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Mechanisms of dynamic fracture
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Crack velocity
.

Limiting crack velocity : in theory, vj;, = cg for mode |
never attained in experiments, rarely exceed 0.4 — 0.7¢cg
seems to depend on experimental setup (geometry, loading conditions)
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Crack velocity

Limiting crack velocity : in theory, vj;, = cg for mode |
never attained in experiments, rarely exceed 0.4 — 0.7¢cg
seems to depend on experimental setup (geometry, loading conditions)

explained by crack tip instabilities [Sharon and Fineberg, 1996]:

» microbranching (~ 0.4cg) : small (1-100 pm in PMMA) short-lived
micro-cracks, highly localized

» mirror, mist, hackle patterns
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Crack branching

Macroscopic branching at even higher velocities

[Ramulu and Kobayashi, 1984] [Kobayashi and Mall, 1977]
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Crack branching

Macroscopic branching at even higher velocities
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[Ramulu and Kobayashi, 1984] [Kobayashi and Mall, 1977]

Criterion for branching ? question is still open...

» experiments and numerical simulations seem to exclude a criterion
based (only) on crack tip velocity

» existence of a critical SIF or ERR ?
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Velocity-toughening mechanism
.

Experiments on PMMA report a strong increase of apparent fracture
energy with velocity : velocity-toughening mechanism

» a large part is attributed to an increase of created fracture surface
due to microbranching

» recent experiments show an increase from 400 J/m? to 1 200 J/m?
between 0.11cg and 0.18cg [Scheibert et al., 2010]

T (km ) |
4 |
~ 43
N
E 2T
=
2300 =
e i :
oo b2 3 4=
52 ke .
- a
é +x ——
g1 ; !
=9 & =5l 1
I~ - e
0 Val )
0 100 200 300 400

Crack velocity (m.s ")

- BBBEBECTTEE M yETEE



Outline
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Variational phase-field model of brittle fracture
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Phase-field approach

» alternative to cohesive elements or XFEM for simulating crack
propagation

» non-local approach : continuous scalar field d(x) representing the
crack + a regularization length fy [Bourdin et al., 2000]

» can be formulated as a damage gradient model
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Phase-field approach

» alternative to cohesive elements or XFEM for simulating crack
propagation

» non-local approach : continuous scalar field d(x) representing the
crack + a regularization length fy [Bourdin et al., 2000]

» can be formulated as a damage gradient model
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» convergence to Griffith theory when lh/L — 0, at least for
quasi-static propagation
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Phase-field approach
I

Many constitutive modeling choices are possible, we follow [Li et al.,
2016]

» elastic strain energy density :

bled) = (1 d)? (Slere)e +pe: f) + Stre)-
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Phase-field approach

Many constitutive modeling choices are possible, we follow [Li et al.,
2016]

» elastic strain energy density :

bled) = (1 d)? (Slere)e +pe: f) + Stre)-

» non-local fracture energy :

3G
8l

Wrac(d, Vd) = =< (d + | Vd|]?)

Remark : existence of an elastic phase for this model
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Phase-field approach
I

Many constitutive modeling choices are possible, we follow [Li et al.,
2016]

» elastic strain energy density :

bled) = (1 d)? (Slere)e +pe: f) + Stre)-

» non-local fracture energy :

3G
8l

Wrac(d, Vd) = =< (d + | Vd|]?)

Remark : existence of an elastic phase for this model

Numerical resolution using a staggered approach :
» minimization of total energy with respect to u : explicit dynamics

» minimization with respect to d : quadratic function with bound
constraints (d, < dp+1 < 1) to enforce damage irreversibility
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Crack branching in homogeneous medium
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Prestrained plate geometry

Prestrained PMMA plate, fixed boundaries [Zhou, 1996]
E =3.09 GPa, v = 0.35, p = 1180 kg/m*, G. = 300 J/m?, cg = 906 m/s
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Prestrained plate geometry

Prestrained PMMA plate, fixed boundaries [Zhou, 1996]
E =3.09 GPa, v = 0.35, p = 1180 kg/m*, G. = 300 J/m?, cg = 906 m/s
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Crack patterns

Au = 0.06mm

Ay = 0.10mm

v, = 338m/s

Au = 0.14mm
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v, = H7Tm/s

v, = 660m/s

» strip geometry I = 2E(AU)?/h = crack should accelerate to cg

» transition from straight propagation to branched patterns

» apparent toughness increases with loading/crack velocity
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Prestrained plate geometry
.

Damoge
\\0\7\5\ LI ]\PD
a) AU =0.035 mm at t = 40 ps b) AU =0.038 mm at t = 40 us
c) AU =0.040 mm at t = 40 us (d) AU = 0.045 mm at t = 20 us
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Prestrained plate geometry
I

Damoge
\\0\7\5\ LI ]\PD
a) AU =0.035 mm at t = 40 ps b) AU =0.038 mm at t = 40 us
c) AU =0.040 mm at t = 40 us (d) AU = 0.045 mm at t = 20 us

however : branching occurs at smaller load levels than in experiments,
crack is too fast = same problem with CZM, non-local integral approach
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Crack velocities
S
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no evident decrease of crack speed after branching
limiting velocity around 0.68cg

- ETTEEE (M ETEE



Damage zone thickening
I
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Damage zone thickening

Level of damage d
2
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Damage zone thickening
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Damage zone thickening

Level of damage d
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Damage zone thickening
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Damage zone thickening

Level of damage d
2
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Damage zone thickening

Level of damage d
2
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Damage zone thickening

Level of damage d

y/ly

progressive thickening of the damaged band before branching

v

v

similar observation using peridynamics

v

branching viewed as a progressive transition from a widening crack
to two crack tips screening each other

v

branching angle seems to depend on geometry
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Apparent fracture energy
.

Damage dissipation rate I' = dEg,c/da interpreted as the apparent
fracture energy
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Apparent fracture energy

Damage dissipation rate I' = dEg,c/da interpreted as the apparent
fracture energy
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Apparent fracture energy

Damage dissipation rate I' = dEg,c/da interpreted as the apparent
fracture energy
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Apparent fracture energy

Damage dissipation rate I' = dEg,c/da interpreted as the apparent
fracture energy

3.0
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e

e—e AU = 0.035 mm (total)
=—a AU = 0.045 mm (total)
=—a AU = (.045 mm (one tip)
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Crack tip horizontal position (mm)

suggests a critical value of I = 2G, associated to branching
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Velocity-toughening mechanism

during propagation and before macroscopic branching
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Velocity-toughening mechanism

during propagation and before macroscopic branching
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24 -« AU = 0.038 mm
AU = 0.04 mm
AU = 0.045 mm
AU = 0.05 mm

N
o

g

—
=

Damage dissipation rate I'/G.
—
o0

—
=

12 i

1-%.[) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Crack velocity/cp

existence of a well-defined '(v) relationship associated to a
velocity-toughening mechanism
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Velocity-toughening mechanism
I
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the ['(v) relationship seems material-independent but
geometry-dependent
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Outline
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Crack propagation in heterogeneous medium
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Propagation in constrained path

experiments report that crack can reach cg if constrained in a weak plane
[Washabaugh and Knauss, 1994]
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Loading AU (mm)  Stored energy (N/m) Crack velocity (cgr)

0.04 618 0.81
0.05 966 0.87
0.10 3,863 0.94
0.15 8,691 0.98
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Propagation in constrained path
I

idem for a series of holes on crack path
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D =0.4mmand S =09 mm
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Propagation in constrained path
I

idem for a series of holes on crack path
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Propagation in constrained path
I

idem for a series of holes on crack path

» velocity of 0.9¢cg for AU = 0.05 mm

» shares qualitative similarities the nucleation and growth of
microcracks interacting with defects

» the apparent fracture energy is much higher than the average
toughness G¢ weak = (1 — D/S)G. =~ 0.56G,
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Interaction with distant heterogeneities
.

crack passing near a hole

Imm from notch
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Interaction with distant heterogeneities
.

crack passing near a hole

-
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Imm from notch 6mm from notch
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Interaction with distant heterogeneities
I

crack passing near a hole

-
————

Imm from notch 6mm from notch

» velocity of the crack tip is larger in the second case

» crack is more attracted : different near-tip stress fields 7 faster crack
looks for other ways of dissipating energy 7
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Interaction with out-of-plane heterogeneities
I

Configuration with an array of holes located away from the middle plane
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B = 0.5 mm offset, AU = 0.04 mm B = 0.5 mm offset, AU = 0.05 mm

B = 0.6 mm offset, AU = 0.04 mm B = 0.6 mm offset, AU = 0.05 mm
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Conclusions and perspectives

I
Conclusion : some physical aspects of dynamic fracture can be
reproduced with the phase-field approach

» propagation characterized by a damage band widening

widening associated to an increase of the apparent fracture energy

existence of a well-defined '(v) relationship

macroscopic branching observed when ' > 2G,

existence of a limiting velocity around 0.7cg

Cr can be reached in constrained geometries

vV V. v vV vY

strong influence of heterogeneities on branching process
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Conclusions and perspectives

Conclusion : some physical aspects of dynamic fracture can be
reproduced with the phase-field approach

» propagation characterized by a damage band widening

widening associated to an increase of the apparent fracture energy
existence of a well-defined '(v) relationship

macroscopic branching observed when ' > 2G,

existence of a limiting velocity around 0.7cg

Cr can be reached in constrained geometries

vV V. v vV vY

strong influence of heterogeneities on branching process

Open questions
» rate-dependent model for PMMA ?
» energy-based branching criterion 7

» better understanding of 3D effects and role of defects
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