence
no scaling occurs. These claims are explained in more detail
in Appendix B.

Remark 6 (Termination): Algorithm 2 terminates when a
prespecified accuracy is reached in terms of the progress of
the dual sequence. The extracted primal sequence is given by

(xk,uk) = argmin
u,x

{L(u,x,λk|T k) | (15)

xi+1 = Axi +Bui, x0 = xinit}

for i ∈ {0, T k} and xki = (A+ BKLQ)i−T
k

xTk for i > T k.
In Theorem 1 below it is proven that (xk,uk) tends to the
optimal constrained LQ solution. At any finite iterate, however,
the sequence (xk,uk) may violate the constraints. In order to
remedy this we solve upon termination an equality-constrained
QP where we minimize the objective function subject to the
active constraints at optimality. The active constraints can be
(approximately) detected by looking at the nonzero values of
the dual vector λk at termination. This step comes at a very
small cost since it involves one solution of a KKT system of
linear equations.

V. CONVERGENCE RESULTS

In the previous section we gave an implementable algorith-
mic scheme that computes the solution to the CLQR problem.
Here we provide all the necessary proofs which allow us to
assert that the solution generated by Algorithm 2 via (15)
indeed converges to the true optimizer of the CLQR problem.
In what follows λ∞ denotes any optimal solution to the dual
problem (10) (which exists under Assumption 1 but may not
be unique) and (u∞,x∞) the optimal solution to the primal
problem (1). Our main result is:

Theorem 1 (Main Theorem): Suppose Assumption 1 holds
and let λk be a sequence of iterates generated by Algorithm 1
and (xk,uk) the associated primal sequence given by (15)
and let L be a Lipschitz constant of ∇h?(·). The following
statements hold:

(i) The composite function F (λ) = h?(λ) + δ−(λ) as
defined in (10) converges as

F (λk)− F (λ∞) ≤ a2L

2(k + a− 1)2
‖λ0 − λ∞‖2Hλ .

(ii) The sequence of the dual iterates (λk)k∈N converges
weakly (see Definition 3 in Appendix A) to an optimizer,
that is,

λk ⇀ λ∞

for some λ∞ ∈ argmin(F ).
(iii) The input sequence (uk)k∈N converges strongly to the

unique minimizer as

‖uk − u∞‖Hu ≤ a

√
L

µ

‖λ0 − λ∞‖Hλ
(k + a− 1)

,

where µ > 0 is the strong convexity modulus of f(u).
(iv) The state sequence (xk)k∈N converges strongly to the

unique minimizer as

‖xk − x∞‖Hx ≤ a

√
‖B‖2L
µ

‖λ0 − λ∞‖Hλ
(k + a− 1)

.
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(v) The sequence (T k)k∈N is bounded.
Proof:

(i) Convergence of F (λk) with a constant stepsize is proven
in [13, Theorem 1]. Convergence at the same rate with
an adaptive stepsize generated from the backtracking
Algorithm 3 is proven in Lemma 10, Appendix C.

(ii) The proof is stated in [13, Theorem 3].
(iii) The idea is to upper bound the input sequence’s conver-

gence rate making use of the result in point (i). In order
to do so we make use of strong duality. The proof is
inspired from [20, Theorem 4.1] and is as follows:
Let λk ≤ 0 generated from Step 7 of Algorithm 2. Denote

uk = argmin
u∈Hu

{
f ′(u) := f(u) + 〈λk, c−Cu〉

}
,

(16)
where f(u) = (1/2)u?Hu+h?u+r as defined in Sec-
tion II. Then we have that the Lagrangian of (3) evaluated
at λk is L(u,λk) = f ′(u). The function f(u) is strongly
convex with modulus µ ≥ λmin(R) > 0, where λmin(R)
denotes the smallest eigenvalue of R. Strong convexity
of f ′(u) with modulus µ follows directly. Using (16), it
holds that

f ′(u)− f ′(uk) ≥ µ

2
‖u− uk‖2Hu , ∀u ∈ Hu ,

or, equivalently,

L(u,λk)− L(uk,λk) ≥ µ

2
‖u− uk‖2Hu , ∀u ∈ Hu .

(17)
Substituting u = u∞ in (17) and by observing that
max
λ≤0
L(u∞,λ) ≥ L(u∞,λk), we have that

L(u∞,λ∞)−L(uk,λk) ≥ µ

2
‖u∞−uk‖2Hu , ∀u ∈ Hu .

(18)
We have managed to derive an upper bound for the
distance of the generated sequence of primal minimiz-
ers (uk)k∈N from the optimal one. The last step is to
show that the Lagrangian L(u,λ) is associated to the
composite objective F (λ). This can be easily shown as
follows:

L(uk,λk) = min
u∈Hu

{
f(u) + 〈λk, c−Cu〉

}
= −max

u∈Hu

{
−f(u) + 〈λk,Cu〉

}
+ 〈λk, c〉

= −f?(C?λk) + 〈λk, c〉
= −F (λk), by (10) .

From strong duality and the fact that −F (λk)
converges to the optimal dual value (point (i)), we
have that the optimal value of the dual function
−F (λ) coincides with that of the Lagrangian
evaluated at the saddle point (u∞,λ∞), i.e.,
L(u∞,λ∞) = max

λ∈Hλ
{−F (λ)} = −F (λ∞) (see [19,

Section 5.5.5]). Making use of point (i), inequality (18)
becomes

µ

2
‖uk−u∞‖2Hu ≤ F (λk)−F (λ∞) ≤

a2L‖λ0 − λ∞‖2Hλ
2(k + a− 1)2

,

(19)

which concludes the proof.
(iv) The state sequence is generated by

xk = Axinit +Buk . (20)

Strong convergence of the input sequence (uk)k∈N, along
with the facts that B : Hx → Hu is bounded (follows di-
rectly from Lemma 6 in Appendix C) and the uniqueness
of u∞ prove strong convergence of the state sequence
with rate 1/k, i.e.,

‖xk − x∞‖Hx = ‖B(uk − u∞)‖Hx
≤ ‖B‖‖uk − u∞‖Hx

≤ a‖B‖

√
L

µ

‖λ0 − λ∞‖Hλ
(k + a− 1)

,

with the last inequality following directly from point (iii).
(v) Although the proof for the unaccelerated case was pre-

sented in [9], the appearance of the over-relaxed se-
quences (x̂k)k∈N, (ûk)k∈N renders the derivation of the
result more challenging.
The key piece for the proof is the weak convergence of x̂k

to x∞. This claim is subsequently proven as a sequence
of intermediate results. We show that:

a) The relaxed dual sequence (λ̂
k
)k∈N converges weakly

to a dual minimizer λ∞.
b) Provided that the operator C is bounded, the se-

quence (Hûk)k∈N converges weakly to (Huk)k∈N,
and (ûk)k∈N converges weakly to (uk)k∈N. From
strong duality, (uk)k∈N converges to the primal op-
timizer u∞.

c) Weak convergence of the accelerated state sequence
(x̂k)k∈N to x∞ follows directly.

Weak convergence of the relaxed sequence (λ̂
k
)k∈N fol-

lows from Corollary 2 of [13], which states that the error
sequence (‖λk−λk−1‖2)k∈N converges to zero with rate
1/k2. We state the result below.

Lemma 3: The relaxed sequence (λ̂
k
)k∈N converges

weakly to λ∞.
Proof: Since ‖λk − λk−1‖2 → 0 and αk is bounded
we also have νk =

√
αk(λk − λk−1) → 0. Since

strong convergence implies weak convergence we have
that 〈νk,y〉 k→∞−−−−→ 0, ∀y ∈ Hλ. The relaxed sequence
of duals λ̂ can be written as λ̂

k
= λk +

√
αkνk.

Consequently, since λk ⇀ λ∞, we have that

〈λ̂
k
,y〉 = 〈λk +

√
αkνk,y〉

= 〈λk,y〉+
√
αk〈νk,y〉 → λ∞

for all y ∈ Hλ and hence λ̂
k
⇀ λ∞.

Lemma 4: The sequence (ûk)k∈N converges weakly to
u∞.
Proof: Writing down the relation between û and λ̂
from Lemma 1 in terms of the operators, we get
ûk = H−1(C?Wλ̂

k
− h). Similarly we have uk =

H−1(C?Wλk − h). Now, from Theorem 1 we have
uk → u∞ and from Lemma 3 we have λ̂

k
− λk ⇀ 0.
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Therefore, since C?, W and H−1 are bounded operators
(see Lemmas 6 and 7 in Appendix C) and since weak
convergence is preserved under bounded linear mappings,
we conclude that ûk ⇀ u∞.
Lemma 5: The sequence (x̂k)k∈N converges weakly to
x∞.
Proof: Exactly as we did at point (iv) of Theorem 1, the
accelerated state sequence can be written as

x̂k = Axinit +Bûk .

Weak convergence ûk ⇀ u∞ and boundedness of B
prove weak convergence of the accelerated state sequence
to x∞.
We have, hence, proven the weak convergence of the ac-
celerated state sequence to the optimal one. For (T k)k∈N
to be bounded, it is sufficient to show that

lim sup
k→∞

T k <∞. (21)

To prove (21), define the sequence of the first hitting
times of the interior of S as

τk := inf{i ≥ T k | xki ∈ intS}, k ∈ N ∪ {+∞},

where τ∞ < ∞ is the hitting time of the optimal
state sequence x∞. Clearly, τk ≥ T k and τk < ∞
since the origin is in the interior of S and for each
k ∈ N the sequence (x̂ki )i∈N generated by Algorithm 2
converges to the origin as i → ∞. We shall prove that
lim supk→∞ τk ≤ τ∞ < ∞, which implies (21). For
the purpose of contradiction assume that there exists a
subsequence τkj , j ∈ N, with limj→∞ τkj ≥ τ∞ + 1.
Since the sequence of hitting times τk is integer val-
ued, this implies that there exists a j? ∈ N such that
τkj ≥ τ∞+1 for all j ≥ j?. We now use this to contradict
the weak convergence of x̂k to x∞. To this end, observe
that x∞τ∞ ∈ intS whereas x̂kjτ∞ /∈ intS for all j ≥ j?.
By the definition of the interior there exists an ε > 0 such
that z ∈ intS for all z with ‖z − x∞τ∞‖2 < ε. Therefore
‖x̂kjτ∞ − x∞τ∞‖2 ≥ ε for all j ≥ j?, and consequently

〈x̂kj − x∞, z〉 =

∞∑
i=0

wi(x̂
kj
i − x

∞
i )>zi

≥ wτ
∞

(x̂
kj
τ∞ − x∞τ∞)>zτ∞

≥ wτ
∞
ε2 > 0 ,

for a sequence z with zτ∞ = x̂
kj
τ∞ − x∞τ∞ and for all

j ≥ j?, contradicting the weak convergence of x̂k to x∞

asserted by Lemma 5.

VI. COMPUTATIONAL ASPECTS AND WARM-STARTING

Having presented the algorithm and its convergence results,
we now focus on the computational aspects that render the
algorithm a practical option to alternatives such as MPC. We
start with explaining how no prior knowledge of a fixed step-
size is needed, give some references concerning the solution
of the linear system, which is the most expensive operation
of the method, and we conclude the section by suggesting a
warm-starting scheme.

A. Stepsize selection

The stepsize used in Algorithm 2 is computed as the
reciprocal of the Lipschitz constant of h?. For the problem
discussed here this can be explicitly computed. We have that

‖∇h?(λ1)−∇h?(λ2)‖ = ‖CH−1C?W (λ1 − λ2)‖
≤ ‖CH−1C?W ‖‖λ1 − λ2‖
= ‖H−1‖‖C‖2‖‖λ1 − λ2‖ ,

where W is the diagonal operator constituted of the decaying
weighting sequence, i.e., W = diag(I, wI, w2I, . . .). The
last equality follows from the fact that W contains a non-
increasing sequence with the largest element being one. Hence
Lh? = ‖H−1‖‖C‖2, which requires computation of the
operator norm ‖H−1‖ and C. The proofs for boundedness of
the two operators, as well as the computations of their bounds
are derived in Appendix B, Lemmas 6 and 7.

Although valid, this offline computation of the stepsize
tends to be conservative in many cases, due to the conser-
vativeness of the computed upper bounds. An elegant and
practical method to achieve faster convergence is to employ an
algorithm that locally estimates the Lipschitz constant online,
at every iteration of Algorithm 2. In order to do so, we use
the backtracking stepsize rule suggested in [17]. The idea
is simple: after each iteration of the algorithm, we make a
quadratic approximation model of the function around the
successor point, making use of the knowledge of the exact
point and its gradient value. A quadratic term with varying
curvature is added on top of the linear (first order Taylor)
approximation, and the curvature is adapted recursively until
our quadratic approximant upper bounds the original function,
centered around the given point. Thus, the quadratic model’s
curvature is an estimate of the Lipschitz constant of the
gradient of the original function. It is proven in [17] that
the locally evaluated Lipschitz constant Lk is related to the
global one by βLh? ≤ Lk ≤ γLh? , where β = L0

Lh?
and

γ > 1, L0 > 0 being an initial estimate. Consequently the
rule allows for smaller L’s and hence larger stepsizes, i.e.,
faster convergence in practice.

Remark 7 (Backtracking): Although points (i), (iii) and (iv)
of Theorem 1 can be easily shown to hold for a stepsize
generated from the backtracking procedure described above,
the same does not hold for point (ii), and, consequently, for
point (v). More specifically, weak convergence of the dual
sequence is based on the assumption that no stepsize larger
than 2/Lh? is allowed at any iteration [13, Theorem 3].

B. Complexity

The most expensive operation of Algorithm 2 is the linear
system solve in Step 3. There is a variety of ways to perform
this step, i.e., solving the KKT system or perform the Riccati
recursion when both states and inputs are considered, invert
the dense Hessian when only the inputs are considered. In
the first case, a sparse (permuted) LDL> factorization can be
performed with cost T (n+m)3 flops, followed by a forward-
backward solve at T (n + m)2 flops. This approach has been
followed in [21]. A discussion on the KKT system solve and
the Riccati recursion approach is contained in [22], where
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the corresponding complexities are analyzed and compared in
detail.

In the case of the condensed formulation, the linear system
solve can be efficiently performed by first applying a Cholesky
factorization on H (being a finite truncation of the H operator
in (3)), followed by a forward-backward substitution, (see [19,
Appendix C]). Although the condensed form of the optimal
control problem that is used in the derivations is, generally, not
advised for long horizons, recent advancements can render this
approach very efficient [23], [24]. More specifically, the two
proposed algorithms that perform factorization and solve of the
condensed system in [24] come with a reduced complexity of
O(Tn3) and O(T 2n2), respectively.

Whether considering the sparse or the dense formulation,
note that the factorization steps would have to be performed
several times until the ‘correct’ horizon T∞ has been iden-
tified, since the size of the corresponding matrices (KKT
or Hessian H) increase as the algorithm progresses. This
typically happens within the first few tens of iterations. A valid
alternative to this is the Riccati recursion, which completely
eliminates the need for factorization, at the expense of forward
(or backward) simulating the trajectories for the gain, the
inputs and the states.

The backtracking scheme contributes to the complexity of
Algorithm 2 by requiring a number of function evaluations
per iteration, both for the quadratic model and for the original
smooth function h?(·) (see [17] for more details). The rest of
the steps are simple vector updates of negligible cost.

C. Warm-starting

In the nominal case, i.e., when no noise and no model
uncertainty are present, the open loop infinite-horizon control
sequence generated from Algorithm 2 coincides with the con-
trol sequence generated by the optimal closed-loop feedback
controller. Consequently, there is no need to re-optimize in
a receding horizon fashion. Solving the CLQR problem just
once is sufficient.

In the more realistic scenario where the predicted initial
state differs from the measured one, the algorithm has to be re-
applied. Provided that the prediction is not very different from
the actual state, a good strategy is to initialize the decision
variables (states and inputs) of the new problem with the
values predicted from the previous one. This is commonly
known as warm-starting. In our case, warm-starting has to be
performed in the dual variables.

Note that once Algorithm 2 has run once, a hitting time T∞

has been generated, along with an optimal dual sequence λ∞

of corresponding length. It is expected that when computing
the control law the hitting time should decrease by one at each
solve, provided warm-starting from the optimal dual sequence
that was generated once in the beginning. Hence, we suggest
a heuristic scheme where the ‘constrained’ (nonzero) part
of the preceding shifted dual sequence is used to initialize
each subsequent CLQR problem. The computation time thus
reduces significantly, with the horizon practically shrinking to
zero once the initial state is identified to be inside the maximal
positively invariant set of the LQ controller.

Application of the scheme is presented in Section VII.
It is observed that it behaves particularly well for small
perturbations of the initial state.

VII. EXAMPLES

For illustrative purposes, we run the algorithm on two
systems, a small unstable system with two states and one
input and a linearized model of a quadcopter with 12 states
and 4 inputs. We use the small example as a benchmark
for graphical illustrations, while the larger one exhibits the
computational efficiency of the proposed scheme. The com-
parison is performed against the same implementation of the
AFBS algorithm for finite horizon lengths. It is of course
understood that there exist several methods capable of solving
a finite horizon MPC problems (see interior point, active set,
etc.), among which, optimal first order methods have gained
considerable attention over the last few years, rendering them
a competitive alternative [25], [26]. Consequently, comparing
against an optimal first order method provides a valid basis for
evaluating the potential of our scheme. In the two examples
the termination criterion is simply set as ‖λk−λ̂

k+1
‖ ≤ 10−4.

A. Toy system

Consider the following system defined as

A =

[
1.1 2

0 0.95

]
, B =

[
0

0.0787

]
,

xi+1 = Axi +Bui,

with constraints

‖x‖∞ ≤ 10, ‖u‖∞ ≤ 1

and Q =

[
2 −2
−2 2

]
, R = 2I . Note that the system is

unstable, hence a nonzero sequence of weights has to be
chosen in order to ensure boundedness of the C operator. We
choose w = 1/1.12 and the value of a in Step 1 of Algorithm 2
is set to 4.

The system is simulated for 750 different initial conditions
x0. In Figure 1 the distribution of T∞ = maxk{T k} is
depicted. We see that T∞ goes up to 30, while the mean
value is 9.

We compare our method to the MPC approach both from the
control and the algorithmic performance perspective. Regard-
ing the former, we perform a comparison of the feasible sets
for finite horizon implementations versus the maximal control
invariant set in the case of CLQR, as well as the optimal value
of the cost function. Regarding the latter, we perform com-
parisons in terms of the average number of iterations needed
for convergence for several horizon length values in MPC
versus the CLQR case. We also evaluate the conservativeness
of our approach by computing the actual ‘optimal’ horizon
length for each initial condition we simulate. For both CLQR
and MPC we make use of the same AFBS algorithm with
backtracking employed and termination tolerance set to 10−4

as stated before.
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Fig. 1. Histogram of T∞ = maxk{T k} for 750 initial conditions
of the 2 state system sampled from a normal distribution around
(−3, 0.3) with covariance matrix diag(4, 0.4).

We perform the following simulations: we sample 243 initial
conditions xi,0, i = 1, . . . , 243 from the maximal control in-
variant set (31-step) of the aforementioned constrained system
(see Figure 2). For each point we compute:

1) The minimum horizon length Tmin, such that x∗Tmin
(xi,0)

resides in the maximal positively invariant set of the
autonomous system x+ = (A + BKLQ)x, used as a
terminal set.

2) The hitting time T = T∞ generated by our proposed
scheme.

The following scenarios are generated: Firstly, an MPC
problem with terminal set and horizon length Tmin is solved,
as described above. Subsequently we remove the terminal
constraint and solve the MPC problem again for the same
horizon length Tmin. We repeat the procedure described above
(MPC with and without terminal set) for horizons T = 2Tmin

and T = T ?, where T ? is specified by identifying the
first horizon length for which the feasible solution of the
MPC problem had the terminal constraint inactive. Finally, a
comparison with the proposed CLQR approach is performed,
with horizon T = T∞. In this way, six MPC problems
with finite horizon as well as the CLQR problem are solved,
for each of the 243 initial conditions. The total number of
iterations is averaged by the number of corresponding initial
conditions with the same minimum horizon length Tmin. The
results are presented in Figure 3.

The first observation from the plot is that inclusion of the
terminal constraint generally increases the number of required
iterations since more constraints become active at optimality.
This is especially the case when the horizon is relatively short
and the terminal constraint satisfaction is imposed as we see
in the blue curves. As the horizon increases (red and magenta
color), the terminal constraint might be inactive and there is
no significant difference in the number of iterations in the two
cases.

A trend of increase in the number of iterations in all
methods as T ? increases can be observed. This is expected
since increase of T ? amounts to sampling of the initial state
from regions of the feasible set that are further away from the
origin. A consequence of the latter is that more constraints

Fig. 2. Reachable sets for several horizon lengths and the LQ terminal
set. The computation was done using the MPT3 toolbox [27]. It is
apparent that a short horizon length reduces significantly the feasible
region of the problem.

become active at optimality.
Short horizons in combination with a terminal set increase

significantly the iteration count, as well as unnecessarily long
horizons (e.g., 2Tmin). In that sense, one can observe that
MPC with T = T ? behaves better than the other lengths. The
curve corresponding to CLQR is denoted with black lines with
asterisks. The method is comparable to the MPC approaches
where T = Tmin and T = T ? with terminal set, performing
relatively better in small to medium horizon lengths and worse
for larger horizon lengths. The reason for the latter is that the
weighting operator W becomes quickly ill-conditioned as T
grows, since its diagonal elements decay exponentially. This
leads to ill-conditioning of the finite-dimensional truncation
of the dual problem (10) since W preconditions (through
the weighted l2 inner product (4)) the objective of (10). As
is commonly known first-order methods struggle with ill-
conditioning. Efficient preconditioning of the operators should
improve this and is a topic of further investigation. As a
matter of fact, when the weights are set to one, the CLQR
approach (black line with circles) clearly outperforms all
MPC approaches with terminal set, as well as most of those
instances without terminal set. Further simulations suggest that
the proposed method performs very well, were we to drop the
weights or when dealing with stable systems, when no scaling
has to be performed.

Another interesting point is that the average hitting times
T∞ generated from Algorithm 2 are almost identical to the
averaged optimal ones T ?, with a very slight increase. This
fact is depicted in Figure 4, where the ratio is always very close
to one. On the contrary, the minimum required horizon length
Tmin is observed to be up to 45% smaller than the optimal
length T ? in some cases, leading to a significant increase
in the objective’s cost when compared to the infinite horizon
approach.

B. Quadcopter system
The next system we consider is a quadcopter linearized

in a hovering equilibrium. The system has 12 states which
correspond to position, angle and the corresponding velocities.
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There are four inputs corresponding to the four propellers.
There are box constraints on all states and inputs, mainly
ensuring the validity of the linearized model. The system is
marginally stable; thus the weight w is set to one.

We simulate the algorithm starting from initial conditions
randomly selected as follows: starting from a random feasible
initial condition, we generate random directions on a unit ball
centered around it and sample points along each of them. The
points are generated from a normal distribution with standard
deviation 0.15. Finally, we keep the initial conditions that
result in feasible closed loop problems. The result of this step
is 272 feasible initial conditions for the CLQR Algorithm 2.
A histogram of T∞ = maxk{T k} is presented in Figure 5.

We conclude the section by applying the warm-starting
heuristic scheme suggested in Section VI. We consider two
scenarios; in the first one we uniformly perturb the initial state
by 0.5% of its nominal value and run Algorithm 2 in closed
loop for 78 different initial conditions. In the second scenario
we perturb the state by 1%, for 68 different initial conditions.
We solve 15 consecutive problems per initial condition and
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Fig. 5. Histogram of T∞ = maxk{T k} for 272 initial conditions
sampled with a Hit-And-Run algorithm.
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Fig. 6. Box plot for the average number of iterations of the warm-
starting policy, given 0.5% and 1% uniform perturbations of the
initial state. The horizontal line inside the box corresponds to the
median, the edges of the box are the 25th and 75th percentiles
while the horizontal lines outside the boxes correspond to the most
extreme data points not considered outliers. Finally, the colored dots
correspond to mean values. Warm-starting improves the performance
of the suggested method in both cases, in all the depicted statistical
measures.

subsequently compare the average number of iterations as
well as the generated hitting times per problem solve with
and without warm-starting the dual variables. The results
are summarized in Figure 6. It is evident that warm-starting
consistently reduces the number of iterations in both cases.

Finally, the active reduction in the horizon length thanks
to warm-starting is illustrated in Figure 7 for four different
initial states in the case of the 1% perturbation. There is an
(almost monotonic) decreasing trend, with the horizon finally
shrinking to zero when the initial state resides in the positively
invariant set.

C. Timings
We conclude this section with a numerical evaluation. For

this purpose, we compare an implementation of the proposed
algorithm with several modern convex optimization solvers,
employed to solve the corresponding finite horizon MPC prob-
lems. In addition, we compare our proposed algorithm with
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Fig. 7. Hitting times evolution for 50 subsequent solves, warm-started
at the previous (shifted) dual optimizer. Four different initial condi-
tions are depicted with the solid lines. The linear rate is depicted (for
comparison) with the blue triangles. Note that the horizon decreases
almost linearly, resulting from the relatively small perturbations of the
initial state. The case depicted in red corresponds to an outlier where
the perturbed initial condition rendered the previously computed
horizon an infeasible option, leading to an increase of its length.

its finite horizon implementation, solving the same optimal
control problems in a receding horizon mode. Given that MPC
is an approximation to the solution of the infinite horizon
problem, a fair comparison between the two approaches can-
not be easily performed. Hence, we consider a ‘criterion of
fairness’ the time required by Algorithm 2 versus a rolling
horizon approach so that the infinite-horizon optimal solution
to a given regulation problem is achieved.

The difficulty with the aforementioned approach is to con-
struct a rolling horizon scheme that can recover the infinite-
horizon optimal solution. This can be achieved only if a
sufficiently long horizon is used, so that the state sequence
converges leisurely to the origin. Such a horizon is the output
of our scheme. Thus, we perform the following simulation
with the toy example presented above: We solve a series
of optimal control problems for each of the 750 sampled
initial conditions, the hitting times of which were depicted in
Figure 1, using the resulting T∞ from the CLQR approach,
without imposing any terminal set. The problems are solved
in a receding horizon fashion until the initial state resides
inside the maximal positively invariant set of the LQ controller,
depicted in Figure 2 in dark blue. Subsequently, we measure
the time required to compute the closed loop solution with the
MPC algorithms and we compare against the time required by
Algorithm 2.

The algorithm is implemented in C++. The algorithmic
values a and L0 are initialized to a = 5 and L0 = 0.01.
The linear algebra library ‘Armadillo’ [28] is used for the
operations, which is a wrapper for BLAS and LAPACK.
The implementation is tested against the (commercial) solvers
CPLEX (IBM) and MOSEK, as well as the open solver
QPgen [29], [30].

The results regarding the first experiment are depicted in
Figure 8. Since no noise is injected in the state, the CLQR
controller is computed only once, in contrast to the MPC
controller where multiple problems have to be solved in
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Fig. 8. Box plot for the solve times of the CLQR solver versus
CPLEX, MOSEK and QPgen for the toy system, sampled from 750
initial conditions. CLQR generally requires less time than solving
a series of finite horizon optimal control problems, leading to the
same optimal solution. Only the solver QPgen clearly outperforms
our proposed approach, which makes use of the same, in principle,
splitting method, enhanced by several add-on’s that enable speedup.
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Fig. 9. Histogram for the number of iterations required over 750
problems. Note that more than 80% of the problems needed less
than 400 iterations in order to converge, while the maximum number
observed is around 5000 iterations.

order to acquire the closed loop solution. As a consequence,
the total time needed to solve the problem with CLQR is
smaller than what most of the solvers in use can achieve.
The relative accuracy of the generated solutions is of the
order 10−5, while the times are given in ms. In addition,
Figures 9 and 10 elaborate on the iteration count, as well as
the number of factorizations that had to be performed while
running CLQR, as another computational complexity measure
for the algorithm.

Subsequently, the closed loop MPC times are averaged
over the number of optimal control problems solved, and
are compared to the timings of Algorithm 2 in Figure 11.
It is clear that in this case the proposed approach is not as
competitive as MPC. However, it should be mentioned that the
cases depicted in Figures 8 and 11 are two extremes. Figures 8
assumes that no noise is present, while Figure 11 implicitly
assumes that Algorithm 2 is cold-started at every subsequent
problem, making no use of the prior information gained from
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Fig. 10. Number of factorizations required over 750 problems. The
mean value is 7 while no problem instance needed more than 25
factorizations.

the convergence to the optimal multiplier sequence λ∞.
In view of the facts that (i) the above packages run

optimized C code and (ii) the employed algorithms differ
quite significantly from our proximal method, we devise a
simulation where we use the exact same C++ code that we
have developed for Algorithm 2, but rather in order to solve
a series of finite horizon MPC problems. Ultimately, we apply
the dual proximal gradient method to do MPC. In this way
we control for most of the irrelevant factors and focus on
the comparison between CLQR and MPC. Once again, we
consider the toy example and sample randomly 200 initial
conditions from the set of the 750 ones utilized above. We
inject disturbances with magnitude up to 3% of the predicted
initial state and solve in closed loop until the initial state enters
the terminal invariant set. We compare CLQR to MPC with
horizon length T =

⌈
2
3T
∞⌉ and terminal set constraint, as

well as with T = 2T∞, without terminal set constraint, exactly
as we did before. Regarding the algorithmic parameters, a
is set to 5 and the stopping criterion is set to a very low
tolerance (‖λk − λ̂

k+1
‖/‖λk‖ ≤ 10−12) so as to eliminate

any numerical discrepancies resulting from early termination.
We solve the Lagrangian minimization (Step 3 in Algorithm 2)
by means of a Riccati recursion. Note that the complexity is
similar to solving a linear system since only the affine parts
of the Lagrangian function vary per iteration, allowing us to
precompute the Riccati matrix and the feedback gain. For the
same reasons, the same complexity holds when solving the
MPC problem (see, e.g., [22] for the time-varying Riccati
recursion). We are interested in four metrics: The number
of infeasible problems when doing MPC (indicator of the
volume of the region of attraction), the number of iterations,
the execution times and the quality of the controller (evaluated
via the objective function value that the two schemes achieve).
The results are summarized in Table I. Out of the 200
sampled initial conditions, 19 resulted in infeasible closed
loop problems due to the additive state disturbance. The short-
viewed MPC policy (3d column) resulted in 69 infeasible
problems. The times achieved are significantly higher than
the CLQR times. The deterioration of the objective function
value is negligible. When the horizon increases (4th column),
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Fig. 11. Average time per optimal control problem solved with MPC,
compared against one CLQR solve. In this case the three solvers are
faster. The large variance of the CLQR approach in comparison to
the others is a typical characteristic of first order methods, and can be
significantly reduced with appropriately conditioning of the problem.

TABLE I
CLOSED LOOP COMPARISON BETWEEN CLQR AND MPC

CLQR MPC
⌈
2
3
T∞⌉ w/ T.S. MPC 2T∞ w/o T.S.

Infeasible Problems 19 69 19

Times (ms)
Average 124.8 169.9 92.1
Median 30.6 64.6 50.3

Iterations
Average 1118.0 1537.8 1461.9
Median 290.0 591.0 317.0

Average Objective Increase - 0.04% -

the average and median times go down, being comparable,
but still not as good as the ones achieved with CLQR. The
reduced iteration count is a result of the warm-starting policy
which is more efficient when applying CLQR instead of MPC,
in the sense that, firstly, the multipliers are initialized at their
optimal values, and secondly, that the horizon (hitting time
T∞) shrinks as time goes by, essentially resulting in smaller
QPs.

VIII. CONCLUSION

This work presented an algorithmic scheme capable of solv-
ing the constrained linear quadratic regulator problem in real
time. The algorithm is an accelerated version of the proximal
gradient algorithm and belongs to the wider family of forward-
backward splitting schemes. The approach is to write the
problem in its condensed form and dualize, which leads to the
minimization of an infinite-dimensional quadratic functional
subject to non-positivity constraints. The resulting infinite
dimensional problem can be tackled in finite dimensions by
observing that the dual sequence has always only finitely many
non-zero elements. The proposed algorithm makes no use of
terminal invariant sets and provably converges to the optimal
solution of the infinite-horizon problem. Regarding the im-
plementation aspects, the algorithm can be highly competitive
since it enjoys the convergence properties of optimal first order
methods whose each iteration is computationally cheap. In
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addition, it requires minimal a priori information since the
most crucial quantities are computed online, and there are no
unreasonable or conservative assumptions on the problem’s
structure.

The employed approach requires that the objective function
is written as the sum of a smooth and a (possibly) nonsmooth
function whose proximal operator is inexpensive to compute.
Smoothness of the dual problem is recovered from strong
convexity of the primal. The polytopic constraint set becomes
a nonnegativity constraint when looking at the dual variables,
resulting in a simple proximal operator.

There are mainly two ways to extend the constrained infi-
nite horizon regulation result: Computational and theoretical
enhancements. From a computational viewpoint, the number
of iterations needed for convergence can be quite large for
very unstable (large) systems, or for ill-conditioned problem
data. To this end, preconditioning of the problem has to be
considered. The several recent advancements regarding proxi-
mal gradient methods [31], [30] should be directly applicable
to our approach, with the possible difficulty of adapting these
results to infinite dimensional spaces. Theoretical extensions
would include the tracking case, handling more general non-
polytopic constraints, as well as the interesting possibility
of applying the method to continuous time infinite horizon
problems.

APPENDIX A
REQUIRED OPERATOR THEORY

The subsequent results hold for general real Hilbert spaces,
including the special case of l2w we consider. For an in-depth
treatment of (monotone) operator theory, the interested reader
is referred to [7] and [32]. We write variables in normal font,
and we use the bold font to describe the infinite-dimensional
variables we are manipulating in our problem description.

Definition 1: The l2-weighted (or l2w) real Hilbert space H
is defined by

H =

{
z = (zi)i∈N :

∞∑
i=0

‖zi‖22wi <∞

}
, w > 0 .

Definition 2: A linear operator (mapping) F : H1 → H2

between two Hilbert spaces is said to be bounded if the
operator norm ‖F‖ of F , defined as

‖F‖ := sup
‖x‖H1=1

‖Fx‖H2 ,

satisfies ‖F‖ <∞. The set of bounded operators between two
Hilbert spaces H1 and H2 is denoted as B(H1,H2).

Theorem 2: Let H1,H2 be real Hilbert spaces and F ∈
B(H1,H2). The adjoint of F is the unique operator F ? ∈
B(H2,H1) that satisfies

〈Fx, y〉 = 〈x, F ?y〉 ∀x ∈ H1, ∀y ∈ H2 .

Moreover, ‖F‖ = ‖F ?‖.
Subsequently, we introduce the notions of weak and strong

convergence.
Definition 3: LetH be a Hilbert space. We say that (xk)k∈N

converges weakly to x if ∀y ∈ H 〈y, xk〉 k→∞−−−−→ 〈y, x〉. We
denote weak convergence as xk ⇀ x.

Definition 4: Let (xk)k∈N be a sequence in H. Then
(xk)k∈N converges strongly to x if ‖xk − x‖ k→∞−−−−→ 0. We
denote strong convergence as xk → x.

Definition 5: An operator F : H → H is positive-definite
if it is bounded, F = F ? and 〈Fx, x〉 ≥ α‖x‖H for some
α > 0, for all x ∈ H .
We recall that a positive definite operator F is invertible and
the inverse operator F−1 is bounded.

APPENDIX B
BOUNDEDNESS OF SEVERAL OPERATORS

Lemma 6: The operators C and W are bounded.
Proof: Boundedness of W is trivial since it is a diagonal

operator with non-increasing elements on the diagonal.
The operator C can be expressed as the following sum:

C =


Cu 0 · · ·
0 0 · · ·
0 Cu · · ·
0 0 · · ·
...

...
. . .

+


0 0 · · ·

CxB 0 · · ·
0 0 · · ·

CxAB CxB · · ·
...

...
. . .


︸ ︷︷ ︸

Cx

,

and by using the triangle inequality, we have

‖C‖ ≤ σmax(Cu) + ‖Cx‖. (22)

We thus have to show that y = Cxu is bounded, i.e.,

sup
‖u‖Hu=1

‖y‖Hλ <∞.

In order not to carry the zero rows of Cx, we define
ȳ ∈ H̄λ by dropping the zero elements of y. This infinite-
dimensional vector consists of the elements ȳi = [Cx]iu =∑i−1
j=0 CxA

i−j−1Buj ∈ Rpx . Note that

sup
‖u‖Hu=1

‖ȳ‖H̄λ = sup
‖u‖Hu=1

‖y‖Hλ .

Focusing on the operator of interest, we have that

‖ȳ‖H̄λ =

√√√√ ∞∑
i=1

‖ȳi‖22wi =

√√√√ ∞∑
i=1

wi‖
i−1∑
j=0

CxAi−j−1Buj‖22 .

(23)
Then

‖ȳ‖2H̄λ =

∞∑
i=1

wi‖
i−1∑
j=0

CxA
i−j−1Buj‖22

=

∞∑
i=1

‖
i−1∑
j=0

Cx(Aŵ)i−j−1Bujŵ
j+1‖22

= ŵ2
∞∑
i=1

‖
i−1∑
j=0

CxÂ
i−j−1Bûj‖22 ,

where we introduced ŵ = w1/2, ûj = ujŵ
j with û ∈ l2

and Â = Aŵ. Observing the above expression, one can
identify that

∑i−1
j=0 CxÂ

i−j−1Bûj is the convolution sum of
the impulse response of the system

Σ :=

(
Â B
Cx 0

)
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with an input û. More specifically, borrowing the notation
from [33] we denote the impulse response of Σ as hΣ,i =
CxÂ

i−1Bsi, where si = 1, i ≥ 0 is the unit step function.
Then the convolution operator is defined as the linear map
SΣ : û → ȳ with ȳi = (hΣ ∗ û)i =

∑i−1
j=0 hΣ,i−j ûj =

(SΣû)i. Thus we have that

‖ȳ‖2H̄λ = ŵ2
∞∑
i=1

‖ (SΣû)i ‖
2
2 = ŵ2‖SΣû‖22 ⇒

‖ȳ‖H̄λ = ŵ‖SΣû‖2 ≤ ŵ sup
‖û‖2≤1

‖SΣû‖2 .

From the definition of the induced 2-norm of Σ, denoted here
as ‖Σ‖2, we have that sup ‖SΣû‖2 = ‖Σ‖2‖û‖2 and by as-
suming (without loss of generality) that ‖û‖2 = ‖u‖Hu = 1,
we end up having that ‖ȳ‖H̄λ ≤ ŵ‖Σ‖2. Finally, the operator
Cx is bounded by the H∞ norm of the transfer matrix HΣ(z),
or ‖ȳ‖H̄λ ≤ ŵH∞(Σ). Subsequently, we have from (22) that
the operator C is bounded by σmax(Cu) + ŵH∞(Σ).

Remark 8: Following the discussion from Section II, the
weight ŵ can be chosen to render any unstable system stable
by shrinking the eigenvalues of the matrix A (Â = ŵA).

Lemma 7: The operator H−1 is bounded and ‖H‖ ≤
1/λmin(R).

Proof: The operator H is given by H = B?QB +
R; see (2). Since B?QB is positive semidefinite (i.e.,
〈B?QBu,u〉 ≥ 0 for all u ∈ Hu) and R is positive definite
according to Definition 5, we conclude that H is positive
definite and hence has a bounded inverse.

In order to compute the bound for H−1 we observe that
‖(B?QB+R)−1‖ ≤ ‖R−1‖ ≤ 1/λmin(R), which concludes
the proof.

APPENDIX C
BACKTRACKING STEPSIZE RULE

In this appendix we briefly revise the backtracking stepsize
rule that allows for local estimates of the curvature of h? and
show that points (i), (iii) and (iv) of Theorem 1 also hold in
this case. The arguments are in line with [17].

We denote as f(·) the smooth and g(·) the nonsmooth
convex functions of interest. Note that in our case f = h? and
g = δ−. For any L > 0 consider the quadratic approximation
of F (λ) = f(λ) + g(λ) at a point y:

QL(λ,y) := f(y) + 〈λ− y,∇f(y)〉+ L

2
‖λ− y‖2 + g(λ) .

(24)
We also define the unique minimizer parametrized by the point
y as

pL(y) := argmin
λ
{QL(λ,y)} (25)

= argmin
λ

{
g(λ) +

L

2
‖λ−

(
y − 1

L
∇f(y)

)
‖2
}
(26)

= prox g

(
y − 1

L
∇f(y)

)
, (27)

which is the basic step of Algorithm 1, i.e., Step 3. The
following holds:

Lemma 8 (Lemma 2.3 [17]): Let y ∈ Hλ and L > 0 be
such that

F (pL(y)) ≤ QL(pL(y),y) .

Then for any λ ∈ Hλ,

F (λ)−F (pL(y)) ≥ L

2
‖pL(y)−y‖2 +L〈y−λ, pL(y)−y〉 .

The backtracking procedure as described in [17] is as follows:

Algorithm 3 Backtracking for stepsize computation

0: Take L0 > 0, some η > 1, and λ0 ∈ Hλ.
repeat

1: Find the smallest nonnegative integer ik such that with
L̄ = ηi

k

Lk−1

until F (pL̄(yk)) ≤ QL̄(pL̄(y),y)

Note that for any Lk = L̄ generated by Algorithm 3
Lemma 8 holds.

We also have the following instrumental Lemma from [13]:
Lemma 9 (Lemma 1 [13]): Let L ≥ L(f), λ,y ∈ Hλ and

pL(y) := prox g(y − 1
L∇f(y)). Then for all λ

F (pL(y)) +
L

2
‖pL(y)− λ‖2 ≤ F (y) +

L

2
‖λ− y‖2 .

Supposing that Lemma 9 holds, convergence of the function
values with rate 1/k2 can be proven under no further as-
sumptions using Theorem 2 and Corollary 1 in [13]. We will
not repeat the aforementioned theorems here due to space
limitations. What we are going to show instead is that all
stepsizes ρk = 1/Lk generated from Algorithm 3 satisfy
Lemma 9.

Lemma 10: Consider F = f + g, with f = h? and g =
δ− as defined in Section III. The iterates λk generated from
Algorithm 1 with a backtracking stepsize rule generated from
Algorithm 3 satisfy:

F (λk)− F (λ∞) ≤ a2L̄

2(k + a− 1)2
‖λ0 − λ∞‖2 .

Proof: All local Lipschitz estimates L̄ generated from
Algorithm 3 satisfy F (pL̄(yk)) ≤ QL̄(pL̄(y),y) and, conse-
quently, from Lemma 8,

F (λ)−F (pL̄(y)) ≥ L̄

2
‖pL̄(y)−y‖2 + L̄〈y−λ, pL̄(y)−y〉 ,

or
2

L̄
(F (λ)− F (pL̄(y))) ≥ ‖pL̄(y)−y‖2+2〈y−λ, pL̄(y)−y〉 .

It follows from the Pythagorean theorem that

‖b− a‖2 + 2〈b− a, a− c〉 = ‖b− c‖2 − ‖a− c‖2 ,

and hence
2

L̄
(F (λ)− F (pL̄(y))) ≥ ‖pL̄(y)− λ‖2 − ‖y − λ‖2 ,

from which Lemma 9 follows. Theorem 2 and Corollary 1
of [13] then lead to the desired result.
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