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ABSTRACT
Graph signals offer a very generic and natural representa-
tion for data that lives on networks or irregular structures.
The actual data structure is however often unknown a priori
but can sometimes be estimated from the knowledge of the
application domain. If this is not possible, the data struc-
ture has to be inferred from the mere signal observations.
This is exactly the problem that we address in this paper,
under the assumption that the graph signals can be repre-
sented as a sparse linear combination of a few atoms of a
structured graph dictionary. The dictionary is constructed
on polynomials of the graph Laplacian, which can sparsely
represent a general class of graph signals composed of lo-
calized patterns on the graph. We formulate a graph learn-
ing problem, whose solution provides an ideal fit between
the signal observations and the sparse graph signal model.
As the problem is non-convex, we propose to solve it by al-
ternating between a signal sparse coding and a graph update
step. We provide experimental results that outline the good
graph recovery performance of our method, which gener-
ally compares favourably to other recent network inference
algorithms.

Index Terms— graph learning, graph signal process-
ing, Laplacian matrix, sparse signal prior, graph dictionary

1. INTRODUCTION

Graphs provide a flexible tool for modelling and manipulat-
ing complex data that resides on topologically complicated
domains such as transportation networks, social, and com-
puter networks, brain analysis or even digital images. Typ-
ically, once a graph is well-defined, classical data analysis
and inference tasks can be effectively performed by using
tools such as spectral graph theory or generalization of sig-
nal processing notions in the graph domain [1]. However,
it is often the case that the graph structures are not defined
a priori or the intrinsic relationships between different sig-
nal observations are not clear or are defined only in a very
subtle manner. Since the definition of a meaningful graph
plays a crucial role in the analysis and processing of struc-
tured data, the inference of the graph itself from the data is a
very important problem that has not been well investigated
so far.

The definition of the graph has been initially studied
in a machine learning framework with simple models such
as K-nearest neighbour graphs and other heuristically de-
fined graph kernels [2], [3] or convex combinations of them
[4]. Richer adaptivity to the data is obtained by relating

the graph structure more closely to data properties in or-
der to infer a graph topology. Techniques such as sparse
inverse covariance estimations [5], [6] rely on Gaussian
graphical models to identify partial correlations between
random variables and define graph edges. Such techniques
have also been extended to very large graphs, by learning
highly structured representations [7]. More recent works
relax the assumption of a full rank precision matrix by in-
fering the graph topology from a graph signal processing
perspective [8], [9], [10], [11] under explicit graph signal
smoothness assumptions. The above works assume that the
data globally evolves smoothly on the underlying structure.
However, such a model might not be very precise for many
real world datasets, which can feature highly localized be-
haviors or piecewise smoothness. The recent framework
in [12] that observes graph signals as white signals filtered
with a graph shift operator polynomial, is one of the first
network inference works to depart from explicit global
smoothness assumptions. A similar idea uses adjacency
matrix polynomials to model causation in time-varying
signals [13], [14].

In this work, we consider a generic model where the
graph signals are represented by (sparse) combinations of
overlapping local patterns that reside on the graph. That is,
given a set of graph signals, we model these signals as a
linear combination of only a few components (i.e., atoms)
from a graph structured dictionary that captures localized
patterns on the graph. We incorporate the underlying graph
structure into the dictionary through the graph Laplacian
operator. In order to ensure that the atoms are localized in
the graph vertex domain, we further impose the constraint
that our dictionary is a concatenation of subdictionaries that
are polynomials of the graph Laplacian [15]. Based on this
generic model, we cast a new graph learning problem that
aims at estimating a graph that explains the data observa-
tions, which should eventually form a sparse set of local-
ized patterns on the learned graph. We propose an alter-
nating optimization algorithm to address the resulting non-
convex inverse problem, which is based on a sparse cod-
ing step obtained with orthogonal matching pursuit (OMP)
and a graph learning step performed by applying a projected
gradient descent step. We finally provide a few illustrative
experiments on synthetic data, and we show that our generic
graph signal model leads to better graph recovery perfor-
mance than state-of-the-art algorithms.

The rest of the paper is organized as follows. We de-
scribe our graph learning framework in Section 2. We then
present our alternating optimization algorithm in Section 3,
and evaluate the graph recovery performance in Section 4.
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2. GRAPH LEARNING FRAMEWORK

2.1. Sparse signal representation on graphs

We first present the graph signal processing framework
used in this work. We consider an undirected, weighted
graph G = (V,E,W ) with a set of N vertices V , edges
E and a weighted adjacency matrix W , with the weight
value Wij = 0 if there is no edge between i and j. We
define a signal on the graph G as a function y : V → R,
where y(v) denotes the value of a signal on a vertex v. One
of the most useful graph operators that is widely used in
graph signal processing tasks, is the normalized Laplacian
operator, defined as

L = I −D− 1
2WD− 1

2 ,

where I is the identity matrix and D is the diagonal degree
matrix. This graph operator has a complete set of orthonor-
mal eigenvectors χ = {χ0, χ1, ..., χN−1} with a corre-
sponding set of non-negative eigenvalues. These eigenvec-
tors form a basis for the definition of the graph Fourier
transform [1], which provides a spectral representation of
graph signals.

Similarly to classical signal processing, one can design
an overcomplete dictionary D for signals on graphs, such
that every graph signal y can be represented as a sparse lin-
ear combination of dictionary atoms, i.e., y ≈ Dx, where
x is a sparse vector of coefficients. In order to obtain an ef-
fective representation of graph signals, the dictionary has to
incorporate the structure of the graph. In particular, we con-
sider here a polynomial graph structured dictionary, which
has been shown to provide sparse representations of a gen-
eral class of graph signals that are linear combinations of
graph patterns positioned at different vertices of the graph
[15]. The dictionary D = [D1,D2, ...,DS ] is defined as a
concatenation of S subdictionaries of the form

Ds = ĝs(L) =
K∑
k=0

αskLk

=

K∑
k=0

αsk(I −D− 1
2WD− 1

2 )k,

where ĝs(·) is the generating kernel of the subdictionary
Ds. In this particular signal model, the graph Laplacian
captures the connectivity of the graph, while the polynomial
coefficients reflect the distribution of the signal in particular
neighbourhoods of the graph. Furthermore, the behaviour
of these kernels in graph eigenvalues describes the nature
of atom signals in the graph. Namely, a kernel promoting
low frequency components will result in smooth atoms on
the graph. The polynomial coefficients, together with the
graph Laplacian, fully characterize the dictionary. In the
rest of this paper, we consider the general class of graph
signals that have sparse representation in the dictionary D.

2.2. Problem formulation

Equipped with the sparse graph signal model defined
above, we can now formulate our graph learning prob-
lem. In particular, given a set of signal observations

Y = [y1, y2, ..., yM ] ∈ RN×M , we want to infer a graph
G, such that the observed signals have a sparse representa-
tion in the graph dictionary built on G.

More formally, the graph learning problem can be cast
as follows:

argmin
W,X

||Y −DX||2F + βW ||W ||1

subject to D = [D1,D2, ...,DS ] ,

Ds =
K∑
k=0

αskLk, ∀s ∈ {1, ..., S}

L = I −D− 1
2WD− 1

2 (1)
Wij =Wji ≥ 0,∀i, j, i 6= j

Wii = 0, ∀i
||xm||0 ≤ T0, ∀m ∈ {1, ...,M}

where T0 is the sparsity level of the coefficients of each
signal, βW is a parameter that controls the graph sparsity
i.e., the number of non-zero edges of the graph, through
the L1 norm of the graph adjacency matrix W , and xm is
the mth column of the matrix X . The optimization is per-
formed over the weight matrix W instead of L that is used
explicitly in the dictionary construction, as the constraints
defining a valid weight matrix W are much simpler to han-
dle than those defining a valid Laplacian. Namely, a valid
L must be positive semi-definite, while the weight matrix
assumes only symmetry and non-negativity of the weights.

Finally, we assume in this work that the dictionary ker-
nels, i.e., the coefficients αsk, are known. We can for ex-
ample model these generating kernels ĝs(·) as graph heat
kernels and compute the polynomial coefficients αsk as a
K-order Taylor approximation coefficients. Other kernel
choices are possible, such as spectral graph wavelets [16],
where the polynomial coefficients could be inferred from a
Chebyshev polynomial approximation, or a priori learned
kernels [15]. For the sake of simplicity, we also consider
the S and K are determined by a priori information about
the nature of the target application, or optimized separately.

3. GRAPH LEARNING ALGORITHM

Next, we discuss the solution obtained by our graph learn-
ing framework. As the optimization problem (1) is non-
convex, we solve the problem by alternating between the
sparse coding and the weight matrix update steps, which is
a widely used techniques for solving ill-posed non-convex
problems.

In the first step, we fix the weight matrix W and opti-
mize the objective function with respect to the sparse codes
X , which leads to the following optimization problem

argmin
X
||Y −DX||2F

subject to ||xm||0 ≤ T0, ∀m ∈ {1, ...,M}.

The L0-“norm” constraint ensures sparsity of the sparse
codes. We solve the above problem using orthogonal



matching pursuit (OMP) [17]. Before updating X , we nor-
malize the atoms of the dictionary D to be of unit norm.
This step is essential for the OMP step in order to treat
all atoms equally. To recover our initial structure, after
computing X , we renormalize the atoms of our dictionary
and the sparse coding coefficients in such a way that the
product DX remains constant.

In the second step, we fix the sparse codes and we up-
date the dictionary, i.e., the graph. Estimating the weight
matrix with fixed sparse codes X , however, remains non-
convex, as the dictionary D is constructed from a K-order
polynomials of L, and thus of W . The optimization prob-
lem becomes:

argmin
W

||Y −DX||2F + βW ||W ||1

subject to D = [D1,D2, ...,DS ] ,

Ds =
K∑
k=0

αskLk,∀s ∈ {1, ..., S}

L = I −D− 1
2WD− 1

2

Wij =Wji ≥ 0, ∀i, j, i 6= j

Wii = 0, ∀i.

We propose a solution based on a gradient descent step fol-
lowed by simple projections into the weight matrix con-
straints. The gradient of the smooth term of the objective
function can be given in a closed form as follows

∇W ‖Y −
S∑
s=1

DsXs‖2F

=

S∑
s=1

K∑
k=1

αsk
(
−
k−1∑
r=0

2ATk,r + 1N×N (Bk ◦ I)
)
,

where Ak,r = D−1/2Lk−r−1Xs(Y − DX)TLrD−1/2,

Bk =
∑k−1
r=0 D

−1/2WAk,rD
−1/2 +Ak,rWD−1, 1N×N

is a matrix of ones, I is an N × N identity matrix, and
◦ denotes the pairwise (Hadamard) product. This re-
sult is obtained by using properties of the trace operator
and applying the chain rule for the gradient. However,
we omit the detailed derivation of the gradient due to
space constraints. To approximate the gradient of the non-
differentiable βW ||W ||1 term, we use βW sign(W ). This
operation ends up shrinking all positive elements by βW
in every step, while not changing the zero ones. To avoid
complex projections, we use a symmetric gradient with
a zero-diagonal. By doing so, we are optimizing over
only N(N − 1)/2 variables, instead of N2. Note that the
projections are quite simple, i.e.,

argmin
W̃ij≥0

||W̃ij −Wij ||2F =

{
0, if Wij ≤ 0

Wij , otherwise,

and even promote sparsity. The way that we approximate
the gradient of the βW ||W ||1 term, together with the pro-
jection to the positive space, bears strong similarity to using
the proximal operator for the L1 norm, with the only differ-
ence being in the fact that we project to the positive space

Fig. 1: Generating kernels for a polynomial dictionary

after performing the gradient descent. It is important to note
that since we are alternating between the sparse coding and
the graph update step, there is no theoretical guarantee for
convergence to a local optimum. However, the method has
shown promising results in all conducted tests, as we will
see in the next section.

4. SIMULATION RESULTS

We have tested the performance of our algorithms on syn-
thetic data that follow our signal model. We carry our ex-
periments on sparse Erdős-Rényi model (ER) [18] graphs
with N = 20, 50 and 100 vertices, and on an radial ba-
sis function (RBF) random graph. In the case of the RBF
graph, we generate the coordinates of the vertices uniformly
at random in the unit square, and we set the edge weights
based on a thresholded Gaussian kernel function:

W (i, j) =

{
e
− [dist(i,j)]2

2σ2 , if dist(i, j) ≤ κ
0, otherwise

All graph topologies are designed to have approximately
3N edges, and we generate 100 random instances of the
graph. For numerical reasons, every graph is stripped of its
isolated vertices, but full graph connectedness is not neces-
sarily insured. For each instance of the graph, we then con-
struct a parametric dictionary as a concatenation of S = 2
subdictionaries designed as polynomials of degreeK = 15.
The generating kernels for each subdictionary are defined
by the Taylor approximation of two heat kernels, one of

(a) Kernel 1 (b) Kernel 2

Fig. 2: An example of atoms generated from two different
polynomial kernels and centered at the same vertex.



which is shifted in the spectral domain to cover high graph
frequencies, allowing for a more general class of signals.
More precisely, we define

ĝ1(λ) ≈ e−2λ, ĝ2(λ) ≈ 1− e−λ,

where we use ≈ because of the fact that each exponential
function is approximated by a 15-order polynomial. The
obtained kernels are illustrated in Fig. 1. An example of
corresponding atoms for a graph with a thresholded Gaus-
sian kernel can be seen on Fig. 2.

Then, we generate a set of 200 training graph signals
using randomly generated sparse coding coefficients from
a normal distribution. These sparse codes represent each
signal as a linear combination of T0 = 4 atoms from the
dictionary. We use these training signals and the known
polynomial coefficients to learn a graph with our proposed
graph learning algorithm. The weight matrix is initialized
as a random symmetric matrix with values between 0 and
1, and a zero diagonal. The parameter βW and the gradient
descent step size are determined with grid search.

We threshold the small entries of the learned matrix in
order to recover a strongly sparse graph structure. Deter-
mining a good threshold value proves to be crucial in ob-
taining a relevant graph. As a rule of thumb in these syn-
thetic settings, we threshold our results in such a way that
the number of learned edges approximately equals to the
number of the edges of the groundtruth graph. In more gen-
eral settings, where the groundtruth graph is not known, we
discard the entries of the matrix that are smaller than a pre-
defined threshold of 10−4.

Table 1: Mean accuracies for different graph sizes

mean value/graph size 20 50 100
edges precision 0.9985 0.9948 0.9818

edges recall 0.9983 0.9946 0.9810
sparse codes precision 0.7708 0.9317 0.9244

sparse codes recall 0.8001 0.9464 0.9316

Table 1 shows the mean precision and recall in recov-
ering the graph edges and also the sparse codes, per graph
size, averaged over 100 different graph instances. As ex-
pected, the edge recovery accuracy drops slightly with the
size of the graph, due to the fact that the number of train-
ing signals has not been changed proportionally to the graph
size. On the other hand, the recovery performance of sparse
codes is much higher in graphs of sizes 50 and 100 than in
smaller graphs. We note that this is probably due to the fact
that all tests are performed on training signals constructed
from equal number of atoms. For that reason, the overlap-
ping of atoms is much higher in small graphs, making the
recovery of sparse codes a more challenging task.

Moreover, we have tested the influence of both the spar-
sity level and the size of the training set on an ER graph with
100 vertices. Fig. 3 displays the F-measure score for the re-
covered edges and the sparse codes. As expected, we can
see that a larger number of training signals leads to better
recovery. In addition, signals constructed from a smaller
number of atoms are more efficient in graph recovery as the

Fig. 3: Recovery accuracy depending on sparsity and the
number of signals.

atoms are less likely to overlap. Finally, it is worth not-
ing that we have also run experiments in non-ideal settings
where the generating kernels of the training signals are not
identical to the kernels used in the optimization algorithm.
We have observed that our algorithm is pretty robust to such
noise which supports its potential towards practical settings.

Next, we compare our model with two state-of-the-
art graph learning algorithms, i.e., Dong et al. [8] and
Segarra et al. [12], which have however been designed for
smooth graph signal models. In order to have reasonably
fair comparisons, we generate piecewise smooth signals,
with both generating kernels favouring low frequencies
(ĝ1(λ) ≈ e−2λ, ĝ2(λ) ≈ e−λ). We compare these meth-
ods on 50 ER graphs of size 20, with a probability of an
edge of p = 0.3, and 50 RBF graphs of size 20, and train
them on 500 signals. All hyper-parameters are optimized
with a grid search. The average F-measure scores are given
in Table 2 and we can see that our method performs better
than the other two algorithms. We notice that, when the
signals do not necessarily consist of only low-pass kernels,
the improvement over these methods is higher as expected.

Table 2: Edges F-measures for different methods

Type/Method Our Dong [8] Segarra [12]
ER 1 0.9112 0.9738

RBF 1 0.9379 0.9170

5. CONCLUSIONS

In this paper, we have presented a framework for learn-
ing graph topologies from signal observations under the as-
sumption that the signals are sparse on a graph-based dic-
tionary. Experimental results confirm the usefulness of the
proposed algorithm in recovering a meaningful graph topol-
ogy and in leading to better data understanding and infer-
ence. Even though these results seem promising, more ef-
forts are needed to improve the scalability of learning with
the graph size, possibly with help of graph reduction and
reconstruction methods.



6. SUPPLEMENTARY MATERIALS

Complementary MATLAB code can be found on:
https://github.com/Hermina/GraphLearningSparsityPriors
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