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Abstract: The identification of kinetic models can be simplified via the computation of extents
of reaction on the basis of invariants such as stoichiometric balances. With extents, one can
identify the structure and the parameters of reaction rates individually, which significantly
reduces the number of parameters that need to be estimated simultaneously. So far, extent-
based modeling has only been applied to cases where all the extents can be computed from
measured concentrations. This generally excludes its application to many biological processes
since the number of reactions tends to be larger than the number of measured quantities. This
paper shows that, in some cases, such restrictions can be lifted. In addition, in contrast to most
extent-based modeling studies that have dealt with simulated data, this study demonstrates the
applicability of extent-based model identification using laboratory experimental data.
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1. INTRODUCTION

The computation of extents of reaction from measured
concentrations has been advocated as a way of simplifying
the modeling task for complex reaction systems. With
extents, one can turn the joint estimation of all rate laws
and kinetic parameters into smaller estimation problems
involving a single reaction at the time (Bhatt et al., 2011).
This divide-and-conquer approach allows reducing the
computational complexity of finding appropriate rate laws
(Mašić et al., 2016a; Srinivasan et al., 2016). To this day,
its application is limited to cases where there are at least
as many measured concentrations as there are reactions,
which clearly limits the applicability of this method to re-
action systems with a sufficient number of measurements.
This generally excludes biological wastewater-treatment
processes. This work illustrates that the computation of
some but not all extents is possible and applies this for
extent-based modeling.

2. MATERIALS AND METHODS

2.1 Problem statement

We demonstrate the developed method by means of data
collected during a single cycle of an intermittent flow
stirred-tank reactor for biological urine nitrification (Udert
and Wächter, 2012; Fumasoli et al., 2016). This cycle starts
with a short feeding of source-separated urine collected at
Eawag with No-Mix toilets (Larsen et al., 2001). During
this cycle, ammonia is oxidized to nitrite by ammonia
oxidizing bacteria (AOB) and the produced nitrite is
oxidized to nitrate by nitrite oxidizing bacteria (NOB).

Ammonia and nitrite are measured approximately every 30
minutes during the considered cycle, leading to 29 samples.
The aim of this experiment is to estimate a dynamic model
describing the growth and decay of AOB and NOB.

2.2 Process model

Theory. The process can be modeled as a set of ordinary
differential equations (ODEs):

ċ(t) = NT r
(
c(t),θ

)
, yh = G c(th), c(0) = c0 (1)

ỹh = yh + εh εh ∼ N (0,Σh) , (2)

with c the S-dimensional concentration vector, r the R-
dimensional vector of reaction rates, N the R×S stoichio-
metric matrix, ỹ the M -dimensional measurement vector,
G the M × S measurement matrix, where M denotes
the number of measured quantities, ε the measurement
error vector, Σ the measurement error variance-covariance
matrix, and h the sampling index (h = 1, 2, . . . ,H). In this
work, the rate law expressions r

(
c(t),θ

)
are assumed to

be known. One also assumes that the elements of c0 and θ
are either known or structurally identifiable (as in Dochain
et al., 1995; Petersen et al., 2003).

Application. The process involves the following growth
and decay processes:

NH3 + αO2 O2 + αCO2 CO2

−−→ HNO2 + αH2OH2O + YAOB XAOB

HNO2 + βO2 O2 + βCO2 CO2

−−→ HNO3 + βH2O H2O + YNOB XNOB

XAOB + γO2 O2 −−→ γCO2 CO2 + γH2O H2O

XNOB + δO2
O2 −−→ δCO2

CO2 + δH2O H2O ,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148026994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


with XAOB and XNOB the AOB and NOB biomasses, and
YAOB and YNOB the yield coefficients of AOB and NOB.
The internalization of nitrogen into the biomass is ignored.

The process is described by a two-step nitrification model
involving two Monod-type growth reaction rates followed
by two decay rates. We assume a stable pH and express
all rates as a function of component concentrations (e.g.
total ammonia, total nitrite). In the considered model, the
concentrations of CO2, H2O, and O2 do not affect the
reaction rates. As they are not measured either, they are
omitted from the model. The model is defined with:

c =
[
cTAN cTNO2

cTNO3
cAOB cNOB

]T
(3)

G =

[
1 0 0 0 0
0 1 0 0 0

]
(4)

N =

−1 1 0 YAOB 0
0 −1 1 0 YNOB

0 0 0 −1 0
0 0 0 0 −1

 (5)

r =


µAOB cAOB

cTAN

KAOB + cTAN

µNOB cNOB
cTNO2

KNOB + cTNO2

bAOB cAOB

bNOB cNOB

 , (6)

where cTAN, cTNO2, cTNO3, cAOB, and cNOB are the total
ammonia, total nitrite, total nitrate, AOB, and NOB con-
centrations. The matrix G indicates that the concentra-
tions of ammonia and nitrite are measured. The stoichio-
metric matrix N includes the unknown yield coefficients.
The kinetic parameters are the maximum specific growth
rates (µAOB, µNOB), the affinity constants (KAOB, KNOB),
and the specific decay rates (bAOB, bNOB).

We define relative biomass concentrations zAOB and zNOB:

zAOB(t) = cAOB(t)/cAOB,0 (7)

zNOB(t) = cNOB(t)/cNOB,0 , (8)

with cAOB,0 = cAOB(0) and cNOB,0 = cNOB(0).

The specific growth rate parameters (µAOB, µNOB) and the
yields (YAOB, YNOB) are replaced by the new parameters

aAOB = µAOB cAOB,0/YAOB, nAOB = YAOB/cAOB,0 (9)

aNOB = µNOB cNOB,0/YNOB, nNOB= YNOB/cNOB,0. (10)

The equivalent concentration vector, stoichiometric ma-
trix, and rate vector are:

c←
[
cTAN cTNO2

cTNO3
zAOB zNOB

]T
(11)

N←

−1 1 0 nAOB 0
0 −1 1 0 nNOB

0 0 0 −1 0
0 0 0 0 −1

 (12)

r ←


aAOB zAOB

cTAN

KAOB + cTAN

aNOB zNOB
cTNO2

KNOB + cTNO2

bAOB zAOB

bNOB zNOB

 , (13)

with all remaining equations as in (1)-(4) and the symbol
← indicating a redefinition. In the reminder, the redefined

vector c includes the inorganic nitrogen concentrations in
their original scale and the biomass concentrations in their
relative scale. The relative biomass concentrations (zAOB,
zNOB) are further referred to as the biomass concentrations
unless specified otherwise. The model exhibits 8 parame-
ters (aAOB, bAOB, nAOB, KAOB, aNOB, bNOB, nNOB, and
KNOB) that are unknown and need to be estimated.

2.3 Definition of extents of reaction

As in previous work, the extents of reaction x indicate the
cumulative progress of the reactions, measured in moles,
since the start of the experiment. One writes:

x(t) = x0 + V

∫ t

0

r(c(τ))dτ , (14)

with V the known and constant reactor volume. Impor-
tantly, this definition means that the concentrations can
be expressed as functions of the extents:

c(t) = c0 + NT x(t)

V
. (15)

2.4 Computation of extents under rank-deficient conditions

When there are at least as many measured species as
independent reactions, Rodrigues et al. (2015) have shown
how to compute the extents by means of a linear trans-
formation. With rank(N)=R, this transformation requires
rank(G NT)=R, from which it follows that M ≥ R. If the
number of measured species, or more generally the number
of measurements, is such that M < R, it is no longer
possible to compute all R extents from M measurements
without a kinetic model. In addition, the matrix G NT can
be rank deficient, with rank(G NT)=A < M .

Theory. The idea in this work is to compute a reduced
number of extents, say the Ro observable extents xo(t),
from the M measurements y(t)=G c(t), with Ro < R. For
this purpose, we propose to construct the Ro × R matrix
S to select Ro observable extents among the R extents,
xo=Sx. S can be constructed as follows:

• Rearrange the matrix G NT in reduced row echelon
form via Gauss-Jordan elimination.
• Remove the rows that contain a zero vector and the

rows that contain more than one non-zero element
to obtain the matrix S. The number of rows in S is
Ro ≤ A.

In what follows, we consider the case Ro=A. When
so, ST S is a diagonal matrix with zeros and ones on
the diagonal. The zeros on this diagonal correspond to
columns in G NT that are zero vectors, which allows
writing G NT ST S = G NT. It follows that G NTx =
G NTSTxo, and thus

yh = G

(
c0 + NTx(th)

V

)
= G

(
c0 + NT ST x

o(th)

V

)
.

(16)

With this selection of observable extents, one can find a
unique solution to the extent computation problem:



[ĉ0, x̂
o
h] = arg min

c0,xo
h

H∑
h=1

(ỹh − yh)
T
Σh

−1 (ỹh − yh) (17)

s.t. yh = G

(
c0 + NT ST x

o
h

V

)
. (18)

In this work, we assume that the vector c0 is known. The
estimates x̂o

h (h = 1, . . . ,H) are referred to as experimental
observable extents.

Application. Let us discuss the construction of the
matrix S for the example introduced above, with S = 5,
R = 4, and M = 2. The matrix G NT reads:

G NT =

[
−1 0 0 0

1 −1 0 0

]
. (19)

This matrix has rank two. The maximal set of linearly
independent column vectors in G NT consists of the first
and the second column vector. Accordingly, one constructs

S =

[
1 0 0 0
0 1 0 0

]
. (20)

The observable extents correspond to the growth reactions.
The two decay reactions cannot be observed.

2.5 Reconstructed concentrations

Theory. Given the extents x(t), one can always recon-
struct the concentration vector using (15). However, for
the case Ro < R, there are Ru = R − Ro unobservable
extents labeled xu. Hence, one can only reconstruct the
concentrations for the species that do not involve these un-
observable extents. The R×S stoichiometric matrix N can
be partitioned into the Ro×S submatrix No corresponding
to the observable reactions and the Ru × S submatrix Nu

corresponding to the unobservable reactions, N =

[
No

Nu

]
.

Eq. (15) can be written as:

c(t) = c0 +
1

V

(
NoT xo + NuT xu

)
. (21)

All the species with a column in Nu that contains at least
one non-zero element are affected by the unobservable
reactions and, thus, cannot be reconstructed solely from
the observable experimental extents x̂o

h. These concentra-
tions are labeled as structurally unobservable, similarly
to Kretsovalis and Mah (1987). Among the remaining
unlabeled species, one then finds those species whose
columns in No contain only known stoichiometric param-
eters. These concentrations are labeled as structurally ob-
servable since the effect of the observable extents on these
concentrations is known and there are no effects of unob-
servable extents. The remaining unlabeled concentrations
are also labeled as structurally unobservable. The number
of structurally observable concentrations is So and their
concentration vector is co. Note that this observability
consideration is based only on the stoichiometric balance
and does not account for the use of a model-based ob-
server. The following algorithm identifies the structurally
observable concentration:

Given the above labeling, the matrix R is constructed as
an So×S matrix with a single one in every row and zeros
elsewhere. Each row in R corresponds to a structurally
observable species. The position of the element 1 identifies

the species. Hence, on can write, co := R c. With this, the
observable concentration estimates are:

ĉoh = R

(
c0 + NTST x̂

o
h

V

)
. (22)

Application. The identification of structurally observ-
able concentrations is illustrated with the example intro-
duced above. The matrix N is partitioned as follows:

No =

[
−1 1 0 nAOB 0

0 −1 1 0 nNOB

]
Nu =

[
0 0 0 −1 0
0 0 0 0 −1

]
. (23)

In the matrix Nu, one observes non-zero elements in
the columns corresponding to the concentrations zAOB

and zNOB. Hence, these concentrations are unobservable.
Since the first three columns of No, corresponding to the
unlabeled concentrations cTAN, cTNO2, and cTNO3, con-
tain known stoichiometric parameters, the concentrations
cTAN, cTNO2, and cTNO3 are observable. It follows that
So = 3 and that R has a dimension 3 × 5 with the
following structure:

R =

[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]
. (24)

2.6 Subsystem identification

In previous work on kinetic identification, every extent
was modeled individually, with the other extents needed
to compute the reaction rates being interpolated from
experimental measurements. This is no longer possible
here as there are extents for which no value can be
computed. Hence, a slightly different approach is taken by
identifying the smallest subsets of reactions whose kinetic
parameters can be estimated separately from all other
reactions. The main difference with previous work is that
these subsystems may now include more than one reaction.

Theory. A graph-based algorithm is used to determine
the smallest subsystems whose parameters can be identi-
fied separately. An introduction to graph theory is avail-
able in Deo (2004). Here, we use directed bipartite graphs
with two sets of nodes corresponding to extents and con-
centrations, respectively. The arcs from extents to concen-
trations represent the algebraic relationships (15) used for
reconstruction. The arcs from concentrations to extents
represent the integration of the differential equations (14).
Nodes representing the interpolated extents are called
interpolation nodes. All the remaining nodes are referred
to as variable nodes and represent concentrations and
extents that are simulated dynamically during parameter
estimation. Each of the graphs (Gv, v = 1, . . . , V ) identified
with the following algorithm represents a subsystem whose
parameters are estimated together:

(1) Create a graph G0 with nodes for all concentrations
and extents defined in (14) and (15).

(2) For all non-zero stoichiometric element Nr,c in N,
add a directed arc to G0 from the extent r to the
concentration c. This reflects the structure of (15).

(3) Among the directed arcs in the graph, label the arcs
that link the computed extents to the concentrations



that can be reconstructed as reconstruction arcs.
These arcs correspond to elements of N that are
retained in S N RT and reflects the structure in (22).

(4) A directed arc is added to G0 from every concentration
appearing in a rate law to the extent of that reaction.
This reflects the rate law structures in (1).

(5) Remove all reconstruction arcs.
(6) Remove all single-node components.
(7) Identify the connected components in the graph and

index them with v (1 ≤ v ≤ V ). Set v = 1.
(8) Define Gv as the vth connected component in G0.
(9) Add those arcs removed from G0 in Step (5) that have

at least their ending node in Gv. Add the starting
nodes of these arcs in G0 if they are not already in
Gv.

(10) Identify the strongly connected components in Gv. La-
bel the nodes not included in any strongly connected
component as an interpolation node. All remaining
nodes are labeled as a variable node.

(11) If v < V , set v ← v+1 and go to (7). Else, terminate.

Application. The graphs generated for the illustrative
example are shown in Fig. 1. Fig. 1a shows the graph
G0 obtained at step (3) of the algorithm. This graph
represents the relationships involved when simulating the
complete system. The rightward arcs represent the compu-
tation of concentrations on the basis of extents. One sees
that knowing zAOB requires knowledge of x1 and x3, while
knowing zNOB requires knowledge of x2 and x4. Similarly,
knowing cTAN (cTNO2; cTNO3) requires x1 (x1 and x2; x2).
The leftward arcs represent the structure of the rate laws
used to simulate the extents (14). cTAN appears only in
the AOB growth rate law (cf. x1) and cTNO2 appears only
in the NOB growth rate law (cf. x2). cTNO3 appears in
none of the rate laws. zAOB appears in the AOB growth
and decay rate laws (cf. x1 and x3). Finally, zNOB appears
in the NOB growth and decay rate laws (cf. x2 and x4).

The dashed arcs represent the possibility to obtain a
number of concentrations via reconstruction on the basis
of the experimental extents (22). As established before,
this is possible for cTAN, cTNO2, and cTNO3. In Step (4)
these arcs are removed. As a result, the graph is split in
three components. One component has the nodes x1, x3,
cTAN, and zAOB. A second component has the nodes x2,
x4, cTNO2, and zNOB. The last component is the single-
node component with node cTNO3. This third component is
removed in Step (6) so that only the first two components
remain in Step (7) (V = 2). This completes G0.

Steps (8) to (10) lead to the graph G1 shown in Fig. 1b
corresponding to the first component in G0. In Step (9),
the arc from x1 to cTAN in G0 is added to G1. There
are no further arcs to add. In addition, the re-introduced
arc has all of its nodes in G1 already so that no nodes
are added. In Step (10) one identifies a single strongly
connected component in G1 consisting of all nodes and all
arcs. All nodes are part of a strongly connected compo-
nent. Consequently, there are no interpolation nodes. This
means that identifying the kinetic parameters involved in
the identified subsystem does not require interpolation.
Simulation of the G1 subsystem involves the parameters
a1, b1, n1, and K1.

x1 

x3 

x2 

x4 

cTAN 

cTNO2 

zAOB 

zNOB 

cTNO3 

(a) 

(b) 

(c) 

x1 

x3 

cTAN 

zAOB 

x1 

x2 

x4 

cTNO2 

zNOB 

Fig. 1. Graphs obtained during subsystem identification
at step (4) (subplot a) and at step (11) (subplots b
and c). Dashed arcs indicate interpolation arcs. Grey
shading of nodes indicates the interpolation nodes.

Steps (8) to (10) are now repeated for the second compo-
nent in G0. The result is shown in Fig. 1c. In this case,
two arcs in G0 are introduced into G2: from x1 to cTNO2

and from x2 to cTNO2. x1 is added as a node as it does
not appear in G2 initially. Again, Step (10) leads to the
identification of a single strongly connected component.
This time it consists of the nodes x2, x4, cTNO2, and zNOB

and all arcs between these nodes. The node x1 is not in the
strongly connected component and thus is an interpolation
node. This means that the interpolated first experimental
extent (x̂1) is used as a known input to simulate the
subsystem represented by G2. Such simulations involve the
parameters a2, b2, n2, and K2.

2.7 Parameter estimation

Following the identification of each subsystem, all stoichio-
metric and kinetic parameters involved in the simulation
are estimated jointly. In this work, we adopt the determin-
istic optimization method given in Mašić et al. (2016b).



3. RESULTS

3.1 Experimental data

The top panel of Fig. 2 shows the H = 29 measurements
of ammonia and nitrite concentrations (ỹh) as a function
of time (th) within the considered process cycle. One can
see that the ammonia concentration decreases from about
70 to 0 g/m3 as a consequence of the AOB activity.
As a result, the nitrite concentration initially increases
from 0 to a maximum of 20 g/m3 at 5 h, after which
it decreases again to zero. This behavior indicates that
the nitrite oxidization process is slower than the ammonia
oxidation process. We assume that the measurement errors
are uncorrelated and exhibit a standard deviation of 5%
of the measured values.

3.2 Extent computation

The experimental extents computed by means of (17)-
(18) are shown in Figs. 3 and 4 as a function of time.
The profiles suggest a monotonic progress of the growth
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Fig. 2. Concentrations as a function of time during a single
cycle of intermittently fed biological urine nitrifica-
tion process. Top: Ammonia and nitrite concentration
measurements (ỹTAN , ỹTNO2), nitrate concentration
estimates (ĉTNO3), and simulated ammonia, nitrite,
and nitrate concentrations with the complete model
(cTAN , cTNO2, cTNO3). Bottom: Simulated relative
biomass concentrations with the complete model.

reactions and illustrate the slower progress of the nitrite
oxidation compared to the ammonia oxidation.

3.3 Reconstructed concentrations

The nitrate concentration ĉTNO3 can be reconstructed
from the experimental extents using (22). In the top panel
of Fig. 2, one sees that these estimates follow the sigmoid
profile of the extent of the NOB growth reaction in Fig. 4.

3.4 Parameter estimation

Parameter estimation is executed for each of the two
subsystems identified in Section 2.6. This means that the
parameters a1, b1, n1, and K1 are optimized so that
the extent of the AOB growth reaction simulated with
Subsystem 1 (Fig. 1b) best matches the first extent in
the weighted least-squares (WLS) sense. Similarly, the
parameters a2, b2, n2, and K2 are adjusted in a second op-
timization so that the extent of the NOB growth reaction
best matches the second extent, also in the WLS sense.
Figs. 3 and 4 show that, upon parameter estimation, both
subsystem models approximate the experimental extents
well.
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Fig. 3. Extent of AOB growth as a function of time: (�)
measurements, (—–) model prediction.
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3.5 Recombined model

The parameters identified individually for each subsystem
are used to simulate the complete system (1)-(4) with (12)-
(13). The ammonia, nitrite, and nitrate concentrations
obtained by means of this simulation are shown in the top
panel of Fig. 2. One sees that the modeled concentrations
approximate the measured and estimated concentrations
well. The simulated relative biomass concentrations are
shown in the bottom panel of Fig. 2. One sees that iden-
tified model parameters suggest that there is a marginal
net growth of the AOB whereas the NOB have underwent
a 50% increase during the experiment.

4. DISCUSSION

4.1 Benefits of the method

This contribution has presented a first case of extent-based
modeling under rank-deficient conditions. Prior work has
claimed that the stoichiometric matrix NT or – in case of
unmeasured species – the matrix G NT must be of rank R
to enable extent computation and modeling of the individ-
ual extents. This is true if one assumes that computing the
extent of every reaction is necessary. However, one may
still be able to compute a smaller number of extents of
reaction if the rank condition is not satisfied. In addition,
one may also be able to divide the parameter estimation
problem into smaller problems involving only parameters
affecting the dynamics of the computed extents. Both
claims were illustrated using data obtained from a bi-
ological urine nitrification process. Extent computation
allows reducing the size of parameter sets that need to
be identified simultaneously, thus leading to an increased
efficiency of the model identification process – this despite
not satisfying rank conditions that were considered essen-
tial previously.

A serendipitous benefit of the modeling method is that
it leads to a reformulation of the model, whereby the
yield coefficients become lumped into the parameters of
the kinetic rate laws. As a consequence, one does not need
to know the yield coefficients to describe the measured
concentrations.

4.2 Opportunities and future work

It was shown for one case that the matrix G NT does
not need to be full rank to benefit from the extent-based
modeling philosophy. However, it remains to be evaluated
how general this situation is. The required structure of
the matrix S may prove to be challenging in practice.
Even more interesting would be to evaluate what the
exact conditions are that allow separating the model
parameter estimation task into at least two subsystems,
whose parameters can be estimated separately. These
conditions can likely be formulated by means of the graph-
theoretical concepts applied in this work.

5. CONCLUSIONS

Historically, extent-based modeling has been considered
applicable to process modeling only when there are at least

as many measured variables as there are independent reac-
tions. This contribution demonstrates that this condition
is not a strict requirement to enable the separate estima-
tion of smaller subsets of kinetic parameters. This proves
especially valuable for biological systems, where the num-
ber of modeled reactions may easily exceed the number
of measured variables. In addition, our work demonstrates
that model reformulation may allow applying extent-based
modeling also when some elements of the stoichiometric
matrix are unknown. This strongly benefits the applica-
tion of extent computation and extent-based modeling to
biological systems since the yield coefficients appearing in
stoichiometric matrices are typically unknown.
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