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ABSTRACT
Accurate registration is critical to most multi-channel sig-
nal processing setups, including image super-resolution. In
this paper we use modern sampling theory to propose a
new robust registration algorithm that works with arbitrary
sampling kernels. The algorithm accurately approximates
continuous-time Fourier coefficients from discrete-time sam-
ples. These Fourier coefficients can be used to construct an
over-complete system, which can be solved to approximate
translational motion at around 100-th of a pixel accuracy. The
over-completeness of the system provides robustness to noise
and other modelling errors. For example we show an im-
age registration result for images that have slightly different
backgrounds, due to a viewpoint translation. Our previous
registration techniques, based on similar sampling theory, can
provide a similar accuracy but not under these more general
conditions. Simulation results demonstrate the accuracy and
robustness of the approach and demonstrate the potential
applications in image super-resolution.

Index Terms— Image registration, sampling methods,
super-resolution, translational motion.

1. INTRODUCTION

Multi-view image super-resolution aims to combine multiple
low-resolution (LR) images of the same scene into one high-
resolution (HR) image. A crucial first step in this process is
to register the images onto a common coordinate system with
sub-pixel precision. The LR images can then be combined
into a single image, which needs to be restored to obtain the
final super-resolved (SR) result. This restoration step is an ill-
posed inverse problem and its output quality depends heavily
on the accuracy of the registration. In fact, registration is nor-
mally considered to be the most critical part of the process.

A wide range of strategies exist to register images in both
the spatial and frequency domains, which are summarised in
a number survey articles [1, 2]. In this paper we propose
a frequency based technique utilising the normalised cross
power spectrum (NCPS). This is a well-known technique that
is based on the fact that a translation in the spatial domain
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corresponds to a phase shift in the frequency domain. It fol-
lows that the phase-only correlation (POC) function, defined
as the inverse Fourier transform of the NCPS, consists of an
impulse at the location of the translation. By processing the
POC function in log-polar coordinates, it is possible to addi-
tionally register rotational and scaling transformations [3, 4].

Traditionally, the frequency spectra are calculated using
the FFT, resulting in a discrete-time approximation of the
POC function, which when maximised results in registration
at around pixel precision. Extensions, to achieve sub-pixel
precision, have been developed that approximate the location
of the maximum more accurately. These methods usually rely
on fitting an interpolation function to the POC approximation
[5, 6, 7], or finding approximate zeros of its gradient [8].

In contrast we propose to use modern sampling theory to
extract Fourier information of the original continuous-time
signal. Baboulaz et al [9] used similar sampling theory to
register images at a very high precision. They assumed that
the image was sampled by a polynomial reproducing kernel
allowing them to, in theory, extract the exact geometric mo-
ments of the continuous-time signal from the discrete-time
samples. These moments could be used to register an affine
transformation at, in theory, infinite precision.

By replacing a polynomial reproducing kernel with an ex-
ponential reproducing kernel, Fourier coefficients can be cal-
culated instead of geometric moments. Urigüen et al [10]
have also shown that it is possible to relax the assumptions on
the sampling kernel and still accurately approximate Fourier
coefficients of the original continuous-time signal. Futher-
more, this approximate framework allows many more Fourier
coefficients to be approximated than if we restricted ourselves
to the exact reproduction case.

In this paper, we propose to apply this approximate expo-
nential reproduction theory to the registration problem. This
offers a number of advantages: firstly by dropping assump-
tions on the sampling kernel we can more accurately model
realistic acquisition devices and secondly the ability to ap-
proximate more exponentials provides increased robustness.

The rest of this paper is organised as follows. In Sec-
tion 2 we explain the single-channel acquisition model and
show how continuous-time Fourier information can be found
from the discrete-time samples. This relies on the theory
of exact and approximate exponential reproduction theory,
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Fig. 1. Acquisition model in 1D. Here f(t) is the continuous-
time signal, h(t) the impulse response of the acquisition de-
vice, T the sampling period and yn the discrete-time samples.

which is also explained. In Section 3 we show how trans-
lational registration can be achieved at very high precision
using the Fourier information found in Section 2. In Section
4 we present a super-resolution example using the proposed
registration algorithm and in Section 5 we conclude.

To reduce notational load, we present the one-dimensional
(1D) case whenever possible, since it is easy to extend it to
higher dimensions as is needed for image registration. For
example, in the following section, instead of reproducing a
1D exponential as

∑

n∈Z
cm,nφ(t− n) = e−jωmt,

we would reproduce a two-dimensional (2D) exponential as
∑

nx∈Z

∑

ny∈Z
cmx,my,nx,nyφ(x−nx, y−ny) = e−j(ωmxx+ωmyy).

Additionally, we will use uppercase letters to denote the
Fourier transform of their lowercase counterparts.

2. SINGLE-CHANNEL ACQUISITION SYSTEM

2.1. Acquisition model
The one dimensional (1D) acquisition model depicted in Fig.
1 results in the following expression for the samples yn:

yn =

∫ ∞

−∞
f(t)φ

(
t

T
− n

)
dt =

〈
f(t),φ

(
t

T
− n

)〉
,

where f is the continuous-time signal, φ is the sampling ker-
nel and T is the sampling period; i.e., the samples are given
by a uniform sampling of y(t) = f(t) ∗ φ(−t/T ). Through-
out this paper we will assume, without loss of generality, that
the sampling period T = 1.

The acquisition model can be trivially extended to 2D and
used to model the image acquisition process. In this case, f
is the 2D continuous-time image, φ is the 2D distortion intro-
duced by the lens, and potentially other atmospheric effects,
and y is the discrete-time image given by the pixel values.
Note that in this case the sampling kernel is specified by the
acquisition device and cannot be freely chosen.

2.2. Exponential reproducing sampling kernels
Figure 2(a) shows an example of an exponential reproducing
kernel φ; i.e. properly weighted linear combinations of shifts

(a) Exponential reproducing kernel. (b) A real sampling kernel.

Fig. 2. Examples of different sampling kernels.

of φ reproduce one of M exponentials that, in general, take
the form eαmt, where αm ∈ C and m ∈ {1, 2, . . .M}. In this
paper we are interested in the special case of purely imaginary
αm. In this case the reproduction can be written as

∑

n∈Z
cm,nφ(t− n) = e−jωmt, (1)

where cm,n are the coefficients that provide the proper
weighting to reproduce the exponential e−jωmt. It is well
known that kernels that satisfy (1) for m ∈ {1, 2, . . .M}
also satisfy the generalised Strang-Fix conditions [11] for the
same values of m:

Φ(ωm) ̸= 0 and Φ(ωm + 2πl) = 0 ∀l ∈ Z \ {0}. (2)

Recall that the uppercase Φ denotes the Fourier transform of
the time-domain kernel φ.

The correct coefficients, required for the reproduction, are
given by the inner product of the desired exponential with a
function φ̃ that forms a quasi-biorthonormal set with φ [12,
13]:

cm,n =

∫ ∞

−∞
e−jωmtφ̃(t− n)dt.

It can be shown that these coefficients are discrete-time expo-
nentials: cm,n = cm,0e−jωmn, where

cm,0 =
1∑

l∈Z Φ(ωm + 2πl)e−j2πlt
=

1

Φ(ωm)
. (3)

Note that the second equality, in (3), follows from the fact that
the kernel, Φ, satisfies the Strang-Fix conditions, given in (2).

2.3. Continuous-time information from discrete-time
samples
In the previous subsection we saw both the conditions for a
kernel to be exponential reproducing and an expression for
the coefficients that produce this reproduction. We are inter-
ested in this class of kernels because they allow us to obtain
continuous-time Fourier information from the discrete-time
samples. To see this, let φ be an exponential reproducing
kernel that reproduces the exponentials e−jωmt with prop-
erly chosen coefficients cm,n (m ∈ {1, 2, . . .M}). Also let
yn be the samples obtained from acquiring f(t), using the
acquisition model depicted in Fig. 1. Then, the following
weighted combinations of the samples, yn, are exactly equal
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to the Fourier transform of the original continuous-time signal
at the frequencies ωm:

sm :=
N−1∑

n=0

cm,nyn =
∑

n∈Z
cm,n

〈
f(t),φ

(
t

T
− n

)〉

=

∫ ∞

−∞
f(t)

∑

n∈Z
cm,nφ(t− n)dt

=

∫ ∞

−∞
f(t)e−jωmtdt = F (ωm).

In the following two subsections we will show how these re-
sults can be extended to arbitrary sampling kernels.

2.4. Arbitrary sampling kernels
As we have seen, exponential reproducing kernels provide a
very attractive way to infer continuous-time information from
the discrete-time samples; however, in practical situations the
sampling kernel is, typically, specified by the acquisition de-
vice and cannot be chosen. For example Fig. 2(b) shows a 1D
plot of a cross section of the sampling kernel of a real digi-
tal camera. One could find an exponential reproducing kernel
that closely approximates this real kernel, however there is a
better approach.

Urigüen et al [10] have recently shown sampling schemes
utilising approximate Strang-Fix theory. This new approach
drops any assumptions on the kernel φ and instead looks to
find the best coefficients that approximately reproduce expo-
nentials given the arbitrary kernel:

∑

n∈Z
cm,nφ(t− n) ≃ e−jωmt.

The advantage of this approach is two-fold: firstly we can
work with the actual sampling kernel specified by the acqui-
sition device and secondly we can (approximately) reproduce
many more exponentials.

If the kernel could exactly reproduce exponentials we
would use the coefficients cm,n = 1

Φ(ωm)e
−jωmn. Let us

see what happens if we use the same coefficients with a gen-
eral kernel φ. We are no longer guaranteed to reproduce an
exponential and will instead produce

gm(t) :=
∑

n∈Z
cm,nφ(t− n)

=
1

Φ(ωm)

∑

n∈Z
e−jωmnφ(t− n)

= e−jωmt 1

Φ(ωm)

∑

n∈Z
ejωm(t−n)φ(t− n)

= e−jωmt 1

Φ(ωm)

∑

l∈Z
Φ(ωm + 2πl)e−j2πlt, (4)

where the last equality comes from the Poisson summation
formula.

In previous works, there has not been a specific way to
decide if (4) is a satisfactory approximation of e−jωmt. We
can formulate such a test by looking at the error of this ap-
proximation:

ϵ(t) =e−jωmt − gm(t)

=e−jωmt

[
1− 1

Φ(ωm)

∑

l∈Z
Φ(ωm + 2πl)e−j2πlt

]
.

This will be small if
1

|Φ(ωm)|
∑

l∈Z\{0}
|Φ(ωm + 2πl)| ≤ γ, (5)

where γ is some small non-negative scalar value. In practice
(5) is satisfied for a large number of frequencies, ωm. In ad-
dition, Φ(ωm + 2πl) usually approaches zero quickly as |l|
increases, therefore only a few terms of (5) need to be evalu-
ated to understand the quality of the exponential approxima-
tion. In fact, in practice, it is often sufficient to just consider
the first.

Note that if φ satisfies the generalised Strang-Fix condi-
tions, given in (2), the left hand side of (5) and ϵ(t) are both
zero.

In [10], Urigüen et al propose other possible choices for
the coefficients cm,n that provide different exponential ap-
proximations. Specifically, they derive the coefficients that
minimise the mean squared error (MSE) and the coefficients
that produce an approximation that interpolates the true expo-
nential e−jωmt through the points t ∈ Z. However, as the au-
thors note, in practice the coefficients cm,n = 1

Φ(ωm)e
−jωmn,

provide the best trade-off of accuracy and simplicity. For this
reason they are the only coefficients considered in this paper
and we refer the interested reader to [10] for the details of
other possibilities.

2.5. Approximating Fourier coefficients with arbitrary
sampling kernels
We now have all the information to approximate the
continuous-time Fourier transform of the original signal at
the frequencies ωm. In the exact reproduction case the sum
sm :=

∑N−1
n=0 cm,nyn was exactly equal to F (ωm). In the

approximate reproduction case, the same sum yields

sm :=
N−1∑

n=0

cm,nyn =

∫ ∞

−∞
f(t)gm(t)dt

=

∫ ∞

−∞
f(t)e−jωmt 1

Φ(ωm)

∑

l∈Z
Φ(ωm + 2πl)e−j2πltdt

=
1

Φ(ωm)

∑

l∈Z
Φ(ωm + 2πl)

∫ ∞

−∞
f(t)e−jt(ωm+2πl)dt

=
1

Φ(ωm)

∑

l∈Z
Φ(ωm + 2πl)F (ωm + 2πl) =: F̂ (ωm).
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(a) LR image one. (b) LR image two.

Fig. 3. Two translated LR images.

Here we have used F̂ to denote an approximation of the
Fourier transform of f .

We can calculate the above approximation for different
frequencies ωm; however, it is impossible to obtain a precise
error in each approximation, since we have no knowledge of
F . However, in practical situations one can expect F to be
smooth, so we use (5) to evaluate if the approximation F̂ (ωm)
is reliable. Specifically, to find Fourier information of a sig-
nal, f(t), over a region of length L, we evaluate (5) for

ωm =
2πm

L
, ∀m ∈ Z. (6)

When (5) is satisfied we treat F̂ (ωm) to be an accurate ap-
proximation of F (ωm), otherwise we discard that frequency.
Choosing the frequencies given in (6) ensures that the expo-
nentials contain whole periods across the interval.

3. REGISTRATION IN A MULTI-CHANNEL
ACQUISITION SYSTEM

The previous analysis allows us to very accurately register
two or more images that are related by translations. Consider
two continuous-time images, f1(x, y) and f2(x, y), that are
related by the translation f2(x, y) = f1(x− sx, y− sy). This
corresponds to a simple phase shift in the frequency domain:

F2(ωx,ωy) = e−j(ωxsx+ωysy)F1(ωx,ωy),

so that translation parameters can be found from the NCPS:

ej(ωxsx+ωysy) =
F1(ωx,ωy)F ∗

2 (ωx,ωy)

|F1(ωx,ωy)F ∗
2 (ωx,ωy)|

. (7)

Note that, although F1(ωx,ωy)/F2(ωx,ωy) produces the
same exponential, the NCPS is much less sensitive to uni-
form variations of illumination and other globally constant
variations.

Traditionally, (7) is solved by taking the inverse Fourier
transform, which produces an impulse at the location of the
translation. Since we only have access to the Fourier trans-
forms at a limited number of frequencies, we take a different

Discrete GM Continuous GM Proposed
RMSE (pixels) 0.7072 0.0948 0.0051

Table 1. A comparison of the root mean squared error (RMSE)
when registering the two images depicted in Fig. 3. The reg-
istration techniques are discrete geometric moments (GM),
continuous GM and the proposed approach.

approach. We can look at the phase of (7) at each of the fre-
quencies (ωmx ,ωmy ) that satisfy (5):

ωmxsx+ωmysy = arg

(
F1(ωmx ,ωmy )F

∗
2 (ωmx ,ωmy )∣∣F1(ωmx ,ωmy )F
∗
2 (ωmx ,ωmy )

∣∣

)
.

Stacking these equations into an over-complete system and
finding the least squares solution provides a robust estima-
tion of the translational parameters. The robustness comes
from the fact that we can accurately approximate many more
Fourier coefficients than the two necessary to register a 2D
translation.

Note that if φ satisfies the Strang-Fix conditions, we can
set γ = 0 and, in theory, register at infinite precision, since
there will be no error in the calculation of the Fourier coeffi-
cients.

Figure 3 shows two translated LR images that have been
acquired using the real sampling kernel depicted in Fig. 2(b).
Table 1 compares the registration performance of the pro-
posed method with a traditional discrete approach and con-
tinuous geometric moments, as proposed in [9]. In order to
approximate the continuous geometric moments the sampling
kernel has been approximated by a B-spline.

4. APPLICATION IN IMAGE SUPER-RESOLUTION

Multi-view super-resolution aims to combine multiple LR im-
ages of the same scene into one HR image. It can be achieved
using the steps shown in Fig. 4. Specifically, the multiple
LR images are registered and interpolated on a HR grid. The
resulting HR image is finally deconvolved to remove the blur-
ring introduced by the sampling kernel.

Figure 5 shows an example of super-resolving an image
by a factor of 10. In this simulation, a HR image was sam-
pled with the real sampling kernel shown in Fig. 2(b) and
subjected to additive white Gaussian noise with a standard
deviation of 0.5, generating 100 LR images. Each LR image
corresponded to a different 400× 400 window of the HR im-
age. Registration was performed as proposed and produced a
root mean squared error (RMSE) of 0.0120 pixels. For com-
parison, approximating the kernel with a B-spline and regis-
tering from geometric moments, as proposed in [9], produces
a RMSE of 0.288 pixels.

The registered images were placed on a HR grid and in-
terpolated using bi-cubic interpolation. Restoration was per-
formed using a regularised inverse and a state of the art de-
noising algorithm [14], producing the final SR image.

1066



Deconvolution

Super resolved image

Set of low resolution images

Registration and interpolation onto a HR grid

. . .

Fig. 4. Steps of super-resolution: first the LR images are regis-
tered onto a HR grid, then the samples are interpolated before
a final deconvolution.

5. CONCLUSIONS

In this paper accurate image registration has been achieved
using phase information of the NCPS. In contrast to previous
works, the NCPS has been calculated using continuous-time
Fourier information that has been accurately estimated using
modern sampling theory.

Simulation results demonstrates the accuracy of the reg-
istration and potential uses in applications such as super-
resolution.
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