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Abstract

Given the challenges related to climate change and dependency from fossil fuels, modification of the energy systems infrastructure
to increase the share of renewable energy is a priority in urban energy planning. The high heating density in cities makes it more
economically competitive to deploy district heating (DH), which is essential for large-scale integration of renewable energy sources.
Combining georeferenced data with district heating design methods allows to improve the quality of the system design. However,
increasing the spatial resolution can lead to intractable model sizes.

This paper presents a methodology to spatially assess the integration of DH networks in urban energy systems. Given georefer-
enced data of buildings, resource availability and road networks, the methodology allows the identification of promising sites for
DH deployment. First, an Integer Linear Programming (ILP) model divides the urban system into spatial clusters (of buildings).
Graph theory and routing methods are then used to optimally design the DH configuration in each cluster considering the road
network in the routing algorithm. A Mixed-Integer Linear Programming (MILP) model is formulated in order to economically
evaluate the DH integration over the whole urban area.

The proposed methodology is applied to an example case study, evaluating the use of geothermal energy (deep aquifer) for direct
heat supply. The results of the optimization show the interest of deploying geothermal DH in some of the clusters. The profitability
of DH integration is strongly affected by the spatial density of the heating demand.

Keywords: Spatial Clustering, Urban energy systems, District Heating Network, Optimization, Geographic Information Systems
(GIS), Routing

1. Introduction1

In Western Europe and North America, space heating (SH)2

and domestic hot water (DHW) are the main contributors to3

household energy demand. In European residential buildings,4

about 57 % of the total final energy consumption is used for SH5

and 25 % for DHW [5]. The European heat market for buildings6

is dominated by fossil fuels burned in decentralized boilers, ac-7

counting for two-thirds of the total domestic heat supply [6]. In8

the residential buildings of the United States (US), 93.5 % of9

the energy used for space heating is provided by natural gas,10

fuel oil, liquefied petroleum gas, and kerosene [2]. Concerns11

related to greenhouse gas emissions, climate change and secu-12

rity of energy supply are gradually leading to modifications in13

the thermal energy supply chain. Local authorities are pushed14

to make strategic decisions for the planning of heat supply, en-15

couraging the energy transition towards a low carbon future. In16
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this framework, substitution of fossil fuels with renewable en-17

ergy resources has been identified as a priority [14]. Thus, the18

optimal use of renewable energy resources and the sustainabil-19

ity of energy systems represent key issues in energy planning.20

In 2010, approximately 73 % of European Union (EU) resi-21

dents lived in urban areas [6], where the highest share of the SH22

and DHW demand is concentrated. The high density of heat de-23

mand in cities makes the deployment of DH more competitive24

[15] as it leads to lower DH network lengths, lower thermal heat25

losses and therefore lower investment costs. Furthermore, DH26

offers the possibility of integrating heat resources that could27

otherwise not be used. These include excess heat from indus-28

trial processes, power plants or waste incineration. DH also29

allows to access large scale renewable energy resources such as30

geothermal, biomass or solar heat. DH penetration for heating31

of buildings in the EU was 13 % in 2010 [6]. Nevertheless,32

the availability of resources reveals an important potential for33

DH expansion in some European countries [3]. As an example,34

in North-Eastern Europe more than 100 million people already35

depend on DH [26]. In Denmark, DH is the dominant heat car-36

rier, accounting for 60 % of total heat supply in 2009 [30]. As a37

comparison, in Switzerland DH provided only 2.8 % of the heat38

demand in 2007 [28]. Many studies analyze the potential of DH39
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related to specific case studies. For instance, Gebremedhin [23]40

studied the impact of DH in the city of Gjonik in Norway and41

concluded that DH can lead to a significant reduction in terms42

of CO2 emissions.43

Among renewable energy sources for DH, some studies have44

highlighted the interest of geothermal energy integration. Hep-45

basli et al. [24] and Moret et al. [25] assessed that geothermal46

DH can provide heat at a lower cost than fossil fuel alternatives47

in the cities of Izmir, Turkey, and Lausanne, Switzerland,48

respectively. Globally, geothermal energy accounted for 0.1 %49

of the energy supply in 2008 [14]. It is projected to cover 3.550

% of the global electricity production and 3.9 % of the final51

energy for heat by 2050 [1]. Fox et al. [4] showed that there52

is a large potential for utilizing low-temperature geothermal53

resources to meet the heating demand by direct heat use.54

Aquifers located under cities can naturally offer interesting55

thermal conditions for building heat supply. As an example, the56

DH of Riehen, Switzerland, is mainly supplied by an aquifer,57

from which around 25 kg/s of water at 65◦C are extracted [29].58

59

Optimization models taking into account energy demand, en-60

ergy resources and energy conversion technologies are often de-61

veloped to support the understanding and planning of urban en-62

ergy systems. Due to the spatial dimension of the problem, the63

use of georeferenced data is essential for assessing and prelim-64

inary designing DH solutions. In fact, the spatial configuration65

of the buildings connected to the DH network defines its length66

and, consequently, its investment cost. In large cities such as67

London [35] and Berlin [36], Geographic Information Systems68

(GIS) are used to analyze and visualize the heat demand distri-69

bution in the city. Finney et al. [7] used GIS in order to inves-70

tigate the expansion possibilities of DH systems by identifying71

the existing and emerging heat sources and sinks. The method-72

ology is solely based on heat mapping, i.e. the heat sources as73

well as the heat sinks in Sheffield, England, are identified and74

mapped. Nielsen et al. [8] developed a GIS model to examine75

the potential for expanding DH in Denmark. This is performed76

by determining the cost of deploying DH in urban areas that77

are not yet served. The output of the GIS-model consists of a78

map showing the economic potential of each area for DH in-79

tegration compared with individual ground source heat pumps,80

which are assumed to be the cheapest decentralized heat supply81

alternative. In their study, the areas in which DH expansions82

are evaluated are taken from the Danish Common Public Geo-83

database [34]. Möller et al. [9] presented a geographical study84

of the potential to expand DH into areas supplied with natu-85

ral gas. Their study uses a highly detailed spatial database of86

the built environment, its current and potential future energy87

demand, its supply technologies and its location relative to en-88

ergy infrastructure. The cost of district heat expansion is eval-89

uated as a function of the heat demand density in the areas, the90

number of buildings to be connected, as well as the straight91

line distance to the existing network. Cost-supply curves based92

on empirical methods are used to assess economic potential for93

district heat expansion. Girardin et al. [11] developed a GIS-94

based approach in order to evaluate the best zones to be covered95

by a DH system in a given geographical area. The geographical96

area is first divided into subsectors using the statistical sectors97

provided by the authorities. An algorithm is proposed to es-98

timate the DH network length connecting a set of buildings.99

The length is computed based on the number of buildings, the100

area covered by the buildings and a topological factor. Based101

on the equidistance assumption, the model considers the calcu-102

lated peak heat load to estimate the section of the pipes and the103

required investment. In his thesis, Girardin [12] extended the104

approach using a GIS-based Mixed-Integer Linear Program-105

ming (MILP) aggregation mechanism in order to evaluate the106

best zones to be covered by a DH system that has access to a107

limited but high quality resource such as a waste water treat-108

ment plant. As shown in [11], the evaluation of the length and109

the costs of future networks is an important issue in territorial110

energy planning. Reidhav et al. [16] evaluated the investment111

cost of new DH networks based on data relating to an existing112

DH network in Göteborg. The investment cost is empirically113

defined as a linear function of the district heat delivered per114

connected house. Persson et al. [15] proposed a method to es-115

timate the distribution cost of a future DH system based on the116

concept of linear heat density, which corresponds to the ratio117

between the heat annually sold and the total trench length. The118

linear heat density is reformulated and estimated based on a set119

of parameters (such as the effective width initially introduced120

in 1997 in [13]) that are empirically defined. Falke et al. [17]121

developed a method to determine the optimal heating network122

design based on a heuristic approach that randomly generates123

a variety of different DH network configurations for a specific124

district.125

In case of highly populated cities, the current computational126

capacities do not allow the inclusion of each building as a sin-127

gle instance in optimization models. Fazlollahi [32] underlined128

that the size of an optimization model for urban energy design129

can increase considerably with the number of buildings. Thus,130

optimization-based energy models are often limited to a small131

number of buildings or a limited list of options (i.e. number132

of conversion technologies, buildings and network). In order to133

reduce the number of decision variables and thus the compu-134

tational complexity, buildings can be aggregated into a smaller135

number of clusters making up the city. A cluster is defined as a136

spatially-limited energy subsystem including an aggregated en-137

ergy demand (sum of the energy demand of the buildings in the138

cluster) and a set of available technologies for energy supply.139

Data clustering is widely applied in several disciplines to de-140

crease computational time and reliability of results. Lam et141

al. [10] proposed several model-size reduction techniques for142

the analysis of large-scale biomass production and supply net-143

works. The proposed merging method offers the best results144

but it is not described as an automatic process. The zones are145

manually structured based on the geographical locations, the146

capacities of the zones and the regional development planning.147

Fazlollahi et al. [32] presented a systematic procedure to repre-148

sent an urban energy system with a macroscopic view as a set149

of clusters. Clusters are formed by applying k-means clustering150

techniques [33]. The method achieves a representation of the151

whole district while significantly reducing the number of de-152

cision variables of the optimization model. No optimization is153
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performed for the clustering and the clusters can only be formed154

based on similarities between building attributes.155

Thus, the main gaps identified in the literature are the fol-156

lowing: i) Some studies do not include optimization methods157

such as MILP for optimally designing urban energy systems.158

Instead, only comparative analyses among different scenarios159

using simulation models are performed. ii) Even when lin-160

ear programming is included ([11] and [32]), the approaches161

are not adapted for the integration of a non-spatially limited2
162

resource. Urban zoning based on the k-means method or on163

statistical sectors do not offer the possibility to fully control164

the cluster-formation process. As an example, constraints forc-165

ing the cluster sizes to meet the potential of a given resource166

(e.g. geothermal well) can not be imposed. iii) Furthermore,167

no method in the literature considers road networks for realisti-168

cally connecting together all the buildings included in a future169

DH system.170

Consequently, this paper presents an optimization-based171

methodology to spatially assess the integration of DH networks172

in urban energy systems. The two novel contributions of our173

work are: i) first an Integer Linear Programming (ILP) ap-174

proach is proposed for the spatial clustering of urban energy175

system models. In practical applications, this is often an es-176

sential step to reduce model complexity. The ILP approach177

combined with georeferenced data allows to fully control the178

cluster formation process. In this way, the heating demand of179

each cluster of buildings can meet the potential of the energy180

resource of interest. ii) Second, routing techniques are used181

to define realistic spatial configurations of DH network. The182

pipelines path is optimized in order to reduce the related costs183

and the thermal losses. The routing forces the DH pipelines to184

follow the road network. The quality of the method is assessed185

by comparing the obtained network configurations with exist-186

ing DH networks187

The developed methodology is illustrated with an applied188

case study. The integration of geothermal energy in the City189

of Lausanne (Switzerland, 140’421 inhabitants) is taken as an190

example case study in this work. An aquifer located under the191

city represents a promising heat resource.192

First the methodology is presented including the data collec-193

tion, the spatial clustering, the estimation of the network lengths194

and the general formulation of the MILP urban energy model195

(Section 2). Then, the results are obtained with the systematic196

application of the methodology to the specified case study (Sec-197

tion 3).198

2. Methodology199

Figure 1 offers an overview of the methodology. It is struc-200

tured in four phases: 1) data collection, 2) spatial clustering, 3)201

estimation of DH network length and 4) cluster-oriented model-202

ing. After collecting building related data, the energy resources203

2A non-spatially limited resource is defined as a resource which can be ex-
ploited everywhere in an area (e.g. geothermal energy resource). On the other
hand, a spatially limited resource has a specific location (e.g. waste heat from
a power plant).

and the road network, spatial clustering methods are applied204

on the buildings of the city that are not already connected to a205

DH network. This step is itself divided into two sub-steps: a206

preliminary clustering (optional) and the main clustering. The207

main clustering is defined as an ILP problem. It aims at group-208

ing the buildings into different clusters. The objective function209

is the minimization of the total distance between the buildings210

belonging to the same clusters. Buildings heating demand data211

and availability of the resource are used in order to define the212

constraints of the problem. A preliminary clustering based on213

the k-means method [33] is needed only when the calculation214

load of the main clustering algorithm is too heavy. The objec-215

tive of this step is to form small building groups (called subclus-216

ters), which are then used as inputs for the main clustering step.217

Georeferenced buildings are not required in the main clustering218

step if the preliminary clustering is performed.219

Based on the cluster configurations and on the road network220

of the city, the minimum path connecting all the buildings in221

a cluster is estimated. This step results from the combination222

of different algorithms. The buildings are considered as com-223

ponents of a graph as vertices. Delaunay triangulation [19] is224

applied to define the edge configuration of the graphs. Based on225

the road network (routing) and on the Johnson’s algorithm [21],226

the minimum path length connecting two buildings is computed227

and corresponds to the weight of the edge that links these build-228

ings. Then, the Kruskal’s algorithm [20] defines the minimum229

spanning tree connecting all the buildings together.230

Finally, a MILP urban energy system model based on the231

clusters configuration and on the DH network lengths is applied232

to economically evaluate DH integration in each cluster.233

2.1. Data collection234

Four datasets are necessary:235

1. The geographic coordinates of the buildings (longitude X236

and latitude Y).237

2. The SH demand and the DHW demand of the buildings.238

3. The spatial distribution of the energy resource.239

4. The georeferenced road network of the city.240

These data can often be provided by the local authorities.241

2.2. Spatial clustering242

2.2.1. Preliminary clustering243

Running out of memory is a very common difficulty with ILP244

problems. This occurs when the branch&cut tree reaches sizes245

bigger than the available memory. Solving the main clustering246

is not possible if the number of buildings is too large. Thus,247

a preliminary clustering is performed using the k-means clus-248

tering algorithm [33] and georeferenced data. It is an efficient,249

fast and simple method to group data points according to their250

characteristics. This method is applied to divide a set of Nb251

buildings into Ns subclusters according to their X and Y coor-252

dinates. The number of subclusters Ns is a required input to the253

algorithm. The method aims by iterative resolution at finding254

the position of the subclusters’ centers µs ∈ [µ1, ..., µNs ] which255
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Figure 1: Overview of the entire methodology. Data types are represented with
colored symbols in order to show in which steps they are involved and used as
inputs.

minimizes the total distance from the buildings to their respec-256

tive subcluster’s centroids. Thus, the objective function of the257

applied k-means process is expressed as follows:258

min
Ns∑
s=1

∑
b∈Bs

[
(Xµ

γ
s
− Xb)2 + (Yµ

γ
s
− Yb)2

]
∀γ (1)

where b∈ [1,...,Nb] represents the building’s index. Bs is the259

set of buildings which are assigned to the subcluster s. The260

results of the k-means method depend on the starting cluster261

centroid positions (”seed” randomly set). Thus, the clustering262

is repeated several times using new initial cluster centroid posi-263

tions and the configuration leading to the best value of objective264

function is selected. γ ∈ [1,...,γmax] is an index corresponding265

to the starting cluster centroids where γmax is the last starting266

points configuration which will be tested. The algorithm uses267

an iterative technique which is explained in details in the Elec-268

tronic Supplementary Information (ESI). The preliminary clus-269

tering leads to Ns spatially compact subclusters. On the one270

hand, a high number of subclusters improves the accuracy of271

the ILP model. On the other hand, the available computational272

resources limit the ILP problem size. Thus, there is a trade-off273

in defining the optimal number of initial subclusters. Ns is max-274

imized as available computational resources permit (see section275

3.3).276

2.2.2. Integer Linear Programming model277

This section presents the ILP model which aims at aggregat-278

ing subclusters3) with the objective of minimizing the total cost279

of connection. It is expressed as follows:280

min
Ns∑
i=1

Ns∑
j=1

di,jyi,j (2)

s.t.
Ns∑
i=1

yi,j = 1 ∀j ∈ [1...Ns] (3)

Ns∑
j=1

pjyi,j ≤ νmaxyi,i ∀i ∈ [1...Ns] (4)

Ns∑
j=1

pjyi,j ≥ νminyi,i ∀i ∈ [1...Ns] (5)

Ns∑
i=1

yi,i ≤

Ns∑
j=1

pj

νmin
(6)

Ns∑
i=1

yi,i ≥

Ns∑
j=1

pj

νmax
(7)

The configuration of the clusters is defined by the binary de-281

cision variables y. They are represented in a NsxNs matrix Y,282

defined as follows:283

3“Subcluster” can be replaced by “building” in this section if the preliminary
clustering step is skipped
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Y =

 y1,1 ... y1,Ns

... ... ...
yNs,1 ... yNs, Ns

 (8)

where Ns is the number of subclusters. yi, j is a binary de-284

cision variable that declares if the subcluster j belongs or not285

to the cluster i: if yi, j=1 the subcluster j belongs to the clus-286

ter i, if yi, j=0 the subcluster j does not belong to the cluster i.287

Each row Y corresponds to a potential cluster i and each col-288

umn represents the subclusters which can be included or not in289

each cluster. If a row contains only zeros, then no cluster is de-290

fined on that row. If a row has at least one non-zero element, it291

means that a cluster is defined on this row. The other non-zero292

elements on the row show the other subclusters which are part293

of the cluster, identified by their relative column number. The294

row number identifies the central subcluster in each cluster.295

The objective of the problem is the minimization of the sum296

of all intra-distances of all clusters (Eq. 2). By definition, the297

intra-distance of a cluster formed on row i is defined as the sum298

of the Euclidean distances between the subclusters included in299

this cluster and the subcluster i. The Euclidean distance is cho-300

sen if the preliminary clustering is applied (see section 2.2.1) as301

a subcluster can not be linked to a specific road. If the prelim-302

inary clustering step is skipped and buildings are used as input303

of the ILP model, Euclidian distances can be replaced by road304

distances, computed as in section 2.3.2. The intra-distance of305

the cluster corresponding to row i is defined as follows:306

Ns∑
j=1

di, jyi, j (9)

The subcluster i is the center of the cluster corresponding to307

the row i. The Euclidean distances between the subclusters are308

represented in a symmetric matrix D as follows:309

D =

 d1, 1 ... d1, Ns

... ... ...
dNs, 1 ... dNs, Ns

 (10)

di,j is the Euclidean distance between the subcluster i and the310

subcluster j and it is defined as follows:311

di, j =

√
(Xµi − Xµj )2 + (Yµi − Yµj )2 (11)

Xµ and Yµ are the longitudinal and latitudinal coordinates312

of the subcluster centroids, respectively. The diagonal of the313

matrix D contains only zeros since di,i=0. Figure 2 illustrates314

these distances separating the subclusters with a 2-dimensional315

example.316

Eq. 3 forces each subcluster to be included in only one clus-317

ter.318

The heating power demand of clusters is the sum of the heat-319

ing power demands of the subclusters included in it. The pa-320

rameter P contains the heating power demands of the subclus-321

ters. The heating power demands considered in this ILP process322

depend on the conditions and the objectives of the applied case323

study. As an example, in the case study presented later in this324

work (see section 3.3), the heating power demands are defined325

: Subcluster centroid

: Buildings

SC1

SC2

SC3

SC4

d2,3

d2,4

d2,1

SC : Subcluster

Figure 2: Illustration of the Euclidean distances between different subclusters.
In this example, a cluster includes the subclusters SC1, SC2, SC3 and SC4.
SC2 is the center of the cluster from which the distances are computed.

by the base load demand of the buildings which corresponds to326

the DHW.327

P =

 p1
...

pNs

 (12)

The heating power demand of the resulting clusters must be328

in the range defined by a lower bound νmin and an upper bound329

νmax (Eq. 4 and Eq. 5). νmax corresponds to the heating power330

available from the energy resource. Since the clusters have to331

be adapted to the energy resource, the clusters’ heating demand332

should be close to νmax. Thus, a lower limit νmin is arbitrarily333

defined. In this work, it is chosen as the difference between334

νmax and the third quartile of P.335

νmin = νmax − Q3(P) (13)

This difference between νmin and νmax offers flexibility to the336

solver in defining the cluster configuration.337

Additional constraints are added in order to reduce the solu-338

tion domain and save computational time (Eq. 6 and Eq. 7).339

The number of resulting clusters can be preliminary estimated340

as its limits depend directly on the total heating demand of the341

buildings and on the fixed bounds νmin and νmax. Thus, the342

maximum (minimum) number of clusters is equal to the sum343

of all heating powers included in P divided by the lower (up-344

per) bound νmin (νmax).345

Example application. For a better understanding, an example346

is provided. Figure 3 illustrates a simplified configuration with347

8 subclusters aggregated into 2 clusters. The abbreviation SC is348

used for ’subcluster’.349

The corresponding matrix Y calculated by the solver in this350

example is shown in Eq. 14.351

5



SC1

SC2

SC3

SC4

d2,3

d2,4

d2,1

SC5

SC6

SC8

SC7d6,8

d6,7
d6,5

Figure 3: Example application of the ILP algorithm. The subclusters (SC)
are aggregated into two clusters. A cluster includes the subclusters SC1, SC2,
SC3 and SC4, while another cluster includes the subclusters SC5, SC6, SC7
and SC8. The centers of the clusters corresponds to SC2 and SC6. The intra-
distance of the first cluster is composed of d2,1, d2,3 and d2,4. The intra-distance
of the second cluster is composed of d6,5, d6,7 and d6,8.

Yexample =



0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(14)

The matrix Y in Eq. 14 shows that two clusters were created352

because two rows contained at least a 1. The cluster which is353

defined on row 2 is called c1 and the cluster which is defined354

on row 6 is called c2. Since the clusters are defined in rows 2355

and 6, the centers of the clusters c1 and c2 are SC2 and SC6,356

respectively. Thus, the intra-distances of the clusters c1 and c2357

are based on SC2 and SC6 respectively. In addition, the matrix358

defines the composition of the clusters. As y2, 1, y2, 2, y2, 3, y2, 4359

are equal to 1, c1 is composed of SC1, SC2, SC3 and SC4. In360

the same way, c2 is composed of SC5, SC6, SC7 and SC8. The361

intra-distance of c1 is the sum of d2,1, d2,3 and d2,4. The intra-362

distance of c2 is the sum of d6,5, d6,7 and d6,8. d2,2 and d6,6363

are equal to zero. The objective value is the global sum of the364

intra-distances.365

The expression of the ILP problem problem ensures that:366

• The resulting cluster configuration leads to a minimum367

sum of the intra-distances. This is controlled by the ob-368

jective of the ILP model.369

• The heating power demand of clusters c1 and c2 is in-370

cluded between νmin and νmax. This is controlled by the371

constraints.372

2.3. Estimation of the length of the DH networks373

The goal of this section is to estimate the length of the DH374

networks (LDH) in each cluster. The lengths are computed based375

on graph theory methods [22]. In this framework, the buildings376

are the vertices whereas the possible DH network paths are the377

edges. Each edge is assigned a weight. As the DH pipelines378

are generally constrained by the road network, the weight of379

each edge corresponds to the length of the shortest path con-380

necting the buildings located along the road network. DH net-381

work length is calculated by applying one after the other the382

Delaunay triangulation [19], the Johnson’s algorithm [21] and383

the Kruskal’s algorithm [20]. It is assumed that the DH network384

modeled in a given cluster connects all the buildings belonging385

to this cluster. Thus, for each cluster, the algorithms are applied386

to the entire set of buildings.387

2.3.1. Delaunay triangulation: graph definition388

The Delaunay triangulation [19] is used to define a config-389

uration of edges which connect all the buildings together in a390

cluster. The set of vertices and edges forms a planar graph. The391

use of a planar graph ensures that the possibility of connecting392

buildings that are far away from each other is excluded. Ad-393

ditionally, the Delaunay triangulation maximizes the minimum394

angle of the triangles in order to avoid skinny triangles. From395

a set Bck corresponding to the buildings included in the cluster396

ck, the Delaunay triangulation defines an optimized planar and397

connected graph Gck in order to create paths between each pair398

of buildings. The triangulation is based on the building loca-399

tions and on the Euclidean distances between them.400

Gck = (Bck ,Eck ) ∀k ∈ [1,...,Nc] (15)

Bck and Eck correspond to the set of vertices and to the set of401

edges of Gck respectively. Nc is the total number of clusters. ei,j402

is the edge connecting buildings i and j. As an example, Figure403

4 illustrates the application of the Delaunay triangulation to a404

set of buildings.405

b1

b2

b3

b4

b1

b2

b3

b4

e1,2

e2,4

e3,4

e1,3

e2,3

ck ck

Delaunay 
Triangulation

Figure 4: Example of a Delaunay triangulation applied to a small set of build-
ings bi included in a cluster ck. Bck corresponds to the vertices set [b1, b2, b3,
b4] and Eck corresponds to the edges set [e1,2, e1,3, e2,3, e2,4, e3,4]. As the graph
is planar, there is no connection between b1 and b4.

2.3.2. Johnson’s algorithm: routing406

The weights of the edges presented in Eq. 15 are the Eu-407

clidean distances between the buildings. However, these dis-408

tances do not reflect realistic paths for DH networks. Thus, a409

new weight is computed for each edge on the basis of the road410

network. Johnson’s algorithm [21] is used to find the shortest411
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paths between all pairs of buildings taking into account the road412

network. Figure 5 shows an example of routing applied to two413

buildings. The network is composed of road segments r. lr is414

the length of the road segments r. The new weight di,j is the415

sum of lr for the road segments that compose the shortest path416

(SPi,j) between the buildings bi and bj as expressed in Eq. 16.417

di,j =
∑

r∈SPi,j

lr (16)

If in the raw data the buildings are not directly linked to the418

road network, they are connected to their closest road segment419

before applying the Johnson’s algorithm4. This forms addi-420

tional road segments. As an example in Figure 5, r1 and r12421

are additional road segments.422

After defining the weights of the edges included in Eck , the423

Kruskal’s algorithm is applied in order to compute the shortest424

path to connect all the buildings in the cluster ck.425

bi

bj

ei,j

di, j

Roads 

Buildingsr1

r2

r3

r4 r5

r9

r12

r8r6
r7

r10

r11

Network nodes 

Figure 5: Application of the routing to two buildings. The edge weight di,j be-
tween the buildings bi and bj. di,j is the length of the minimum path connecting
bi and bj following the road network. ei,j is the edge generated by the Delaunay
triangulation connecting bi and bj. The segments r are the road segments. The
nodes of the road network are represented by star symbols and correspond to
intersections or changes of direction.

2.3.3. Kruskal’s algorithm: minimum spanning tree426

The Kruskal’s algorithm [20] determines the Minimum427

Spanning Tree (MST) in a connected and undirected graph. A428

MST is a spanning tree (subset of vertices and edges without429

cycles connecting all vertices) in which the sum of the edges430

weights is minimal. In other words, this algorithm determines431

the shortest path connecting all the vertices according to the432

configuration of edges in a graph. The Kruskal’s algorithm is433

applied to the graphs Gck presented in Eq.15, using the edge434

weights computed with the Johnson’s algorithm. Thus, a MST435

is defined in each cluster as follows:436

MSTck = (Bck ,Tck ) ∀k ∈ [1...Nc] (17)

4These connections can be performed automatically by using the ”Net-
works” plug-in (https://github.com/crocovert/networks/) available for QGIS
software [43]

Tck is the set of edges of the MST included in the cluster ck.437

The edges ti,j correspond to a subset of the edges ei,j which is438

chosen to form the MST. As an example, Figure 6 illustrates the439

Kruskal’s algorithm application based on the previous example440

in Figure 4. The road network does not appear in Figure 4 for441

visualization reasons. However, the weights of the edges ei,j are442

based on the road distances as shown in Figure 5.443

b1

b2

b3

b4

ck

Kruskal's
algorithm

t1,2

t2,4

t3,4

b1

b2

b3

b4

ck

e1,2 e2,3

e1,3

e2,4
e3,4

Figure 6: Kruskal’s algorithm applied to a small set of buildings included in a
cluster ck. Tck corresponds to the set of edges [t1,2, t2,4, t3,4].

bi

bj

di,j

Roads 

Buildingsr1

r2

r3

r4 r5

r9

r12

r8
r6 r7

r10

r11

Nodes

bk
r13dj,k

ti,j

tj,k

Figure 7: Minimum Spanning Tree connecting three buildings. Certain edges r
are taken into account in several weights d.

When calculating the length of the DH network, duplicates444

of road segments r included in the weights of the MSTs need to445

be removed. As an example, in Figure 7 segments r11 and r12446

are counted twice. The duplicates of r11 and r12 are removed.447

The length of the network linking the three buildings in Figure448

7 is the sum of the lengths of the edges r1, r2, r5, r6, r7, r8, r9,449

r10, r11, r12 and r13. More generally, the length of a DH network450

is defined as the sum of the edge lengths lr forming the shortest451

paths (SP) of the MST after removal of duplicates.452

2.4. Cluster-oriented energy system modeling453

Based on the obtained clusters configuration and the cal-454

culated DH lengths, a Mixed-Integer Linear Programming455

(MILP) urban energy system model is developed. It is a general456

formulation (superstructure) allowing all the possible configu-457

rations of investigated energy systems. The model is a simpli-458

fied representation of an urban system accounting for the en-459

ergy flows within its boundaries. The cluster-oriented model is460

represented in Figure 8. The same superstructure is defined for461
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each of the clusters, but taking into account parameter values462

which are cluster-dependent (e.g. energy demand, DH length,463

etc...). In this way, the option of centralization can be evaluated464

simultaneously for all the clusters in the urban area.465

ck k [1,...,MNMc]

HeatMproduction HeatMtransport HeatMdemand

Centralized
technology

Decentralized
technology

DHN

Cluster2s
demand

Legend
Mass/electricityMinput

InputMthermalMstream

Unit Process

OutputMthermalMstream

Mass/electricalMoutput

Res

System boundaries

res1

res2

resn

Losses

Figure 8: Conceptual cluster-oriented urban energy system model. Res is the
abbreviation for resources.

The heating power demand of each cluster is the sum of the466

heating power demand (SH and DHW) of all the buildings in-467

cluded in the cluster. Resources are converted by energy con-468

version technologies in order to satisfy end-use energy demands469

such as SH and DHW. Heat production is separated into cen-470

tralized and decentralized. For centralized cases, a DH network471

delivers the produced heat to the consumers. The heat deliv-472

ered by decentralized technologies meets the heating demand473

directly. The DH option, if chosen, connects all the build-474

ings in a cluster. Thus, the heating demand cannot be satis-475

fied with a combination of centralized and decentralized tech-476

nologies, i.e. the cluster heating demand is satisfied by either477

centralized technologies or decentralized technologies. Ther-478

mal losses generated along the DH network (Q̇l) are included479

in the model and are approximated as shown in Eq. 185. Spe-480

cific constraints are added to make sure that the “Losses” unit481

is activated if and only if the DH network is used for a cluster.482

Q̇l = U · LDH · ((Tsupply − Tground) + (Treturn − Tground)) (18)

where Tground is the ground temperature, U is the overall lin-483

ear heat transfer coefficient, LDH is the DH network length and484

Tsupply/Treturn are the supply/return temperatures of the DH net-485

work.486

The different resources, technologies and demands are de-487

fined as ”units” (u). U corresponds to the set of units of the488

entire system. Each unit has inputs and outputs, which can489

be thermal, electrical or mass flows. The model is based on490

the formulation in [42], in which more details are available. A491

multiperiod expression dividing the year in four periods (win-492

ter, mid-season, summer, peak) is adopted in order to account493

for seasonality. Thus, the temporal fluctuations in the building494

heating demand are included in the analysis. For each building495

5Personal communication with the CADOUEST company [45]

and each period, the average heating power demand is consid-496

ered. The peak period represents the extreme conditions and it497

is used for the sizing of the energy technologies.498

The general MILP model formulation is expressed as fol-499

lows:500

min Ctot =
∑
u∈U

(
Cinv(u) +

∑
t∈T

Cop(u,t)
)

(19)

s.t. Uset(u,t) ≥ usef(u,t) (20)
∀u ∈ U, ∀t ∈ T
fmin(u)Uset(u,t) ≤ Multt(u,t) ≤ fmax(u)Uset(u,t) (21)
∀u ∈ U, ∀t ∈ T
Uset(u,t) ≤ Use(u) (22)
∀u ∈ U, ∀t ∈ T
Multt(u,t) ≤ Mult(u) (23)
∀u ∈ U, ∀t ∈ T
Cinv(u) = cinv,fix(u)Use(u) + cinv,var(u)Mult(u) (24)
∀u ∈ U
Cop(u,t) = (cop,fix(u)Uset(u,t) + cop,var(u)Multt(u,t))top(t)

(25)

∀u ∈ U, ∀t ∈ T∑
u∈Uc

q̇in(u,t,l)Multt(u,t) −
∑
u∈Uc

q̇out(u,t,l)Multt(u,t) = 0

(26)

∀t ∈ T, ∀l ∈ L, ∀c ∈ C∑
u∈U

ṁres,in(u,t,res)Multt(u,t)

−
∑
u∈U

ṁres,out(u,t,res)Multt(u,t) = 0 (27)

∀t ∈ T, ∀res ∈ Res

The objective of the MILP model is to minimize the total an-501

nual cost of the entire energy system (Ctot), which is the sum of502

the total annualized investment (Cinv) and of the yearly operat-503

ing cost (Cop) of the units (Eq.19). The investment cost is lin-504

earized as the summation of two components, cinv,fix and cinv,var505

(Eq.24). cinv,fix is the fixed investment cost, activated if the unit506

is purchased while cinv,var is the variable cost associated to the507

size of the unit. In the same way, the operating cost is linearized508

as the summation of two components, cop,fix and cop,var (Eq.25).509

cop,fix is the fixed operating cost activated if the unit is operated510

in a period while cop,var is the variable operating cost associated511

with the size of the unit output in a given period.512

The binary variable Uset defines the use of a unit in a given513

period. If Uset(u,t)=0 the unit u is not used during the period t514

while if Uset(u,t)=1 the unit is used. The binary parameter usef515

can force the use of a unit in a given period (Eq.20). The uti-516

lization rate at which a unit is operated in a given period is de-517

fined by the variable Multt. Unit inputs and outputs are defined518

for the default size of the unit and are proportionally scaled519

based on the value of this variable. The parameters fmin(u)520

and fmax(u) represent the minimum and the maximum size of521
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the unit u respectively (Eq.21). A unit is called ”process” if522

usef(u,t)=fmin(u)=fmax(u)=1, otherwise it is called ”utility”. The523

variables Use and Mult are associated with the investment deci-524

sion. They consider the decisions of purchasing the unit (Eq.22)525

and the installed size (Eq.23) according to the default size, re-526

spectively.527

The thermal flows are separated into different categories in528

order to ensure realistic exchanges. For example, a thermal flow529

exiting a centralized unit cannot directly supply the consumers,530

as it has to pass through a DH network beforehand. Thus, the531

output thermal flow exiting the centralized unit and the input532

thermal flow entering the DH network belong to the same cat-533

egory. The set including the different categories is called L534

with reference to the concept of Layers as in [42]. The ther-535

mal power balance is respected independently in each cluster536

c ∈ C and for each period (Eq.26). Differently from [42], there537

is no heat cascade in this formulation. Heat is just treated as a538

first principle energy balance, divided into temperature levels.539

Uc corresponds to the set of units included in the cluster c. The540

parameters q̇out and q̇in are the default thermal powers which541

are delivered and required by the units, respectively. As a sim-542

plification, the mass flow rate variations in the DH network are543

not considered in the MILP model. However, a further analysis544

including the flow rates in the pipelines is essential for inves-545

tigations more focused on the operational aspects of the DH546

network.547

On the other hand, the mass/electrical flow balance is548

respected over the whole system for each period (Eq.27).549

ṁres,out(u,t,res) is the default input flow of the resource res re-550

quired for a unit, whereas ṁres,out(u,t,res) is the default output551

flow from a unit.552

3. Results: the case study of a geothermal resource553

3.1. Presentation of the case study.554

The approach is applied to the integration of a geothermal555

resource in the city of Lausanne (Switzerland, 140’421 inhab-556

itants in 2015) which is taken as an example case study. The557

total heating demand of the city is estimated to be 1660.4 GWh558

in 2012, representing 59 % of the total final energy demand559

[31]. An existing DH network, supplying about 21 % of the560

city’s heating demand in 2012, is powered by a Municipal Solid561

Waste Incineration (MSWI) power plant (60 %), fossil fuels562

such as gas and heating oil (36.2 %), and a Waste Water Treat-563

ment Plant (WWTP) (3.8 %) [31]. The projected expansion564

of the DH network offers an opportunity for the integration of565

geothermal energy. A Malm aquifer is located under the city566

and could be exploited as a heat resource for direct heat supply.567

The temperature of the Malm aquifer is estimated to be 65◦C568

and the expected mass flow rate is 25 kg/s [25]. Figure 9 shows569

the geothermal DH system modeled in the framework of this570

case study. This simplified geothermal system configuration is571

based on the DH case of Riehen [29] where the geothermal re-572

source has similar characteristics to the one in Lausanne.573

The supply and return temperatures of the DH network dur-574

ing summer are assumed to be 60◦C and 45◦C respectively. In575

HeatNpump

HeatNexchanger

3-way
valve

Boiler

ProductionNwell

InjectionNwell Consumers

ExistingNDHN

HeatNexchanger

3-way
valve

65°C

50°C

50°C

29°C

45°C

60°C

60N-N90°C

max.N25Nl/s

Figure 9: Schema of the energy system installation.

colder periods, the supply temperature is expected to increase576

up to 90◦C whereas the return temperature is assumed constant577

over the year. The supply temperature conditions ensure that578

the total heat demand (SH and DHW) is met all year round.579

The minimum supply temperature is fixed at 60◦C to satisfy580

DHW demand [39].581

The geothermal fluid is pumped from a production well and582

is re-injected into the ground after delivering heat to the con-583

sumers. The geothermal system configuration depends on the584

temperature of the fluid and on the nature of the heating appli-585

cation. In this case, as shown in Figure 9 heat extraction from586

the fluid is performed in sequence by firstly exchanging heat di-587

rectly and then passing through the evaporator of a heat pump.588

The amount of heat which can be extracted by means of the pri-589

mary heat exchanger is limited by the return temperature of the590

network. Heat pumps are used to recover the part of heat which591

cannot be recovered by direct exchange, i.e. when the geother-592

mal fluid reinjection temperature is lower than the return tem-593

perature of the network. This system configuration allows to594

fully exploit the geothermal resource. Thus, the heat pump as-595

sists the primary heat exchanger, supplying additional heat from596

the fluid and completely exploiting the resource. The max-597

imum thermal power delivered from the aquifer is estimated598

to be 3’780 kWth [25], cooling 25 kg/s of pumped water from599

65◦C to 29◦C. Only a part of this thermal power is used in sum-600

mer. On the other hand, in winter the demand is higher than the601

heat available from the geothermal well. A centralized natural602

gas boiler is included in the DH system in order to satisfy the603

higher demand in these months. A DH network already exists604

in Lausanne. The option of connecting the new DH networks605

to the existing network is considered by means of an additional606

heat exchanger. According to [31], the existing MSWI of Lau-607

sanne produces a heat excess during summer. Around 97 GWh608

per year are used today in the second stage of the condensing609

turbine of the MSWI to produce electricity with very low ef-610

ficiency. This excess heat could be more reasonably used for611

heating instead of electricity production.612

3.2. Data collection613

The annual SH and DHW demand of the buildings of Lau-614

sanne (QSH and QHW respectively) are provided by the center of615

energy research of Martigny (CREM), Switzerland [37]. From616
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this data, the seasonal average SH power demands of the build-617

ings are estimated based on the seasonal distribution of the heat-618

ing demand presented in [31] for the buildings of Lausanne. It619

is assumed that there is no SH in summer. More information620

concerning the evaluation of these seasonal heating demands is621

available in the ESI. Additionally, the CREM provided the ge-622

ographical coordinates of the buildings. This data is based on623

the federal register of buildings and accommodations [44].624

Seismic investigations performed during the last decades625

provide a good geological characterization of Lausanne. The626

Malm’s depth estimations (varying between 1’400 m and 1’900627

m over the whole city) were provided by the Laboratory of Soil628

Mechanics (LMS, EPFL) with an horizontal resolution of 20629

m [27]. The latter allows an evaluation of the spatial distri-630

bution of the drilling investment costs over the whole urban631

area, assuming the use of 2 wells (production and injection632

wells). Figure 10 shows that investment costs range between633

6.23 MCHF and 9.43 MCHF. The lowest drilling cost is lo-634

cated on the southwest area of the city whereas the maximum is635

found on the northeast side. The cost evaluation was performed636

in this study using the software GEOPHIRES developed at the637

Cornell Energy Institute [38].638

Figure 10: Drilling investment costs (2 wells) mapped over the City of Lau-
sanne. The color distribution shows the corresponding investment costs for
each location in the city. Satellite image: Landsat 7 image, 2016.

The georeferenced road network of the city of Lau-639

sanne was provided by the ”OpenStreetMap contributors c© -640

http://www.openstreetmap.org/” .641

3.3. Spatial clustering642

The clustering method is applied to the 6’224 buildings643

which are not yet connected to the existing DH network. As dis-644

cussed in section 2.2.1, a high number of subclusters improves645

the quality of the ILP clustering step. Thus, the ILP model has646

been tested using different numbers of subclusters in order to647

assess the corresponding computational needs and define the648

maximum number of subclusters to be generated for this case649

study. The available computational resources used for the tests650

are limited to one compute node including 2 processors run-651

ning at 2.2 GHz with 8 cores each and 32 GB of RAM. Figure652

11 presents the CPU time and the maximum memory required653

for the branch&cut tree against the number of subclusters.654

Figure 11: Solving elapsed time and memory requirement of the ILP process
with different numbers of subclusters.

Figure 11 highlights significant and quite irregular variations655

in time and memory depending on the number of subclusters.656

Small variations in the number of subclusters can lead to large657

variations in terms of needed computational resources. In gen-658

eral, despite some oscillations, time and memory increase with659

the number of variables. The resolution of the model is limited660

by the memory requirements and not by the solving elapsed661

time. Even if the memory requirements exceed the available662

32 GB with 380 and 400 subclusters, the model can be solved663

with 410 subclusters6. Thus, the number of subclusters Ns is664

set to 410. Figure 12 presents the resulting subclusters formed665

by 6’224 buildings grouped into 410 subclusters.666

Figure 12: The buildings of the city represented as points and grouped in 410
subclusters. Satellite image: Landsat 7 image, 2016.

The ILP model was run with and without the two added con-667

straints presented in Eq. 6 and in Eq. 7. Figure 13 shows668

the required computational time with different number of sub-669

clusters in the two cases. It is demonstrated that the saving of670

6In case the preliminary clustering is not applied, the number of buildings
used for the ILP would be 6’224. This situation can not be solved as the prob-
lem complexity increases with n2.
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computational time is significant by adding the constraints. As671

an example, the computational time is reduced by a factor of672

5.3 for 170 sublusters.673

Figure 13: Required computational time with and without the added constraints
presented in Eq. 6 and in Eq. 7.

The definition of the bounds νmin and νmax depends on the674

availability and the exploitation mode of the energy resource.675

The size of clusters is adapted to the power available from676

the geothermal well. Geothermal facilities have high invest-677

ment costs and their economics depend strongly on the amount678

of heat extracted from the geothermal fluid. The SH demand679

of buildings fluctuates significantly over the year. Geother-680

mal installations sized to meet peak demand are under-utilized.681

Einarsson [40] showed the advantages of using geothermal fa-682

cilities as baseload to overcome this problem. A baseload683

power demand corresponds to a heating power demand which is684

constant over the whole year. However, to our knowledge there685

are no clear design rules for sizing the centralized geothermal686

facilities given the seasonal distribution of heat loads. Exist-687

ing geothermal case studies showed that differences in resource688

conditions and in heating demand can lead to different system689

designs. Harrison [39] presented two alternative design options690

based on real case studies: the full coverage and the partial cov-691

erage approaches.692

1. In the cases of low drilling costs and spatially dispersed693

heat demand involving high connection costs, it is eco-694

nomically more interesting to size geothermal based on695

peak demand. This approach is called the full coverage696

approach. It is typically found in the US where thermal697

gradients are high and thus high well head temperatures698

are common as shown in the Figures 14a and 14b. Indeed,699

this approach implies that the geothermal well is oversized700

for periods of low heat demand.701

2. In the cases of high drilling costs and spatially concen-702

trated heat demand involving lower connection costs, it is703

economically more interesting to size the geothermal well704

based on baseload demand. This approach is called the705

partial coverage approach. It occurs for example in France706

where the thermal gradients and the well head tempera-707

tures are lower as shown in the Figures 14a and 14b.708

In Lausanne the outdoor temperature varies significantly over709

the year. Thus, heat loads fluctuate along a wide range of val-710

ues (from 78.5 MWth up to 523.1 MWth during the peak pe-711

riod [31]). The geothermal resource conditions in Lausanne are712

(a) (b)

Figure 14: Different geothermal well installations in the USA and in France.
Figure 14a shows the relationship between well head temperatures and well
depths for several US and French geothermal heating facilities [39]. Figure
14b shows the relationship between theoretical well powers and peak power
demands for some US and French geothermal installations. The theoretical
well power is calculated from well head temperature, production flow and an
assumed return temperature of 40◦C [39].

similar to the ones observed in France. The spatial heat demand713

density is considered as concentrated. These observations jus-714

tify the choice of the partial coverage approach. This decision715

is supported by the geothermal DH system of Riehen, where the716

partial approach was also applied [29]. Based on [39] and [29],717

Figure 15 shows typical heating load curves of a heat pump as-718

sisted geothermal installation in a partial coverage approach.719
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Figure 15: Typical heating load curves of a heat pump assisted geothermal
installation in a partial coverage approach.

In the present case study, it is assumed that the heat load of720

DHW, constant over the whole year, is directly satisfied by the721

heat extraction across the primary heat exchanger. Thus, the722

parameter νmax in the ILP model is set to the maximum thermal723

power extracted across the primary heat exchanger (Q̇HE,max)724

minus the thermal losses occurring along the DH network (Q̇l)725

as shown in Eq. 28. Based on existing data about the DH net-726

work of the city of Lausanne, the thermal losses in summer are727

set equal to 30% of the heat production.728

νmax = Q̇HE,max − Q̇l ≈ Q̇HE,max − 0.3 · Q̇HE,max (28)

As shown in Eq. 29, Q̇HE,max is a function of the maximum729
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mass flow of the geothermal fluid (ṁ), the specific heat capacity730

of water at constant pressure (cp) and the temperature difference731

of the fluid between the inlet and outlet of the heat exchanger732

(∆Tgeo, HE = 65◦C-50◦C).733

Q̇HE,max = ṁ · cp · ∆Tgeo, HE (29)

According to Eq. 13 and Eq. 28, νmax and νmin are set equal734

to 1’098 kWth and 1’054 kWth respectively. This assumes ideal735

heat exchanges. Thus, the cluster sizing is based on the sum-736

mer conditions and the geothermal well is oversized compared737

to the heating demand in summer by a minimum factor of 3.44.738

This factor is the ratio between the maximum thermal power739

which can be delivered by the geothermal fluid (3’780 kWth)740

and νmax (1’098 kWth). This result is coherent with the heat-741

ing load curves of the geothermal installation in Riehen [29]742

and with the results in [39]. The parameters set P presented in743

Eq.12 corresponds to the DHW demand of the buildings, which744

is considered constant over the year. Figure 16 presents the ter-745

ritorial configuration of the 16 clusters resulting from the ILP746

process.747

Figure 16: Spatial configuration of the resulting clusters. The centroids of sub-
clusters are represented by black points. Even if the DHW heating demand is
similar in each cluster, their size vary significantly according to their location.
The spatial density of the DHW heating demand is higher in the city center.
Satellite image: Landsat 7 image, 2016.

3.4. DH network length estimation748

In order to compare the validity of the DH length estimation749

presented in section 2.3 with real cases, the methods are applied750

to a set of 399 buildings currently connected to the existing DH751

network. This comparison is shown in Figure 17. Figure 17a752

shows the existing DH network connecting the buildings. Its to-753

tal length is 23’235 m. This length is exclusively based on the754

latitudinal and longitudinal coordinates. Variation in altitude is755

not considered here. Figure 17b shows the modeled DH net-756

work configuration. Its total length is 24’132 m, 3.7% higher757

than the real one. This is explained by the imperative usage of758

the roads network for the pipelines. Detours are unavoidable if759

the DH network is forced to follow the roads. As an example,760

the black arrow in Figure 17b shows a typical detour implied by761

the routing method. Moreover, the map of the real DH network762

provided by the city is not precise enough since some buildings763

are not perfectly connected to the network. On the other hand,764

if the Johnson’s algorithm is skipped in the methodology steps765

and Euclidean distances between the buildings are considered766

instead, the total length of the modeled DH network is only767

13’482 m. This highlights the importance of the routing algo-768

rithm. Thus, forcing the pipeline networks to follow the roads769

offers a good approximation of the real DH network length. For770

comparison, the method developed by Girardin et al. [11] is ap-771

plied on the example buildings set and a total length of 9’629772

m is computed7.773
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(b) Modeled DH network

Figure 17: Comparison between the existing DH network and the modeled DH
network. Blue points represent the buildings while the red lines represent the
network pipelines. The length of the existing network (a) is 23’235 m. The
length of the modeled network (b) is 24’132 m. The black arrow shows a typical
detour implied by the routing method.

As an example, Figure 18 shows the spatial configuration of774

the DH network modeled in cluster 2. It illustrates the fact that775

the modeled DH network is forced to follow the roads. In addi-776

tion, detours are also observed for the two southernmost build-777

ings.778

The DH network lengths of all clusters are available in the779

ESI.780

The specific lengths are calculated on the basis of the DH781

lengths. The specific length of a cluster is defined as the ratio782

between its DH network length and its DHW demand. The783

spatial distribution of the specific lengths is presented in Figure784

19. The latter highlights low specific lengths in the clusters c6,785

c8, c12, c13 and c16. This is explained by the higher building786

density in the city center.787

3.5. Cluster-oriented urban energy system modeling788

Figure 20 presents the cluster-oriented urban energy system789

model developed for the case study.790

7The topological factor of 0.23 is used. This is the default value available in
[11] calculated for the City of Geneva, Switzerland.
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Figure 18: The configuration of the DH network modeled in the cluster 2. The
blue points represent the buildings while the red lines represent the network
pipelines. The black dotted lines correspond to the road network.

Figure 19: Map of the specific lengths of the clusters. The cluster id is displayed
on the polygons. Satellite image: Landsat 7 image, 2016.

The energy resources are of two types: imported and indige-791

nous. In order to satisfy the demand in energy services, the city792

imports oil, natural gas and electricity. Energy resources such793

as municipal solid waste, dry sludge and wet wood are indige-794

nous resources. It is assumed that indigenous resources are free795

for the city, except for the wet wood which includes a harvest-796

ing cost.797

The existing DH system of the city is modeled in the subsys-798

tem c0. It includes the WWTP, the MWSI, the centralized boil-799

ers (oil and natural gas), the network pipelines and the heating800

demand of the connected buildings. A unit called ”Inter-DHN”801

allows the transfer of the excess heat from c0 to the other clus-802

ters. If the excess heat cannot be fully transferred, the excess803

heat sink (EHS) unit is used in order to close the thermal energy804

balance.805

Clusters c1 to c16 have the same superstructure, i.e. the same806

unit models are included. Parameter values are adapted for each807

cluster. Each cluster includes the following units: a geothermal808

well (Geo. well), a primary heat exchanger (HE), a heat pump809
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Figure 20: Superstructure of the whole urban heating system.

(HP), a centralized natural gas boiler (Central. Boiler), a de-810

centralized natural gas boiler (Boiler), a DH network (DHN),811

thermal losses (Losses), an interconnection DH network (Inter-812

DHN) and the heating power demand including SH and DHW.813

The unit parameters are available in the ESI. The different cate-814

gories for the thermal flows are denoted ”HC”in Figure 20. The815

drilling investment costs of the wells are averaged over the area816

of each cluster based on the data presented in Figure 10. The817

maximum heat transfer capacity of the primary heat exchanger818

is fixed to 1’569 kW (Q̇HE,max), as in Eq. 29. The main parame-819

ter of the heat pump is the ratio between the energy output (heat820

delivered) over the energy input (electricity), named the coeffi-821

cient of performance (COP). The COP depends on the operating822

conditions (temperature difference). The relationship between823

the heat load delivered Q̇−h , the electricity consumed Ė+

el and the824

COP is given in Eq. 30.825

Q̇−h = COP · Ė+

el (30)

The real COP is expressed as a ratio of temperatures as826

shown in Eq. 31.827

COP =
Th

Th − Tc,lm
· η (31)

where Th is the temperature at the condenser (temperature828

at the DH network), Tc,lm is the log mean temperature at the829

evaporator (temperature of the geothermal fluid) and η (0.45) is830

the cycle’s second law efficiency compared to an ideal cycle.831

The centralized natural gas boiler is used as a back-up in peri-832

ods of high heating demand as shown in Figure 15. The decen-833

tralized natural gas boilers are aggregated and represented by834

one unit. The price of the gas is fixed at 111.14 CHF/MWh8.835

It has to be noted that the considered gas price is quite high.836

The thermal losses Q̇l generated along the DH networks are837

computed based on Eq. 18 presented in the methodology. The838

8This price corresponds to a reference gas price for the year 2050 [41]. It is
assumed that the price for the City of Lausanne is twice the import price at the
Swiss borders [42].
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parameters Tground and U are defined as follows: Tground is as-839

sumed constant over the year and equal to 10◦C, U is assumed840

to be equal to 0.295 W/K/m9.841

Each cluster can receive the excess heat from c0 through842

the unit ”Inter-DHN”. The latter represents additional network843

pipelines connecting the existing DH network and the poten-844

tial new ones. The length of the ”Inter-DHN” unit included in845

ck is defined as the shortest Euclidean distance that can be ob-846

served between a building of c0 and a building of ck. The Eu-847

clidean distance is chosen here as a simplification. Heat trans-848

fers among the clusters c1-c16 are not permitted in the cluster-849

oriented energy system model. This is motivated by the fact that850

in the clustering process the heat demand of each cluster is con-851

strained to match the heat availability of the geothermal well.852

In this way, one geothermal well can satisfy the heat demand of853

one and only one cluster.854

Figure 21 presents the results of the optimization. The to-855

tal annual costs per square meter of heated floor space is dis-856

tributed among the different technologies for each cluster. The857

costs of the cluster c0 do not appear as they refer to an exist-858

ing system, and thus they represent a fixed component in the859

objective function. Results show that it is economically more860

profitable to install DH systems in clusters c6, c8, c12, c13 and861

c16. This is in line with the specific lengths shown in Figure 19.862

The investment cost of the DH network in the centralized clus-863

ters represents an important part of the total annual cost (23.3%864

on average). The cost related to the gas import represents on av-865

erage 50.4% of the total annual cost for centralized cases. This866

corresponds to a reduction of 33% on average10 compared with867

the decentralized configurations.868
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Figure 21: Distribution of the total annual cost per square meter of heated floor
space in the different clusters. For each technology, the investment cost (Inv)
and the operating cost (O&M) are represented independently. NG and Dec
mean natural gas and decentralized respectively. Intra DHN is the network in
each cluster.

In order to compare the benefits or the losses associated to869

the deployment of DH in each cluster, centralized and decen-870

tralized options are compared for each of the clusters. Figure871

22 shows the total annual cost differences per square meter of872

heated floor space between optimal centralized and decentral-873

ized options. The differences vary between -2.37 CHF/yr/m2
874

9From discussion with the CADOUEST company, Lausanne.
10Based on a comparison centralized vs. decentralized scenarios for the five

clusters for which centralization is economically optimal.

and 8.4 CHF/yr/m2. A negative (positive) value indicates that875

the total annual cost is higher (lower) with a decentralized con-876

figuration compared with a centralized one. It is economically877

profitable to install a DH system in the clusters c6, c8, c12, c13878

and c16. The greater benefits are offered by centralizing the879

heating systems of clusters c8 and c12 with 1.16 CHF/yr/m2 and880

2.37 CHF/yr/m2, respectively. On the contrary, clusters c9 and881

c11 are the least suitable for centralization involving cost in-882

creases of 8.4 CHF/yr/m2 and 8.09 CHF/yr/m2, respectively.883

Figure 23 shows the spatial distribution of these total annual884

cost differences. The most interesting areas for a new DH in-885

tegration are generally located in the center and in the south of886

the city (c6, c8, c12, c13 and c16). This is explained by a shorter887

DH network length required in these zones, which is a conse-888

quence of the higher density of the heating demand. Moreover,889

the investment cost for the wells are lower in these zones as890

shown in Figure 10. This is mainly due to the lower depth of891

the aquifer in these areas. The application of the methodology892

to the example case study highlights the economical interest of893

geothermal energy for direct heat supply in some urban sites.894
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Figure 22: The total annual cost differences per square meter of heated floor
space between optimal centralized and decentralized options for the differ-
ent clusters. A negative/positive value indicates that the total annual cost is
higher/lower with a decentralized configuration compared with a centralization.

4. Discussion895

The methodology allows a rigorous clustering of an urban896

system based on optimization. Compared to other methods in897

the literature (e.g. k-means) the proposed ILP approach allows898

to fully control the clustering process. Moreover, the number899

of resulting clusters does not need to be fixed but it is a result900

of the optimization. The addition of case-specific constraints901

offers the possibility to adapt the zoning to the local conditions902

and objectives. As an example, in this work compact building903

clusters are defined by adjusting their sizes to the availability of904

a given resource. The set of constraints can be easily adapted to905

different applications. As an example, the proposed ILP clus-906

tering could be adopted for statistical analysis purposes.907

Due to the high number of binary variables, a pre-clustering908

is proposed to reduce the ILP clustering problem size. Results909

highlight that the size of the ILP model is limited by the com-910

putational resources (memory requirements). Thus, the use of911

High-Performance Computing (HPC) is recommended in order912
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Figure 23: The spatial distribution of the difference in total annual cost
per square meter of heated floor space between centralized and decentral-
ized options. A negative/positive value indicates that the total annual cost is
higher/lower with a decentralized configuration compared with a centralization.
Green color shows the zones where a centralization is economically attractive.
Dark green color highlights the most interesting clusters. The cluster id is dis-
played on the polygons. Satellite image: Landsat 7 image, 2016.

to maximize the spatial resolution. Parallelization of the model913

on several compute nodes could be a future development.914

Routing methods and graph theory allow to define a realis-915

tic DH network configuration in each cluster. The application916

of Johnson’s and Kruskal’s algorithms optimizes the network917

forcing the pipelines to follow the road network. Compared to918

an existing DH network, the proposed method obtains a rela-919

tive error of 3.7% in estimating the network length. The error920

is much lower in comparison to other methods proposed in the921

literature (e.g. in [11]). The differences between the modeled922

DH network and the existing one can be explained by the fol-923

lowing reasons: the path of the modeled network must imper-924

atively follow the roads; connecting a building with its closest925

road segment can lead to detours in certain particular cases; in926

real cases, DH networks use a ’loop configuration’ in order to927

be able to close some segments for maintenance without inter-928

ruption of the service. The proposed method does not consider929

the possibility of having loops in the network.930

The methodology was applied to an example case study, eval-931

uating the integration of a geothermal energy resource. It is932

demonstrated in the case study that the definition of the param-933

eters νmin and νmax in the ILP model merit a thorough analysis.934

Differences in resource conditions and in heating demand can935

lead to different system designs. The proposed MILP urban en-936

ergy modeling approach offers the possibility to economically937

and spatially evaluate the integration of the resource. This can938

be performed since the heating demand of each cluster meets939

the potential of the resource. Thus, a specific DH network can940

be modeled in the different clusters. By comparing different941

options for heat supply (i.e. decentralized boilers), optimiza-942

tion identifies the most interesting sites for DH deployment.943

The results of the optimization show the interest of deploying944

geothermal DH in some of the clusters. The profitability of945

DH integration is strongly affected by the spatial density of the946

heating demand.947

Spatial analysis can be a precious visualization tool for urban948

energy planners. As an example, in this work GIS and maps949

are used to show the cluster configuration as well as detailed950

pipeline routes.951

The generality of the methodology allows its application to952

other resources and case studies. As the needed input data are953

commonly available (e.g. for cities in Switzerland), the whole954

methodology is readily reproducible for other cities. The ILP955

clustering approach can be adapted to the specific local condi-956

tions of the cities. This means that it can be used with other en-957

ergy resources. As an example, municipal solid waste is a typ-958

ical energy resource that could be integrated in the ILP model959

as a municipal solid waste incinerator could be deployed every-960

where in a city (non-spatially limited resource). The heating de-961

mand of the clusters would be defined by the available amount962

of waste. The combination of graph theory and routing methods963

can be used to preliminary design optimal configurations of net-964

works that are spatially constrained (e.g. by the road network).965

As an example, the method can be applied for the preliminary966

design of water supply or electricity networks.967

5. Conclusion968

A methodology for the spatial integration of DH networks in969

urban energy systems is proposed. Given georeferenced data of970

buildings, energy resource and road networks, the methodology971

allows the identification of promising sites for DH deployment.972

An ILP approach is used to define a rigorous spatial cluster-973

ing of urban systems. Routing methods and graph theory are974

used to model realistic and optimized DH configurations based975

on the road network. A MILP energy model allows the eco-976

nomic evaluation of DH integration in each cluster simultane-977

ously over the whole urban area. The methodology is illustrated978

by the application case study of a geothermal energy resource979

for direct heat supply. The results show the interest of deploy-980

ing a geothermal DH network in some areas of the city.981

The inclusion of georefenced data in energy models is a982

promising perspective in urban energy planning, in particu-983

lar for the preliminary evaluation and design of DH systems.984

This study proposes a methodology allowing the integration985

of georeferenced information while keeping the model within986

tractable sizes. Future developments could envision a paral-987

lelization of the clustering ILP model on several compute nodes988

in order to increase the available computational capacity. This989

would allow the integration of a higher number of binary vari-990

ables and thus a higher accuracy.991
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Glossary1005

DH District Heating
DHW Domestic Hot Water
GIS Geographic Information Systems
ILP Integer Linear Programming
MILP Mixed-Integer Linear Programming
MST Minimum Spanning Tree
Res Resource
SH Space Heating
SP Shortest Path

b Building
c Cluster
Cinv Annualized investment cost
Cop Yearly operating cost
Ctot Total annual cost
d Distance
E Edge set of the graph
G Graph
lr Road segment length
LDH Total length of the DH network
mres Resource mass flow
Nb Number of buildings
Ns Number of subclusters
p Heating power demand
q̇ Thermal power
u Unit
r Road segment
T Edge set of the minimum spanning tree
µ Center of the subclusters
νmin Lower heating demand bound
νmax Upper heating demand bound
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gen in öffentlichen Gebäuden durch eine Heatmap,http://www.1089

ifaf-berlin.de/projekt-details/datum////heatmap/1090

(visited on 14/04/2016).1091
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