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ABSTRACT: Blue and green dyes as well as NIR-absorbing dyes have attracted
great interest because of their excellent ability of absorbing the incident photons
in the red and near-infrared range region. A novel blue D−π−A dye (Dyenamo
Blue), based on the diketopyrrolopyrrole (DPP)-core, has been designed and
synthesized. Assembled with the cobalt bipyridine-based electrolytes, the device
with Dyenamo Blue achieved a satisfying efficiency of 7.3% under one sun
(AM1.5 G). The co-sensitization strategy was further applied on this blue organic
dye together with a red D−π−A dye (D35). The successful co-sensitization
outperformed a panchromatic light absorption and improved the photocurrent
density; this in addition to the open-circuit potential result in an efficiency of
8.7%. The extended absorption of the sensitization and the slower recombination
reaction between the blue dye and TiO2 surface inhibited by the additional red
sensitizer could be the two main reasons for the higher performance. In
conclusion, from the results, the highly efficient cobalt-based DSSCs could be
achieved with the co-sensitization between red and blue D−π−A organic dyes with a proper design, which showed us the
possibility of applying this strategy for future high-performance solar cells.
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1. INTRODUCTION

Dye-sensitized solar cells (DSSCs) have attracted great interest
as a low-cost alternative to silicon solar cells, exhibiting
moderate power conversion efficiencies. One crucial compo-
nent of the DSSC devices is the monolayer of dye molecules,
which is located at the interface of a mesoporous wide-bandgap
semiconductor electrode and an electrolyte.1−5 This dye
monolayer takes the function of light harvesting in the devices,
and determines which part of the photons can be absorbed in
the solar spectrum. So far, a large number of red dyes with
strong absorption below 600 nm have been practiced in DSSCs
successfully. However, this leaves a major part of the incident
photons in the red and near-infrared (NIR) range unused.
Therefore, the blue and green dyes as well as the NIR-
absorbing dyes attracted particular interest. Additionally, the
semitransparent solar cell devices with different colors are an
extremely attractive technology for various applications

including building integration. Although great efforts have
been accomplished to design the blue or green dyes, few
efficient sensitizers, compared to red dyes, have been
developed. Squaraine-based sensitizers can reach a green or
blue color, which absorbs the NIR region. However, the solar
cell devices with this type of dyes always lead to low efficiencies.
This is primarily due to the dye aggregation, poor electron
injection, and low stability.6−12 Zinc phthalocyanines and
perylene dyes are also favorable for their blue color and NIR
absorption. However, both kinds of dyes did not show good
performance until now.13−19 Recently, Holcombe et al.
reported a series of diketopyrrolopyrrole (DPP)-based high-
performance blue sensitizers for DSSCs, among which is the
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device with DPP17 sensitizer that achieved over 10% PCE in
combination with the [Co(bpy)3]

3+/2+ electrolyte at full sun
(AM1.5 G).20

Co-sensitization of two or more dyes with complementary
absorption regions is an effective approach to extend the
absorption spectrum of the solar cell and enhance the
photovoltaic properties of organic dyes based on DSSCs.21−33

Some successful co-sensitized DSSCs have been reported. In
2011, a porphyrin dye co-sensitized with an organic dye with
cobalt-based electrolyte has been studied by Graẗzel’s group; an
efficiency of 12.3% has been achieved.31 Recently, a record
DSSC efficiency above 14% has been obtained with
collaborative sensitization of silyl-anchor and carboxy-anchor
dyes.32 Most successful co-sensitization systems with cobalt
electrolyte employed one metal-complex sensitizer (such as
ruthenium or porphyrin dyes) or other dyes as main light
absorber, and another dye took little function to slightly fill up
the absorption gap.21,22,27−30,33 The co-sensitization of two
pure organic dyes with very different absorption spectra has not
been well-studied yet. Here, a pure organic co-sensitization
system with very different color dyes, one red and one blue
D−π−A organic dyes, has been studied combined with cobalt-
based electrolyte.
Herein, a new blue organic D−π−A dye with broad

absorption spectra, Dyenamo Blue (DB), has been designed
and synthesized for the co-sensitization. The structure of the
blue dye is designed on the basis of the red dye D35 (shown in
Figure 1), which was previously found to be suitable with the
cobalt-based redox couples.34 The introduction of the DPP
structure into the blue dye gives a promising performance of
7.3% with cobalt electrolyte. The DB dye was found to have
successful combination with D35 for co-sensitization. An
improved efficiency of 8.7% was obtained for devices containing
co-sensitized pure organic D−π−A sensitizers and cobalt
mediator.

2. EXPERIMENTAL SECTION
2.1. Synthesis of Dyenamo Blue (DB) Dye. Methods and

materials follow. All reagents from commercial sources were used
without further purification. 1H and 13C NMR spectra were recorded
on Bruker 500 and 400 MHz instruments by using the residual signal
acetone-d6 δ = 2.05, 29.84, and 206.26 ppm as an internal reference for

1H and 13C, respectively. Mass spectroscopy data were obtained using
a Dionex UltiMate 3000 system with an electrospray ionization
method. The solvent mixture used for direct injection was
DCM:MeOH (1:1).

2.2. Solar Cell Assembly. Solar cells are assembled by the
procedure which has been described in a previous report of our
work.35 The TiO2 photoelectrodes, platinum decorated counter
electrodes, and cobalt electrolyte were prepared as described and
used in the previous report. The difference is mainly preparation of
dye solutions. At a temperature of 90 °C, the sintered TiO2 electrodes
were immersed in a dye bath for 18 h containing D35 (0.2 mM), DB
(0.025 mM), or a mixture of D35 and DB by varied molar ratio in tert-
butanol:acetonitrile (1:1 v/v), respectively.

2.3. Solar Cells Characterization. All of the solar cell
characterization methods performed in the present study are also
described in our previous report.35 Basically, current−voltage (IV)
characteristics were measured under a solar simulator (Newport,
model 91160), which is controlled by a source measurement unit
(Keithley 2400). A certified silicon solar cell (Fraunhofer ISE) was
calibrated to an intensity of 100 mW cm−2 of a solar simulator (AM1.5
G spectral). Also, a black metal mask with area of 0.25 cm2 was used
for all of the solar cells’ characterization.

Incident photon-to-current conversion efficiency (IPCE) spectra
measurements were conducted by a setup combining a xenon light
source (Spectral Products ASB-XE-175), a monochromator (Spectral
Products CM110), and a Keithley multimeter (model 2700). The
silicon solar cell mentioned above is also calibrated with the IPCE
spectra.

Electron lifetime and charge extraction measurements as a function
of varied voltage at different bias light intensities was investigated in a
“toolbox setup” as described previously.36,37 Mainly, the setup
comprises a white LED (Luxeon Star 1W) as the light source, a 16-
bit resolution digital acquisition board (National Instruments) in
combination with a current amplifier (Stanford Research Systems
SR570), and a custom-made system using electromagnetic switches.

2.4. Electrochemical Measurements. A three-electrode cell was
used for the cyclic voltammetry experiments. The supporting
electrolyte used for electrochemical measurements was 0.10 M
LiN(CF3SO2)2 in acetonitrile. The counter electrode is a stainless
steel plate with an area of 3 cm2. The reference electrode was Ag/
AgCl; a salt bridge electrolyte was interposed between working and
reference electrodes, containing 0.10 M LiN(CF3SO2)2 in acetonitrile.
The working electrode is a dye-sensitized SnO2 film with the thickness
of 4 μm and area of 0.25 cm2. The reference electrode was calibrated
by recording the cyclic voltammogram of ferrocene in the same

Figure 1. Chemical structures of the D35 and DB dyes and the dyes in solutions and on TiO2 films.
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electrolyte; the potential values are on the basis of the estimated value
of the ferrocene redox potential in acetonitrile 0.624 V versus SHE.38

2.5. Steady-State Absorption. TiO2 films for steady-state
absorption measurements were prepared by 30 nm of TiO2 paste
(Dyesol) with thickness of 2 μm on microscope glass slides and
sintering at 500 °C. Absorption spectra were recorded on a HR-2000
Ocean Optics spectrophotometer with baseline correction.
For dye-loading calculation, transparent TiO2 films with the same

properties as those used in the DSSCs were sensitized with the four
different dye mixtures for 18 h. Each film was then carefully washed
and dried with air flow before being desorbed in 1 mL of 0.05 M
TBAOH (in 1:1 ACN:tBuOH). The absorbance was then measured
with a HR-2000 Ocean Optics spectrophotometer and the amount of
each dye calculated from standard curves obtained for this specific
condition (see SI).
2.6. Nanosecond Transient Absorption Spectroscopy (TAS).

Samples are prepared according to previous procedures.39 Basically,
transparent TiO2 films were sensitized to act as the photocathode,
while nonplatinized FTOs were used as the counter electrode. Two
types of sensitized films were used in the present study: one is
sensitized by DB dye, and another is sensitized by co-sensitized dyes
(DB:D35 = 3:4), all of which assembled with either inert (0.1 M
LiClO4, 0.2 M TBP) or redox electrolytes (the same electrolyte as
described in the solar cell fabrication details).
TAS measurements were performed with a laser flash photolysis

spectrometer (Edinburgh Instrument LP920), using a continuous
wave xenon light as a probe light. Laser pulses were generated and
tuned to 670 nm, using a frequency tripled Nd:YAG laser (Continuum
Surelight II, 10 Hz repetition rate, 10 ns pulse width) in combination
with an OPO (Continuum Surelight). The pulse intensity was
attenuated on the order of 0.1 mJ cm−2 per pulse using neutral density
filters; therefore, only few electrons were injected into every TiO2
nanoparticle upon the pulse excitation of dye molecules. Kinetic traces
were monitored at 750 nm, where oxidized DB dye shows strong
absorption indicated by PIA measurement (see Figure S7 in the
Supporting Information). The signal was averaged from 100 to 500
measurements to reduce the noise.
2.7. Photoinduced Absorption Spectroscopy (PIA). PIA

measurements were performed using the same setup as described in
previous literature.40 Briefly, the absorption changes of the sample
were probed by a 20 W tungsten-halogen lamp. A square-wave
modulated blue LED (460 nm) with a frequency of 9.33 Hz was
utilized to periodically excite the samples. The transmitted light
through the samples was then focused on the monochromator, and
detected by a Si photodiode during the time. The signal was further
amplified with a current preamplifier and connected to a lock-in
amplifier (Stanford Research Systems model 830 and 570,
respectively). The excitation LED intensity was set to ∼8 mW/cm2.
This measurement is conducted to confirm the absorption spectrum of
oxidized D35, DB, and co-sensitized TiO2 electrode (seen in Figure
S7).

3. RESULTS AND DISCUSSION
3.1. Design and Synthesis of DB Dye. Prior to the

synthesis, quantum chemical calculations (Figure 2) were
performed to predict the properties of the sensitizers and
provide guidance in the choice of target sensitizers. All of the
alkyl chains were truncated to balance the efficiency of
calculation and its accuracy. Gas-phase geometries were
optimized by density functional theory at the B3LYP/6-311G
(d, p) level using Gaussian09 software. Analytic frequency
calculations were executed to ensure that the lowest vibrational
frequencies were real, and an energy minimum was achieved.
Time-dependent density functional theory (TD-DFT) was then
utilized at the same theoretical level to find vertical transitions.
The most likely transitions were found to be HOMO to
LUMO ( f = 0.71), with HOMO mainly located on the
triphenylamine moiety and LUMO largely located at the

carboxylic anchoring group, indicating a pronounced intra-
molecular charge separation after excitation.
The Dyenamo Blue dye was synthesized in the general

synthetic route as shown in Scheme 1. The linker part which
employed the DPP-core was synthesized first according to the
method reported by Jun-Ho Yum, Thomas W. Holcombe,
etc.20 Then, the donor part of D35 (D35-D) was combined
with the linker part (D) by Suzuki coupling reaction. Further,
the final dye was synthesized by condensation of aldehydes with
cyanoacetic acid by the Knoevenagel reaction. The character-
izations of the new compounds and also the details of synthesis
are described in the Supporting Information section.

3.2. Photophysical and Electrochemical Properties.
The absorption spectra of the DB dye dissolved in tert-
butanol:acetonitrile (1:1 v/v) solution with different concen-
trations are illustrated in Figure S1, while the spectrum of the
sensitized TiO2 film is shown in Figure 3a (blue line). The
maximum absorption peaks of the DB dye are located at 571
nm in solution and 564 nm on TiO2 film, respectively. The
absorption of the dye ranges from the UV to about 700 nm,
both in solution and on the film, with a pronounced dip around
450 nm. The data showed the wide absorption of the DB dye
and the capability of absorbing the photons in the long
wavelength which is almost up to the NIR region. The
photophysical and electrochemical details of the novel DB dye
can be found in Table 1.
The absorbance spectra obtained from the D35-sensitized

(red line) and dye-mixture-sensitized (DB 0.075 mM, D35 0.10
mM, black line) TiO2 films were presented in Figure 3a. With
the co-sensitization strategy, the whole visible range was
successfully covered. The improvement of the absorption
spectra promoted the utilization of light, which further
suggested a better DSSC performance.
The formal reduction and oxidation potentials of D35, DB,

and co-sensitized (DB:D35 = 3:4) dyes adsorbed on nano-
crystalline Sb-doped SnO2 electrodes were measured and
shown in Figure 3b and Table 1. The novel DB dye has a
slightly less positive HOMO level than that of D35, which is
1.08 V versus SHE compared to 1.12 V versus SHE for D35.
The lower HOMO of DB could be ascribed to the larger
conjugated system of DB, whereas the slightly lower driving
force (the potential difference between the dye and cobalt
mediator) is still enough for fast regeneration kinetics between
DB dye and cobalt mediator in DSSCs.41 Moreover, the co-
sensitized D35 and DB dyes in a ratio of 3:4 show a HOMO
level similar to that of the DB dye, which also satisfies the
requirement of electron transfer between the oxidized dye and
redox mediator.

Figure 2. Optimized structure (left) of DB dye (with truncated alkyl
chains), and the frontier molecular orbitals of the HOMO (middle)
and LUMO (right) calculated with DFT at the B3LYP/6-311G(d,p)
level in the gas phase.
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3.3. DSSCs. The photovoltaic performances of DSSCs based
on the individual dyes as well as the best co-sensitization
composition (DB:D35 = 3:4 (0.075 mM:0.1 mM in dye bath))
are presented in Table 2 and Figure 4a. A relatively thin,
transparent TiO2 film (4 μm) with scattering TiO2 layer (4
μm) was used in this work to decrease mass transport problems
that happened in cobalt complex mediator-based DSSCs.
According to the data, the DSSC devices with DB dye generate
40% more photocurrent than that of the D35-sensitized devices
for their broader absorption. However, the open-circuit
potential is lower for the devices with DB dye, which suggested
the higher recombination between the electrons in TiO2 and
Co(III) species in the electrolyte, and/or to oxidized dyes,
indicating the less efficient blocking effect of DB dye. The
overall power conversion efficiency (PCE) of the device with
DB is higher (7.3%) than that of D35 (5.5%). Further, the
improved performance of solar cells, 8.7%, was reached by co-
sensitization with the molar ratio of 3:4 (DB:D35).
Different molar ratios and concentrations of DB:D35 in the

dye bath have been performed, before the best composition of
the co-sensitized system for photovoltaic performance was
achieved. The solar cell parameters from different combinations
are shown in Table S1. Initially, the concentration of D35
varied from 0.025 to 0.2 mM with a constant concentration of
DB as 0.025 mM. As a result of the increasing concentration of
D35 in the dye bath, the VOC of the devices increased markedly
(rows 1−3 in Table S1). The reason for this might be that, with
D35 as co-sensitizer, the blocking effect was improved;
therefore, the recombination between the electrons in TiO2

and the electrolyte was reduced. Then, in contrast, the
concentration of D35 was fixed (0.1 mM), and the
concentration of DB was increased from 0.025 to 0.1 mM
(rows 2 and 4−6 in Table S1). This time, there are only minor

changes in the VOC, while the photocurrents are very different;
the optimum photocurrent was found with 0.075 mM DB. This
could be explained by the broader absorption spectrum of DB.
With higher concentration of DB dye in the dye bath, an
improved IPCE can be observed in the further red part of the
IPCE spectrum (the discussion could be found in below, see
Figure S6).
Figure 4b illustrates the incident photon-to-current efficiency

(IPCE) spectra of the DSSCs, which are sensitized by the
individual dyes D35, DB, and the co-sensitized dyes at the best
condition (DB:D35 = 3:4). The IPCEs of the DSSCs sensitized
by D35 and DB are located in the ranges 400−650 and 500−
750 nm, respectively. The co-sensitized IPCE curve, showing
the complementary behavior of the D35 and DB dyes, gives an
enhanced and broader IPCE response compared to the single
dye, resulting in an improved JSC and the photovoltaic
efficiency. The IPCE values obtained in Figure 4b are
consistent with the photovoltic performance presented in
Figure 4a, showing the advantage of co-sensitized strategy.
Photovoltage response time measurements were performed

in dependence of the light intensity in order to determine
electron lifetime. As shown in Figure 5a, at a given potential,
the electron lifetime of DB-sensitized solar cells is much shorter
(by about 2 orders of magnitude) than that of D35. This
corresponds to a higher recombination rate of electrons in the
TiO2 with Co(III) species in the electrolyte in DB-based
devices.42 No significant shift of the conduction band edge was
found (by charge extraction measurement seen in Figure 5b).
The electron-blocking properties of DB are thus poor in
comparison to those of D35. This is likely related to the
relatively lower dye coverage of DB in comparison to D35
(details can be found in the latter part of this article, see Table

Scheme 1. Synthetic Route of DB Dyea

a(1) 3-(Bromomethyl)heptane, K2CO3 in DMF, 90 °C, overnight, 73%; (2) (5-formylfuran-2-yl)boronic acid, toluene:MeOH, Pd(dppt)Cl2, 70 °C,
1 h, 80%; (3) NBS, CHCl3, RT, 4 h, 53%; (4) 2′,4′-dibutoxy-N-(2′,4′-dibutoxy-[1,1′-biphenyl]-4-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl)-[1,1′-biphenyl]-4-amine (D35-D), K3PO4, toluene, Pd2dba3, X-Phos (2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl), XPhos Pd
G3 ((2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) methanesulfonate), 80 °C, 6 h, 53%;
(5) cyanoacetic acid, MeCN:CHCl3, piperidine, 80 °C, 2 h, 44%.
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3). This would leave uncovered TiO2 surface sites, which can
promote electron recombination.
By the co-sensitization strategy, significantly longer electron

lifetimes were found in comparison with that of the individual
DB sensitization. This was caused by the better TiO2 blocking
with additional D35, the dye which has been demonstrated to
have excellent blocking properties with cobalt electrolyte in
earlier work.34 The new co-sensitization between DB and D35
leads to an improved blocking effect of the dye monolayer,
which decreases the electron recombination rate between
TiO2/dye and the electrolyte. However, there is still much
room for improvement, and better combinations of dyes are
expected to be found in future work.

Figure 3. (a) UV−vis spectra of D35, DB, and co-sensitized (DB:D35
= 3:4) dyes on TiO2 mesoporous film (2 μm). (b) Cyclic voltammetry
of D35, DB, and co-sensitized (DB:D35 = 3:4) dyes adsorbed on
nanocrystalline Sb-doped SnO2 electrodes.

Table 1. Photophysical and Electrochemical Properties of the DB Dye

absorption emissionb

λmax
a (nm) ε at λmax (M

−1 cm−1) λmax on TiO2 (nm) λmax (nm) E0−0
c (V) Eox

d (V vs NHE) Eox − E0−0 (V vs NHE)

571 33640 564 725 1.95 1.08 −0.87

aAbsorption spectra were measured in the solution of tert-butanol:acetonitrile = 1:1 with different concentrations at 25 °C. bEmission spectra were
measured in tert-butanol:acetonitrile = 1:1 solutions (1 × 10−6 M) at 25 °C. cThe zeroth−zeroth transition (E0−0) value was estimated from the
intersection of the absorption and emission spectra (Figure S2). dCyclic voltammetry of the oxidation behavior of the dyes was measured on SnO2
film containing 0.1 M LiN(CF3SO2)2 in acetonitrile as supporting electrolyte (working electrode, dye-sensitized SnO2 film; reference electrode, Ag/
Ag+ calibrated with ferrocene/ferrocenium (Fc/Fc+) as an internal reference; counter electrode, a stainless steel plate).

Table 2. Photovoltaic Performance of DSSCs Based on the
D35, DB, and Co-Sensitized Dyes (DB:D35 = 3:4) under
1000 W m−2 AM1.5 G Illumination

dye VOC (mV) JSC (mA/cm2) FF (%) η (%)

D35 853 9.14 70.3 5.5
DB 757 13.21 72.7 7.3
DB/D35 = 3:4 797 15.60 70.1 8.7

Figure 4. (a) Current density versus applied potential curves under
1000 W m−2 AM1.5 G illumination (dot lines) and in darkness
(dashed lines). (b) Spectra of incident photon-to-current conversion
efficiency (IPCE) for DSSCs based on D35, DB, and co-sensitized
dyes (DB:D35 = 3:4).
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3.4. Dye-Loading Properties. By different co-sensitization
conditions, the absorption spectrum of the film can be changed,
as well as the dye stacking patterns. Some characterizations
have been conducted to investigate how the co-sensitization

system works on the basis of the varied molar ratio of DB and
D35. Figure S5 (top) shows the UV−vis absorption spectra of
TiO2 films (2 μm) with different co-sensitization conditions. It
is obvious to see that the maxima of the absorption peaks of the
individual dyes are related to the dye bath ratios; especially, the
DB dye peak is becoming larger with an increased
concentration of DB, accompanied with the declining
absorption peak of D35. In order to gain a deeper insight
about the actual dye load on the sensitized films, the sensitized
dye was desorbed in 0.05 M TBAOH (1:1 tert-butanol:acetoni-
trile) followed by absorbance measurements of the solution
(Figure S5 (bottom)). The results of the dye desorption
measurements are summarized in Table 3, where the amount of
each dye loaded on the film and the film ratio (DB:D35) are
presented for each co-sensitization composition. Here it
becomes even clearer that the DB dye has a larger affinity to
the TiO2 electrode than D35, since the relative amount of D35
on the film always becomes smaller than in the dye bath. At the
molar ratio of 3:4 (DB:D35) in the dye bath, in which the best
performance was achieved, the two dyes has almost equal
amounts of molecules adsorbed on the TiO2 film. The IPCE
spectra of DSSCs which are co-sensitized give consistent hints
of the relative amount of D35 and DB on the surface (Figure
S6).

3.5. Kinetics. The transient absorption kinetics of DB and
co-sensitized DB:D35 on TiO2 electrodes were also inves-
tigated. The experiments were either conducted with inert
electrolyte or in contact with the redox-couple-based electro-
lyte, on a nano- to millisecond time scale (see Figure 6 and
Table 4). An excitation wavelength of 670 nm was used to
exclusively excite the DB molecules. Under the conditions used,
the transfer of electrons from the mesoporous TiO2 to oxidized
DB molecules occurred with a half time (t1/2) of 5.75 μs. In
comparison, this process occurred significantly slower with half
time of 8.27 μs for co-sensitized TiO2 electrodes. Here, slower
electron-oxidized dye recombination kinetics is preferred.
Under operational conditions, the concentration of electrons
in the mesoporous TiO2 is high. Therefore, the electron-
oxidized dye recombination will result in significant energy
losses, which is negative for the solar cell performance. The
device with the co-sensitization system showed sluggish
electron-oxidized dye recombination kinetics here. This is
favorable for solar cell performance; moreover, this also
confirms the exceptional blocking effect by additional D35
with DB dye. The better blocking effect may correlate to the
binding mode of both DB and D35 dyes on the TiO2 surface,
which probably would be because one dye affects the
orientation of another dye on the TiO2 surface. The different
orientation is likely to decrease the electron transfer reaction
rate between electrons in TiO2 and the location of the “hole” in
the oxidized dye, in the triphenyl amine group. In combination
with the cobalt-based electrolyte, similar regeneration kinetics
were found for the DB and co-sensitized DSSCs. This indicates
that the additional D35 did not slow down the electron transfer
between oxidized sensitizer and redox species inside the
electrolyte.

4. CONCLUSIONS
A novel blue D−π−A organic sensitizer (DB) was designed and
synthesized for DSSCs with cobalt-based redox. With this blue
dye, an energy conversion efficiency of 7.3% was yielded, under
one sun AM1.5 G. The co-sensitization strategy was applied
with an additional D35 dye. The device with co-sensitized dyes

Figure 5. (a) Electron lifetime and (b) accumulation charge as a
function of the VOC under open-circuit conditions for DSSCs
sensitized with D35, DB, and co-sensitized dyes employing cobalt
electrolyte.

Table 3. Dye-Loading Measurements of Single and Co-
Sensitized TiO2 Filmsa

dye
concentration in

solution
(DB:D35) nD35 (nmol) nDB (nmol)

total
dye (nmol)

dye ratio on
films

(DB:D35)

0 mM:0.2 mM
(0:1)

20.2 ± 0.9 0 20.2 ± 0.9

0.025 mM:0.2
mM (1:8)

16.6 ± 0.7 2.8 ± 0.1 19.4 ± 0.8 1:6

0.025 mM:0.1
mM (1:4)

15.5 ± 0.6 4.5 ± 0.2 20.0 ± 0.8 2:7

0.05 mM:0.1
mM (1:2)

13.4 ± 0.5 8.5 ± 0.3 21.9 ± 0.8 2:3

0.075 mM:0.1
mM (3:4)

11.9 ± 0.6 11.1 ± 0.4 23.0 ± 1.0 1:1

0.025 mM:0
(1:0)

0 8.2 ± 0.3 8.2 ± 0.3

aElectrode area 0.25 cm2; 4 μm TiO2 film.
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achieved a PCE of 8.7% with a greater current density from the
complementary absorption. This performance is superior to
either of the individual devices sensitized by DB (7.3%) or D35
(5.5%) under the same fabrication condition. The additional
D35 was found to decrease the recombination at the interface
between TiO2/dye and electrolyte, as well as the recombination
between the electrons in TiO2 and oxidized dyes. This work
shows the possibility of using two pure organic dyes with very
different absorbing spectra together with cobalt complex-based
redox. This co-sensitization greatly uses the light in solar
spectra, and at the same time increases the blocking effect on
the TiO2 surface. The results indicate that, by proper design of
dyes, the performance of DSSCs can be further improved by
the co-sensitization strategy.
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K.; Graẗzel, M.; Nüesch, F. Molecular Design of Unsymmetrical
Squaraine Dyes for High Efficiency Conversion of Low Energy
Photons into Electrons Using TiO2 Nanocrystalline Films. Adv. Funct.
Mater. 2009, 19, 2720−2727.
(12) Kanaparthi, R. K.; Kandhadi, J.; Giribabu, L. Metal-Free Organic
Dyes for Dye-Sensitized Solar Cells: Recent Advances. Tetrahedron
2012, 68, 8383−8393.
(13) Cid, J.-J.; Yum, J.-H.; Jang, S.-R.; Nazeeruddin, M. K.; Martínez-
Ferrero, E.; Palomares, E.; Ko, J.; Graẗzel, M.; Torres, T. Molecular
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