
Semantics-Driven Interoperability

between Scala.js and JavaScript

Sébastien Doeraene Tobias Schlatter Nicolas Stucki

École polytechnique fédérale de Lausanne, Switzerland

sebastien.doeraene@epfl.ch schlatter.tobias@gmail.com nicolas.stucki@epfl.ch

Abstract

Hundreds of programming languages compile to JavaScript.
Yet, most of them fail, at one level or another, to provide
satisfactory interoperability with JavaScript APIs. This is
limiting, as interoperability is at least required to manipulate
web pages through the DOM API, but also to use the eco-
system of existing JavaScript libraries. This paper presents
the interoperability features of Scala.js, which solves the
shortcomings of previous approaches. Scala.js offers a sep-
arate hierarchy of JavaScript types, whose operations have
semantics borrowed from ECMAScript 2015. The interop-
erability features are complete with respect to ECMAScript
2015, save for two exceptions which are still being worked
on. This allows Scala.js programs to perform any operation
that an ECMAScript program could do, thereby guaranteeing
that they can talk to any JavaScript library.

Categories and Subject Descriptors D.3.3 [Language Con-

structs and Features]

Keywords language interoperability, object-oriented, func-
tional

1. Introduction

Nowadays, there are literally hundreds of programming
languages compiling to JavaScript. Some languages only add
simple syntactic sugar, such as CoffeeScript [2], or add static
types to JavaScript, like TypeScript [15] and Flow [7]. Other
languages were created from scratch to target JavaScript,
among which Dart [10], Haxe [8], PureScript [18] and Elm
[5]. Finally, several languages designed for other runtimes,
such as the JVM or the CLR, were ported to also run in
JavaScript runtimes, e.g., GWT [11], ClojureScript [1] and
FunScript [9]. All of them share one crucial requirement:

being able to talk in some way or another to JavaScript
APIs. At the very least, invoking the DOM API is required to
manipulate web pages, but we also want to be able to leverage
the eco-system of existing JavaScript libraries.

When it comes to interoperability, we can separate the
languages compiling to JavaScript into two main categories:
languages with the same run-time semantics as JavaScript,
and languages with different run-time semantics (such as
compile-time overloading).

In the first category, we find languages such as Coffee-
Script, TypeScript and Flow. In those languages, talking to
JavaScript APIs is easy, since there is virtually no impedance
mismatch between the languages. At most, it requires defin-
ing type definitions for JavaScript APIs to be able to call them
easily, as is the case in TypeScript.

In the other category, we find all the languages that either
offer more powerful language abstractions (e.g., PureScript,
Elm) or support multiple target runtimes (e.g., ClojureScript,
GWT). These languages all fail, at some level or another,
to provide satisfactory interoperability with JavaScript APIs,
as we will see in Section 2. Shortcomings range from the
inability to handle object-orientation, overloading, or higher-
order functions, to requiring knowledge of the implemen-
tation details of the compiler. If a language misses some
interoperability features, there are some JavaScript libraries
that it cannot interact with. Usually, this is worked around by
writing “bridge” JavaScript code working as an adapter for
the library, reexposing its functionality with a subset of the
JavaScript language features understood by the program.

In this paper, we present the interoperability features of
Scala.js [19], a dialect of Scala compiling to JavaScript. When
designing Scala.js, interoperability with JavaScript has been
the number one priority. An early design [3] was no better
than the state of the art (it suffered from issues similar to
those we discuss in Section 2), and prompted us to research
a different approach to interoperability. While part of the
second category of languages, Scala.js now solves the short-
comings of previous approaches to interoperability. It does
so with what we call a semantics-driven approach: provide
Scala.js language features for all the run-time semantics of-
fered by the ECMAScript 2015 language, so that Scala.js

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4648-1/16/10...
http://dx.doi.org/10.1145/2998392.2998404

85

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148027767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

programs can literally do everything that ECMAScript pro-
grams can do. This guarantees that Scala.js programs can talk
to any JavaScript library. At this stage, the semantics for two
ECMAScript constructs–modules and new.target–are still
being worked on, which means this guarantee is not actually
provided by the currently implemented system, but will be as
soon as they are addressed.

Contributions

• We extend the semantics of Scala with an additional
type hierarchy of JavaScript types in Section 3, which
belongs in the same type system but has different run-
time semantics, defined in Section 4. Both at call site
and definition sites, the semantics of operations on these
types are borrowed from the semantics of ECMAScript
constructs. Our interoperability features are complete with
respect to ECMAScript 2015, save for two exceptions,
which we discuss in Section 4.4.

• We provide a solution for interoperability with overloaded
methods, in particular in the presence of inheritance and
overriding, which has not been addressed in any practical
nor theoretical system before. We reconcile the run-time
overloading dispatch semantics of JavaScript with the
compile-time overloading constructs of Scala, both at call
site (Section 4.2.1) and definition site (Section 4.3.3).

2. Motivation

In this section, we present some shortcomings of previous
approaches to interoperability with JavaScript. We give most
examples in GWT and ClojureScript, because they are, in
our opinion, among the languages providing the best inter-
operability features. Their few shortcomings are the most
challenging ones to tackle. Note that these shortcomings are
a property of the current design of interoperability features in
these languages, and not fundamental limitations. Future ver-
sions of ClojureScript or GWT could address those concerns,
possibly with the approach described in this paper.

Overloading Although JavaScript technically does not have
overloading as a language feature per se, the term “overload-
ing” is commonly used in JavaScript–including in its speci-
fication, e.g., [4, §20.3.2]–as referring to run-time dispatch
based on run-time tests, both for the actual number of argu-
ments provided at call site (arity-based overloading) and for
the types of the actual arguments (type-based overloading).

Consider the following JavaScript code1, which uses the
overloaded method html of jQuery both to read and write.
const list = $("#list");

const oldHTML = list.html();

list.html(oldHTML + "New elem");

In a language whose interoperability features cannot express
overloading, such as GWT in their latest version [12], calling

1 All our JavaScript examples assume ECMAScript 2015 [4], which is the
latest standard as of this writing.

such an API is not directly possible. Workarounds include a)
writing a bridge JavaScript library that exposes getHTML()
and setHTML() separately, or b) using two different types for
list (one declaring the getter, the other the setter, with an
explicit cast in between). Neither workaround is satisfactory.
Besides, they do not really allow a GWT program to imple-

ment such an API, to be consumed by another JavaScript mod-
ule. It is impossible to write a class exposing an overloaded
method to JavaScript, as mentioned in Section “Caveats &
Special cases” of the GWT interoperability specification [12].

GWT interoperability does not support overloading be-
cause there is a major semantic mismatch between compile-
time overloading dispatch in Java and run-time overloading
dispatch in JavaScript. In fact, to the best of our knowledge,
the only languages that correctly handle overloading in their
interoperability are those in which overloading has run-time
dispatch semantics to begin with, such as ClojureScript.

Object-Orientation Consider the following JavaScript code
using Phaser [13], a game development library. It creates a
very simple game state that draws a triangle on the screen.
class GameState extends Phaser.State {

create() {

this.graphics =

this.game.add.graphics(0, 0);

this.graphics.beginFill(0xFFD700);

this.graphics.drawPolygon(

[50, 0, 100, 100, 0, 100]);

this.graphics.endFill();

}

}

const game = new Phaser.Game(

100, 100, Phaser.AUTO, "container");

game.state.add("game", new GameState);

game.state.start("game");

Implementing the same functionality in ClojureScript
is not possible, because ClojureScript does not expose
any interoperability feature to create classes. As long as
Phaser.State is declared as an ECMAScript 5.1 construc-
tor function (and not as an actual ECMAScript 2015 class),
a workaround is to create GameState as a function, then
manipulate its prototype the old-fashioned way:
(defn GameState [] ...)

(set! (.-prototype GameState)

(new (.-State js/Phaser)))

(set! (.. GameState -prototype -create) (fn []

(this-as this

(let [graphics (.graphics

(.-add (.-game this)) 0 0)]

(set! (.-graphics this) graphics)

(.beginFill graphics 0xFFD700)

(.drawPolygon graphics

(array 50 0 100 100 0 100))

(.endFill graphics)))))

However, this workaround would stop working if Phaser
migrates Phaser.State to an actual ECMAScript 2015

86

class. Indeed, it is not possible to extend an ES 2015 class
from an ES 5.1 constructor function.2

Generics and Primitive Types GWT also has a more subtle
issue in the previous example. The method drawPolygon

takes an array of numbers as parameter. It would be tempting
to declare the JsType for Phaser.Graphics as follows:
@JsType(namespace="Phaser", isNative=true)

class Graphics {

native void beginFill(double color);

native void endFill();

native void drawPolygon(JsArray<Double> ps);

}

GWT’s interoperability specifies that the double color

will be seen by JavaScript as a number. However, due to
auto-boxing in Java, JsArray<Double> is not a JavaScript
array of numbers. It is a JavaScript array of instances
of java.lang.Double, which Phaser cannot understand.
Declaring a JavaScript array of numbers requires a separate,
non-generic class. In general, generics cannot be instantiated
to primitive types to represent JavaScript data types.

This time, the semantic mismatch is about boxing: Java
boxes primitive values when they enter a generic context,
whereas JavaScript keeps primitive values in all contexts.

Conclusion As we have shown in this section, existing
interoperability solutions have severe limitations. When some
constructs available to JavaScript applications are impossible
to reproduce in a source language, there are JavaScript
libraries that cannot be used by applications in that language.
It is therefore important to design interoperability features
that avoid this situation. This can only be achieved if those
features allow to reproduce any behavior that could be
achieved in JavaScript, i.e., if they cover “all of JavaScript”.
We will make this criterium more precise in Section 4.4, but
will first go through the design of interoperability in Scala.js.

3. Scala Types and JavaScript Types

As hinted in the previous section, the main obstacle to good
interoperability is a mismatch between the run-time seman-
tics of two languages. A typical problem, for statically typed
languages, is overloading. On the one hand, overloading in
JavaScript is resolved at run-time. On the other hand, stati-
cally typed languages, among which Scala, resolve overload-
ing at compile-time.

How can we address the semantics mismatch in Scala.js?
Brutally changing that aspect of the Scala semantics when
compiling to JavaScript is not acceptable, as it would break
valid programs. Our solution to this problem is the following:
do not shy away from the semantics mismatch, but rather
acknowledge its existence, and encode it into the type system.
We do this with a separate hierarchy of JavaScript types,

2 Although ES classes are often thought to be mere syntactic sugar over
constructor functions and prototypes, it is not entirely true, as they have
some unique semantics such as the inheritance restriction.

rooted in the type js.Any, a third subtype of Any (beside
AnyVal and AnyRef, which are Scala types). Unlike Scala
types, JavaScript types have JavaScript semantics.

For example, recall the overloaded html() method of
jQuery. We can type this API using a JavaScript trait in
Scala.js. For the purposes of this paper, traits are similar
to interfaces in Java.
trait JQuery extends js.Any {

def html(): String

def html(newValue: String): Unit

}

val list: JQuery = createSomeJQuery()

val oldHTML = list.html()

list.html(oldHTML + "New elem")

Because list has a JavaScript type, calling list.html()
is intuitively equivalent to the corresponding JavaScript
code, i.e., it looks for a property named html in the pro-
totype chain of list, checks that it is callable, and calls it
with list as value for this and zero argument. Similarly,
list.html(<expr>) calls it with one argument, which is
the result of evaluating <expr>. We will make the semantics
of method calls more precise in Section 4.2.1.

When calling from Scala.js to native JavaScript code,
this might seem obvious. The call list.html() cannot do
anything but resolve at run-time inside the implementation of
JQuery in JavaScript. However, this also applies to a class
implemented in Scala.js code, which we can do as follows:
class JQueryImpl(element: HTMLElement)

extends js.Object with JQuery {

def html(): String = element.innerHTML

def html(newValue: String): Unit =

element.innerHTML = newValue

}

Since JQueryImpl is a JavaScript type, it has run-
time dispatch semantics for overloaded methods. A call to
someJQueryImpl.html() (from Scala.js or from JavaScript
code) will resolve at run-time. Implementation-wise, the
compiler generates the appropriate code to perform the over-
loading resolution at run-time.

The existence of the js.Any hierarchy and its distinct se-
mantics is the core idea behind all of Scala.js’ interoperability.
We will explore all the details further in Section 4.

4. Interoperability Semantics

4.1 Type Correspondence

The attentive reader might have noticed that we glossed over
an important detail in the example from Section 3. We have
happily assumed that String accurately represents the values
that jQuery expects and returns. If it doesn’t, our previous
code would be flawed, as it would call jQuery’s html()

method with something that the underlying JavaScript cannot
understand.

Recall from Section 2 that GWT’s interoperability speci-
fies that a primitive double is seen by JavaScript as a primi-

87

Scala types Corresponding data type in JavaScript
Boolean boolean

Double number

String string or null (String is nullable)
Unit undefined

Null null

Byte Integer number in the range [−27, 27 − 1]
Short Integer number in the range [−215, 215−1]
Int Integer number in the range [−231, 231−1]
Float number with 32-bit float precision

Table 1. Type correspondence in Scala.js

tive number, but that boxes thereof are not. In Scala.js, the
language mandates the type correspondences shown in Table
1, regardless of whether those values enter generic contexts
(or are upcast to Any). In other words, Scala.js does not ex-
hibit the boxing issue. Implementation-wise, values of those
types are never boxed in Scala.js. Instances of all other Scala
types (including Char and Long) are specified as opaque.
JavaScript sees them as objects with which it cannot interact.
The system implemented in Scala.js allows to partially open
up Scala types to JavaScript with exports, but a discussion of
exports is omitted from this paper.

4.2 Manipulating Values of JavaScript Types

4.2.1 Method Calls

Recall from Section 3 that method calls on JavaScript types
have run-time overloading dispatch. More importantly, they
have JavaScript method call semantics. Intuitively, this means
that a Scala.js method application of the form x.meth(a, b)

where x is statically typed as a JavaScript type behaves as the
JavaScript code x.meth(a, b).

Past the intuition, however, this does not make sense,
as x, a and b can be arbitrary Scala.js expressions, which
are not valid JavaScript expressions in general. A better
definition of the semantics of such a call would be: evaluate
the Runtime Semantics of x.meth(a, b) according to the
ECMAScript specification [4, §12.3.4], replacing invocations
of GetValue(x) (resp. a, b) by the evaluation rules of
the Scala language specification [16, §6] for x (resp. a, b).
However, a completely formal derivation of the evaluation
rules is out of the scope of this paper. We will therefore stick
to the less formal definition of the semantics for the remaining
of the paper, implying that evaluation of subexpressions is
left to the Scala semantics, unless otherwise noted.

Result Values: Protecting our Borders Recall from Sec-
tion 3 that the html() method is declared with an explicit
result type of String. The Scala type system therefore ex-
pects and believes that calling html() will return a String.
With JavaScript semantics, however, this might not be the
case. The method could, for example, return an Int, if it
is implemented in a native JavaScript class. If this happens,
statically typed Scala code will start manipulating an Int

value as if it were a String. This could have disastrous con-
sequences. It is also extremely damaging for an optimizer,
which cannot rely on a sound static type system to perform
optimizations, even on Scala types.

To avoid these problems, we protect our borders by sys-
tematically checking that the values returned by JavaScript
method calls conform to the static result type, in the fashion
of [14, 22] (though without blame tracking). In other words,
if html() returns an Int, a ClassCastException will be
thrown. Explained as a code example, the call x.html() is
actually equivalent to x.html().asInstanceOf[String].

Because of type erasure in Scala, run-time type checks
are always performed up to the erasure of a type, as defined
by the Scala language specification [16, §3.7]. This means
that a list of type List[Int] qualifies as List[String]
for the purpose of this check, which therefore succeeds. It
is only later, when accessing an element of that list, e.g.,
list.head, that an additional check will be performed,
as list.head.asInstanceOf[String]. In Scala and in
Scala.js, types are therefore only sound up to erasure. Even
though erasure is often regarded as a liability, it gives Scala.js
immunity against the common performance problems found
in interoperability layers that check types at the borders [21].
Indeed, only the first-order type needs to be checked, which
is a constant-time operation. Moreover, since typed function
values already expose an untyped entry point due to erasure,
Scala.js does not need wrappers for function values sent to
dynamically typed parts, i.e., to JavaScript libraries, which
means that function identity is not threatened.

In Scala.js, the expression x.asInstanceOf[T] is fur-
ther specified as a no-op if the erasure of T is a JavaScript
type. This also applies to manual asInstanceOf checks, as
well as those automatically inserted for the erasure of gener-
ics. Consequently, any value can be successfully cast to any
JavaScript type, making JavaScript types decidedly unsound
(similarly to generic types). Operations applied to JavaScript
types are always checked at run-time (by the JavaScript VM).
This property makes JavaScript types behave similarly to the
like types proposed by Wrigstad et al. [23], with the exception
that casts from non-conforming types must be explicit.

Table 2 recaps all the interoperability semantics of expres-
sions manipulating values of JavaScript types.

4.2.2 Function Call

Some JavaScript values are callable, i.e., they can be called
with the function call notation f(a1, . . ., an). In Scala,
a corresponding syntax exists, which desugars into calling
the apply method of the function value, i.e., f(a1, . . . ,

an) desugars into f.apply(a1, . . ., an). It is therefore
natural to specialize the semantics of calling a method named
apply into the semantics of a JavaScript function call. This
allows to declare interfaces for JavaScript function values,
similar to the ones for Scala function values. For example, a
1-argument function value can be typed as follows:

88

S
ca

la
.js

de
cl

ar
at

io
n

S
ca

la
.js

ex
pr

es
si

on
S

em
an

ti
cs

as
Ja

va
S

cr
ip

tc
od

e
M

et
ho

d
ca

ll
s

(4
.2

.1
)

d
e
f

m
(
):

R
x
.
m
(
)

Jx
K.
m
(
)

d
e
f

m
(
p
1
:
T
1
,
.
.
.
,

p
n
:
T
N
):

R
x
.
m
(
a
1
,
.
.
.
,

a
n
)

Jx
K.
m
(
Ja
1
K,

.
.
.
,

Ja
n
K)

d
e
f

m
(
p
1
:
T
1
,
.
.
.
,

p
i
:
T
i

=
_
,
.
.
.
,

p
n
:
T
N

=
_
):

R
x
.
m
(
a
1
,
.
.
.
,

a
j
)

Jx
K.
m
(
Ja
1
K,

.
.
.
,

Ja
j
K)

d
e
f

m
(
p
1
:
T
1
,
.
.
.
,

p
i
:
T
i
,

p
n
:
T
N
*
):

R
x
.
m
(
a
1
,
.
.
.
,

a
j
)

Jx
K.
m
(
Ja
1
K,

.
.
.
,

Ja
j
K)

d
e
f

m
(
p
1
:
T
1
,
.
.
.
,

p
i
:
T
i
,

p
n
:
T
N
*
):

R
x
.
m
(
a
1
,
.
.
.
,

a
i
,

a
n
:
_
*
)

Jx
K.
m
(
Ja
1
K,

.
.
.
,

Ja
i
K,

.
.
.
Ja
n
.
t
o
J
S
A
r
r
a
y
K)

F
un

ct
io

n
ca

ll
s

(4
.2

.2
)

d
e
f

a
p
p
l
y
(
p
1
:
T
1
,
.
.
.
,

p
n
:
T
N
):

R
x
.
a
p
p
l
y
(
a
1
,
.
.
.
,

a
n
)

(
0
,

Jx
K)
(
Ja
1
K,

.
.
.
,

Ja
n
K)

P
ro

pe
rt

y
re

ad
(4

.2
.3

)
v
a
l

f
:
R

x
.
f

Jx
K.
f

v
a
r

f
:
R

d
e
f

f
:
R

P
ro

pe
rt

y
w

ri
te

(4
.2

.3
)

v
a
r

f
:
T

x
.
f

=
v

Jx
K.
f

=
Jv

K
d
e
f

f
_
=
(
v
:
T
):

U
n
i
t

C
on

st
ru

ct
or

fu
nc

ti
on

of
a

cl
as

s
(4

.2
.3

)
c
l
a
s
s

C
e
x
t
e
n
d
s

j
s
.
A
n
y

n
e
w

C
(
a
1
,
.
.
.
,

a
n
)

n
e
w

Jj
s
.
c
o
n
s
t
r
u
c
t
o
r
O
f
[
C
]
K(

Ja
1
K,

.
.
.
,

Ja
n
K)

N
at

iv
e

cl
as

se
s

an
d

ob
je

ct
s

(4
.2

.3
)

@
j
s
.
n
a
t
i
v
e

c
l
a
s
s

C
j
s
.
c
o
n
s
t
r
u
c
t
o
r
O
f
[
C
]

<
g
l
o
b
a
l
>
.
C

@
j
s
.
n
a
t
i
v
e

o
b
j
e
c
t

O
O

<
g
l
o
b
a
l
>
.
O

In
de

xe
d

pr
op

er
ti

es
an

d
m

et
ho

ds
(4

.2
.3

)
@
J
S
B
r
a
c
k
e
t
A
c
c
e
s
s

d
e
f

m
(
a
:
T
):

R
x
.
m
(
a
)

Jx
K[

Ja
K]

@
J
S
B
r
a
c
k
e
t
A
c
c
e
s
s

d
e
f

m
(
a
:
T
1
,

b
:
T
2
):

U
n
i
t

x
.
m
(
a
,

b
)

Jx
K[

Ja
K]

=
Jb

K
@
J
S
B
r
a
c
k
e
t
C
a
l
l

d
e
f

m
(
a
1
:
T
1
,

a
2
:
T
2
,
.
.
.
,

a
n
:
T
N
):

R
x
.
m
(
a
1
,

a
2
,
.
.
.
,

a
n
)

Jx
K[

Ja
1
K]
(
Ja
2
K,

.
.
.
,

Ja
n
K)

O
pe

ra
to

rs
(4

.2
.3

)
d
e
f

u
n
a
r
y
_
+
:
R

(a
nd

-
~

!
)

+
x

+
Jx

K
d
e
f

+
(
a
:
T
):

R
(a

nd
-

*
/

%
<
<

>
>

>
>
>

&
|

ˆ
<

>
<
=

>
=

&
&

|
|

)
x

+
a

Jx
K
+

Ja
K

In
st

an
ce

te
st

s
(4

.2
.3

)
c
l
a
s
s

C
e
x
t
e
n
d
s

j
s
.
A
n
y

a
.
i
s
I
n
s
t
a
n
c
e
O
f
[
C
]

Ja
K
i
n
s
t
a
n
c
e
o
f

Jj
s
.
c
o
n
s
t
r
u
c
t
o
r
O
f
[
C
]
K

t
r
a
i
t

T
e
x
t
e
n
d
s

j
s
.
A
n
y

a
.
i
s
I
n
s
t
a
n
c
e
O
f
[
T
]

co
m

pi
le

er
ro

r
c
l
a
s
s

C
e
x
t
e
n
d
s

j
s
.
A
n
y

a
.
a
s
I
n
s
t
a
n
c
e
O
f
[
C
]

Ja
K

(n
o-

op
)

t
r
a
i
t

T
e
x
t
e
n
d
s

j
s
.
A
n
y

a
.
a
s
I
n
s
t
a
n
c
e
O
f
[
T
]

Ja
K

(n
o-

op
)

T
a

b
le

2
.

S
em

an
ti

cs
of

m
an

ip
ul

at
in

g
Ja

va
S

cr
ip

t
ty

pe
s.

x
is

as
su

m
ed

to
ha

ve
a

st
at

ic
Ja

va
S

cr
ip

t
ty

pe
.

Fo
r

a
re

su
lt

ty
pe

R
,

re
su

lt
s

ar
e

ca
st

to
R

as
pe

r
r
e
s
u
l
t
.
a
s
I
n
s
t
a
n
c
e
O
f
[
R
]

.
E

ac
h

li
ne

of
th

e
ta

bl
e

re
ad

s
as

:
gi

ve
n

a
st

at
ic

de
cl

ar
at

io
n

(i
n

a
Ja

va
S

cr
ip

t
ty

pe
)

fr
om

th
e

fi
rs

t
co

lu
m

n,
th

e
S

ca
la

.js
ex

pr
es

si
on

fr
om

th
e

se
co

nd
co

lu
m

n
ha

s
th

e
sa

m
e

ru
n-

ti
m

e
se

m
an

ti
cs

as
th

e
Ja

va
S

cr
ip

tc
od

e
in

th
e

th
ir

d
co

lu
m

n
(w

he
re

Je
K

de
no

te
s

th
e

ev
al

ua
ti

on
of

e
ac

co
rd

in
g

to
th

e
S

ca
la

sp
ec

ifi
ca

ti
on

.

89

trait Function1[-T1, +R] {

def apply(a1: T1): R

}

so that a Scala call such as f(a1), which desugars into
f.apply(a1), behaves as the JavaScript code f(a1).

4.2.3 Other Features

Due to space restrictions, we omit a detailed discussion of
several additional interoperability features:

Property accesses: Both Scala and JavaScript have fields,
getters and setters, obeying the Uniform Access Principle.
The syntax for property access in Scala.js is mapped to
the semantics of the corresponding syntax in JavaScript.

Loading native classes and objects: Top-level classes and
singleton objects extending js.Any can be annotated with
@js.native, indicating that they are not implemented in
Scala.js, but rather in external JavaScript libraries.

Indexed properties and methods: JavaScript can dynami-
cally access properties and methods with the bracket se-
lection x[prop]. Since Scala does not have an equivalent
syntax, these semantics are provided with the annotations
@JSBracketAccess and @JSBracketCall in Scala.js.

Operators: Similarly to how methods named apply were
mapped to JavaScript function calls in Section 4.2.2, meth-
ods whose name is one of the JavaScript symbolic op-
erators are mapped to the semantics of the correspond-
ing operator. Alphabetical operators such as typeof and
instanceof are provided by primitive functions, e.g.,
js.typeOf(x) and x.isInstanceOf[C].

Together, these features can be used to accurately type the
API of JavaScript arrays, for example:
@js.native class Array[A] extends js.Object {

def length: Int = js.native

def length_=(v: Int): Unit = js.native

@JSBracketAccess

def apply(idx: Int): A = js.native

@JSBracketAccess

def update(idx: Int, v: A): Unit = js.native

}

4.3 Creating JavaScript Values

Whereas Section 4.2 exhaustively showed how we can ma-
nipulate values of JavaScript types, this section highlights
the features of Scala.js’ interoperability that allow to create
JavaScript values.

4.3.1 Values of Primitive Types

There are six primitive types in JavaScript: undefined,
null, boolean, number, string and symbol. With the
exception of symbol, all of them have equivalent Scala types
as defined in Section 4.1. The regular Scala constructs to
create values of those types (such as literals) can be used to
create the JavaScript values, as they are the same. Symbols are

created as in JavaScript, using the functions Symbol(desc)
and Symbol.for(key), which can be called through the
interoperability semantics for function call and method call.

4.3.2 Function Values

Even though Scala has syntax to create function values,
they are Scala function values, which are not equivalent
to JavaScript function values. To convert a Scala function
into a JavaScript function, we provide primitive functions
js.Any.fromFunction0 through fromFunction22. For
example, for functions of one argument, we have:
def fromFunction1[T1, R](

f: T1 => R): js.Function1[T1, R]

Recall from Section 4.2.2 that js.Function2 is a type
describing a JavaScript callable with 2 arguments. Such a
conversion function can be used as follows:
val g = js.Any.fromFunction1((a: Int) => a+1)

Formally, fromFunction1 returns a new function object,
as defined in [4, §9.3], that, when called, forwards the
call and arguments to the apply method of f. In other
words, the JavaScript code g(a, b) has the Scala seman-
tics of f.apply(a, b). Note that such function values
always discard the value of thisArgument that they are
given, as do arrow functions in JavaScript. An additional
series of js.ThisFunction types explicitly capture the
thisArgument as an additional formal parameter at the
Scala.js level.

Using the methods fromFunctionN is quite cumbersome.
The practical system implemented in Scala.js uses Scala’s
implicit conversions to remove the extra verbosity.

4.3.3 Class Values

In ECMAScript 5.1 and earlier, class values were no different
than function values combined with prototype inheritance,
which can be created with the interoperability features we
have already seen. However, in ECMAScript 2015, class val-
ues are a distinguished feature with some specific semantics,
for which we need dedicated support.

Since most parts of class definitions straightforwardly
to corresponding concepts in JavaScript classes, we omit a
detailed discussion, and summarize the semantic equivalences
in Table 3. Note that formal parameters are checked with
casts to protect the borders, since JavaScript code calling the
method could give arbitrary parameters.

One aspect deserves to be further discussed, though,
namely overloading. In Section 3, we saw that overloading
in JavaScript types has run-time dispatch semantics. Section
4.2.1 provided precise semantics for method calls, but we
now need to give semantics to method definitions. Consider
the following definitions:
def add(x: Double, y: Double): Point =

new Point(this.x + x, this.y + y)

def add(that: Point): Point =

new Point(this.x + that.x, this.y + that.y)

90

Scala.js definition Semantics as JavaScript code
class C extends D with . . . class C extends Jjs.constructorOf[D]K
val f: T this.f = JdefaultOf[T]K, in the constructor
var f: T

def m(p1: T1, . . ., pn: TN): R = m(q1, . . ., qn) {

expr const p1 = Jq1.asInstanceOf[T1]K; . . .;
return JexprK;

}

def f: T = expr get f() { return JexprK; }

def f_=(v: T): Unit = stat set f(w) { const v = Jw.asInstanceOf[T]K; JstatK }

class C(p1: T1, . . ., pn: TN) constructor(q1, . . ., qn) {

extends D(a1, . . ., am) { const p1 = Jq1.asInstanceOf[T1]K; . . .;
stats super(Ja1K, . . ., JamK);

} JstatsK;
}

Table 3. Semantics of the definition of JavaScript classes (without overloading considerations).

In JavaScript class definitions, there can only be one method
add, which should handle both cases. That method will per-
form run-time dynamic dispatch to the appropriate overload.
The dispatch uses a combination of testing the number and
run-time types of the actual arguments. For the above case,
we can express the run-time tests as follows (abusing the
Scala syntax .asInstanceOf[T] within JavaScript):
add(...args) {

switch (args.length) {

case 1:

return this.add_Point(

args[0].asInstanceOf[Point]);

case 2:

return this.add_Double_Double(

args[0].asInstanceOf[Double],

args[1].asInstanceOf[Double]);

default:

throw new TypeError(

"No matching overload");

}

}

The general algorithm for run-time dispatch is as follows:

1. Switch on the number of actual arguments for each group
of overloaded definitions with the same number of formal
parameters.

2. For each value of the number of formal parameter count:

(a) If there is only one overloaded definition, call it, with
appropriate type checks for the actual arguments.

(b) Otherwise, find the first parameter position at which
the type is not the same in all definitions. Perform run-
time type tests on that parameter to refine the set of
possible definitions, and go back to step 2a.

(c) If all the erased types are equal, throw an error. Note
that the existence of this case can be decided at
compile-time, and is reported as a compile error.

The order in which run-time type tests are performed in step
2b matters, as there are subtyping relationships between some
types. In this case, most specific types are tested first.

Default parameters and variadic parameters are handled
in a similar way.

The feature interaction between overloading and inherited
methods is even more challenging. Consider the following
Scala.js classes:
class Parent extends js.Object {

def foo(x: Double): Double = x * 2

}

class Child extends Parent {

def foo(x: String): String = x + "hello"

}

What should the semantics of Child.foo be? If it only han-
dles the String case, then Parent.foo fails to be inher-
ited, as it would be shadowed by the redefinition of foo in
Child. Child.foo should therefore dispatch among all the
alternatives of foo, including those inherited from its parent
classes. In the cases where the dispatch resolves to an inher-
ited method, it should delegate to the parent implementation
(which, in turn, might have to re-do an overloading dispatch).
class Child extends Parent {

foo(arg1) {

if (arg1.isInstanceOf[Double])

return super.foo(arg1);

else if (arg1.isInstanceOf[String])

return arg1 + "hello";

else

throw new TypeError(

"No matching overload");

}

}

4.4 Completeness

Now that we have gone through all the interoperability
features of Scala.js, it is time to revisit our initial goad.

91

Recall from Section 2 that, in order to be able to talk
to any JavaScript libraries, we need our interoperability
features to cover “all of JavaScript”. We argue that our
interoperability features are complete, in the sense that they
support “all of JavaScript” (in Strict Mode [4, §10.2.1]). But
what exactly is “all of JavaScript”? We find the answer in the
ECMAScript specification [4], sections 10 to 15, included,
which are entitled “ECMAScript Language”. Supporting “all
of JavaScript” essentially means being able to express all of
the run-time semantics offered by the ECMAScript language.

Table 4 shows a comprehensive list of the relevant subsec-
tions in the ECMAScript specification, together with links
to the interoperability features described in this paper which
give access to them. Note that the ECMAScript specification
defines both static and run-time semantics. The former being
more about JavaScript source code than evaluation semantics,
only the latter are relevant. In particular, we entirely skip Sec-
tions 10 and 11 entitled “Source Code” and “Lexical Syntax”,
respectively. We also skip language constructs which are ob-
viously replaced by corresponding Scala language constructs,
such as identifiers and control structures.

As we can see, there are exactly four features that are
not implemented: new.target, generator functions, static
methods and modules.

Generator functions are syntax sugar over normal func-
tions. If needed, they can be implemented using other con-
structs, although there will be some syntax overhead. It is
therefore still possible to achieve their semantics in Scala.js,
even though it might not be convenient. In the future, the syn-
tax overhead could be removed using a Scala macro, which
could perform the same desugaring in terms of Scala.js con-
structs.

Static methods are essentially function properties of the
class value. Scala does not have static methods, which makes
it very difficult to provide a declarative syntax for EC-
MAScript static methods. The limitation can be worked
around by attaching function values to properties of the class
value using imperative statements, such as
js.constructorOf[C].increment =

(a: Int) => a + 1

There are plans to add support for static methods in Scala
[17], which will allow Scala.js to have better support in the
future.

new.target and imports are truly missing pieces of
semantics that cannot be otherwise represented. They will be
the topic of future work, as well as static methods. We are
confident that the methodology we have applied so far can be
extended to the last unsupported bits.

5. Related Work

Language interoperability is an important problem that has
been explored both in the theoretical literature as well as in
concrete implementations.

Matthews and Findler [14] develop a theoretical founda-
tion for interoperability between a statically typed language
and a dynamically typed language. They define a Natural
Embedding that allows to embed Scheme-like programs into
ML-like programs and vice versa. At the boundaries, num-
bers and functions are converted on a type-directed basis
between the Scheme representations and ML representations,
with dynamic type tests to ensure that values match their
types when flowing from Scheme to ML. Function values are
only checked up to their first-order behavior, delaying further
checks for the arguments (or result values) to the application
of the functions. We do something very similar in Scala.js:
values coming from JavaScript semantics and flowing into
statically typed Scala code are downcast to their erasure,
which is essentially equivalent to Matthews and Findler’s first-
order behavior. Dynamic checking of static contracts is also a
recurring theme in gradual typing [20, 22], although the run-
time semantic difference issue does not apply in those cases.
Gradually typed systems often suffer from performance prob-
lems [21] due to either deep type tests or towers of wrappers.
Scala.js avoids those issues by blending type tests related to
interoperability borders with those necessary due to erased
generic types in Scala.

Our interoperability features go beyond converting data
representations at language boundaries, however. Besides
numbers and functions, Scala.js can manipulate arbitrary
JavaScript objects, including mutable values. For those, con-
verting at language boundaries is not an option, as muta-
ble operations would not be carried over. We achieve this
deeper level of interoperability by unifying Scala values and
JavaScript values in one type system, capable of representing
both. To the best of our knowledge, there has been no formal
study of such a system yet, in the context of interoperabil-
ity between languages with different run-time semantics. In
particular, the interaction between compile-time- and run-
time overloading resolution seems unaddressed, which would
constitute interesting future work.

Type-based representations of foreign language mutable
objects has been the topic of several practical systems, how-
ever. Some early work was done by Elsman in SMLtoJs [6],
using phantom types to represent JavaScript values. That sys-
tem considered foreign values as blackboxes that could not
be directly manipulated by SML code. More recent develop-
ments include the overlay types and JsTypes of GWT [11],
which do allow direct manipulation. However, as we saw in
Section 2, their semantics have several limitations due to their
implementation-based behavior.

Independently of the run-time semantics problem, typing
native APIs with Scala.js traits, classes and objects was ini-
tially heavily inspired by TypeScript’s type definitions [15].
We adapted some language features to fit Scala’s type system,
such as using @JSBracketAccess annotations where Type-
Script has dedicated syntax. We later expanded the framework
to support the definition of class values from Section 4.3.3.

92

E
C

M
A

S
cr

ip
t2

01
5

la
ng

ua
ge

fe
at

ur
es

S
ca

la
.js

in
te

ro
pe

ra
bi

li
ty

fe
at

ur
es

12
.2

.2
t
h
i
s

4.
3.

2
t
h
i
s

in
m

et
ho

ds
;j

s
.
T
h
i
s
F
u
n
c
t
i
o
n

in
fu

nc
ti

on
s

12
.2

.4
li

te
ra

ls
4.

1
S

ca
la

li
te

ra
ls

an
d

ty
pe

co
rr

es
po

nd
en

ce
12

.2
.5

ar
ra

y
in

it
ia

li
ze

r
4.

2.
2

j
s
.
A
r
r
a
y
(
e
1
,

.
.
.
,

e
n
)

,i
m

pl
em

en
te

d
w

it
h

fu
nc

ti
on

ca
ll

12
.2

.6
ob

je
ct

in
it

ia
li

ze
r

4.
3.

3
n
e
w

j
s
.
O
b
j
e
c
t

{
v
a
l

f
1

=
v
1
;

.
.
.

}
,a

n
an

on
ym

ou
s

cl
as

s
12

.2
.8

re
ge

x
li

te
ra

ls
4.

2.
3

ca
n

be
im

pl
em

en
te

d
w

it
h
l
a
z
y

v
a
l

r
e

=
n
e
w

j
s
.
R
e
g
E
x
p
(
"
r
e
"
,

"
f
l
a
g
s
"
)

12
.3

.2
pr

op
er

ty
ac

ce
ss

or
s

4.
2.

3,
4.

2.
3

pr
op

er
ty

ac
ce

ss
an

d
in

de
xe

d
pr

op
er

ti
es

12
.3

.3
th

e
n
e
w

op
er

at
or

4.
2.

3
n
e
w

fo
r

Ja
va

S
cr

ip
tc

la
ss

es
12

.3
.4

fu
nc

ti
on

ca
ll

s
4.

2.
1,

4.
2.

2
m

et
ho

d
ca

ll
s

an
d

fu
nc

ti
on

ca
ll

s
12

.3
.5

th
e
s
u
p
e
r

ke
yw

or
d

4.
3.

3
s
u
p
e
r

re
fe

re
nc

es
12

.3
.8

.1
n
e
w
.
t
a
r
g
e
t

n
o

t
su

p
p

o
rt

ed

12
.4

.{
4–

5}
,1

2.
5.

{7
–8

}
+
+

an
d
-
-

ca
n

be
im

pl
em

en
te

d
w

it
h
+
=

1
an

d
-
=

1

12
.{

4–
12

}
ot

he
r

op
er

at
or

s
4.

2.
3,

4.
2.

3
Ja

va
S

cr
ip

to
pe

ra
to

rs
an

d
in

st
an

ce
te

st
s

13
.7

.5
f
o
r
-
i
n

an
d
f
o
r
-
o
f

lo
op

s
im

pl
em

en
te

d
as

us
er

co
de

in
th

e
S

ca
la

.js
st

an
da

rd
li

br
ar

y
13

.1
6

th
e
d
e
b
u
g
g
e
r

st
at

em
en

t
4.

2.
3

pr
im

it
iv

e
j
s
.
d
e
b
u
g
g
e
r
(
)

14
.{

1–
2}

(a
rr

ow
)

fu
nc

ti
on

de
fi

ni
ti

on
4.

3.
2

co
nv

er
si

on
s

fr
om

S
ca

la
fu

nc
ti

on
va

lu
es

14
.3

m
et

ho
d

de
fi

ni
ti

on
s

4.
3.

3,
4.

3.
3

m
et

ho
ds

,g
et

te
rs

an
d

se
tt

er
s

in
Ja

va
S

cr
ip

tc
la

ss
es

14
.3

st
at

ic
m

et
ho

ds
n

o
t

d
ir

ec
tl

y
su

p
p

o
rt

ed
,c

an
be

as
si

gn
ed

af
te

r
th

e
cl

as
s

ha
s

be
en

cr
ea

te
d

14
.4

ge
ne

ra
to

r
fu

nc
ti

on
de

fi
ni

ti
on

s
n

o
t

d
ir

ec
tl

y
su

p
p

o
rt

ed
,b

ut
th

ey
de

su
ga

r
in

to
ot

he
r

co
nc

ep
ts

th
at

ar
e

su
pp

or
te

d
14

.5
cl

as
s

de
fi

ni
ti

on
s

4.
3.

3
cl

as
s

va
lu

e
de

fi
ni

ti
on

s
15

.2
m

od
ul

es
n

o
t

su
p

p
o

rt
ed

T
a

b
le

4
.

E
C

M
A

Sc
ri

pt
20

15
la

ng
ua

ge
fe

at
ur

es
an

d
th

e
co

rr
es

po
nd

in
g

in
te

ro
pe

ra
bi

lit
y

fe
at

ur
es

of
Sc

al
a.

js
.E

ac
h

lin
e

of
th

e
ta

bl
e

re
ad

s
as

:t
he

ru
n-

tim
e

se
m

an
tic

s
of

th
e

Ja
va

Sc
ri

pt
co

ns
tr

uc
tf

ro
m

th
e

fir
st

co
lu

m
n

(a
s

sp
ec

ifi
ed

in
th

e
re

fe
re

nc
ed

se
ct

io
n

of
[4

])
ca

n
be

ex
pr

es
se

d
in

Sc
al

a.
js

us
in

g
th

e
in

te
ro

pe
ra

bi
lit

y
fe

at
ur

e
fr

om
th

e
se

co
nd

co
lu

m
n

(a
s

sp
ec

ifi
ed

in
th

e
re

fe
re

nc
ed

se
ct

io
n

of
th

e
pr

es
en

tp
ap

er
).

93

6. Conclusion

We have shown in Sections 3 and 4 how we can extend
Scala’s type system with an additional type hierarchy for
JavaScript types. Operations on values of these types have
different run-time semantics than traditional Scala values,
namely ECMAScript semantics. This change of semantics
closes the impedance mismatch between Scala and JavaScript,
allowing to talk to JavaScript APIs from Scala.js code. We
have argued in Section 4.4 that our interoperability features
are virtually complete with respect to the ECMAScript 2015
language: they offer all the run-time semantics that are offered
by ECMAScript. Two missing features, namely the meta-
property new.target and modules, are yet to be covered,
but we are confident that we can address them using a
similar approach. We say that this approach is semantics-
driven because it provides language constructs in Scala.js
that have the semantics of ECMAScript constructs, so that
“all of ECMAScript” is supported in Scala.js. To the best of
our knowledge, Scala.js is the first system providing “all of
ECMAScript”, by that definition.

We believe that the same approach could be used by a
variety of other statically typed language, including GWT,
at least if their paradigms are not too different from the
dual object-oriented/functional nature of JavaScript: identify
a particular set of types dedicated to interoperability (in
Scala.js, subtypes of js.Any), then specify a set of semantics
for operations on these types to cover JavaScript’s semantics.
The particular combination of Scala and JavaScript gives a
pleasant syntax, because the two languages are syntactically
close, but it need not be so. We have seen examples even in
Scala.js where the syntax is not identical in both languages,
such as for indexed properties in Section 4.2.3.

All the interoperability semantics presented in this paper
have been implemented in the standard distribution of Scala.js
[19]. They have been used to write type definitions for a large
number of JavaScript libraries, including jQuery, React and
Angular3, which allows all these libraries to be called from
Scala.js.

Acknowledgements This work was partially supported by
the Swiss Commission for Technology and Innovation (CTI)
grant 16613.1.

References

[1] ClojureScript. http://clojure.org/clojurescript,
2015.

[2] CoffeeScript. http://coffeescript.org/, 2015.

[3] S. Doeraene. Scala.js: Type-directed interoperability with dy-
namically typed languages. Technical Report EPFL-REPORT-
190834, École polytechnique fédérale de Lausanne, Switzer-
land, 2013.

3 A list can be found at https://www.scala-js.org/libraries/

facades.html.

[4] Ecma International. ECMAScript 2015 Language Specifica-

tion. Geneva, 6th edition, June 2015. URL http://www.

ecma-international.org/ecma-262/6.0/.

[5] Elm. http://elm-lang.org/, 2015.

[6] M. Elsman. SMLtoJs: Hosting a standard ML compiler in a
web browser. In Proceedings of the 1st ACM SIGPLAN Inter-

national Workshop on Programming Language and Systems

Technologies for Internet Clients, PLASTIC ’11, pages 39–48,
2011.

[7] Facebook. Flow. http://flowtype.org/, 2015.

[8] H. Foundation. Haxe. http://haxe.org/, 2015.

[9] FunScript. http://funscript.info/, The F# Software
Foundation.

[10] Google. Dart. https://www.dartlang.org/, 2015.

[11] Google. Google Web Toolkit. http://www.gwtproject.

org/, 2015.

[12] Google. JsInterop 1.0, nextgen GWT/JavaScript interoperabil-
ity. http://bit.ly/1IrvE2M, 2015.

[13] P. S. Ltd. Phaser. http://phaser.io/, 2015.

[14] J. Matthews and R. B. Findler. Operational semantics for
multi-language programs. ACM Trans. Program. Lang. Syst.,
31:12:1–12:44.

[15] Microsoft. TypeScript. http://www.typescriptlang.

org/, 2015.

[16] M. Odersky. Scala Language Specification. 2.11 edition, 2013.

[17] D. Petrashko, S. Doeraene, and M. Odersky. @static fields
and methods in Scala objects – Scala Improvement Pro-
posal. https://github.com/scala/scala.github.com/
pull/491, 2016.

[18] PureScript. http://www.purescript.org/, 2015.

[19] Scala.js. http://www.scala-js.org/, 2015.

[20] J. Siek and W. Taha. Gradual typing for objects. In Proceedings

of the 21st European Conference on ECOOP 2007: Object-

Oriented Programming, ECOOP ’07, pages 2–27, 2007.

[21] A. Takikawa, D. Feltey, B. Greenman, M. S. New, J. Vitek, and
M. Felleisen. Is sound gradual typing dead? In Proceedings

of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’16, pages 456–
468, 2016.

[22] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration:
From scripts to programs. In Companion to the 21st ACM SIG-

PLAN Symposium on Object-oriented Programming Systems,

Languages, and Applications, OOPSLA ’06, pages 964–974,
2006.

[23] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek.
Integrating typed and untyped code in a scripting language.
In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL
’10, pages 377–388, 2010.

94

