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• Decode of the grasp type by Electromyography on the early stages of the reach-to-grasp motion.
• Possible to decode the grasp type during the preshaping of the hand.
• Possible generalization over different positions of the object near the training position.
• A robotic implementation showed that it possible to express accurately the intention of the grasp type through a robotic hand during the reaching

motion and before grasping the object.
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a b s t r a c t

Predicting the grasping function during reach-to-grasp motions is essential for controlling a prosthetic
hand or a robotic assistive device. An early accurate prediction increases the usability and the comfort of
a prosthetic device. This work proposes an electromyographic-based learning approach that decodes the
grasping intention at an early stage of reach-to-grasp motion, i.e. before the final grasp/hand pre-shape
takes place. Superficial electrodes and a Cyberglove were used to record the arm muscle activity and the
finger joints during reach-to-grasp motions. Our results showed a 90% accuracy for the detection of the
final grasp about 0.5 s aftermotion onset. This paper also examines the effect of different objects’ distances
and different motion speeds on the detection time and accuracy of the classifier. The use of our learning
approach to control a 16-degrees of freedom robotic hand confirmed the usability of our approach for the
real-time control of robotic devices.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, robotic devices are frequently used to restoremotor
abilities lost after pathologies or trauma, such as exoskeletons
and operative devices adopted for the patient’s assistance during
rehabilitation, and the prostheses for amputees [1]. Studies on
amputees and stroke patients [2,3] have reported that comfort is
one of the priorities for the acceptability of a wearable robotic
device, and that inconvenient and time ineffective systems may
avert individuals fromusing a prosthetic device [2]. To increase the
level of comfort and effectiveness, these devices should detect the
human intention early enough in order to ensure the smooth and
prompt behavior of the system.
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It has been extensively demonstrated that user’s motion in-
tention can be accurately detected by surface electromyographic
recordings (sEMG) [4]. Different sEMG-based systems were pro-
posed for the estimation of hand and wrist movements, and
consequently used as noninvasive interfaces for controlling ex-
oskeletons [5,6], prosthetic devices [7–9], computer-animated
hands in a virtual environment [10], or for teleoperating robotic
arms [9,11]. The previous studies focused on the investigation of
discrete classifications of wrist abduction/adduction [9,11], flex-
ion/extension [7,10,12,13] as well as of a different combination of
fingermotions [9,11,14]. Such strategies are useful for accomplish-
ing power grasps that require simultaneous closure of all fingers on
the object. However, this is insufficient to generate differentiated
control of all fingers in the variety of pinch grasps used in dexterous
objectsmanipulation, as required by the grasping of a larger variety
of objects.

The differentiated control of all fingers is complex to achieve
due to the high dimensionality of the hand’s degrees of freedom.

http://dx.doi.org/10.1016/j.robot.2016.12.014
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Indeed, the human hand is characterized by 21 degrees of freedom
(DOFs) controlled by 29muscles [15]. It has been hypothesized that
humans are capable to control this large number of DOFs and use
their hands dexterously thanks to a multidimensional reduction of
the controlled variables operated by the central nervous system.
This multidimensional reduction may be accomplished through
the use of postural synergies [16] , corresponding to a number
of hand postures that humans combine when grasping everyday
life objects. Several works propose to exploit a mapping between
upper limb EMG signals and hand postures [17–20], as strategy
to control the large number of the hand’s degrees of freedom.
However, in these approaches only the grasping phase, i.e. when
the fingers have already reached their final configuration, was ex-
amined and the subjects were asked to perform the corresponding
grasp keeping the upper-arm stalled. Nonetheless, the muscular
activity differs between a static and a dynamic position of the
arm. Moreover, during reaching-to-grasp movements, the config-
uration of the fingers and of the wrist changes simultaneously
with the arm’s motion and this might influence the classification
performance. This formation of the fingers, before reaching their
final configuration, is defined as hand’s preshape. The preshape
of the hand is in direct relation with the characteristics of the
object, specifically to the shape and width of it. In healthy human
subjects, the hand’s preshape occurs before the hand reaches the
object, at around 60% of the reach and grasp motion [21–24].
Therefore, in order to accomplish a smooth control of the grasping
gesture, it seems is crucial to classify the hand posture during the
reaching phase before the occurrence of the preshape. Indeed, an
accurate estimation of the final grasp posture in the early stages
of the reach-to-grasp motion would ensure a faster reactivity of
the assistive and the wearable devices. As result, these devices
would increase their effectiveness and usability, and consequently
increase the natural transition between the reaching and grasping
phase on the prostheses increasing their acceptance by patients.
However, at the moment only a limited number of studies focused
on the detection of different graspmovements during reaching and
grasping motions [25–27], and no measurement were performed
to assess when a good classification was achieved respect to the
hand’s preshape .

In this work we propose a new sEMG-based learning approach
that decodes the grasping intention of the user at an early stage
of the reach-to-grasp motion, i.e. before the final grasp/hand pre-
shape takes place. We demonstrate as well the extensibility of our
work to online applications. The rest of this paper is organized
as follows. Section 2 describes the experimental set-up, protocol
and methods used to record and analyze the data, while Section 3
reports the results of the experiments. In Section 4, the online
robotic implementation is presented. In Section 5, we discuss the
results of the experiment and the future perspectives.

2. Methods

2.1. Participants

Fourteen healthy young subjects (10 males and 4 females, av-
erage age 28.2 ± 3.9) participated in the experiment. All subjects
were right handed according to the Edinburgh inventory test [29],
and they had no prior history of neurological disorders and neu-
romuscular injuries. They performed the experiments with their
dominant arm. The experiment was approved by the BMI Ethics
Committee for Human Behavioral Research of the EPFL, and the
recordings were carried out in agreement with the Declaration of
Helsinki. All subjects gave written consent to the participation at
the beginning of the experiment.

2.2. Experimental protocol

The subjects were asked to reach and grasp 3 different objects,
accounting for five different grasp types: precision disk, tripod,
thumb-2 fingers, thumb-4 fingers, and ulnar pinch, see Table 1.
These grasps were mostly chosen for their common usage in daily
life [28].

During the experiment, the subjects seated in front of a table
with the elbow flexed of about 90◦ and the hand placed on the
table with the palm downward and the fingers pointing to the
object, see Fig. 1(a). The subjects were asked to reach the object
and grasp it with a predefined grasp type keeping the same hand’s
orientation for all the grasp types. The subjects were starting the
self-paced motion after the advice of the experimenter and they
had to declare that they grasped the object in order to consider
the trial completed. The objects were placed at three different
distances (i.e., 30 cm, position P1, 20 cm, position P2, and 10 cm,
position P3) from the initial hand’s position, see Fig. 1(b). All the
fourteen subjects performed 20 trials for each of the five grasp
types for position P1. After completing this first part of the ex-
periment, six subjects continued the experiment for the positions
P2 and P3 performing 15 trials for each grasp type. In addition,
three subjects performed additionally fast reach-to-grasp motions
for objects placed at position P1, asked to perform the motions by
extending their arm with higher acceleration than the first part
of the experiment. The subjects were performing all trials for one
grasp before moving to the next grasp.

2.3. Apparatus and pre-processing

The EMG signals from 16 upper limb muscles (Table 2), were
recorded using a Noraxon DTS desktop system, with a sampling
rate of 1500 Hz. The electrodes were placed, when it was possible,
according to the standard procedure for surface electromyography
for non-invasive assessment of muscles (SENIAM) guidelines [30].
At the beginning of the recordings, a manual test for the maxi-
mumvoluntary contraction (MVC)was performed for eachmuscle.
During the test, the subjects were asked to perform isometric
contractions for eachmuscle. The test was repeated three times for
eachmuscle, with a break after each contraction to preventmuscle
fatigue.

The data were filtered with a seventh-order band-pass But-
terworth filter between 50 Hz and 500 Hz for the suppression
of movement artifacts. To construct a linear envelope, full-wave
rectification was performed, followed by a smoothing with a low-
pass seventh-order Butterworth filter with cutoff frequency at
20 Hz. Finally, the resulting EMG signals were normalized by the
MVC.

The joint angles of the fingers weremeasured using CyberGlove
System’s CyberGlove,1 with a sampling rate of 280 Hz. The Cy-
berglove has 22 bend sensors strategically located over the hand
joints. Since bending can be detected anywhere along the sensor
length, the glove can adapt well to different hands sizes and it
needs to be calibrated in order to transform raw sensor values to
hand joint angles. Linear regression was used to calibrate the 4 fin-
gers (index, middle, ring, and little) while a data-driven approach
was employed to model the non-linear relationship between the
thumb sensors and the joint angles. The recorded joint angles
were used to compute the fingertip’s position with respect to the
wrist by forward kinematics. More details about the Cyberglove
calibration procedure could be found in [31].

The two data streams were synchronized using a trigger signal
provided by an Arduino board. At each trial, the subjects were
starting the motion once instructed to do so by the experimenter.

1 www.cyberglovesystems.com.

http://www.cyberglovesystems.com
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Table 1
Chosen grasp types [28].

Precision disk Tripod Thumb-2
fingers

Thumb-4
fingers

Ulnar pinch

Grasp types

Fingers involved 5 (all fingers) 3 (thumb, index,
middle)

3 (thumb, index,
middle)

5 (all fingers) 2 (thumb and
little finger)

Object Large cylinder
(10 cm diameter)

Small cylinder
(5 cm diameter)

Thin
rectangular

Thin
rectangular

Thin
rectangular

Fig. 1. (a) The experimental setup showing the electrodes for EMG recording and the CyberGlove for capturing the hand joint angles, (b) the plan showing the initial position
of the hand and the three positions of the object.

Table 2
Muscles which activity is captured for the reaching and grasping experiment.

Muscles

1 Infraspinatus (INFRA)
2 Deltoid Anterior (DANT)
3 Deltoid Medial
4 Deltoid Posterior (DPOS)
5 Biceps Brachii long head (BICL)
6 Triceps Brachii long head (TRIC)
7 Brachialis (BR)
8 Flexor Digitorum Superficialis (FLDS)
9 Extensor Digitorum Communis (EXDC)

10 Flexor Carpi Ulnaris (FLCU)
11 Extensor Carpi Ulnaris (EXCU)
12 Flexor Carpi Radialis (FLCR)
13 Flexor Pollici Brevis (FLPB)
14 Extensor Pollicis Brevis (EXPB)
15 AdductorPollicis Transversus (ADPT)
16 AbductorDigiti Minimi (ABDM)

Simultaneously, the experimenter was pressing a button in the
console, which was generating a trigger pulse, indicating the start
of the recording of the Cyberglove data. The trigger pulse was
introduced to the Noraxon system as an extra channel. During
the offline analysis, all the data were synchronized with respect
to the trigger pulse, ensuring the synchronization between the
Cyberglove and the Noraxon system. The onset of the motion
was detected from the joint angles of the fingers, as they were
switching from rest position to motion generation. This transition
results into a change on the angular velocity of the joint angles of
the fingers, which is captured by the Cyberglove and corresponds
to the moment t = 0 s on the analysis and the figures.

2.4. Preshape criteria

As stated previously, the preshape of the hand is considered as
the formation of the fingers before they reach their final configu-
ration [32]. In this work, we employed two criteria to identify the
occurrence of the hand preshaping [21,33]. The first criterion was
based on the distance between the fingertips of the thumb and the

index finger,which are considered the fingers participating inmost
of the grasp types. For this reason they provide valuable informa-
tion for the configuration of the fingers and more particularly for
the opening and closing of the hand. In the case of the ulnar pinch,
which is performed with the thumb and little finger, we replaced
the index finger with the little finger. The first criterion is defined
in the literature as the hand’s aperture and in this paper we will
refer to it as aperture.

The second criterion was based on the estimation of the area
of the polygon that is described by the fingertips involved in the
grasp. For the precision disk and the thumb-4 fingers, the area
considered was the one of the pentagon created by the fingertips
of all five fingers. For the tripod grasp and the thumb-2 fingers,
the area was the surface of a triangle defined by the fingertips of
the thumb, index, and middle finger. Finally, for the ulnar pinch,
the area was again the surface of a triangle but consisted of the
fingertips of the thumb, the index finger, and the little finger. In
the following section we will refer to this criterion as area.

To estimate the aperture and the area, we computed the position
of the fingertips with respect to the wrist,using the joint angles of
the fingers, recorded from the Cyberglove. The aperture and the
area vary with respect to the opening and closing of the hand,
providing objective information for the determination of the pre-
shaping. In particular, the preshaping was assumed to correspond
to the peak value of the aperture and the area while the grasp is
considered complete when these criteria reach stability.

2.5. Classification method

The preprocessed EMG signals were analyzed using a sliding
timewindowof 150mswith an overlap of 50ms. In order to embed
the specificity of the motion’s time evolution, we combined an
Echo StateNetwork (ESN) [34] to classify the datawith theMajority
Vote (MV) criterion applied to each time window from the motion
onset, as suggested in [35]. The MV criterion assigns a class label
to the class that gathers the most votes. The preprocessed EMG
data input were provided as input to the ESN, without extracting
any feature from the EMG signals. Each ESN entailed 180 sigmoid



62 I. Batzianoulis et al. / Robotics and Autonomous Systems 91 (2017) 59–70

units, with a transfer function f = tanh, and it outputted 5 classes
for each of the 5 grasp types. Moreover, the activation function
of the output units was chosen to be the identity function. The
classification for each time window was fed to the MV algorithm,
where each vote corresponded to the result of the classification.

Since the classification strategy is implemented online, the
following analysis was performed in the time domain, avoiding
time normalization. As the hand’s preshape occurs around the 60%
of the reaching motion, we chose to analyze the first second of
the reaching motion. This approach enables the capture of the
hand’s preshape in different time steps and its the relation with
the classification rates.

One classifier was trained for each subject. For the first position
of the object (P1), the classificationmachinewas built with the 75%
of the dataset of 100 trials (i.e., training dataset) and tested in the
remaining data (i.e., 25%) using the cross-validation method. For
the generalization over different distances (i.e., positions P2 and
P3), twodifferent classifierswere built. In the first case, the training
dataset was constituted by the data from two different positions,
and the testing dataset included only the data from the remaining
positions. In the second case, instead, the classifier was trained on
one position and tested in the other two.

Moreover, in the case of the trials at different speeds, we tried
different combination of training and testing data in order to ex-
amine the performance of generalization. First, the classifier was
trained with data of self-paced motions and tested with data on
fast motions. As a second step, the classification machine was
trainedwith data of fastmotions and testedwith data of self-paced
motions. In the last test,wemixed the data of fast and slowmotions
while the classification machine was trained with 75% of the data
and tested with the remaining 25%, following a four-folder cross-
validation.

Additionally,we examine the performance of the approachwith
less number of EMG channels as input to the classifier. We first
removed the intrinsic muscles of hand (Abductor Digiti Minimi, Ad-
ductor Pollicis Transversus and Flexor Pollici Brevis), keeping 13 EMG
channels. As a second step, we excluded the activity of the Extensor
Pollicis Breviswhich contributes to the flexion and abduction of the
thumb, which left us with 12 EMG sites. Moreover, we remove the
activity of the Flexor Carpi Radialis and the ulnar muscles (Flexor
Carpi Ulnaris and Extensor Carpi Ulnaris) keeping 11 and 9 EMG
channels accordingly. Finally, we kept only the 7 EMG muscles
that correspond to muscles from the upper arm (i.e Infraspinatus,
Deltoid Anterior, Deltoid Medial,Deltoid Posterior, Biceps Brachii long
head, Triceps Brachii long head and Brachialis).

2.6. Online robotic implementation

For the purposes of the online implementation, we used a right
Allegro hand from Simlab.2 This is a humanoid hand with 16 DOF
split equally on 4 fingers. While it is only an approximate repro-
duction of the dexterity of the human hand and it has more DOFs
than currently available assistive devices, it serves as a benchmark
for our ability to reproduce grasps with similar dexterity to those
generated by humans. The Allegro hand has also the advantage
to be controlled at an extremely fast rate (400 Hz) that enables
demonstrating the benefit of our early pre-shapedetection for real-
time control of finger closure during the arm movements.

In the online robotic implementation, the EMG signals were
acquired using a National Instruments USB-6210 data acquisition
board with a sampling rate at 1000 Hz. The acquired signals
were pre-processed (filtered and rectified as described in previous
subsection) and classified using a C++ project of Visual Studio
2013 installed in a desktop computer (Intel Xeon @ 2.27 GHz with

2 http://www.simlab.co.kr/Allegro-Hand.htm.

Fig. 2. Control scheme of the robotic implementation.

Windows 8.1). The classification output for each timewindowwas
streamed to a portable computer (Intel i7 @ 2.6 GHz with Ubuntu
14.01) and introduced to the majority vote algorithm. Finally,
the corresponded joint angles were imported to the Allegro hand
using ROS. The straight forward control scheme is presented in the
Fig. 2).

3. Results

In order to assess the classification accuracy and the robustness
of the results, we defined the success rate as the percentage of
movements correctly classified for a specific grasp type on the
total number of reach-to-grasp motions corresponding to that
specific grasp type (Recall column in Table 3). We also computed
the precision measure (i.e., the percentage of trials correctly clas-
sified for a specific grasp type on the total number of reach-
to-grasp movements classified to the same grasp type) and the
F-measure, which corresponds to the harmonic average of the
recall and precision values, for each grasp type. An F-measure score
of 1 means that eachmotion belonging to a specific grasp type was
perfectly classified as such. After presenting the Recall, Precision
and
F-measure values of each timewindow,wedefine the classification
performance as the number of correctly classified trials over the
total number of trials, for simplicity purposes.

3.1. Reach-to-grasp classification strategy

Table 3 shows the average and standard deviation of the clas-
sification results across subjects and grasps for 10 different time
windows starting from 0.15 to 1.05 s with a step size of 100 ms.
The average classification performance among subjects increased
during time, as the hand was getting closer to the object (see
Fig. 3(b)) for all the three positions with a slight decrease only at
450 and 950 ms for P1 (see Table 3. In particular, a success rate of
90 ± 4.5% was reached 0.5 s after motion’s onset (i.e., half-way
through the reaching motion). On average, a F-measure of 0.91
was obtained for the five grasp types and for all time windows.
However, it was higher than 0.76 already 150 ms after motion
onset, showing that an accurate classification of the five grasp
types was possible before the grasp occurred.

Fig. 3(a) shows the confusion matrix averaged across subjects
for the five grasp types 550ms after motion onset. This timing was
chosen because it corresponded to half-way of the reach-to-grasp
motion. Precision disk, tripod and ulnar pinchwere distinguishable
already at halfmotion (89.5%, 92.7% and 98.3% respectively), while
thumb-2 fingers and thumb-4 fingers were distinct later in the
reaching motion when the hand was closer to the object (85.1%
for both of the classes). As expected from the hand configuration
during the grasping, a misclassification tended to occur between
tripod and precision disk and between thumb-2 and thumb-4

http://www.simlab.co.kr/Allegro-Hand.htm
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Fig. 3. (a) Confusionmatrix of the classification between grasp types in among the subjects, 0.55 s after the onset of the motion. Warmer color indicates higher classification
performance, (b) Average and standard error of the classification performance of all the grasp types among subjects for 30 cm distance of the object. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
The average and standard deviation of the classification results across grasp types
and subjects. The Recall values correspond to the percentage of EMG data correctly
classified as a specific grasp type to the total number of reach-to-grasp motions
corresponding to the same grasp type. The Precision values correspond to the per-
centage of EMG data correctly classified as a specific grasp type to the total number
of reach-to-grasp motions classified to the same grasp type. The F-measure values
corresponding to the harmonic average of the recall and precision values. The last
row of each of the above tables correspond to the total average across time win-
dows.

Time (s) ESN MV

Precision Recall F-measure

0.15 0.81 ± 0.06 0.84 ± 0.05 0.76 ± 0.08
0.25 0.89 ± 0.04 0.91 ± 0.04 0.88 ± 0.05
0.35 0.87 ± 0.06 0.89 ± 0.06 0.84 ± 0.06
0.45 0.93 ± 0.04 0.94 ± 0.04 0.92 ± 0.04
0.55 0.91 ± 0.06 0.92 ± 0.05 0.90 ± 0.06
0.65 0.95 ± 0.02 0.96 ± 0.02 0.94 ± 0.03
0.75 0.95 ± 0.03 0.95 ± 0.03 0.94 ± 0.03
0.85 0.97 ± 0.02 0.97 ± 0.01 0.96 ± 0.02
0.95 0.96 ± 0.03 0.97 ± 0.02 0.95 ± 0.03
1.05 0.97 ± 0.02 0.98 ± 0.01 0.96 ± 0.02

Total av. 0.92 0.93 0.91

Table 4
The results from the pairwise comparison of the classification performances, 0.55 s
after the onset of the motion, when using different muscle groups. The highlighted
cells depict the pairs in which the null hypothesis was not rejected at the signifi-
cant level of 5%.

fingers (85.5% and 85.8% respectively). From Fig. 3(b), we notice
that thumb-2 fingers and thumb-4 fingers are reaching 90% of
classification rate 0.7 s after the onset of the motion.

3.2. Decreasing the number of EMG channels

In this subsection,we examine the performance of the approach
when using a smaller number of EMG sites, by removing the
more distal muscles. As previously stated, for this analysis we kept
13, 12, 11, 9 and 7 muscles from the initial muscle set as input to
the classifier.

Fig. 4 presents the evolution through time of the classification
success rates. As depicted the classification performance decreases

Fig. 4. The evolution of classification performance and its standard error while
reducing the number of EMG sites. The object was 30 cm away from the initial
position of the hand.

Table 5
The results from the pairwise comparison of the classification performances, 1.05 s
after the onset of the motion, when using different muscle groups. The highlighted
cells depict the pairs in which the null hypothesis was not rejected at the signifi-
cant level of 5%.

as the number of muscles becomes smaller. The success rate at
t = 0.55 s (0.55 s after the onset of the motion) is between
90.95 ± 1.85% and 85 ± 1.9% when using more than 10 muscles,
and drops rapidly to 77.65± 2.36% and 68.95± 3.03% when using
9 and 7 muscles respectively.

The one-way analysis of variance (ANOVA) performed on the
classification performances rejected the null hypothesis at the
significant level of 5% (p < 10−3 for α = 0.05). The Tables 4
and 5 present the results of the pairwise comparison analysis of
the classification performances at the moment of t = 0.55 s and
t = 1.05 s. As it is shown, the performance decreases significantly
when reducing the number of EMG channels from 16 to 9 while
it is not significantly different when using 13, 12 and 11 muscles.
Additionally, a significant drop in performance was observable
when using 9 and 7 muscles.
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Fig. 5. Classification success rate in different distances: (a) Average classification performance and standard error on the reaching motion: The blue line presents the
performance of the classification of grasp types on position P1. The red line corresponds to the classification performance when all the positions (P1, P2 and P3) are taken
into account, (b) Average classification performance and standard error on trainingwith two positions and testing on the third: The blue line presents the performancewhen
training on reaching motions to two positions P2 and P3 and testing on position P1. Respectively, the red line corresponds to training on positions P1 and P3 and testing on
position P2 while the magenta line corresponds to training on positions P1 and P2 and training on position P3, (c) Average classification performance and standard error on
training with one position and testing on the other two positions: The blue line presents the performance when training with reaching motions to positions P1 and testing
on positions P2 and P3. Respectively, the red line corresponds to training on position P2 and testing on positions P2 and P3, while the magenta line corresponds to training
on positions P3 and training on position P1 and P2. The green line corresponds to training with position P2 and testing on position P3. The brown line corresponds to training
with position P3 and testing on position P2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. (a) Average classification performance and standard error on the fast motions: The red line presents the performance of the classification of grasp types with the
data of fast motions. The blue line corresponds to the classification performance when the data of fast motions were mixed with the data of normal motions. The green line
corresponds to the performance when training with fast motions and testing on normal motions. The brown line corresponds to the performance when training with normal
motions and testing on fast motions. the magenta and cyan vertical lines indicate the peak of the preshape criteria then subject 11 performed the precision disk grasp with
fast and normal motions respectively as depicted in Fig. 6(b). (b) Preshape criteria on the precision disk of subject 11: The subject opens its fingers sooner in fast motions
than it does in normal motions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.3. Generalization on different distances

As second step, we examined the generalization across dis-
tances by (i) training the classifier on two positions (i.e., P1 and
P2 or P1 and P3) and testing it on the remaining third position (P3
or P2, respectively) and, (ii) training the classifier on one position
(i.e., P1 or P2 or P3) and testing it on the other two (i.e., P2 and
P3 or P1 and P3 or P1 and P2, respectively). The performances
were higher when the classifier was trained with a single position
with respect to a classifier trained on two positions (see Figs. 5(b)
and 5(c)). Indeed, the average performance at 0.45 s after move-
ment onset was 93.93 ± 1.7% and 90.78 ± 2.5% when training on
one position and on two positions, respectively. For the classifier
trained with two positions, the performance was better when the
training set included movements from farthest distances (i.e., P1
and P2) and the testing set included the shortest distance (i.e., P3)
(see Fig. 5(b)). The performance in this case was 93.6 ± 3.6% after
0.45 s from the motion on set. For the classifier trained with a
single position, instead, the best classification performance was
achieved when the classifier was trained in the middle distance
(i.e., P2) and tested on the other two distances (i.e., P1 and P3)
(see Fig. 5(c)). In this case, a classification accuracy of 95.2 ± 2.0%
was achieved 0.45 s after movement onset. It is worth mentioning
that this case (i.e., training with P2 and testing on P1 and P3)
presented as well the smallest standard error when compared
to the other generalizations. An one-way analysis of variance on
the classification performance at the moments t = 0.55 s and
t = 1.05 s after the onset of the motion failed to reject the null
hypothesis on the significant level of 5% (p = 0.12 and p = 0.88
respectively).

3.4. Speed effect

In order to further evaluate the generalizability of our approach,
we examined the effect of the speed on the classification. We first
analyzed the differences in fingers’ motion in fastmovementswith
respect to self pace motions. As expected there was a significant
difference on the timings of hand opening and closing between
motions performed at self-paced speed and at fast speed (see
Fig. 6(a)). Indeed, the subjects opened and closed their hand in fast
motions sooner in time than in self-paced motions.

As first step, we mixed the data at self pace and during fast
motions for training and testing. The classification performance
reached 90 ± 2.3% of success after 0.55 s from movement onset.
We then compared this first classificationwith the results obtained
training the classifier in the fast motions and testing it in either
for the fast or self pace motions, or training the classifier with the
movements at self-selected speed and testing it for the fast mo-
tions. As expectedwhen using only data from the fastmotions both
for training and testing, the classification performance reached an
accuracy higher than90% earlier thanwhenmixing themovements
(0.35 s for fast motions, 0.55 s for self-paced motions). On the
contrary, the classifiers trained and tested in different datasets
achieved lower performances than that trained and tested with
mixed data. In particular, the accuracy of 90% was achieved 0.7 s
aftermotion onset.Moreover, the standard error of these classifiers
was higher than 4.5%,which indicated that the classifier performed
significantly better in some subjects than in others.
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Table 6
The average times and standard deviations of the preshape occurrence per grasp type.

P1 = 30 cm P2 = 20 cm P3 = 10 cm Fast

Precision disk 0.74 ± 0.17 s 0.62 ± 0.18 s 0.52 ± 0.24 s 0.40 ± 0.25 s
Tripod 0.71 ± 0.24 s 0.60 ± 0.17 s 0.56 ± 0.25 s 0.53 ± 0.21 s
Thumb-2 fingers 0.53 ± 0.28 s 0.48 ± 0.24 s 0.47 ± 0.24 s 0.38 ± 0.19 s
Thumb-4 fingers 0.38 ± 0.2 s 0.31 ± 0.22 s 0.30 ± 0.23 s 0.42 ± 0.22 s
Ulnar pinch 0.43 ± 0.21 s 0.42 ± 0.23 s 0.42 ± 0.25 s 0.41 ± 0.12 s

Table 7
The average times and standard deviations of the preshape occurrence and task
completion on the different motions.

Preshape occurrence Completion time

P1 = 30 cm 0.56 ± 0.26 s 1.30 ± 0.27 s
P2 = 20 cm 0.49 ± 0.21 s 1.19 ± 0.22 s
P3 = 10 cm 0.46 ± 0.25 s 1.14 ± 0.25 s
Fast 0.40 ± 0.11 s 0.83 ± 0.17 s

3.5. Classification rate vs hand preshape

To quantify how early into the preshape phase, we could detect
the grasp intention, we used two criteria: (a) the hand textitaper-
ture: the distance between the fingers involved during the grasp
(i.e., thumb and index finger for Precision disk, Tripod, Thumb-2
fingers and Thumb-4 fingers and thumb and pinky finger for Ulnar
pinch grasp) and (b) the area of the fingertips: the surface obtained
interconnecting the tips of the fingers involved in each grasp.

It is worth mentioning that the aperture involves solely the
behavior of the thumb and index finger. Thus, the area criterion
could bemore informative of themotion of the fingers, as it encap-
sulates the behavior of all the fingers involved in the grasp [33]. In
order to examine the general trends of the motion of the fingers,
we computed the two criteria in normalized time and present the
results in Fig. 7. As it is shown, the preshape is indicated in three
grasp types (precision disk, tripod and thumb-4 fingers) by the peak
of the area criterion which is followed by a smooth convergence
to the final point. In the case of the thumb-4 fingers grasp, the
start of the preshape phase is also revealed through a peak in the
aperture, that occurs simultaneously with the peak of the area
criterion. Both curves then decrease smoothly until full closure
onto the final grasp. In the case of thumb-2 fingers grasp, it is
more difficult to define the moment of preshape occurrence (see
the third graph of Figs. 7(a) and 7(b)), as the fingers begin their
motionwith a flexion until the 30%–40% of the duration of the self-
paced motions. At this point, the value of the area criterion stays
approximately stable for a period of time before closing smoothly
to the final grasp. In the same period, the value of the aperture
criterion decreases, indicating a flexion of the index finger and the
thumb. As the thumb-2 fingers grasp involves the middle finger
too, the area criterion encapsulates the behavior of the middle
finger. In order for the value of the area criterion to stay stable
while the index finger and the thumb are flexing, the middle
finger extends until all the fingers start to close simultaneously.
We considered that the preshape occurs when the area criterion
starts converging smoothly to its final value. Regarding the ulnar
pinch, two fingers are involved, the thumb and the little finger. In
this case, the aperture criterion, which corresponds to the distance
between the fingertips of the thumb and the little finger, is more
representative of the preshape than the area criterion, which in-
volves more fingers. Thus, we considered that the preshape occurs
on the peak of the aperture criterion. Fig. 8 presents the fingers
configuration on the initial hand position, on the preshape and in
the end of the motion.

Table 7 presents the average real time of preshape occurrence
as well as the completion time for all the motions. The one-way
analysis of variance (ANOVA) rejected the null hypothesis at a sig-

Table 8
The results from the pairwise comparison between the timings of the preshape
occurrence. The highlighted cells depict the pairs in which the null hypothesis was
not rejected at the significant level of 5%.

Table 9
The results from the pairwise comparison between the task completion times. The
highlighted cells depict the pairs in which the null hypothesis was not rejected at
the significant level of 5%.

nificant level of 5% for the preshape occurrence and the completion
time (p < 0.001 for α = 0.05). A pairwise comparison analysis
of the timings of the preshape and task completion showed that
the timings are not significantly different between the self-paced
motions when the object is placed 20 cm and 10 cm away of the
initial position of the hand (Tables 8 and 9).

After examining the behavior of the fingers, we extracted the
timings of the preshape occurrence with a visual inspection of
the criteria for each trial. The average and standard deviation of
the time of the preshape occurrence and completion time are
presented in Table 7. As it is shown the preshape occurs in average
between 0.46–0.56 s after the onset of self-pacedmotions. Fig. 5(a)
presents the evolution of the classification performance through
real time. As it is shown, the success rate reaches a 90% of clas-
sification accuracy, as an average, at 0.45 s after the onset of the
self-paced motions. These results suggest that it possible classify
the grasp type during the preshape of the fingers.

We also compared the classification performance with the pre-
shape occurrence for each grasp type individually. Table 6 presents
the time of the preshape occurrence for all the grasp types while
Fig. 3(b) presents the evolution of the classification performance
for all grasp types in real time. Comparing the time preshape oc-
currence from Table 6with the classification results of the Fig. 3(b),
we notice that the success rate for the precision disk reaches 89.5±

3.8% of accuracy 0.55 s after the onset of the motion while the
corresponding preshape appears 0.74 ± 0.17 s after the motion
onset. Concerning the tripod grasp, a 94.1 ± 2.7% of classification
accuracy is observed at 0.55 s while the preshape occurs at 0.71±

0.24 s after themotion onset. Continuingwith the thumb-2 fingers
grasp type, a 92.1±1.8% of classification accuracy is noticed 0.75 s
after the onset of the motion, while the corresponding preshape
occurs 0.53±0.28 s after themotion onset. Regarding the thumb-4
fingers, a 90.7 ± 2.8% of classification accuracy is noticed 0.65 sec
after the onset of the motion, while the corresponding preshape
occurs 0.38 ± 0.20 s after the motion onset. Finally about the
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(b) The aperture criterion.

Fig. 7. The average value of preshape criteria across all subjects.

Fig. 8. Configuration of the fingers in three different moments of the reaching motion: Initial configuration (before the onset of the motion), configuration on the preshape,
final configuration (when grasping the object).

ulnar pinch, a 94.46 ± 2.1% of classification accuracy is noticed
0.15 s after the onset of the motion, while the corresponding
preshape occurs 0.43± 0.28 s after the motion onset. In summary,
it is noticed that 90% of classification performance is achieved
before the preshape occurrence for three grasp types (precision
disk, tripod and ulnar pinch) while for the other two the preshape
preceded the 90% of classification accuracy.

3.6. Online robotic implementation

In order to demonstrate the usability of the proposed approach
for the estimation of the final grasp gesture in the early stages of
the reaching motion for an assistive or a rehabilitative application,
we present here an online robotic implementation of our approach.

The system was trained offline while the testing was performed
online using the aforementioned control scheme of the Fig. 2).
We had defined a set of desired joint configuration for the Allegro
hand’s 4 fingers so that these correspond to similar postures to the
human hand, see Fig. 10. As soon as the classifier had reached the
confidence threshold of 0.5, the fingers of the robotic hand were
driven to their desired final posture. The confidence of themajority
vote was defined as the difference in votes of the winner from the
second winner divided by the sum of all the votes.

Five able-bodied subjects participated in the online implemen-
tation experiment(four males and one female). The subjects per-
formed 15 self-paced reach-to-grasp motions for each grasp type
with the objects placed 30 cm away from the initial position of the
hand. The recorded dataset consisted of 75 trials was used to train
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Fig. 9. Online implementation results.

Table 10
The activation times of the robotic hand for all grasp types in the online implemen-
tation. The third column of the table corresponds to time needed for the robotic
hand to take its final configuration closing with its maximum velocity.

Grasp type Activation time Closure

Precision disk 0.53 ± 0.13 s 0.32 s
Tripod 0.54 ± 0.16 s 0.41 s
Thumb-2 fingers 0.58 ± 0.25 s 0.41 s
Thumb-4 fingers 0.63 ± 0.30 s 0.42 s
Ulnar pinch 0.54 ± 0.12 s 0.41 s

the system offline. After the training phase, the subjects performed
30 reach-to-grasp motions for different objects, using a grasp type
of their choice, between these five grasp types. The results of the
online implementation are presented on the Fig. 9. The 92.5 ±

2.9% of the test trials were successful allowing the execution of
the correct grasp type. In the 88.58 ± 3% of the successful trials
the robotic hand reached its final configuration before the subject
reached the object (see the video to lasa.epfl.ch/~sina/Demo.mp4
and Fig. 10). Moreover, all the grasp types have an average success
rate above 90% at the end of the motion and above 80% on the
early prediction of the grasp type. The lowest performances on the
early prediction appear at the thumb-2 fingers and thumb-4 fingers
grasp types with 82.6 ± 4.3% and 84.75 ± 3.7% respectively. The
highest performances on the early prediction of the grasp typewas
noticed at the ulnar pinch (96.3±0.5%) followed by the tripod grasp
(90.4 ± 3.3%) and precision disk (89.4 ± 2.3%). Table 10 presents
the average and standard deviation of the activation times of the
robotics hand among the correctly classified trials. The average
activation time of the robotic hand among all grasp types was
0.54 ± 0.05 s. Thumb-2 fingers and thumb-4 fingers had the largest
variance on the activation time (0.25 s and 0.3 s respectively).

4. Discussion

Previous studies [17,19,26,36], presented different approaches
for mapping EMG signals to reaching and grasping motions ac-
cording to object’s features and locations and during static or
dynamic gestures. In these approaches, the system is trained as
the subject is asked to perform a grasp type, with or without
holding an object, and stay there for a few seconds. Using this
technique, the classifier is able to recognize different grasp types
only after they are already performed. Transferring this method to
an on-line application, the hand should, first, travel the distance to
object location and then start closing with respect to the preferred
grasp type. This equals a mechanical and unnatural motion with
respect to the seamless natural motion of the human hand. In
the proposed approach, the classifier is trained with data of the
reaching motion and the classification performance is related to
the time of fingers/hand preshape. A decode of the grasping type
in the early stages of the motion is important, as it would enable
the device to react promptly to the intention of the user. Therefore,

Fig. 10. Snapshots of the finger motions of the robotic hand and human hand.

we here proposed an EMG-based learning approach that decodes
the grasping intention of the user at an early stage of the reach to
grasp motion. Our approach was based on an Echo State Network
(ESN) [34] combinedwith aMajority Vote (MV) criterion applied to
time windows of 150 ms from the motion onset to the grasp of the
object. We applied the algorithm to an offline classification of five
different grasp types: precision disk, tripod, ulnar pinch, thumb-
2 fingers and thumb-4 fingers grasp. Furthermore, we examined
whether the proposed approachwas robust to different objects’ lo-
cation and to differentmotion speeds. Indeed, the object’s distance
and themovement velocity could differentiate the activation of the
muscles, especially for the muscles of the upper arm, influencing
the classification performance. Finally, we demonstrated in three
subjects the usability of our approach for the online control of the
Allegro hand.

Reaching-to-grasp motions are decomposed into two phases:
(a) the reaching phase, where the hand is traveling toward the
object location, and (b) the grasping phase, where the hand has
reached the object and the fingers are in contact with the ob-
ject [21–23]. In natural self-paced motion the hand spontaneously
opens and closes while being in the reaching phase [21–23,16].
The preshape of the hand is defined as the formation of the fingers
before they take the final configuration, and it takes place during
the reaching cycle [33]. More particularly, the fingers extend to
a maximum before they start closing (continuously flex) around
the object with respect to its characteristics. It has been reported
that the posture of the hand could be discriminated well before
the contact with the object [24]. In other words, the trajectories of
the fingers before their closure around the object correspond to an

http://www.lasa.epfl.ch/%7Esina/Demo.mp4
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indication of the final grasp type before the grasping phase, i.e. be-
fore the fingers are in contact with the object. In this paper, we
showed that this information could be revealed from themuscular
activity.

It was shown that the hand’s pre-shaping occurs from 60%
to 80% of the reach-to-grasp motion, which corresponds to the
time instant when the distance between the thumb and the index
reached its maximum [21,33]. Our analysis with normalized time
suggested that hand’s preshape occurs after the 30% with respect
to the completion time of the task. Additionally, we observed that
the fingers are preshaping between the 30%–60% of the reaching
cycle regardless of the distance from the object or the speed of
the motion. Moreover, the initial position of the hand as well as
the characteristics of the object could play an important role on
the detection of the preshape. More particularly, when reaching to
grasp a thin object by starting from an open-hand configuration,
the hand may not need to open more in order to adjust to the
size of the object. In this case, detecting the preshape becomes
less trivial, and additional principles should be considered for the
definition of the preshape. At this paper, we considered the onset
of a smooth closure of the fingers (flexion without extension) as
such a principle. On the other hand, the detection of the preshape
becomes more obvious when the task demands large extension of
the fingers.

Moreover, it has been suggested that a period between the 25%
and the 50% could be sufficient to obtain differences in muscle
activity when reaching to grasp three different objects [37]. Ex-
panding this suggestion, our results showed that it is possible to
classify five grasp types using EMG data from early stages of the
reaching motion. Relating the classification performance with the
hand’s preshape, our offline results showed that a classification
rate of 90% was achieved before the hand preshaping for the
precision disk, tripod, and ulnar pinch. For the thumb-2 fingers and
the thumb-4 fingers grasps, instead, the computed hand preshape
criteria did not always show a peak, thus the hand preshaping was
not always clearly detected.

We evaluated the accuracy of our approach by decreasing
the number of EMG channels inserted as input to the classi-
fier. By removing the muscles from the hand and forearm, we
kept less information regarding the motion of the fingers, ex-
pecting that this would influence negatively the performance.
The results showed a significant decrease on the classification
performance when using 9 and 7 muscles from the initial mus-
cle set. More particularly, the classification performance reduces
as one remove the muscles of the hand and forearm, but does
not lead to a significant drop in the performance as long as
we retained at least 7 muscles from the upper arm and 4 from
the forearm (i.e Flexor Digitorum Superficialis, Flexor Carpi Ulnaris,
Extensor Digitorum Communis and Extensor Carpi Ulnaris). These
results indicate that our method may successfully classify grasps
early without the muscular activity of the more distal muscles.
Although the results with less EMG channels are promising, one
should keep in mind that the activation of the residual muscles
of an amputated arm could be different concluding to a differ-
ent performance. Keeping that aside, the proposed method per-
forms efficiently with able-bodied users as presented in the online
implementation.

In addition, we examined the proposed approach when the
object is placed in different distances. Our results showed no
significant differences between the classification performance on
different object’s distances. This outcome may be explained from
the training of the classifier in time steps without normalizing the
time. With this approach, we were able to capture enough vari-
ability of the EMG activity of motions with different duration and
speed. Additionally, we took advantage of the short-termmemory
capacity of the Echo State Networks (ESNs) by avoiding extracting

features and treating the signals as time-series. This approach
imparted a level of tolerance to different muscle activation to the
classifier. Furthermore, we evaluated different combinations of
training and testing dataset acquired at different object’s distances
and we concluded that the best performance was achieved when
the classifier was trained in the middle distance and tested in
distances 10 cm larger or shorter. Comparing the performances
between the same training approaches (as presented in Figs. 5(b)
and 5(c)), the lowest classification performances noticed when
the classifier was trained with the shorter distance and tested
on further distances. This result suggests a better generalization
over the shorter distances than the further positions. A potential
expansion of the generalization would be the inclusion of different
positions in space.

Although no significant differences were found when consid-
ering different object’s distances, as the motion velocities in self-
paced motions may be slightly different depending on the object’s
location, fastmotion influenced significantly the classification per-
formance. Although the preshape appears in the same stage on
the reaching cycle regardless the speed of the motion, it is noticed
that hand preshapes significantly sooner in time than in self-paced
motions. Additionally, in some cases the fingers may follow differ-
ent trajectories than in self-paced motions. The rapid activation of
the arm muscles during fast motions differentiates the activation
of agonist/antagonists muscles, influencing the EMG signals and
resulting in a lower performance when significantly different ve-
locities were taken into account. A classifier that included different
speed motions performed sufficiently well only when the training
involved both data form normal and fast motions. The reduction of
the performance obtained when the classifier was trained with a
single speedmotionmay cause inconvenient behavior for assistive
and prosthetic devices. Therefore, higher attention should be paid
to the effect of speed on the design of more human-friendly and
convenient robotic devices that should interact with patients. In-
deed, comfort and robot–human interfaces represent two pivotal
aspects in robotic-rehabilitation approaches.

For a proof of concept, we integrated our approach in the
control of an Allegro hand. After a training phase performed offline
including 15 repetitions for each object of the five grasp types,
the success rate of classification was around 92.5%. The difference
between the offline and online classification performance could
be due to different sampling frequency used in the online imple-
mentation. This robotic implementation leads to the conclusion
that the early estimation of the final grasp from the EMG signals
could be applied to a robotic system and, as an extension, may be
applied to the control of a prosthetic device or of an exoskeleton.
An important extension of the approach is the introduction of a
robotic control scheme that derives from the natural motion of the
human hand, which would impart a human-like behavior to the
robotic device. Additional works could be done to integrate to the
robotic system tactile sensors for the attainment of a safe/stable
grasp. Indeed, recent developments on the sensory field [38,39],
showed that the design of compliant prosthesis should also include
the sensory feedback to the user. This feedback could involve visual
and tactile information in order to provide a compliant solution
to the demands of the different conditions. A control scheme of
an upper arm prosthesis that combines a variety of sensors (e.g
EMG, vision, tactile sensors) would provide a robust use of the
device . Moreover, a potential next step would be to include the
proposed approach into the control of a fingers’ exoskeleton in
order to examine any inconvenience that this may cause and be
further developed on a semi-autonomous control scheme.

Moreover, it has been reported [27] that it possible to relate
the object’s characteristics with the muscular activity. Toward
this direction, the decode of the preshape by the EMG signals,
as presented in our work, could provide valuable information for
object before the contact of the fingers with the object. As this



I. Batzianoulis et al. / Robotics and Autonomous Systems 91 (2017) 59–70 69

information comes in advance of the contact, it could be potentially
used for accomplishment of a safe grasp.

Finally, a further interesting extension of this work is the clas-
sification of specific finger configuration with different hand ori-
entations. In this case, a classifier could tackle the problem of the
high dimensionality of the task with the use of postural synergies
[16], which correspond to a number of hand postures that humans
combine when grasping. Furthermore, during grasping different
orientations of the hand are used. Studies [40,41,42] has reported
a successful classification of the simultaneous motion of the wrist
and fingers. A potential combination of the decode of the grasping
intention of the userwith the simultaneous control of thewristwill
provide amore natural motion of thewearable device with respect
to the human motion.

5. Conclusion

In this paper we propose an electromyographic based approach
for decoding the grasping intention in reach-to-grasp motions.
Our results have shown that it is possible to decode the grasping
intention in the early stages of the reaching motion during the
hand’s preshape, i.e. before the fingers final configuration. This is
very important for proper reaction of the wearable device and the
increase of the natural motion of a prosthesis. Further extensions
should involve the evaluation of the proposed approach in different
hand’s orientation and different object’s positions in space.
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