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Abstract 

Code design of unreinforced masonry (URM) brick buildings is based on elastic analysis, which requires as 
input, among others, estimates of the in-plane drift capacity at the considered limit states. Current approaches 
assess the drift capacity of URM walls by means of empirical models with most codes relating the drift capacity 
to the failure mode and wall slenderness. Comparisons with experimental results show that such relationships 
result in large scatter and do not provide satisfactory predictions. The objective of this paper is to investigate 
whether analytical models could lead to more reliable estimates of the displacement capacity. 

The drift capacity is investigated using a recently developed analytical model for the prediction of the ultimate 
drift capacity for both shear and flexure dominated URM walls. The approach is loosely based on plastic hinge 
models for reinforced concrete or steel structures. It takes the influence of toe crushing in URM walls explicitly 
into account as along with geometric and loading conditions. It is part of a more comprehensive model 
describing the whole force-displacement response of URM walls failing in shear or flexure. 

This paper summarises the key features of this analytical drift capacity model and benchmarks its performance 
against a data set of 34 full scale wall tests. It shows that the analytical model yields significantly better 
estimates than empirical models in current codes. The paper concludes with an investigation of the sensitivity of 
the ultimate drift capacity to the wall geometry, static and kinematic boundary conditions by means of 
parametric studies. 
Keywords: unreinforced masonry walls; ultimate drift capacity; shear dominated; flexure dominated  
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1 Introduction 

Unreinforced masonry (URM) walls show in general either (i) a flexure dominated behaviour, characterised by a 
large displacement capacity and rocking of the wall with toe crushing as failure mode (Fig. 1a) or (ii) a 
behaviour that is controlled by shear with a rather limited displacement capacity. URM walls dominated by 
shear develop characteristic diagonal cracks (Fig. 1b). After reaching the peak load, the deformations tend to 
concentrate in a single crack and the force-displacement response of shear-controlled walls often shows a 
pronounced post-peak behaviour [1]. Characteristic horizontal load – horizontal displacement curves for walls 
developing these two failure modes are shown in Fig. 1c. The walls that determine the displacement capacity of 
a building are in general shear dominated walls, since they fail at a distinctively lower horizontal displacement 
than flexural dominated walls.  

 
Fig. 1 – a Photo of flexure dominated wall at failure [1], b Photo of shear dominated wall at failure [1], c Shear 

load-drift curves qualitatively representing typical flexure and shear response of an in-plane loaded URM wall, d 
Monotonic shear load-drift response of a URM wall test in [1] as well as possible bi-linear approximation with 

indication of the effective stiffness (kef), the peak shear resistance (VP) and the ultimate drift capacity (δult). 

Displacement-based design of URM walls loaded in-plane is conducted by approximating the strongly 
non-linear load-displacement histories by means of bi-linear curves (Fig. 1d). These bi-linear curves are defined 
by the effective stiffness, the peak strength and the ultimate drift capacity of the wall. The drift is defined as the 
horizontal displacement at the top of the wall divided by the wall height. 

Many codes contain empirical drift capacity models for URM walls (e.g. Eurocode 8 [2], the Italian Code 
[3], the New Zealand Code [4], the American pre-standard FEMA 365 [5] and the Swiss Code [6]). Typically the 
drift capacity of walls is determined with empirical relations that depend on the failure mode (shear vs. flexure). 
Past studies have shown that such models lead to a large scatter of the results when compared to tests [1]. New 
formulations of empirical drift capacity models that account for other parameters than the failure mode can 
slightly improve the fit [7]–[9]. 

To improve the prediction of the drift capacity of URM walls, analytical formulations of the full load-
displacement behaviour could be a remedy. So far, a number of formulations have been developed, either to be 
used as standalone beam element models to predict the response of single walls or to be used in equivalent frame 
analysis of buildings. Some of the most recently developed models are formulations presented in [10]–[15]. 
However, none of these models describes fully the load-displacement behaviour of shear critical URM walls 
including an estimate of the ultimate drift capacity, either since the formulation is only valid for flexural 
dominated walls or because only stiffness and strength but not the drift capacity are predicted.  
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2 Determination of the ultimate drift capacity 

In this section, the novel analytical formulation in the CDC model to determine the ultimate drift capacity of 
URM walls is briefly introduced along with a short summary of the most commonly used empirical drift 
capacity models in codes. 

2.1 New formulation 

Both, flexure and shear controlled URM walls show a more or less extended crushed zone at the wall toe upon 
reaching ultimate failure (Fig. 1a, b). This leads to the concept of determining the ultimate drift capacity by 
means of a ‘plastic zone’ model, with very large curvatures in a confined zone at the wall toe. Yet, the approach 
of calculating these curvatures differs between shear and flexure dominated walls. Hence, it is necessary to 
explicitly predict the type of failure mode. It is assumed that the failure mode is controlled by the pre-peak 
behaviour. To predict the latter, the following assumptions are made: (i) masonry has zero tensile strength and 
hence, the parts of wall cross sections that would experience tension develop flexural cracking and 
decompression (as already applied in [11], [14]); (ii) masonry behaves linear elastically in compression; (iii) the 
wall can be analysed as a 2D-problem, i.e., the influence of out-of-plane bending is not considered.  

2.1.1 Distinguishing between shear and flexure dominated walls 

To distinguish between shear and flexural failure, it is proposed to consider the ratio between the height over 
which flexural decompression of the bed joints occurs (hd) and half the wall height (H / 2) (see Fig. 2b). The 
height hd can be determined as given in Eq. (1) with H0 being the shear span and L the wall length.  

 
ℎ𝑑 = max �𝐻0 −

𝑁𝐿
6𝑉𝑟𝑒𝑓

, 0� 1) 

The variable hd is computed for a reference shear force Vref = c L T (c – cohesion, T – wall thickness). 

 
Fig. 2 – a The corresponding value of 2 hd / H for tests that showed a shear dominated behaviour (black circles) 
and tests controlled by flexure (grey circles), b Sketch of decompressed height in wall at a reference shear force 

Vref (grey hatch represents the decompressed area in the wall) 

Substituting N with σ0 L T and dividing Eq. (1) by H / 2 leads to (σ0 – axial stress on wall) 

 
2ℎ𝑑
𝐻

=
2𝐻0 −

𝜎0𝐿
3𝑐

𝐻
 2) 

To verify whether the ratio 2hd / H is indeed suitable for distinguishing between walls that fail in shear 
and walls that fail in flexure, it is applied to 34 tests for which the failure mechanisms are known (Table 2 in 
section 3). Fig. 2a shows that the ratio 2hd / H allows to differentiate between these two types of behaviours. For 
a value of 2 hd / H < 1, the walls tend to show a shear controlled behaviour in tests whereas for values larger 
than one, the walls exhibit a behaviour controlled by flexure.  
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2.1.2 Shear dominated walls 

To obtain an estimate of the ultimate displacement capacity of a shear controlled URM wall, a plastic hinge 
approach accounting for its flexural displacements is adopted. URM walls with hollow clay bricks and normal 
cement mortar tend to fail due to crushing at the toe and along the diagonal crack (Fig. 3a, e.g. [1]). 

 
Fig. 3 – a Brick crushing in shear dominated wall at ultimate failure, b The considered equivalent system to 
determine the ultimate flexural displacements including assumed curvature profile, c Shear load-horizontal 

displacement curve, indicating point of ultimate failure 

In the following, it is assumed that this crushed toe is responsible for the majority of displacements at 
ultimate failure. Hence, an equivalent system is introduced, which consists of a deformable zone at the wall toe 
defined by its crushed height (hcr) and length (lcr). It is assumed that the curvature distribution is linear over hcr 
(Fig. 3b). At failure, the base curvature (χcr) is dependent on the maximum compressive strain (εu) of masonry as 
well as a strain (ε2) taking into account the influence of the axial load. Furthermore, it is assumed that this 
curvature goes to zero approaching the height of the crushed zone (hcr) as shown in the curvature profile 
provided in Fig. 3b. Curvatures above the crushed zone are assumed to be small compared to the one at the wall 
toe (χcr) and hence neglected. Moreover, shear displacements are assumed to be small compared to the flexural 
displacement components at ultimate failure and omitted as well. 

The ultimate strain the material can sustain is estimated to roughly correspond to the ratio of the 
compressive strength of a brick and the elastic modulus of the material masonry with a maximum of 0.7 % as 
shown in Eq. (3).  

 
𝜀𝑢 ≅ min �

𝑓𝐵,𝑐

𝐸
; 0.007� 3) 

Based on test observations, the length of the crushed zone (lcr) is chosen to be the length of a brick (lB). 
The strain ε2 which is introduced at y = lcr, as shown in Fig. 3b, is determined by means of vertical equilibrium. 

 𝜀2 =
2𝜎0𝐿
𝐸𝑙𝑐𝑟

− 𝜀𝑢 4) 

The height of the crushed zone (hcr) is assumed to be dependent on the shear span (H0), i.e. the higher the 
shear span ratio, the higher the crushed zone: 

 ℎ𝑐𝑟 = ℎ𝐵 �
1
2

+
𝐻0
𝐻
� 5) 
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Based on the abovementioned assumptions, the rotation at the wall top, which is approximately equivalent 
to the ultimate horizontal drift (since the shear component is neglected), can be given as: 

 
𝛿𝑢𝑙𝑡 =

1
2

(𝜀𝑢 − 𝜀2)
ℎ𝑐𝑟
𝑙𝑐𝑟

�1 −
ℎ𝑐𝑟
3𝐻

� 6) 

The larger the axial stress, the smaller is the ultimate drift. This is in agreement with observations form 
experimental tests [1], [16], [17]. Eq. (6) also shows that the ultimate drift increases with increasing shear span, 
which has also been confirmed by experimental tests [8]. The mechanical model further indicates that the brick 
aspect ratio influences the ultimate drift. This is a point that could not yet be confirmed experimentally since it is 
difficult to vary the aspect ratio of bricks in tests systematically while keeping all other parameters the same. 

2.1.3 Flexure dominated walls 

Flexure controlled walls usually do not develop significant the load-displacement behaviour influencing diagonal 
cracks that are characteristic in shear dominated walls. They exhibit, however,—as shear walls do—a crushed 
zone at the wall toe upon reaching ultimate failure. 

Due to the confinement effect of the foundation, the first and second row of bricks show different 
compressive strengths. This, however, leads to the possibility of various crushing mechanisms at the wall toe 
dependent on geometrical and loading conditions which are discussed in the following (see Fig. 4b1.1-1.3). The 
estimation of the ultimate drift for walls showing a flexure dominated behaviour will depend on the assumed 
respective mechanism. 

 
Fig. 4 – a Wall dominated by flexure at peak shear resistance with graphical representation of crushed wall toe 
and flexural cracks in bed joints, b1.1 Elastic normal stress distribution at the onset of crushing in the 2nd bed 
joint, b1.2 Assumed stress distribution for partly crushed zone in 2nd bed joint, b1.3 Corresponding assumed 

stress distribution for fully crushed compressed zone in 2nd bed joint, b2 Criterion for compression failure at wall 
toe, c Qualitative shear load – horizontal displacement curve indicating the point of peak shear resistance  

Experimental evidence shows that in flexural dominated walls splitting cracks often start to form in the 2nd 
row of bricks [14]. These cracks, however, do not instantly lead to failure but the shear force can still be 
increased (e.g. [1]). The shear force at the onset of this crushing can be determined considering an elastic normal 
stress distribution in the second bed joint (x = hB), reaching the masonry compressive strength (fu) in the 
outermost fibre as shown in Fig. 4b1.1. 

 𝑉(𝜎𝑥𝑥(𝑥 = ℎ𝐵,𝑦 = 0) = 𝑓𝑢) =
𝑁𝐿

2(𝐻0 − ℎ𝐵) �1 −
4
3
𝜎0
𝑓𝑢
� 7) 
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The tangent stiffness of the load-displacement curve at the point where crushing in the second row of 
bricks commences is usually already rather low, see Fig. 4c, which gives rise to the concept of considering the 
area where this preliminary crushing occurs as zone with a certain plastic deformation capacity (same concept as 
in [14]). As the shear force further increases, the length Lp of a plastic part of the normal stress distribution 
increases as well (see Fig. 4b1.2). It is assumed that failure is reached when the length Lp comprises the whole 
compressed length Lc and a fully plastic stress block has formed (Fig. 4b1.3). The corresponding shear force is: 

 𝑉 �𝐿𝑐(𝑥 = ℎ𝐵) = 𝐿𝑝(𝑥 = ℎ𝐵)� =
𝑁𝐿

2(𝐻0 − ℎ𝐵) �1 −
𝜎0
𝑓𝑢
� 8) 

For walls with a rather high hB / H ratio and / or a low level of axial loading (σ0), the compressive stresses 
at the wall toe (x = 0, y = 0) can exceed the compression strength of the brick fB,c before the plastic zone in the 
second brick row has built up (Fig. 4b2). This is assumed to instantly cause failure of the wall. To consider this 
failure mode Eq. (9) is employed. 

 
𝑉�𝜎𝑥𝑥(𝑥 = 0,𝑦 = 0) = 𝑓𝐵,𝑐� =

𝑁𝐿
2𝐻0

�1−
4
3
𝜎0
𝑓𝐵,𝑐

� 9) 

All aforementioned conditions to determine the state of the normal stress distributions in the crushed zone 
in the second row of bricks at the onset of failure are summarised in Eq. (10). 

 

State →  

⎩
⎪
⎨

⎪
⎧elastic            if  𝑉�𝜎𝑥𝑥(0,0) = 𝑓𝐵,𝑐� < 𝑉(𝜎𝑥𝑥( ℎ𝐵, 0) = 𝑓𝑢)                                              

partly plastic if  𝑉(𝜎𝑥𝑥( ℎ𝐵, 0) = 𝑓𝑢) < 𝑉�𝜎𝑥𝑥(0,0) = 𝑓𝐵,𝑐� < 𝑉 �𝐿𝑐(ℎ𝐵) = 𝐿𝑝(ℎ𝐵)�

fully plastic   if  𝑉�𝜎𝑥𝑥(0,0) = 𝑓𝐵,𝑐� > 𝑉 �𝐿𝑐(ℎ𝐵) = 𝐿𝑝(ℎ𝐵)�                                           

 (10) 

Fig. 5 shows the assumed curvature profiles along the wall height for the three different considered states. 
It is, once again, assumed that the curvatures above the crushed zones are negligible and that also shear 
displacements can be disregarded. 

 
Fig. 5 – a Brick crushing at wall toe and flexural cracks in bed joints in flexure dominated wall at ultimate 

failure, b Assumed curvature profile of equivalent system if second row of bricks remains elastic, c Curvature 
profile if 2nd row of bricks is partly plastic, d Curvature profile if 2nd row of bricks is fully plastic stress block 

The ultimate drift dependent on the state the 2nd row of bricks is in can be given as, see Fig. 5b-c: 
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𝛿𝑢𝑙𝑡 ≅

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜒1

ℎ𝑐𝑟
2
�1 −

ℎ𝑐𝑟
3𝐻

�                                                                                    ℎ𝐵 elastic, Fig. 5b  

𝜒1
ℎ𝐵
2
�1 −

ℎ𝑐𝑟
𝐻

+
2ℎ𝐵
3𝐻

� + 𝜒2
ℎ𝑐𝑟
2
�1 −

ℎ𝑐𝑟
𝐻

+
2

3𝐻�
ℎ𝑐𝑟2 − ℎ𝐵2

ℎ𝑐𝑟 − ℎ𝐵
��ℎ𝐵 par. pl., Fig. 5c

𝜒2
ℎ𝐵
2
�1 −

ℎ𝑐𝑟
𝐻

+
2ℎ𝐵
3𝐻

� + 𝜒2
ℎ𝑐𝑟
2
�1−

ℎ𝑐𝑟
𝐻

+
2

3𝐻 �
ℎ𝑐𝑟2 − ℎ𝐵2

ℎ𝑐𝑟 − ℎ𝐵
��ℎ𝐵 ful. pl., Fig. 5d 

  11) 

with the curvature at the base being: 

 𝜒1 =
𝜀𝑢

𝐿𝑐(𝑉𝑃 , 0) 
12) 

while the curvature in the 2nd bed joint can be estimated with: 

 

𝜒2 =

⎩
⎪
⎨

⎪
⎧𝑚𝑖𝑛 �

𝑓𝑢
𝐸 �𝐿𝑐(𝑉𝑃,ℎ𝐵) − 𝐿𝑝(𝑉𝑃,ℎ𝐵)�

,
𝜀𝑢

𝐿𝑐(𝑉𝑃,ℎ𝐵)�  ℎ𝐵 partly plastic

𝜀𝑢
𝐿𝑐(𝑉𝑃 ,ℎ𝐵)                                                                     ℎ𝐵 fully plastic  

 13) 

The corresponding plastic compressed length in the 2nd bed joint is: 

 

𝐿𝑝(𝑉𝑃 ,ℎ𝐵) =

⎩
⎪
⎨

⎪
⎧𝑁 −�−3𝑁2 + 3𝑓𝑢𝐿𝑇𝑁 − 6𝑓𝑢𝑉𝑃(𝐻0 − ℎ𝐵)𝑇

𝑓𝑢𝑇
 ℎ𝐵 partly plastic

𝑁
𝑓𝑢𝑇

                                                                             ℎ𝐵 fully plastic  
 14) 

with the total compressed length: 

 
𝐿𝑐(𝑉𝑃 ,ℎ𝐵) = �

2𝑁
𝑓𝑢𝑇

− 𝐿𝑝(𝑉𝑃,ℎ𝐵) ℎ𝐵 partly plastic

𝐿𝑝(𝑉𝑃 ,ℎ𝐵)             ℎ𝐵 fully plastic  
 15) 

The compressed length at the wall base can be given as: 

 𝐿𝑐(𝑉𝑃, 0) = 3 �
𝐿
2
−
𝑉𝑃𝐻0
𝑁

� 16) 

2.2 Drift capacity models in codes 

2.2.1 Eurocode 8 (EC8) 

EC8 – part 3 [2] gives an estimate for the drift at the limit state of near collapse (δult,E C), which is considered 
equivalent to the ultimate drift of the wall. The shear load carrying capacity of shear dominated walls is 
estimated in EC8 according to a modified Mohr-Coulomb criterion evaluating the compressed part of the base 
section using global values for coefficient of friction and cohesion. The peak shear resistance of walls controlled 
by flexure is determined using a stress block model assuming, again, that the critical section is the base joint. 
Whichever of those equations yield a smaller value is assumed to determine the behaviour of the wall (shear or 
flexure dominated) and hence implicitly the way of prediction of the ultimate drift capacity 

7 
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𝛿𝑢𝑙𝑡,𝐸𝐶8 = �

4
3

0.4 [%]        for walls controlled by shear   
4
3

0.8 
𝐻0
𝐿

[%] for walls controlled by flexure
 (17

) 

2.2.2 German annex of EC8 

The German annex reduces furthermore the drift capacities for walls failing in shear with a high axial load ratio. 

𝛿𝑢𝑙𝑡,𝐺𝐴,𝐸𝐶8 =

⎩
⎪⎪
⎨

⎪⎪
⎧

4
3

0.4 [%] for
𝜎0
𝑓𝑢
≤ 0.15

4
3

0.3 [%] for
𝜎0
𝑓𝑢

> 0.15
  for walls controlled by shear   

4
3

0.8 
𝐻0
𝐿

[%]                     for walls controlled by flexure

 (18
) 

2.2.3 Italian Code NTC 

The Italian code [3], however, simply sets two constant values dependent on the failure mode of the wall which 
is obtained nearly exactly corresponding to EC8. 

𝛿𝑢𝑙𝑡,𝑁𝑇𝐶 = �
0.4 [%]  for walls controlled by shear   
0.8 [%]  for walls controlled by flexure (19

) 

2.2.4 American pre-standard FEMA 365 

The American pre-standard FEMA 365 [5] provides the Drift at Performance Level of Collapse Prevention (CP), 
which is supposed herein to be approximately equal to the ultimate drift capacity. It is distinguished between 
drift limits for URM walls failing in bed-joint sliding or rocking (which roughly corresponds to walls controlled 
by shear and walls controlled by flexure according to EC8). The failure mode is again determined by the 
minimum of corresponding equations determining the peak shear resistance of the wall. 

𝛿𝑢𝑙𝑡,𝐹𝐸𝑀𝐴 365 = �
0.4 [%]        for bed-joint sliding       

0.4
𝐻0
𝐿

[%]  for rocking                     
 (20

) 

2.2.5 New Zealand Code 

The New Zealand code [4] distinguishes between flanged and un-flanged walls (the only one doing so among the 
presented ones). Depending on the failure mode (designated shear failure mode and rocking or toe crushing 
failure mode in [4]) constant maximum permissible drift levels for un-flanged walls corresponding to the ones in 
the Italian code for the ultimate drift capacity are suggested. The failure mode is – in line with nearly all of the 
presented approaches – dependent on the minimum of equations describing the peak shear resistance of the wall. 

𝛿𝑢𝑙𝑡,𝑁𝑍𝑆𝐸𝐸 = �0.4 [%] for shear failure mode                             
0.8 [%] for rocking or toe crushing failure mode (21

) 

2.2.6 Swiss Code SIA D0237 

According to the Swiss code SIA D0237 [6], the ultimate drift capacity of the wall is to be determined taking 
into account the boundary conditions a wall is subjected to without considering the predicted failure mode. The 
relation is given as follows: 

8 
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𝛿𝑢𝑙𝑡,𝑆𝐼𝐴 𝐷0237 =

⎩
⎨

⎧0.4 �1 −
𝜎0
𝑓𝑢
� [%] for fixed boundary condition:

𝐻0
𝐻

= 0.5       

0.8 �1 −
𝜎0
𝑓𝑢
� [%] for cantilever boundary condition:

 𝐻0
𝐻

= 1 
 (22

) 

3 Comparison with tests 

The presented new formulation along with the abovementioned code provisions is compared to test campaigns of 
34 full-scale quasi-static monotonic or cyclic URM wall tests to be found in literature (see Table 2) with regard 
to the prediction of the ultimate horizontal drift – δult. A list of the tested walls considered for comparison is 
provided in Table 2. The walls were selected based on the following criteria: (i) wall height ≥ 1.5 m, (ii) wall 
length ≥ 1.0 m, (iii) constant shear span during test, (iv) constant axial load during test and (v) whether the 
envelope of the load-displacement history was available.  Fig. 6 shows the performance of the CDC model as 
well as the code provisions presented in section 2.2 in predicting the ultimate drift capacity of the wall tests 
listed in Table 2. Since some of the tested walls (see Table 2) were subjected to other shear span ratios than 0.5 
or 1, the upper term of Eq. (22) (drift capacity according to SIA D0237 [6]) is generally applied for a shear span 
ratio of H0 / H < 1, while the lower one is taken for H0 / H ≥ 1 in the comparison. 

Table 1 – Wall parameters used in the comparison of model/tests 

Name Ref. Behaviour** L H H0/H hB lB σ0 c fu  fB,c  E  
[mm] [mm] [-] [mm] [mm] [MPa] [MPa] [MPa] [MPa] [MPa] 

PUP1 

[1] 

S 

2010 2250 

0.50 

190 300 

1.05 

0.27 5.86 35.0 3550 
PUP2 S 0.75 1.05 
PUP3 F 1.50 1.05 
PUP4 F 1.50 1.54 
PUP5 S 0.75 0.55 

BNW1 

[17] 

F 2567 1750 

1.10 

236 244 0.59 

0.27# 5.86# 35.0# 5000# 

BNW2 S 2572 1753 236 244 1.19 
BNW3 S 2584 1751 236 244 0.89 
BZW1 S 2482 1750 237 244 0.95 
BZW2 F 2484 1750 237 244 0.53 
BSW S 2712 1820 188 288 2.07 
W1* 

[16] 

S 

3600 2000 

1.05 

190 300 

0.77 

0.27# 8.25 37.4 5000# W4* F 2.00 0.78 
W6 S 1.05 0.77 
W7 S 1.05 2.39 
T1 

[9] 

S 2700 

2600 

0.50 

190 290 

0.58 

0.26 5.80 26.3 3550# 
T2 S 2700 0.50 0.29 
T3 S 2700 0.50 1.16 
T6 S 3600 0.50 0.58 
T7 F 2700 1.00 0.58 

BNL1 

[18] 

F 1028 1510 

1.06 

240 245 0.60 

0.27# 

4.13 25.0# 3088 
BNL2 F 1030 1510 240 245 1.19 4.13 25.0# 3088 
BNL3 F 1033 1515 240 245 0.60 4.13 25.0# 3088 
BNL4 F 1025 1514 240 245 1.19 4.13 25.0# 3088 
BNL5 F 1027 1511 240 245 1.19 4.13 25.0# 3088 
BNL6 F 1026 1508 240 245 0.60 4.13 25.0# 3088 
BGL1 F 989 1513 237 245 1.19 4.31 25.0# 3302 
BGL2 F 987 1511 237 245 1.19 4.31 25.0# 3302 
BPL1 F 985 1508 236 245 1.19 6.28 25.0# 4815 
BPL2 F 985 1509 236 245 1.19 6.28 25.0# 4815 
BPL3 F 986 1507 236 245 1.19 6.28 25.0# 4815 
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BZL1 F 988 1510 235 243 1.19 6.24 25.0# 5548 
BZL2 F 987 1512 235 243 1.19 6.24 25.0# 5548 
BZL3 F 986 1508 235 243 1.19 6.24 25.0# 5548 

* walls were tested monotonically, all other walls cyclic, ** behaviour reported as hybrid or doubtful in reference assigned 
to F/S according to load-displacement response, where: F … flexure dominated behaviour, S … behaviour controlled by 
shear, # parameters assumed based on common values since either not provided in reference or as given values appeared not 
credible 

 
Fig. 6 – Boxplot comparing performances of models in predicting ultimate drift capacity of tests 

It is visible that the provisions according to EC8 strongly overestimate the drift capacities of the tested 
walls. The Italian code, the FEMA 365 as well as the NZ code show a large scatter as well but are not as 
overestimating. Of all the code provisions, the Swiss code yields the best result for the data set used for the 
comparison. Yet, the CDC model shows the best fit in predicting the ultimate drift capacities of all wall tests.  

4 Parametric studies 

In the following, parametric studies are conducted to investigate trends indicated by the CDC model concerning 
the ultimate drift capacity. Table 3 lists geometrical values and material parameters that are kept constant 
throughout the parametric analysis. 

Table 2 – Values as used for all parametric studies 
T hB lB  c  fu fB,c E 

[mm] [mm] [mm] [MPa] [MPa] [MPa] [MPa] 
200 190 300 0.27 5.86 35 3550 
 

In Fig. 7, the shear span, axial load ratios as well as the wall size is varied while keeping the aspect ratio 
(ratio of H to L) the same. The ultimate drift capacity for walls with increasing size but constant H / L ratio is 
depicted in Fig. 7a. The shear span ratio is 0.5. It shows that the ultimate drift capacity decreases with increasing 
wall size, thus, agreeing with the size effect stipulated in [8]. The figure further shows that an increase in axial 
load leads to a reduced ultimate drift capacity. For Fig. 7b, the shear span ratio is set to 1.5. With increasing wall 
size, the ultimate drift decreases agreeing with the idea of a pronounced size effect for flexural walls 
(characterised by higher shear span ratios and lower levels of axial load). For a higher level of axial load, the size 
effect is not as strong anymore but still clearly discernible. Fig. 7b shows again the negative influence of the 
axial loading on the ultimate drift capacity. For comparison, Fig. 7 additionally provides the drift capacities 
according to EC8 along with those given in the Swiss code. Fig. 7a, b shows that such simple equations do not 
fully capture the aforementioned trends (size effect, influence of axial load ratio). The provisions of EC8 are 
generally un-conservative for the investigated wall parameters. The estimates of SIA D0237, however, are more 
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conservative and lie roughly in the range of the expected results as also reflected in the comparison part in 
section 3. 

Fig. 7c represents the development of the ultimate drift capacity with changing axial load ratio keeping the 
wall size constant. For small shear span ratios (H0 / H = 0.5 – usually corresponding to shear critical walls), the 
drift capacity decreases slightly with increasing axial load while for a high shear span ratio of 1.5 that is more 
characteristic of flexure controlled walls, the distribution of the drift capacities varies quite strongly. A low level 
of axial load leads to high ultimate drifts, in this case similar to the provisions given in EC8. However, these 
high drifts tend to decrease rapidly with increasing axial load ratio. The provisions according to the Swiss code 
somewhat take the dependency of the ultimate drift on the axial loading into account – for higher axial loads, the 
estimates of the CDC model and SIA nearly overlap while the non-linear relationship suggested by the CDC 
model for lower axial loads (and thus more flexure controlled walls) is just roughly approximated linearly by the 
provision according to SIA. 

 
Fig. 7 – a and b Parametric study of ultimate drift capacity with changing wall size keeping aspect ratio and 

shear span constant, c Parametric study of ultimate drift capacity with changing axial load ratio keeping shear 
span and wall size – full markers indicate shear dominated, unfilled markers designate flexure controlled 

behaviour 

Parametric studies investigating the influence of a changing wall aspect ratio on the ultimate drift capacity 
are presented in Fig. 8. The drifts increase with increasing H / L ratio. Moreover, as already mentioned above, 
the trend for higher drifts with lower axial load ratio is clearly visible. As for the provisions according to EC8, 
they are generally un-conservative for the parameters used in this study. They seem to fit best for small walls 
tested with a shear span ratio of one and low axial load ratios, i.e., for the wall configurations that have been 
tested very frequently and were therefore probably overrepresented in the data set used for determining the 
empirical drift capacity models [8]. Another detail that can be observed in Fig. 8a and b is that EC8 often 
assesses the type of wall behaviour (shear, flexure dominated) differently than the CDC model, i.e. EC8 
classifies walls to be of the flexural dominated type while the CDC model still assigns them to the shear kind. 
The provisions of the Swiss code which are included in Fig. 8 as well just show constant drift levels depending 
on the shear span and axial loading. They do not follow the trends indicated by the CDC model but are more 
conservative than the provisions given in EC8. 
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Fig. 8 – Development of ultimate drift with changing wall aspect ratio; a Shear span ratio of 0.5, b Shear span 
ratio of 1, c Shear span ratio of 1.5 – full markers indicate shear dominated, unfilled markers designate flexure 

controlled behaviour 

5 Conclusion 

A novel mechanics-based approach to determine the drift capacity of in-plane loaded URM walls which is part 
of a more comprehensive model describing the full monotonic load-displacement response―the CDC 
model―has been briefly introduced. The approach is based on an estimation of curvature profiles in the crushed 
zone at the wall toe at failure to determine the ultimate drift capacity. The comparison with 34 full-scale URM 
wall tests shows that the novel approach estimates the drift capacity of the walls more accurately than the 
empirical provisions used in current codes. A concluding parametric study shows that the predicted development 
of the drift capacity related to the change in different boundary conditions seems to agree well with behaviours 
observed in tests and stresses the influence of the axial loading, the shear span as well as the aspect ratio of the 
wall on its drift capacity which is not fully taken into account in code provisions. 
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