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Abstract—A Majority-Inverter Graph (MIG) is a directed
acyclic graph in which every vertex represents a three-input
majority operation and edges may be complemented to indicate
operand inversion. MIGs have algebraic and Boolean properties
that enable efficient logic optimization. They have been shown
to obtain superior synthesis results as compared to state-of-the-
art And-Inverter Graph (AIG) based algorithms. In this paper,
we extend MIGs to Functionally Reduced MIGs (FRMIGs),
analogous to the extension of AIGs to Functionally Reduced AIGs
(FRAIGs). This enables the use of MIGs in a lossless synthesis
design flow. We present an FRMIG based technology mapper
for lookup tables (LUTs). Any MIG may be mapped to a k-
LUT network. Using exact synthesis we may decompose the k-
LUT network back into an equivalent MIG. We show how LUT
mapping and exact k-LUT decomposition can be used to create
an MIG optimization method. Finally, we present the results of
applying our new optimization method and LUT mapper to both
logic optimization and technology mapping.

I. INTRODUCTION

For several decades, the performance of digital circuits has
been largely dependent on the effectiveness of the tools devel-
oped by the logic synthesis community. Advancements in logic
representation and optimization as well as technology mapping
have enabled continued improvement to the capabilities of
modern chips.

Within logic representation and optimization there has been
a trend from heterogeneous logic representations towards
simpler, homogeneous representations. Traditionally, nodes
in multi-level logic networks represented complex Boolean
functions on varying numbers of inputs [1]–[3]. While this is a
rich representation that allows for powerful optimization tech-
niques, homogeneous networks such as And-Inverter Graphs
(AIGs) have permitted more efficient implementations. These
implementations use less memory and enable better runtimes
while maintaining or even improving synthesis results [4],
[5]. As such, homogeneous networks appear to be the more
scalable approach.

The recently introduced Majority-Inverter Graphs (MIGs)
are another example of homogeneous networks [6]. A gener-
alization of AIGs, MIGs are directed acyclic graphs consisting
of three-input majority nodes with optionally complemented
edges. MIGs include AIGs but also have other desirable
algebraic and Boolean properties. Algorithms that exploit
these properties have been shown to obtain superior results in
both logic optimization and technology mapping, especially
with respect to depth and delay reduction [6], [7]. Novel

work on exact synthesis has shown to be another avenue for
MIG optimization, enabling MIG size reduction as well as
improvements in both depth and area in FPGA technology
mapping [8].

Technology mapping is the problem of covering a logic
network with a set of primitives. In some literature it is
also referred to as cell-library binding [3]. Typically, tech-
nology mapping occurs after the application of technology
independent optimizations, although there are systems that
perform both operations simultaneously [9]. The state of the
art in technology mapping uses cut enumeration techniques
to find suitable covers [10]–[12]. We distinguish between two
different kinds of technology mapping. In the former, we are
given a library of logic primitives such as standard cells or
gate arrays. The available primitives depend on the particular
technology. In the latter, we are mapping to lookup table-
based FPGAs. Lookup tables are powerful primitives that
can implement any function on k variables. Typically, we
refer to lookup tables on k variables as k-LUTs. The k-LUT
FPGA mapping problem is simpler than the more general case
of cell library binding because of the homogeneous nature
of the logic primitives. In the remainder, we focus on k-
LUT technology mapping, which is applicable to both FPGA
technology mapping and resynthesis of general logic networks.
We also refer to this process simply as LUT mapping.

Our goal is to improve techniques for MIG logic optimiza-
tion and LUT mapping. To achieve this goal we present a
number of contributions:

1) We show how MIGs can be extended to the Function-
ally Reduced MIGs (FRMIGs). This enables a lossless
synthesis flow for MIGs.

2) We present a cut-based LUT mapper for FRMIGs.
3) We present an MIG optimization method that uses the

FRMIG mapper and exact k-LUT decomposition.
4) Combining our new MIG optimization method and our

FRMIG mapper we show improvements to LUT map-
ping results.

The results of our experiments on logic optimization and
LUT mapping include:

• Improvements to MIG logic optimization. We achieve a
reduction in {size, depth} of {10%, 26%}, as compared
to previous MIG optimization methods.

• Significant improvements after LUT mapping for several
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benchmarks, reducing {size, area} by up to {13%, 56%}
as compared to the best known results.

• Significant improvements in depth after LUT mapping
for several benchmarks where we do not obtain size re-
ductions. These results allow us to provide an area/depth
trade-off.

The remainder of this paper is structured as follows. In
Section II we present the background on MIGs, LUT mapping,
structural and functional equivalence, and exact synthesis. We
show how MIGs can be extended to FRMIGs in Section III
and present our FRMIG LUT mapper in Section IV. We
describe our new optimization method in Section V. Our MIG
optimization and LUT mapping experiments can be found in
Section VI.

II. BACKGROUND

In order to improve on the state of the art in MIG opti-
mization and LUT mapping we extend a number of existing
techniques. Here we briefly present the necessary background
in MIG synthesis and optimization, structural and functional
equivalence, technology mapping, and exact synthesis.

A. Majority-Inverter Graphs

A Majority-Inverter Graph is a data structure for the rep-
resentation and optimization of Boolean functions. It is a
directed acyclic graph in which every vertex corresponds to
a 3-input majority operator. We denote the 3-input majority
function of variables a, b, and c as 〈abc〉, following the
convention of [13]. In general the n-input majority function is
equal to the value expressed by more than half of its inputs.
Therefore, we can express the three-input 〈abc〉 in disjunctive
normal form as:

〈abc〉 = ab ∨ ac ∨ bc.

Note that by setting any operand to either 0 or 1, the above
equation simplifies to a Boolean and or or operation, respec-
tively. Hence, MIGs are a generalization of And-Or-Inverter
Graphs (AOIGs) and thus also of AIGs.

More formally, we can define an MIG over a set X =
{x1, . . . , xn} of primary inputs as a directed acyclic graph
M = (V,E, Y ) where
• V = X ∪ N ∪ {1} a finite set of nodes, where N =
{o1, . . . , om} represents the nodes corresponding to the
majority operations, and we also include the constant 1
node;

• E ⊆ V × N × B a finite multiset of edges, where the
first element in the tuple is a source node, the second is
a target node, and the third is a polarity bit representing
whether or not the edge is complemented; and

• Y ⊆ V × B a finite multiset of outputs.
Each node n ∈ N must have three predecessors, reflecting
its correspondence to a three-input majority operator. In the
remainder of this paper, if n ∈ N , we write n1, n2, and n3

to denote these inputs. We write p1, p2, and p3 to denote the
polarity bits indicating complementation of the inputs.

The functional semantics of an MIG can be described in
terms of an interpretation function f that maps MIG nodes to
a Boolean function. For convenience we define f0(v) = v and
f1(v) = v. We define f as

f(1) = >
f(x) = x for x ∈ X

f(n) = 〈fp1(n1)fp2(n2)fp3(n3)〉 for n ∈ N

f(y) = fp(n) for y = (n, p) ∈ Y

A sound and complete Boolean algebra based on the 3-
input majority operation is presented in [6], and its extension
to n-input majority in [14]. There is a direct correspondence
between the MIG structure and the axioms of these algebras.
This means that we can use the algebraic rules directly to
manipulate MIGs in a sound and complete way. This is
the basis for the algebraic MIG optimizations shown in [6].
These algebraic optimizations are shown to lead to an average
reduction of 22%, 14%, 11% in delay, area, power respectively,
as compared to state-of-the-art academic and commercial
synthesis tools.

Boolean MIG optimizations are presented in [7]. The major-
ity operator possesses an inherent error-correcting mechanism.
This enables us to insert orthogonal errors into an MIG struc-
ture that enable significant optimization opportunities. Boolean
MIG optimization reduces the average delay/area/power by
15.07%, 4.93%, 1.93% respectively, over 27 academic and
industrial benchmarks.

This section serves as a brief overview of the MIG structure
and capabilities. For more complete descriptions the interested
reader is referred to [6], [8], [14].

B. FPGA Technology Mapping

Generally speaking, an FPGA is an integrated circuit that
consists of an array of programmable logic blocks and in-
terconnects. Often these logic blocks are lookup tables that
can implement arbitrary logic functions. Typically an FPGA
also includes a number of non-programmable hard blocks that
implement specific functionality, such as adders, multipliers,
embedded memories, and even microprocessors. As we are
reaching the limits of modern CMOS scaling, FPGA are seen
as an approach to enable more computational capabilities in an
energy efficient way [15], [16]. In order to make use of these
advantages we require good logic optimization and technology
mapping algorithms for FPGAs.

LUT mapping is the special case in which we cover a logic
network with k-bounded lookup tables (k-LUTs). A k-LUT is
a lookup table with k inputs; a powerful logic primitive that
can represent any function on k variables.

A breakthrough in delay-oriented LUT mapping came with
the introduction of the FlowMap algorithm [17]. FlowMap
was the first algorithm to show how k-feasible cuts can
be used to obtain a minimum-depth k-LUT cover. Several
improvements of FlowMap have since been made. Some of
these improvements include generalizing the algorithm to a
more general cut enumeration basis, improving the runtime



and memory requirements, as well as improving different
aspects of the final cover such as area reduction [11], [18]–
[21].

More recently, developments in technology mapping have
aimed at reducing structural bias [10], [22]. Structural bias is
a problem of cut-based technology mapping algorithms. It is
caused by the original decomposition of the network, which is
not unique. One approach to mitigate this problem has been to
use the concepts of choice nodes and functional reduction to
merge structurally different equivalent networks into a single
representation [9], [23]. Functionally Reduced AIGs (FRAIGs)
are an example of such a representation [24]. The concept
of functional reduction naturally leads to a so-called lossless
synthesis flow. In lossless synthesis, multiple different logic
networks may be merged into a single graph that can be used
for technology mapping. The different networks correspond to
points in the optimization space that are no longer lost in a
lossless synthesis flow [12], [25].

The state-of-the-art in LUT mapping algorithms is based on
cut enumeration. However, a drawback of cut-based algorithms
is that they are susceptible the problem of structural bias
[22]. Given a logic network, they find a cover based on
the feasible cuts in that network. However, the given logic
network is typically just one of many possible representations.
Other networks (with different structure) may lead to different
covers. Hence, the output of the algorithm is inherently biased
by the structure of the input network. This is a problem
because some covers may be “better” than other in terms of
size or depth.

The notion of lossless synthesis was proposed in [22] as a
way to mitigate the problem of structural bias. In a traditional
optimization and mapping flow, an input network is optimized
by applying one or more optimization scripts to it. Afterwards
the optimized network is then mapped. This optimization
process loses information: it may be that during optimization
an intermediate networks is better in some respect than the
final network. In lossless synthesis, multiple equivalent (inter-
mediate) networks are stored, so that the desirable parts of the
networks are never lost.

To efficiently store the different networks generated by
lossless synthesis, they may be combined into a single network
graph with choice nodes [23]. Intuitively, a choice node may
be understood as a vertex in a logic network that encodes
different implementations of the same function (up to com-
plementation). Equivalent points in different networks can be
found through a combination of simulation and combinational
equivalence checking (SAT). This notion of finding equivalent
points in logic networks leads to the notion of functional
reduction. Functionally Reduced AIGs (FRAIGs) were first
introduced in [24]. In FRAIGs, equivalent AND nodes are
merged into choice nodes that represent different implemen-
tations of the same logic function. The current state of the art
in FPGA technology mapping combines cut enumeration with
the FRAIGing of differently optimized logic networks [10],
[12], [24], [25].

C. Exact Synthesis

In exact synthesis, we are interested in finding the optimum
representation for a Boolean function. Of course, optimality
depends on the optimization objective (such as size or depth)
as well as the chosen representation form. In this paper we use
exact synthesis to refer to the optimum MIG representation.

Exact synthesis can be formulated as a decision problem and
may be solved by an SMT solver. SMT solvers are constraint
solvers for decision problems that can be formulated in first-
order logic. Typically they work on formulas within some
background theory, such as a theory of bit vectors. To see
how we can use an SMT solver in exact synthesis, suppose
that the solver has some method of checking if a given function
on n variables can be represented by an MIG with k nodes. In
order to find the smallest possible MIG for that function, we
start checking with k = 0, and we keep increasing k until we
have found a k for which an MIG exists that can represent the
function. Similar algorithms can be used to find the minimum
depth or to optimize other criteria. The checking method can
be implemented by formalizing the exact synthesis criteria
(e.g. size or depth) as an SMT theory. An in-depth, formal
example of how this may be done can be found in [8]. Thus,
we can use an SMT solver for exact synthesis.

The computational complexity of exact synthesis as de-
scribed here prevents it from being used to synthesize arbi-
trarily large function. SMT is a generalization of SAT and
is therefore NP-hard. As such, the time complexity of this
approach grows at least exponentially with n. However, for
small enough n (n ≤ 4) it has been shown to work [8].
In Section V we show how we can use exact synthesis to
decompose k-LUT networks (for small enough k) into locally
optimal sub-MIGs. This is the basis for our optimization
algorithm.

D. Structural and Functional Equivalence

MIGs are not canonical representation forms: a Boolean
function may have structurally different but functionally equiv-
alent MIG representations. See for example Fig. 1 in which
two different MIGs represent the function f = abc. Other
homogeneous networks, such as AIGs, have similar limitations
with different structures representing equivalent functions.

Despite the non-canonical nature of MIGs, there are still
methods to remove redundancies and simplify MIG structures.
One such method is structural hashing. With structural hash-
ing, before adding a node to an MIG, we check if a node with
the same fan-in already exists. This can be done efficiently
with a hash table. Typically there is an order on the fan-
ins of the node so that swapping them does not create a
different node. Thus, structural hashing merges nodes that are
structurally equivalent. Fig. 2 shows how structural hashing
can be used to reduce the node count and remove redundant
nodes.

In order to reduce structural bias we would like to be able
to find and merge equivalent nodes, even if they are not struc-
turally equivalent. Nodes with different fan-ins may still be
functionally equivalent. The process of merging functionally
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Fig. 1. An example of two structurally different, but functionally equivalent
MIGs for the function f = abc. Complementation is indicated by dashed
edges.

1 a b c 

Fig. 2. Structural hashing can be used on the MIG in Fig 1 (a) to remove
one redundant node.

equivalent nodes is commonly referred to as functional reduc-
tion. Functional reduction is typically achieved through BDD
or SAT sweeping [26], but can also be achieved incrementally
during construction [24].

Storing functionally equivalent nodes efficiently can be
achieved by choice nodes. Choice nodes were developed in
the 90s as a way to efficiently encode sets of logic networks
to be considered in technology mapping [9], [23]. Intuitively,
one can think of a choice node as representing an equivalence
class of functions (up to complementation). Fig. 1 shows two
structurally different MIGs that are equivalent up to comple-
mentation. Using only structural hashing we would not be able
to find this equivalence. However, through a combination of
simulation and SAT sweeping we can efficiently find these
equivalence points. We refer to an MIG in which functionally

equivalent nodes have been merged into choice nodes as a
Functionally Reduced MIG (FRMIG). An FRMIG reduces
structural bias by containing different equivalent structures at
once.

III. FUNCTIONALLY REDUCED MIGS

In Section II-D we reviewed the concepts of structural and
functional equivalence. Applying these concepts to MIGs leads
to the concept of the Functionally Reduced MIG (FRMIG).
Here, we define FRMIGs as well as a procedure to construct
FRMIGs from MIGs.

Given an MIG M = (V,E, Y ), we define a functional
equivalence relation on the nodes in V . A relation ' is a
functional equivalence relation if for all v1, v2 ∈ V

v1 ' v2 ⇒ (f(v1) = f(v2)) ∨ (f(v1) = ¬f(v2))

Let V' denote the set of equivalence classes of V under '.
We say that a subset V is a set of functional representatives iff
it contains exactly one node vC from each equivalence class
C ∈ V'. We say that vC is the functional representative of
C.

Let M̂ = (V,E, Y ) be an MIG, ' a functional equivalence
relation, and V a set of functional representatives. Then, M̂ is a
Functionally Reduced MIG w.r.t. ' and V , iff (v, n, b) ∈ E ⇒
v ∈ V . In other words, only equivalence class representatives
have outgoing edges. This means that for any n ∈ N its
predecessors n1, n2, n3 are in V .

We sometimes loosely refer to equivalence class represen-
tatives as choice nodes. This follows the intuition that each
choice node represents a set of alternative implementations
for an equivalence class of functions.

Note that according to this definition, any MIG is trivially an
FRMIG. Suppose we have an arbitrary MIG M̂T = (V,E, Y ).
Let 'T be the relation n1 'T n2 iff n1 = n2. One can easily
verify that this is a functional equivalence relation. Let VT =
V . Then M̂T = (V,E, Y ) is an FRMIG under 'T and VT .
However, this trivial definition is not very interesting. In the
remainder of this paper we assume that for every FRMIG the
functional equivalence relation is defined as: equality up to
complementation.

Fig. 3 shows how the functionally equivalent MIGs from
Fig. 1 can be merged in the same FRMIG structure. Note how
only one of the equivalent nodes is chosen as the equivalence
class representative and has an outgoing edge.

We now sketch a procedure for constructing an FRMIG
from an MIG. The procedure starts by simulating the MIG on
a number of random bit vectors. We then traverse the MIG
in topological order, creating new nodes only after structural
hashing. When a new node is created, we check its simulation
vector to see if there are any potentially equivalent nodes. If
an equivalence between two nodes is found, the node which
appears earlier in the topological order is chosen to be the
equivalence class representative. Note that this means that
primary inputs are always chosen to be the representatives
of their equivalence classes. One can intuitively think of the
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Fig. 3. This figure demonstrates the use of choice nodes in FRMIGs. Two
equivalent (up to complementation) MIG structures are represented by one
equivalence class representative. This representative is implemented as a
choice node with one outgoing edge. The horizontal dashed line indicates
equivalence between the MIGs. It is dashed because both MIG structures
represent the complement of the other.

equivalence class representative as a choice node containing
MIG structures that are equivalent up to complementation.

Equivalence checking of nodes is done using the SMT
solver Z3 [27]. As the MIG is traversed we incrementally
add clauses to the solver that represent the functionality of
the nodes, similar to how the Tseitin transformation is used
for combinational equivalence checking. Suppose that we have
two nodes n1 and n2 that have an identical simulation vector.
In order to check their equivalence we proceed as follows:

1) Run the solver with the assumption ¬n1 ∧ n2. This
checks if there is any interpretation under which n1 is
false and n2 is true. If so, then the two nodes are clearly
not equivalent and we return false. If not, the nodes may
be equivalent.

2) We then run the solver with the assumption n1 ∧ ¬n2,
checking the converse. Again, if this assumption is SAT,
we return false. If this is UNSAT, we have now shown
that the nodes are equivalent and we return true.

This procedure can be extended in a simple way to check
for equivalence up to complementation, as well as to support
an undefined result if we want to bound the running time of
equivalence checks.

A procedure that is similar to the one above can be
used to enable the merging of multiple MIGs into a single
FRMIG structure. Merging MIGs together enables a lossless
MIG synthesis and optimization flow, in which we can take
advantage of different optimization points during technology
mapping.

IV. FRMIG LUT MAPPING

FRMIGs are an extension of MIGs that reduce structural
bias by combining multiple MIG structures. To take advantage
of this new representation we present a LUT mapper that
maps FRMIGs to k-LUTs. The architecture of this mapper

is based on the work in [25]. As LUT mapping is based on
cut enumeration, we first show how to enumerate the cuts of
an MIG. We then show how cut enumeration for MIGs may
be extended to FRMIGs.

Let n be a node in an MIG. A cut of n can be defined as a
set c of nodes in its transitive fan-in such that every path from
a primary input to n passes through a node in c. We say a cut
c of n is redundant is there is some c′ ⊂ c such that c′ is also
a cut of n. A k-feasible cut of n is an irredundant cut c such
that |c| ≤ k. When mapping a MIG we are only interested in
finding k-feasible cuts, since any larger cuts cannot be covered
by k-LUTs. For any node n, we consider the trivial cut {n}
to be a valid k-feasible cut.

Given an MIG M = (V,E, Y ) on primary inputs X , we
use Φ(v) to denote the set of k-feasible cuts for v ∈ V . We
may define Φ recursively as:

Φ(1) = {{}}
Φ(x) = {{x}} for x ∈ X

Φ(n) = {{n}} ∪ (Φ(n1)⊗ Φ(n2)⊗ Φ(n3)) for n ∈ N

where ⊗ is an an operation that gives an over-approximation
of the k-feasible cuts of a node. It is defined as

A⊗B = {a ∪ b | a ∈ A, b ∈ B, |a ∪ b| ≤ k}

This definition of Φ may lead to the inclusion of some
redundant cuts, but these can be easily filtered out during cut
enumeration. Details of efficient cut computation are discussed
in [25] and [10].

In order to support FRMIGs, we need to extend the above
cut enumeration procedure to work with choice nodes. Let
M = (V,E, Y ) be an FRMIG under ' and V . We compute
cuts for both equivalence classes in V and nodes in V as
follows. The set of cuts for an equivalence class C ∈ V is

Φ'(C) =
⋃
n∈C

Φ(n)

In other words, the set of cuts for an equivalence class is
simply the union of the cuts of all the nodes in that class.

We now alter the definition of Φ to

Φ(1) = {{}}
Φ(x) = {{x}} for x ∈ X

Φ(n) = {{n}} ∪ (Φ'(n1)⊗ Φ'(n2)⊗ Φ'(n3)) for n ∈ V
Φ(n) = Φ'(n1)⊗ Φ'(n2)⊗ Φ'(n3) otherwise

Note that we include the trivial cut only for equivalence class
representatives. As a consequence, for any cut c, n ∈ c⇒ n ∈
V .

After extending cut enumeration to work with choice nodes,
our mapper can essentially be defined as a traditional cut-
based FPGA mapper. Suppose we want to map an FRMIG
M̂ to k-LUTs. We can do so by traversing M̂ in topological
order, enumerating k-feasibly cuts for all n ∈ V . We compute
a cost function for all cuts we find. The specific cost of a
cut depends on the optimization objective. Typically, in depth-
oriented mapping, the cost is a function of the cut depth. After



computing the cuts and their costs, a k-LUT cover is easily
found by traversing the FRMIG in reverse topological order
from outputs to inputs.

V. EXACT MIG OPTIMIZATION

In Section II-C we reviewed the notion of exact synthesis.
We may use exact synthesis on small functions in order
to synthesize MIGs that are optimal with respect to some
optimization objective. We show here how this idea may be
used in MIG optimization.

We first introduce some notation that will be useful in our
discussion. Let N be a logic network. We use d(n) to indicate
the depth of nodes n in N . If n is a primary input node,
then d(n) = 0. Otherwise, let inputs(n) denote the set of
inputs of n. The depth of n is then d(n) = max{d(i) | i ∈
inputs(n)}+ 1. Let outputs(N ) be the set of outputs of N .
We use d(N ) = max{d(o) | o ∈ outputs(N )} to denote the
depth of the logic network itself.

Let M be a MIG that computes some Boolean function
f(X) over |X| = n variables. Suppose we map M to a depth-
optimal k-LUT network Lk (k ≥ 3). Then d(Lk) is a lower
bound on d(M), since the k-LUTs can compute any function
on k variables. Note that we do not mean that d(Lk) ≤ d(M ′)
for any MIG M ′ that computes f(X). The lower bound is
just on the specific structure of M . We call this a structural
lower bound. To see why Lk gives a structural lower bound,
note that any k-feasible cuts that contain multiple levels of
majority nodes may be merged into a single k-LUT, thereby
decreasing the depth of Lk relative to M . This means that for
any depth-optimal cover Lk we have d(Lk) ≤ d(M). As k
increases, d(Lk) decreases, since we are able to merge more
functionality into the k-LUTs. In other words

lim
k→∞

d(Lk) = 1

since, as k approaches ∞, the entire logic network may be
merged into a single k-LUT.

In addition to giving a structural lower bound, Lk also
removes structural bias. In the extreme case, k ≥ n and all
structure is removed, because M can be represented by single
k-LUT. The LUT can be viewed as a specification of f(X).
Different structural representations can be extracted from the
network by decomposing the LUT in different ways. Suppose
we could use exact synthesis to decompose the LUT into a
new MIG M ′. We would then have found an optimal MIG
representation M ′ of f(X).

In practice, we cannot map most MIGs into a single k-
LUT, because the LUT would require an efficient way of
representing f(X). Presumably, the most efficient represen-
tation available for f(X) is the MIG itself. Suppose we could
somehow map the MIG into a single LUT and efficiently
represent f(X). Using exact synthesis to decompose the LUT
would still be infeasible, since n could be arbitrarily large.
However, for smaller k, this method of mapping MIGs into
k-LUTs becomes feasible. If k is “small enough”, we can
represent the different k-LUT functions, and we can use
exact synthesis to decompose them. We do not remove all

Algorithm 1: An MIG size optimization procedure using
LUT mapping and exact synthesis.

function size-optimize(M,k) :=
Input : MIG M
Output: Optimized MIG M ′

M ′ ←M ;
do

M ←M ′;
M ′ ← new mig();
Perform area-oriented mapping of M into k-LUTs;
foreach primary input i in M do

create input(M ′, i);
end
foreach LUT l in the cover in topological order do

f ← function computed by l;
opt mig ← exact mig(f);
create nodes(M ′, opt mig);

end
while size(M ′) < size(M);
return M ′;

of the structural bias, but still enough to provide alternative
optimization points. This is the basis for our exact k-LUT
optimization procedure.

This optimization method is not limited to reducing MIG
depth. Instead of mapping into depth-optimal k-LUT net-
works, we could for instance focus on finding small k-
LUT covers. Decomposing small k-LUT covers into locally
minimum-sized MIGs can then be used to decrease MIG size.

The results of the method depend not only on the k-LUT
cover, but also on the exact synthesis optimality criteria.
For example, we may choose to decompose k-LUTs into
locally size-optimal MIGs or into locally depth-optimal MIGs.
Different choices lead to different optimization results. In a
lossless synthesis flow these different optimization points may
then be merged into a single FRMIG structure.

We present a MIG size optimization procedure based on this
exact optimization method. It takes an MIG M and proceeds
as follows. First, we map M into a k-LUT network while
heuristically minimizing area. We then use exact synthesis to
decompose the LUTs into minimum-size sub-MIGs. These are
connected to produce a functionally equivalent MIG M ′. This
process is iterated until the area of M ′ is the same as that
of M . The pseudocode for this procedure can be found in
Algorithm 1.

Depth optimization techniques for MIGs are well developed.
For example, the best known results for depth-optimal LUT
mapping on the EPFL benchmark suite1 were obtained by
combining MIG optimization with the iterative application of
ABC’s technology mapper. MIG size optimization techniques,
on the other hand, are less well developed. The current state
of the art in MIG size optimization is based on functional
hashing [8]. However, this approach results in only modest
size reductions. One drawback to this approach is that it has
only a local view of size reductions. Furthermore, the best size

1lsi.epfl.ch/benchmarks



reductions come at the cost of increasing MIG depth.
Our aim is to use MIGs as a general purpose logic synthesis

representation. As such, we require methods that work well
for both depth and size optimization. In Section VI we show
how our new size optimization procedure improves MIG size
optimization, thereby extending the range of logic synthesis
and optimization objectives to which MIGs can be applied.

VI. EXPERIMENTS

We show here that our new optimization method enables
significant improvements in both logic optimization and LUT
mapping.

1) Methodology: We have developed a C++ logic manipu-
lation package that implements the size optimization procedure
described in Section V. It uses the methods presented in [8] to
perform exact synthesis. The largest k for which exact MIGs
were available at the time of these experiments was k = 4.
Therefore, in these experiments our procedure maps MIGs
into 4-LUTs. We run our experiments on the EPFL arithmetic
benchmark suite. The choice for this suite was motivated by
the fact that it contains relatively large circuits, as compared to
other well known benchmarks suites. Note that our procedure
is not limited to just arithmetic benchmarks.

2) Results: We first compare our new MIG size optimiza-
tion procedure to the functional hashing approach described in
[8] The results of the comparison can be found in Table I. We
refer to our new procedure as LUT-based size optimization.

LUT-based size optimization reduces both depth and area
by about 50% for the adder benchmark as compared to the
functional hashing algorithm. On average functional hashing
reduces MIG size by 3%, whereas LUT-based size optimiza-
tion reduces MIG size by an average of 13%. Furthermore,
LUT-based size optimization reduces MIG depth by 19%
on average. Functional hashing, on the other hand, adds an
average of 7% in depth to obtain its area reductions.

We can see that functional hashing has an inversely pro-
portional relation between area and depth: it increases depth
by 2.33% for every 1% in area reduction. LUT-based size
optimization turns this into a directly proportional relation: it
decreases depth by 1.46% for every 1% reduction in size.

In the next experiment we apply our LUT mapper to
the size-optimized MIGs. We compare the results with the
state-of-the-art LUT count results for the EPFL arithmetic
benchmark suite. These best results were obtained by using
ABC’s AIG size optimization and LUT mapping algorithms.
The results can be found in Table II.

Our procedure performs significantly better on three of the
benchmarks. It reduces area/depth by 4.5%/13.3% for the
Adder, by 8.7%/15% for the Multiplier, and by 13%/56% for
the Square. In other words, it is able to significantly reduce
area, while simultaneously reducing depth.

On the Log2 and Max benchmarks, our procedure increases
area by 3.3% and 30%, respectively. However, it reduces depth
by 7.8% and 41.2%, respectively. These results present an
interesting area/depth trade-off.

Our mapper performs worse than ABC in the Sine bench-
mark, with an increase in area and depth of 4% and 6.4%,
respectively. ABC performs significantly better on the Divisor
and Square-root benchmarks. We do not know which specific
techniques were used to generate ABC’s best results. As such,
it is difficult to determine what specifically allowed it to
perform so much better on these particular benchmarks. We do
know that, in order to obtain these results, a variety of ABC
commands were used. These commands were iterated, always
storing the best global result, until no further improvement
was found [28]. Our results, on the other hand, were obtained
by a single LUT mapping pass.

VII. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to improve techniques for MIG
logic optimization and LUT mapping. In order to compete with
the state-of-the-art in LUT mapping we have extended MIGs
to FRMIGs. This allows us to reduce structural bias and to
use MIGs in a lossless synthesis flow.

Using our FRMIG mapper, we have introduced a general
MIG optimization method based on k-LUT mapping and exact
k-LUT decomposition. This method can be used in both
depth and area optimization. We have shown how we can
obtain up to 50% better results in both MIG size and area as
compared to previous approaches in MIG size optimization.
When compared to functional hashing, our approach reduces
area and depth by 10% and 26%, respectively.

Using our new optimization method and LUT mapper we
also obtain significantly better results in both LUT count and
LUT depth for 3 of the heavily optimized EPFL arithmetic
benchmarks, reducing area and depth by up to 13% and 56%,
respectively.

In our experiments we were limited to use exact synthesis
for functions on up to 4 variables. We expect that increasing
the number of variables will significantly improve our opti-
mization method. Preliminary results also show that our op-
timization procedure has promise in MIG depth optimization
and improved depth-optimal LUT mapping.
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