Variational phase field model for dynamic brittle fracture

Bleyer J., Roux-Langlois C., Molinari J-F.

EMMC 15, September 8th, 2016

Outline

Mechanisms of dynamic fracture

Variational phase-field model of brittle fracture

Crack branching in homogeneous medium

Crack propagation in heterogeneous medium

Crack velocity

Limiting crack velocity: in theory, $v_{lim} = c_R$ for mode I never attained in experiments, rarely exceed $0.4 - 0.7c_R$ seems to depend on experimental setup (geometry, loading conditions)

Crack velocity

Limiting crack velocity: in theory, $v_{lim} = c_R$ for mode I never attained in experiments, rarely exceed $0.4 - 0.7c_R$ seems to depend on experimental setup (geometry, loading conditions)

explained by crack tip instabilities [Sharon and Fineberg, 1996]:

▶ microbranching (\sim 0.4 c_R) : small (1-100 μ m in PMMA) short-lived micro-cracks, highly localized

► mirror, mist, hackle patterns

Crack branching

Macroscopic branching at even higher velocities

[Ramulu and Kobayashi, 1984]

[Kobayashi and Mall, 1977]

Crack branching

Macroscopic branching at even higher velocities

[Ramulu and Kobayashi, 1984]

[Kobayashi and Mall, 1977]

Criterion for branching ? question is still open...

- experiments and numerical simulations seem to exclude a criterion based (only) on crack tip velocity
- existence of a critical SIF or ERR ?

Experiments on PMMA report a strong increase of apparent fracture energy with velocity : **velocity-toughening mechanism**

- a large part is attributed to an increase of created fracture surface due to microbranching
- ► recent experiments show an increase from 400 J/m² to 1 200 J/m² between 0.11c_R and 0.18c_R [Scheibert et al., 2010]

Outline

Mechanisms of dynamic fracture

Variational phase-field model of brittle fracture

Crack branching in homogeneous medium

Crack propagation in heterogeneous medium

- alternative to cohesive elements or XFEM for simulating crack propagation
- ▶ non-local approach : continuous scalar field $d(\underline{x})$ representing the crack + a regularization length l_0 [Bourdin et al., 2000]
- ▶ can be formulated as a damage gradient model

- alternative to cohesive elements or XFEM for simulating crack propagation
- ▶ non-local approach : continuous scalar field $d(\underline{x})$ representing the crack + a regularization length l_0 [Bourdin et al., 2000]
- ▶ can be formulated as a damage gradient model

▶ convergence to Griffith theory when $l_0/L \rightarrow 0$, at least for quasi-static propagation

Many constitutive modeling choices are possible, we follow [Li et al., 2016]

▶ elastic strain energy density :

$$\psi(\underline{\underline{\varepsilon}},d) = (1-d)^2 \left(\frac{\kappa}{2} \langle \operatorname{tr} \underline{\underline{\varepsilon}} \rangle_+ + \mu \underline{\underline{\varepsilon}}^d : \underline{\underline{\varepsilon}}^d \right) + \frac{\kappa}{2} \langle \operatorname{tr} \underline{\underline{\varepsilon}} \rangle_-$$

Many constitutive modeling choices are possible, we follow [Li et al., 2016]

► elastic strain energy density :

$$\psi(\underline{\underline{\varepsilon}}, \mathbf{\textit{d}}) = (1 - \mathbf{\textit{d}})^2 \left(\frac{\kappa}{2} \langle \operatorname{tr} \underline{\underline{\varepsilon}} \rangle_+ + \mu \underline{\underline{\varepsilon}}^{\mathbf{\textit{d}}} : \underline{\underline{\varepsilon}}^{\mathbf{\textit{d}}} \right) + \frac{\kappa}{2} \langle \operatorname{tr} \underline{\underline{\varepsilon}} \rangle_-$$

► non-local fracture energy :

$$w_{frac}(d, \underline{\nabla}\underline{d}) = \frac{3G_c}{8I_0} \left(d + I_0^2 ||\underline{\nabla}\underline{d}||^2 \right)$$

Remark : existence of an elastic phase for this model

Many constitutive modeling choices are possible, we follow [Li et al., 2016]

► elastic strain energy density :

$$\psi(\underline{\underline{\varepsilon}},d) = (1-d)^2 \left(\frac{\kappa}{2} \langle \operatorname{tr} \underline{\underline{\varepsilon}} \rangle_+ + \mu \underline{\underline{\varepsilon}}^d : \underline{\underline{\varepsilon}}^d \right) + \frac{\kappa}{2} \langle \operatorname{tr} \underline{\underline{\varepsilon}} \rangle_-$$

► non-local fracture energy :

$$w_{frac}(d, \underline{\nabla d}) = \frac{3G_c}{8I_0} \left(d + I_0^2 ||\underline{\nabla d}||^2 \right)$$

Remark : existence of an elastic phase for this model

Numerical resolution using a staggered approach:

- ightharpoonup minimization of total energy with respect to u: explicit dynamics
- ▶ minimization with respect to d: quadratic function with bound constraints ($d_n \le d_{n+1} \le 1$) to enforce damage irreversibility

Outline

Mechanisms of dynamic fracture

Variational phase-field model of brittle fracture

Crack branching in homogeneous medium

Crack propagation in heterogeneous medium

Prestrained PMMA plate, fixed boundaries [Zhou, 1996] E=3.09 GPa, $\nu=0.35$, $\rho=1180$ kg/m³, $G_c=300$ J/m², $c_R=906$ m/s

Prestrained PMMA plate, fixed boundaries [Zhou, 1996] E=3.09 GPa, $\nu=0.35$, $\rho=1180$ kg/m³, $G_c=300$ J/m², $c_R=906$ m/s Crack patterns

- strip geometry $\Gamma = 2E(\Delta U)^2/h \Rightarrow$ crack should accelerate to c_R
- transition from straight propagation to branched patterns
- ► apparent toughness increases with loading/crack velocity

however: branching occurs at smaller load levels than in experiments, crack is too fast \Rightarrow same problem with CZM, non-local integral approach

Crack velocities

no evident decrease of crack speed after branching limiting velocity around $0.68c_R$

- ▶ progressive thickening of the damaged band before branching
- ► similar observation using peridynamics
- ► branching viewed as a progressive transition from a widening crack to two crack tips screening each other
- branching angle seems to depend on geometry

Damage dissipation rate $\Gamma = dE_{frac}/da$ interpreted as the apparent fracture energy

Damage dissipation rate $\Gamma = dE_{frac}/da$ interpreted as the apparent fracture energy

Damage dissipation rate $\Gamma = dE_{frac}/da$ interpreted as the apparent fracture energy

Damage dissipation rate $\Gamma = dE_{frac}/da$ interpreted as the apparent fracture energy

suggests a critical value of $\Gamma \approx 2G_c$ associated to branching

during propagation and before macroscopic branching

during propagation and before macroscopic branching

existence of a well-defined $\Gamma(\nu)$ relationship associated to a velocity-toughening mechanism

the $\Gamma(\nu)$ relationship seems material-independent but geometry-dependent

Outline

Mechanisms of dynamic fracture

Variational phase-field model of brittle fracture

Crack branching in homogeneous medium

Crack propagation in heterogeneous medium

experiments report that crack can reach c_R if constrained in a weak plane [Washabaugh and Knauss, 1994]

Loading ΔU (mm)	Stored energy (N/m)	Crack velocity (c_R)
0.04	618	0.81
0.05	966	0.87
0.10	3,863	0.94
0.15	8,691	0.98

idem for a series of holes on crack path

D=0.4 mm and S=0.9 mm

idem for a series of holes on crack path

idem for a series of holes on crack path

- velocity of $0.9c_R$ for $\Delta U = 0.05$ mm
- shares qualitative similarities the nucleation and growth of microcracks interacting with defects
- ▶ the apparent fracture energy is much higher than the average toughness $G_{c.weak} = (1 D/S)G_c \approx 0.56G_c$

Interaction with distant heterogeneities

crack passing near a hole

1mm from notch

Interaction with distant heterogeneities

crack passing near a hole

Interaction with distant heterogeneities

crack passing near a hole

- ▶ velocity of the crack tip is larger in the second case
- ► crack is more attracted : different near-tip stress fields ? faster crack looks for other ways of dissipating energy ?

Interaction with out-of-plane heterogeneities

Configuration with an array of holes located away from the middle plane

$$B = 0.5$$
 mm offset, $\Delta U = 0.04$ mm

$$B = 0.5$$
 mm offset, $\Delta U = 0.05$ mm

$$B = 0.6$$
 mm offset, $\Delta U = 0.04$ mm

$$B=0.6$$
 mm offset, $\Delta U=0.05$ mm

Conclusions and perspectives

Conclusion: some physical aspects of dynamic fracture can be reproduced with the phase-field approach

- ▶ propagation characterized by a damage band widening
- ▶ widening associated to an increase of the apparent fracture energy
- \blacktriangleright existence of a well-defined $\Gamma(v)$ relationship
- ▶ macroscopic branching observed when $\Gamma \ge 2G_c$
- \blacktriangleright existence of a limiting velocity around 0.7 c_R
- ► *c*_R can be reached in constrained geometries
- ► strong influence of heterogeneities on branching process

Conclusions and perspectives

Conclusion: some physical aspects of dynamic fracture can be reproduced with the phase-field approach

- ▶ propagation characterized by a damage band widening
- ▶ widening associated to an increase of the apparent fracture energy
- \blacktriangleright existence of a well-defined $\Gamma(v)$ relationship
- ▶ macroscopic branching observed when $\Gamma \ge 2G_c$
- \blacktriangleright existence of a limiting velocity around 0.7 c_R
- ► c_R can be reached in constrained geometries
- ► strong influence of heterogeneities on branching process

Open questions

- ► rate-dependent model for PMMA ?
- energy-based branching criterion ?
- better understanding of 3D effects and role of defects

