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Abstract—Resistive Random Access Memory (RRAM) is a
promising non-volatile memory technology which enables mod-
ern in-memory computing architectures. Although RRAMs are
known to be superior to conventional memories in many aspects,
they suffer from a low write endurance. In this paper, we focus on
balancing memory write traffic as a solution to extend the lifetime
of resistive crossbar architectures. As a case study, we monitor
the write traffic in a Programmable Logic-in-Memory (PLiM)
architecture, and propose an endurance management scheme
for it. The proposed endurance-aware compilation is capable
of handling different trade-offs between write balance, latency,
and area of the resulting PLiM implementations. Experimental
evaluations on a set of benchmarks including large arithmetic and
control functions show that the standard deviation of writes can
be reduced by 86.65% on average compared to a naive compiler,
while the average number of instructions and RRAM devices also
decreases by 36.45% and 13.67%, respectively.

I. INTRODUCTION
Resistive Random Access Memory (RRAM) has attracted

high attention since it is providing new opportunities from
memory to architecture design. RRAMs are known to be a non-
volatile memory technology with lower power consumption
and high scaling capability which has the potential to replace
conventional memories [1]. In order to store information in
RRAMs, its internal resistance state should be switched be-
tween a low or high value [2]. This property enables executing
Boolean logic operations within a RRAM, which is of high
interest for the design of in-memory computing circuits and
systems. Integration of storage and computation units enabled
by the resistive switching property of RRAMs, also provides an
alternative solution for the CMOS technology used for today’s
computer architectures, which is already suffering from limited
scalability, leakage power, and reliability issues [3], [4].

As a non-volatile memory technology, RRAMs outperform
SRAM and eDRAM in the aforementioned cases. However,
they have a limited write endurance. In the best existing
RRAM architectures, a cell can endure about 1010 [5] to
1011 write counts [6]. There are many approaches that try
to improve memory lifetime. Some approaches are based on
a write balancing scheme [7], [8], [9] mainly proposed for
another non-volatile memory technology known as Phase-
Change Memory (PCM), which has a lower write endurance
compared to RRAM [1]. There are also other approaches
which use error correcting techniques to fix the hard failures
[10].

In this paper, we focus on balancing the write traffic as
a solution to extend the lifetime of RRAMs used for in-
memory computing. We target the Programmable Logic-in-
Memory (PLiM) computer architecture proposed in [11] as a
case study. We survey the reasons of unbalanced write traffic in
PLiM and propose an endurance management scheme for it to
get a more uniform distribution of the writes over all memory

cells. Experiments on large arithmetic and control benchmark
functions show considerably improved write balance. For some
functions, the standard deviations of the write counts are
reduced by more than 90% compared to a naive approach.

II. LOGIC-IN-MEMORY WRITE TRAFFIC
When using RRAMs for in-memory computing, some

memory cells face much higher write counts than others. In
this section, we survey the reasons for unbalanced write traffic
in some existing logic-in-memory computing approaches.

So far a variety of approaches has been proposed for
synthesis of logic-in-memory computing circuits, mostly based
on material implication (IMP: p → q = p̄ ∨ q) [12], [13]
and some using other basic operations [14], [15], [11]. In all
these approaches, the target function can only be executed
using a certain number of RRAM devices and after a number
of operations, which increases rapidly as the size of the
function increases. Hence, lowering the number of operations
and the number of resistive memories is considered the main
target in the design of current in-memory computing synthesis
approaches.

In [16], an IMP-based NAND gate was proposed. The
gate is implemented with two resistive switches and the
NAND function is executed within three computational steps.
Regardless of the required operations to load the primary
inputs of the gate into the two allocated devices, only one
of them, the so-called work device, is rewritten after each
operation while the other keeps its initial value. Using IMP
for synthesis, this unbalanced distribution of writes happens
due to the lack of commutativity property, which results in
higher write traffic in the memory cell storing the output of the
operation. Nevertheless, the write traffic can be spread more
evenly over the entire memory by considering extra RRAM
devices to replace those with high write counts. This will also
require additional operations to copy the contents of RRAMs
into fresh ones or ones with lower write counts. However,
being unwilling to spend more time or area, this intrinsic
unbalanced write can become even worse. For example, [17]
proposes a synthesis approach that considers only two work
resistive devices besides N input devices, where N is the
number of input variables of the Boolean function. It is obvious
that the work devices used in implementations based on such
an approach suffer from short lifetime.

In [11], an operation based on the 3-input majority function
〈xyz〉 = xy ∨ xz ∨ yz = (x ∨ y)(x ∨ z)(x ∨ z) was
proposed to perform Boolean functions on a crossbar array
of Bipolar Resistive Switches (BRS). The operation called 3-
input Resistive Majority (RM3) exploits an intrinsic majority
property of resistive memories. Denoting the value stored in
the memory by Z, and the signals applied to its top and bottom
terminals, by P and Q, respectively, the updated value of Z
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by RM3 is formally expressed as Z ← PZ ∨ QZ ∨ PQ =
〈PQZ〉 = RM3(P,Q,Z). This basic operation incorporates
both of a majority-of-three and an inversion and thus can be
used as a universal computing operator.

RM3 was shown more efficient compared to material
implication w.r.t. both area and latency when using Majority-
Inverter Graphs (MIG, [18]) [19]. Regarding write endurance,
RM3 has more flexibility in comparison with IMP by sharing
the writes between three operands instead of one. Nevertheless,
RM3 does not benefit from the commutativity property of the
majority function due to the inversion of the second operand.
Moreover, similarly to IMP, storing the result of the RM3 in
one of the involved memory devices can cause an unbalanced
write if the same device is updated each time in a chain of
operations.

III. CASE STUDY: ENDURANCE-AWARE COMPILATION
FOR PLIM ARCHITECTURE

A. Preliminaries
1) Majority Inverter Graphs: MIG is a data structure for

efficient representation of Boolean functions which consists
of 3-input majority nodes and complemented edges [18],
[20]. In general MIGs can be efficiently exploited for logic-
in-memory computing due to benefiting from the resistive
majority property enabled by RM3 [19], [21].

In [18], a Boolean algebra was proposed for MIGs to
obtain more efficient graphs w.r.t. the considered criteria. The
following set (Ω) includes the primitive axioms which are
theoretically sufficient to reach any logically equivalent MIG
from an arbitrary one [18].

Ω



Commutativity – Ω.C
〈xyz〉 = 〈yxz〉 = 〈zyx〉
Majority – Ω.M{
〈xyz〉 = x = y if x = y
〈xyz〉 = z if x = ȳ

Associativity – Ω.A
〈xu〈yuz〉〉 = 〈zu〈yux〉〉
Distributivity – Ω.D
〈xy〈uvz〉〉 = 〈〈xyu〉〈xyv〉z〉
Inverter Propagation – Ω.I

〈xyz〉 = 〈x̄ȳz̄〉
A more advanced set of identities called Ψ was also

proposed in [18] to make the length of axioms required
for transforming MIGs practically possible. Here, we only
introduce one Ψ axiom, which is referred in this paper,
called Complementary Associativity Ψ.C = 〈x, u, 〈y, x̄, z〉〉 =
〈x, u, 〈y, x, z〉〉.

Using MIGs for resistive in-memory computing, the nodes
with multiple complemented edges impose extra costs in
both area and delay. An extended inverter propagation axiom
from right to left denoted by Ω.IR→L(1−3) was proposed
in [19] to control the extra costs caused by complemented
edges. Ω.IR→L(1−3) includes the three transformations (1)
〈x̄ȳz̄〉 = 〈xyz〉, (2) 〈x̄ȳz〉 = 〈xyz̄〉, and (3) 〈x̄ȳz〉 = 〈xyz̄〉.

2) PLiM Architecture: The PLiM architecture is capable
of performing logic operations on a regular RRAM array.
To execute a Boolean function, PLiM translates its MIG
representation to a set of RM3 instructions. Implementing logic
operations within memory cells requires to control the distri-
bution of signals and the scheduling of operations considering
latency, area, and management [11], [21].

The PLiM controller consists of a wrapper for the RRAM
array. It reads the instructions from the memory array and
performs computing operations (RM3) within the memory

array. As a wrapper, PLiM uses the addressing and read/write
peripheral circuitries of the RRAM array. When the control
signal is equal to zero, the controller is off and the whole
array works as a standard RAM system. When the controller
is on, the circuit starts performing computation. The controller
consists of a simple finite state machine and few work registers,
in order to operate the RM3 instruction [11]. The instruction
format consists of the first operand A, the second operand B
and the destination Z. Operands A and B are then read from
constants or from the memory array, and RM3 is performed
during the write operation to the memory location Z by setting
P to A and Q to B. This value of node Z is then updated
by Z ← 〈ABZ〉. When the write operation is completed, a
program counter is incremented, and a new cycle of operation
is triggered.

3) PLiM Compiler: An MIG-based compiler for PLiM
was proposed in [21], which aims at optimizing the result-
ing programs w.r.t. the number of instructions and RRAM
devices. The sequential nature of PLiM makes the number of
MIG nodes a determining factor in the length of instructions
required for computing a Boolean function. However, other
factors such as complemented edges and fanouts can also
be a reason for more instructions. According to RM3, any
MIG node with more or less than a single complemented
edge requires extra instruction. Moreover, an MIG node needs
at least one single fanout child which can be rewritten by
the result of the computation. Otherwise, more instructions
must be performed to copy one of the children in another
RRAM to be used later at its fanout target. Any of these issues
with complemented edges and fanouts requires two additional
instructions and one RRAM and thus should be addressed
during optimization procedure.

Algorithm 1 shows the MIG rewriting proposed for PLiM
compiler [21]. A cycle of the algorithm starts with conventional
MIG rewriting for node minimization proposed in [18], [20]
(steps 2–4) and terminates with the extension of inverter propa-
gation axioms (steps 5–6) to tackle the issue of complemented
edges.

1 for (cycles = 0; cycles < effort; cycles++) do
2 Ω.M ; Ω.DR→L;
3 Ω.A; Ψ.C;
4 Ω.M ; Ω.DR→L;
5 Ω.IR→L(1−3);
6 Ω.IR→L;
7 end

Algorithm 1: MIG rewriting for PLiM compiler [21]

A compilation approach including two parts of node se-
lection and translation was also proposed in [21] to reduce
the number of RRAM devices for PLiM implementations. The
node selection aims at finding an order for computing nodes
of a given MIG which results in a smaller number of RRAMs,
while the node translation chooses the operands of RM3 to
compute a node with the minimum number of instructions and
RRAMs.

The nodes are selected for computation according to a
priority list of all computable candidates, i.e. nodes whose
children have been already computed. The nodes are first
compared based on the number of RRAMs which can be
released after computing the node. This reduces the number of
RRAMs because the released ones can be reused for the next
computations. In case of an equal number of releasing fanins
for two nodes, their position in the priority list is decided based
on their fanout level indices. In this case, the compiler chooses
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Fig. 1. Example MIG vulnerable to unbalanced write caused by PLiM’s area
latency considerations

a node whose fanout has lower level index, i.e. lower waiting
time for the node’s value to be used at the fanout target. This
way, the RRAMs allocated for nodes with long waiting times
are blocked for shorter duration and can be reused sooner,
which reduces the number of RRAMs.

In this work, we utilize the same node selection scheme
but try to integrate endurance considerations into the node
selection procedure.

B. Endurance Management for PLiM
In this section, we propose four techniques which jointly

balance the write traffic for the PLiM computer. Two tech-
niques work directly based on the write counts of the memory
cells, and the others based on MIG rewriting and compilation
to address the intrinsic sources of unbalanced write existing in
MIGs.

1-2) Direct Endurance Management: During PLiM com-
pilation, write endurance can be easily considered whenever
an RRAM device is requested such that if there are any freed
RRAMs at the time of request, the one with the smallest write
count is returned. We call this “minimum write count strategy”
which is a simple but also an essential technique to lower the
deviation of writes. However, it is not still sufficient to obtain a
good write balance. In this work, we also consider the conflicts
of area and latency with the write distribution of the resulting
PLiM programs. Indeed, we try to address those parts of the
compilation procedure that worsen the write traffic but keep
the number of instructions and RRAMs as low as possible.

For example, computing the MIG shown in Fig. 1 by PLiM,
the writes cannot be balanced completely over all allocated
RRAMs unless additional instructions and RRAM devices are
consumed. We assume that node A is already computed and
node B is the best candidate for PLiM to be computed next.
In this case, the compiler chooses the RRAM storing the
value of node A, let us call it X , as the destination of RM3.
This is because the RRAMs storing the two other children
nodes of B have more than one fanout. Selecting a node with
multiple fanouts as the destination of RM3 will require two
extra instructions and one extra RRAM to copy the values
of the nodes to use them later at their other fanout targets.
Therefore, node A is written again regardless of its current
number of writes, and its content is replaced by the result
of computation of node B. A similar situation occurs when
computing node C. To compute node C, the compiler first
sets the only complemented child shown with a dotted edge,
i.e. node D, as the second operand of RM3 for more efficiency.
Between the two other remaining children, only node B has a
single fanout whose value is stored in RRAM X . Accordingly,
again X will be selected as the destination of operation in
order to avoid extra costs, while the RRAM keeping the value
of node D might have much smaller write count.

As shown in the example above, rewriting the same
RRAM repeatedly can continue for a large number of node
computations depending on the situation of single fanouts

1 for (cycles = 0; cycles < effort; cycles++) do
2 Ω.M ; Ω.DR→L;
3 Ω.IR→L(1−3);
4 Ω.IR→L;
5 Ω.A;
6 Ω.IR→L(1−3);
7 Ω.IR→L;
8 Ω.M ; Ω.DR→L;
9 Ω.IR→L;

10 end
Algorithm 2: Endurance-aware MIG rewriting for PLiM
architecture

and complemented edges in the MIG. This condition causes
an unbalanced write distribution which cannot be controlled
without extra costs in terms of execution time and area. A
solution for this problem is to consider a maximum allowed
number of writes per RRAM device. This way, the RRAMs
which reach this maximum write count are kept out of the
free set and cannot be requested anymore. As a result, a
fresh RRAM should be allocated which increases the number
of RRAMs. Moreover, the number of instructions can also
increase since the ideal case of nodes with a single fanout
child can not be only exploited if the write threshold is
satisfied. Otherwise, two extra instructions must be performed
for computing the candidate node to load one of its children
nodes into a fresh RRAM or one with a valid write count to be
used as the destination. We refer to this endurance management
technique as the “maximum write count strategy.”

The two strategies mentioned above can be utilized for
any in-memory computing method and memory endurance
management in general. To achieve a more comprehensive
endurance management scheme for the PLiM computer, in
the following we refer to some key characteristics specifically
applicable to PLiM. We first study how a slightly different
MIG rewriting algorithm can enhance the distribution of writes
over the memory. Then, we propose an endurance-aware node
selection during compilation to get a better write traffic.

3) Endurance-Aware MIG Rewriting: Algorithm 2 de-
scribes the proposed endurance-aware MIG rewriting. The
algorithm improves the write balance as well as maintain-
ing the main role of MIG rewriting, i.e. minimizing the
number of instructions, by applying Ω.M and Ω.DR→L to
reduce the number of nodes, and inverter propagation axioms,
Ω.IR→L(1−3) and Ω.IR→L to control the extra instructions
required for complemented edges.

In comparison to Algorithm 1, we have removed Ψ.C
which was disadvantageous due to removing a single com-
plemented edge of an MIG node, which is actually considered
an ideally low cost case for the RM3 operation. Instead, Ω.A is
sandwiched by two sets of inverter propagation axioms (Steps
3–7) to maximize the gain by presence of ideal nodes with a
single inverted child. This also reshapes the MIG and creates
more opportunities for further reduction in the number of nodes
(Step 8). At the end, Ω.IR→L (Step 9) is applied to remove
the eliminate costly nodes with three inverted children.

Algorithm 2 does not explicitly target cases such as repeat-
edly writing a memory cell due to the condition of fanouts
or complemented edges, but it can decrease the number of
nodes further and results in a more useful distribution of
complemented edges. This effects lead to a lower total number
of writes and increase the possibility of regular change of the
switching device.
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Fig. 2. Example MIG vulnerable to unbalanced write due to possessing nodes
with long storage durattions

4) Endurance-Aware Node Selection: As explained before,
the write traffic highly depends on the MIG features, including
the condition of inverters and fanouts in the graph. Here, we
discuss another MIG feature which can have a considerable
effect on the write distribution.

The structure of the MIG can help to distribute the writes
more evenly if RRAMs in use are released and reused with
a similar frequency. Indeed, the issue with endurance man-
agement happens when some RRAM devices are blocked for
a long time and some others are rewritten very often. In
such a situation, the number of writes for the RRAMs used
to execute the PLiM program can vary widely. Thus, some
RRAM devices reach to the end of their lifetime much faster
than others which shortens the normal duration that the PLiM
computer can work reliably.

Fig. 2 shows an MIG with the problem explained above.
Let us assume that node A is already computed and XA

designates the RRAM keeping its value. It is obvious that
XA is still required and cannot be released until node G is
computed. Node A targets several nodes in higher levels which
means longer waiting time for XA, while all other nodes only
target the nodes in the very next levels. In comparison, the
RRAMs storing the values of nodes B and C, indicated by
XB and XC , respectively, can be released when nodes D and
E are computed and one of them can be rewritten again to
compute node F . XB and XC can also be rewritten before by
the values of their target nodes D and E. Considering that the
initial number of writes has been equal for all the mentioned
RRAMs, XB and XC might have been rewritten at lease one
or two times more than XA, which we call a blocked RRAM,
when the root node G is computed.

The impact of blocked RRAMs on write traffic can be
much more noticeable in large MIGs with high level dif-
ferences. Nevertheless, write balance can be enhanced if we
compute the nodes with long waiting time as late as possible.
In the example above, the write traffic can be managed if the
compiler computes nodes B and C before A. For this purpose,
we reverse the priority of nodes in the compilation procedure.
Thus, the candidate nodes with the smallest fanout level index,
which means the shortest storage duration, are computed first.
The second node selection principle, i.e. number of releasing
RRAMs, is considered if there are several candidate nodes with
equal fanout level indices. In this case, the node with the largest
number of releasing RRAMs is selected for computation.
Algorithm 3 describes the procedure to select between two
candidate nodes.

Although using this endurance-aware node selection strat-
egy for PLiM compiler improves the memory write balance,
it has slightly lower efficiency in comparison with the initial
node selection scheme. Nevertheless, the small increase in the

1 forall the MIG nodes A and B ∈ Candidate Set do
2 if (A/B has the smaller fanout level index) then
3 Select A/B;
4 end
5 else if | releasing RRAMs(A)| >

| releasing RRAMs(B)| then
6 Select A;
7 end
8 else
9 Select B;

10 end
11 end
Algorithm 3: Comparison of MIG nodes for the endurance-
aware node selection

number of instructions and RRAMs might not matter regarding
the write traffic improvement.

It is worth noting that the unbalanced write distribution
caused by blocked RRAM devices waiting for quite long time
cannot be eliminated but only decreased. In fact, an evenly
distributed write traffic for an MIG with large differences
between fanout origins and targets is not possible by only
postponing computation of nodes with longer waiting times.
The sequential nature of PLiM architecture anyway imposes a
waiting list of blocked RRAMs which cannot be released until
the root node or nodes close to it are computed. We consider
this factor as the main difficulty of endurance management
for a generic MIG-based in-memory computing architecture
constructed upon a resistive crossbar array.

The issue of blocked RRAMs could be considered as an
objective during MIG rewriting to keep the level differences
between connected nodes low. However, MIGs optimized this
way might not be favorable w.r.t. the length of instructions.
The proposed MIG rewriting focuses on reducing the number
of nodes and complemented edges which have a direct impact
on latency. Reducing the number of nodes already makes the
connections between nodes more complicated which means
higher number of nodes targeting farther levels.

IV. EXPERIMENTAL EVALUATIONS
We have experimented our results on a set of benchmarks

including 18 functions.1 The benchmark set includes large
arithmetic and random control functions possessing up to 1204
primary inputs and 1231 primary outputs. The number of cy-
cles for MIG rewriting, i.e. effort, is set to 5 in all experiments.
The standard deviation, which is known as a robust statistical
metric, is used to describe the distribution of writes over entire
memory cells required for computing an MIG representing a
Boolean function. Minimum and maximum number of writes
are also given for a more precise statistical description.

Table I shows the standard deviation, and minimum and
maximum number of writes performed for the RRAM devices
required by the PLiM computer for each benchmark function.
The results are given in an incremental manner in different
columns to clearly show the effect of each proposed endurance
management technique, excluding the maximum write strategy.
The improvement of standard deviation obtained by each tech-
nique is compared to the corresponding naive implementations,
which only benefit from node translation but not MIG rewriting
and node selection.

To see the effect of the general purpose compilation, we
have also provided the statistical values representing the write
distribution obtained by the PLiM compiler [21] in the second
group columns. The compiler proposed in [21] tackles the

1http://lsi.epfl.ch/benchmarks



TABLE I. EXPERIMENTAL EVALUATION OF THE PROPOSED ENDURANCE MANAGEMENT TECHNIQUES

naive PLiM compiler [21] Minimum write strategy Minimum write strategy+endurance- Minimum write strategy+endurance-
aware MIG rewriting aware MIG rewriting and compilation

PI/PO min/max STDEV min/max STDEV impr. min/max STDEV impr. min/max STDEV impr. min/max STDEV impr.

adder 256/129 0/84 12.60 0/34 6.09 51.66% 2/9 0.90 92.86% 2/9 2.49 80.24% 2/13 1.55 87.70%
bar 135/128 0/87 11.97 0/122 7.97 33.41% 0/106 5.64 52.88% 0/26 3.07 74.35% 0/18 1.69 85.88%
div 128/128 2/459 121.98 1/757 227.73 -86.69% 2/596 233.38 -91.33% 1/381 140.49 -15.17% 1/340 119.53 2.01%
log2 32/32 1/286 49.92 2/89 15.73 68.48% 14/57 3.62 92.75% 7/55 3.24 93.51% 10/55 3.27 93.45%
max 512/130 1/77 11.80 1/105 11.35 3.81% 1/88 7.72 34.58% 2/88 7.41 37.20% 2/17 2.65 77.54%
multiplier 128/128 0/1196 179.90 2/289 32.77 81.78% 5/206 18.74 89.58% 4/24 1.69 99.06% 5/24 1.53 99.15%
sin 24/25 0/166 27.17 0/50 8.47 68.82% 6/40 2.79 89.73% 3/42 3.04 88.81% 3/48 4.42 83.73%
sqrt 128/64 2/440 145.16 1/360 94.11 35.16% 4/228 73.90 49.09% 4/267 82.34 43.28% 2/230 68.36 52.91%
square 64/128 0/577 95.43 0/48 4.35 95.44% 1/43 1.87 98.04% 1/28 1.95 97.96% 1/22 1.96 97.95%
cavlc 10/11 0/73 15.36 0/44 10.30 32.94% 0/18 3.16 79.43% 0/18 3.17 79.36% 0/13 2.36 84.64%
ctrl 7/26 0/28 7.44 1/38 9.10 -22.31% 1/15 3.12 58.06% 1/17 3.93 47.18% 1/11 1.79 75.94%
dec 8/256 1/6 0.46 2/5 0.45 2.17% 2/6 0.57 -23.91% 2/6 0.57 -23.91% 2/6 0.57 -23.91%
i2c 147/142 0/114 14.07 0/88 10.87 22.74% 0/24 4.23 69.94% 0/31 4.44 68.44% 0/16 3.04 78.39%
int2float 11/7 0/49 13.28 0/52 11.87 10.61% 0/22 4.70 64.61% 0/19 3.93 70.41% 0/12 2.69 79.74%
mem ctrl 1204/1231 0/553 80.47 0/175 21.07 73.81% 0/89 11.78 85.36% 0/56 9.12 88.67% 0/97 11.03 86.29%
priority 128/8 0/496 45.57 0/101 14.37 68.46% 2/35 5.98 86.88% 2/45 7.52 83.50% 2/49 7.43 83.70%
router 60/30 0/52 8.71 0/33 6.30 27.66% 0/21 3.57 59.01% 1/23 3.91 55.11% 1/19 3.57 59.01%
voter 1001/1 2/156 31.66 0/188 35.09 -10.83% 13/793 19.11 39.64% 13/25 1.53 95.17% 10/23 1.59 94.98%

AVG 0.5/272.16 48.49 0.55/163.72 29.33 30.95% 2.94/133.11 22.48 57.07% 2.38/67.70 15.07 64.42% 2.33/56.27 13.27 72.17%

PI/PO: number of primary inputs/primary outputs, min/max: minimum/maximum number of writes, STDEV: standard deviation of write counts, impr.: improvement of standard deviation
is calculated compared to naive

TABLE II. NUMBER OF INSTRUCTIONS AND RRAMS REQUIRED FOR
ENURANCE-AWARE COMPILATION OF PLIM

naive Endurance-aware Endurance-aware
MIG rewriting rewriting and compilation

Benchmark PI/PO #I #R #I #R #I #R

adder 256/129 2844 512 1656 258 1657 355
bar 135/128 8136 523 5103 264 5103 391
div 128/128 146617 687 100071 620 101318 496
log2 32/32 78885 1597 48692 1344 48665 1347
max 512/130 6731 1021 3902 660 4042 749
multiplier 128/128 76156 2798 45966 4297 45847 4301
sin 24/25 12479 438 9156 377 9211 373
sqrt 128/64 60691 375 39434 333 39464 371
square 64/128 54704 3272 29757 2387 30044 2714
cavlc 10/11 1919 262 1045 148 1058 186
ctrl 7/26 499 66 268 38 273 48
dec 8/256 822 257 777 258 777 258
i2c 147/142 3314 545 1946 305 1971 365
int2float 11/7 648 99 368 50 378 63
mem ctrl 1204/1231 113244 8127 74577 4357 74588 4724
priority 128/8 2461 315 1417 138 1464 140
router 60/30 503 117 371 66 364 73
voter 1001/1 38002 1749 20208 1337 20406 1667

AVG 33814.16 1264.44 21373 957.61 21479.44 1034.50

PI/PO: number of primary inputs/primary outputs, #I: number of RM3 instructions,
#R: number of RRAMs

number of instructions and RRAMs as the cost metrics, how-
ever, the techniques employed also improve write traffic due
to the shorter release time of RRAMs. Comparison of the first
three group columns shows that the write balance improvement
of the PLiM compiler [21] is increased from the overall
average value of 30.95% to 57.07% after only adding the
presented minimum write strategy. This improvement increases
further up to 64.42% by use of the proposed endurance-aware
MIG rewriting instead of that used in [21]. Finally, adding the
endurance-aware compilation to the proposed MIG rewriting
and minimum write count strategy reduces the standard devi-
ation of writes further by 72.17% in comparison to the naive
approach.

Table II compares the number of instructions and RRAM
devices required for the PLiM programs using only endurance-
aware rewriting and both endurance-aware rewriting and com-
pilation with the naive approach. As shown in the table, the
average number of instructions and RRAMs slightly increases

by adding the endurance-aware compilation.2 Nevertheless,
considering the 72.17% improvement achieved in the write
traffic, the PLiM programs obtained by the endurance-aware
MIG rewriting and compilation also have average reductions of
36.48% and 18.18% in the number of instructions and RRAMs,
respectively. It should be noted that the minimum write count
strategy does not influence the number of required instructions
and RRAMs. The minimum write strategy selects an RRAM
with the smallest write count from the set of free RRAMs when
requested. This only contributes to a better distribution of the
write counts, and cannot increase or decrease the number of
instructions or RRAM devices.

Affording a number of instructions and RRAMs higher
than that shown in Table II, almost any desired write traffic is
accessible using the suggested maximum write count strategy.
Table III shows the results of full endurance management
exploiting the minimum and maximum write strategies as well
as the endurance-aware MIG rewriting and compilation. The
number of instructions, RRAM devices and the standard devi-
ation of the writes performed to execute the PLiM programs
under maximum write constraints of 10, 20, 50, and 100 are
presented to show the relation between the improvement in
write distribution and additional penalties w.r.t. delay and area.
Indeed, Table III provides different trade-offs between write
endurance, latency, and area for the resulting implementations.

According to Table I, results for some benchmarks re-
main unchanged for constraint values which are higher than
the benchmarks’ natural maximum number of writes. This
unchanged values are indicated by dashes in the table and
their value can be found on the corresponding cells with a
lower write constraint. As expected, the number of instructions
and RRAMs decrease as the write constraint becomes looser,
while the write deviation worsens. An average improvement
of 96.8% in standard deviation is obtained when a maximum
allowed write value of 10 is set in the compiler. This im-
provement in the write distribution is obtained at a cost of
50.59% increase in the number of RRAMs compared to the
naive approach. Nevertheless, the number of instructions has
slightly increased and still shows a considerable reduction in
comparison to the naive solution. Results for a maximum write

2Applying endurance-aware compilation, #R increases by 8.02%. Nonethe-
less, according to Table I AVG STDEV reduces more by 11.94% (from 15.07
to 13.27) which confirms the effectiveness of the compilation technique.



TABLE III. RESULTS OF FULL ENDURANCE MANAGEMENT WITH MAXIMUM WRITE STRATEGY FOR WRITE VALUES OF 10, 20, 50, AND 100

10 20 50 100

Benchmark PI/PO #I #R STDEV #I #R STDEV #I #R STDEV #I #R STDEV

adder 256/129 1659 362 1.12 1657 355 1.55 – – – – – –
bar 135/128 5351 603 1.37 5103 391 1.69 – – – – – –
div 128/128 103057 11691 0.91 102187 5551 2.04 101615 2327 11.76 101431 1295 31.59
log2 32/32 51063 5559 0.85 49603 2643 1.36 48666 1347 3.25 48665 1347 3.27
max 512/130 4076 776 2.06 4042 749 2.65 – – – – – –
multiplier 128/128 47819 5225 0.97 45854 4301 1.51 45847 4301 1.53 – – –
sin 24/25 9562 1069 1.18 9336 534 2.28 9211 373 4.42 – – –
sqrt 128/64 40991 4548 1.04 39956 2248 3.29 39642 994 14.55 39514 598 33.81
square 64/128 31411 3478 1.07 30051 2714 1.95 30044 2714 1.96 – – –
cavlc 10/11 1067 186 2.05 1058 186 2.36 – – – – – –
ctrl 7/26 274 48 1.74 273 48 1.79 – – – – – –
dec 8/256 777 258 0.57 – – – – – – – – –
i2c 147/142 1985 377 2.54 1971 365 3.04 – – – – – –
int2float 11/7 381 63 2.47 378 63 2.69 – – – – – –
mem ctrl 1204/1231 78216 9194 2.07 75403 5940 5.32 74619 4777 10.57 74588 4724 11.03
priority 128/8 1545 206 2.27 1494 140 6.27 1464 140 7.43
router 60/30 367 74 2.91 364 73 3.57 – – – – – –
voter 1001/1 21538 2350 0.86 20408 1667 1.58 20406 1667 1.59 – – –

AVG 22285.50 2559.27 1.55 21661.94 1568.11 2.66 21507.61 1173.77 4.27 21488.50 1091.50 6.47

PI/PO: number of primary inputs/primary outputs, #I: number of RM3 instructions, #R: number of RRAMs, STDEV: standard deviation of write counts, – shows that the value
has not been changed

count of 100 can be considered as a good trade-off, due to an
overall improvement of 86.85% in the write balance as well
as reducing the average number of instructions and RRAMs
by 36.45% and 13.67%, respectively.

V. CONCLUSION
In this paper, we addressed the issue of unbalanced write

traffic in resistive crossbar in-memory computing architectures.
As a case study, we proposed techniques for endurance man-
agement of a programmable logic-in-memory architecture. The
proposed approach maintains a trade off between write en-
durance and other cost metrics of the resulting implementations
including area and latency. The experimental results show a
reduction of 86.65% in the standard deviation of writes as
well as noticeable improvements in the lengths of instructions
and number of RRAM devices.
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