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Abstract. The elliptic curve Curve25519 has been presented as pro-
tected against state-of-the-art timing-attacks [2]. This paper shows that
a timing attack is still achievable against a particular X25519 imple-
mentation which follows the RFC 4 7748 requirements [10]. The attack
allows the retrieval of the complete private key used in the ECDH pro-
tocol. This is achieved due to timing leakage during Montgomery ladder
execution and relies on a conditional branch in the Windows runtime
library 2015. The attack can be applied remotely.
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1 Introduction

Side-channel attacks are a proven practical means of attack against crypto-
graphic implementations [5]. They make use of physical quantities, e.g., electro-
magnetic emanations, power consumption, photon emissions, timing variations,
etc., to retrieve some sensitive information such as a secret key. Timing attacks
were first presented in 1996 by Kocher [8]. They have been shown to be very ef-
fective while easily performed. In particular side-channel timing attacks are not
intrusive and do not require high-end equipment nor necessarily physical access
to the targeted system. Thus they can be applied remotely.

Elliptic curves are increasingly used in cryptography. The asymmetric keys of
an ECC implementation are smaller than those required for an RSA implemen-
tation with the same cryptographic security. RFC 7748 [10] presents an ECC
design that uses regular operations and is thus supposed to be resistant to side-
channel timing attacks. The RFC is intended to prevent use of curves which have
inherent side-channel leakage weaknesses. Classical side-channel attacks against
such poor ECC implementations are published regularly, e.g., [1] and [6].
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In this paper we show that having regular operations is necessary but not
sufficient. It is not possible to ensure a side-channel attack proof system in a high
level environment. Indeed, we do not have real control over a high performance
ecosystem like a server (high-level programming language, compiler/linker, pre-
processor options, etc.). In the following sections we present a timing attack
capable of retrieving the private key used in the ECDH protocol remotely.

2 State of the Art

In his paper [8], Kocher pointed out that it is common for a cryptosystem to
take different amounts of time to execute the same calculation for different in-
puts. This is due to many factors including code architecture, compiler, pro-
cessor optimizations, and cache. He showed that rather simple timing attacks
could be perpetrated on implementations of Diffie-Hellman, RSA, and DSS. He
particularly targeted modular exponentiation, which has a secret or sensitive
input-dependent execution.

Later, Brumley and Boneh showed that it was possible to mount remote
timing attacks by implementing an attack against OpenSSL [3]. By measuring
the time between sending a decryption request to a server and the reception
of the response they were able to extract the private key of the server. They
exploited the fact that the sliding window exponentiation (an optimization of
square and multiply) uses Montgomery reduction in order to reduce modulo q.
This reduction uses an extra step (“extra reduction”) in some specific cases and
this creates a difference in timing which can be exploited. They showed that the
noise due to network communication overhead could be eliminated by sampling
several times. Their attacks required however the network to have less than 1ms
of variance.

In 2011, Brumley and Tuveri [4] showed that remote timing attacks were still
feasible on ECC implementations that were meant to be more resistant to this
kind of attack. They showed that the fixed-sequence Montgomery ladder used in
the computation of the scalar multiplication was not sufficient to fully protect
against their attack. They were able to recover the private key remotely, using
a lattice attack [7].

3 Curve25519

The Curve25519 was first presented by Bernstein in 2006 [2]. It is an elliptic
curve of the form y2 = x3 + 486662x2 + x, which is birationally equivalent
to the Edwards curve: 1 · x2 + y2 = 1 + (121665/121666)x2y2. It exists over
the field Fp, with p = 2255 − 19. The order of the base point is the prime
p1 = 2252 + 27742317777372353535851937790883648493. By design, there is no
need for special processing for O (infinite) or points outside the curve and any
32-byte sequence can be used as public key. Only the x-coordinate of the points
is used in the computations.
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The implementation of this curve for ECDH (called X25519 ) makes use of a
32-byte secret key and a 32-byte public key. The secret key begins with the bits
01 and the last three bits are set to 0.

The value of the x-coordinate of the base point is 9 with prime order p1
(written above) over the field Fp.
The exchange works in the following way:

– Each user takes the public string 9 (x-coordinate of the base point on the
curve) and multiplies it by their secret key keyi. The result is in fact the
public key Ki (only the x-coordinate of the point) of each user.

– The public keys are exchanged and both users then compute keyi ∗Kj , with
Kj a point on the curve and keyi the scalar.

– Each user ends up with the point keyi ∗keyj ∗9 (respectively keyj ∗keyi ∗9),
which is the shared secret.

Curve25519 was presented in 2006 by Bernstein with security in mind. This
curve naturally provides state-of-the-art timing-attack protection. Particularly
the implementation avoids input-dependent branches, input-dependent array in-
dices, and other instructions with input-dependent timings. Moreover, by nature,
this curve offers high speed computation and free key compression. In order to
speed up the computation the integers are loaded into the floating-point regis-
ters. Some parts of the code are directly written in assembly language.

3.1 Curve25519-donna

Adam Langley implemented this curve (in C) in order to compute ECDH. This
version, called Donna [9], follows the RFC recommendations.

It is based on Bernstein’s implementation and makes use of a modified version
of the Montgomery ladder to compute the point multiplications (for projective
coordinates). This Montgomery ladder allows computation of the addition and
doubling in an interleaved way and is intended to do this in a constant time
regardless of input. It makes use of an accessory swap function whose execution
is also expected to execute with constant time. These functions are described in
RFC 7748 [10].

The coordinates of the points of the elliptic curve are represented by a
reduced-degree reduced-coefficient polynomial and each polynomial coefficient
is represented over 64 bits.

Representation of the integers modulo 2255−19. Elements of Z/(2255−19)
can be seen as elements of R (for x = 1), the ring of polynomials

∑
i uix

i where
ui is an integer multiple of 2d25.5ie.
The coordinates of the points on the curve (integers modulo 2255 − 19) are
represented by such a polynomial with the requirement of being reduced-degree
and reduced-coefficient.

Reduced-degree means that the degree of the polynomial is small. In this
case the maximum degree of the polynomial is 9. Limiting the degree of the
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polynomial allows reduction of the number of coefficient multiplications when
multiplying the integer.

Reduced-coefficient means restricting the highest possible value of a coeffi-
cient. For this implementation, the value of the coefficient ui/2

d25.5ie is limited
from −225 to 225.

In summary, the coordinates are represented by the 10 coefficients u0, u1/2
26,

u2/2
51, u3/2

77, u4/2
102, u5/2

128, u6/2
153, u7/2

179, u8/2
204, u9/2

230 from the
polynomial u0 + u1x + ... + u9x

9. The value of a coordinate is given by X =
u0 + u1 + ... + u9. Note that this representation is not unique, but is faster to
compute than the smallest representation [2].

4 Attack

4.1 Environment

The attack was performed on two computers running 64-bit Windows 7 OS. The
first computer was equipped with the Intel processor i5-2400 (3.1 GHz, 4 cores,
4 threads, Sandy Bridge architecture), while the processor of the second PC was
a dual Intel Xeon E5-2630v2 (2.6 GHz, 12 cores, 24 threads, Ivy Bridge). The
code was compiled for 32-bit architectures using Visual Studio 2015 (MSVC). It
makes use of the Windows runtime libraries 2015. The program was written in
C.

In order to be as close as possible to a real case we did not change the
default enabled options in the BIOS: Hardware Prefetcher, Adjacent Cache Line
Prefetcher, DCU Streamer Prefetcher, and DCU IP Prefetcher.

Counter. In order to measure timings we made use of the assembly instruction
for Intel processors called rdtsc (for Read Time-Stamp Counter) which allows
reading of the time stamp counter of the processor. The time-stamp counter
is contained in a 64-bit MSR (Model-Specific Register). Using this command
before and after the processing, it was possible to determine the elapsed number
of clock cycles. This instruction is not portable as it can only be applied to Intel
processors.

4.2 Timing Leakage Observation

Although the computation of the scalar multiplication should be time-constant,
we spotted some timing differences depending on the value of the key. When
comparing the mean value (over 10,000 measurements) of the execution times of
the multiplication of the base point 9 with either the same key or different keys,
we observed some differences (Figure 1). We made three observations from the
results shown on Figure 1.
First, the counter induces some timing differences. Two identical executions do
not take the same number of cycles.
Second, the variance of the timing executions is different for the execution of
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Fig. 1. Computation times depending on the key.

the same computation and the computation with different values of key. This
implies some input-dependent instructions.
Third, the timing difference seen is small. For 256 bits the difference is at most
4000 clock cycles while the overall computation takes about 1.6 million clock
cycles.

4.3 Timing Leakage Origin

After a careful analysis of the binary code, the observed timing leakage appeared
to be coming from the assembly function llmul.asm found in the Windows run-
time library5. The function llmul.asm is called to compute the multiplication
of two 64-bit integers. It contains a branch condition which causes differences
in execution time (see Figure 2, line 65). If both operands of the multiplication
have their 32 most significant bits equal to 0 then the multiplication of these
words is avoided as the computation is correctly judged to be 0.

This runtime function is called by the program when executing the multipli-
cation with a constant fscalar product (Listing 1.1) in the Montgomery ladder
algorithm described in [10]. There was no way to see that this ordinary multi-
plication could cause a difference of timing, especially as a carry is never needed
with coefficients being smaller than 225.

Listing 1.1. Code in fscalar product function

for ( i = 0 ; i < 10 ; ++i ) {
output [ i ] = in [ i ] ∗ s c a l a r ;

}
We saw in Section 3.1 that the coefficients representing the coordinates are

bounded between −225 and 225, thus smaller than 232 and representable over

5 A runtime library is a library for a specific environment. It contains pieces of code
that can be called by a program executed in this environment.
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Fig. 2. Part of the code of the Microsoft llmul function with incriminating line

32 bits only. However, two’s complement representation is used and negative
numbers are represented with leading ones. As the choice was made to work
with 64-bit integers, for negative numbers the 32 most significant bits are all
ones.

In addition, the constant a24 (121665) is a positive integer represented over
32 bits and the 32 most significant bits are therefore all 0. Thus the execution of
the second part of the code of llmul only depends on the sign of the coefficient.
We can say that the computation time of a key bit (ki) in the Montgomery ladder
is dependent on the number of negative coefficients representing the coordinates
of the point being processed.

4.4 Timing Attack

In the Montgomery ladder, the value of the key bit ki only decides which co-
ordinates will be doubled and which ones will be added. Let’s call cij the jth

coefficient of the polynomial representing the intermediate value of the new Z-
coordinate of the point which is multiplied by the scalar for the bit ki in the
Montgomery ladder.

The values of the coefficients cij ’s depend on several parameters: the base
point, the values of the previously processed bits of the key, and ki. For a given
base point and fixing the previous bits (more significant) it is possible to count
the number of negative coefficients among the cij ’s, by executing the code until
ki. Depending on the base point and the key there can be a different number of
negative coefficients when ki = 0 or ki = 1. This difference can go from 0 to 10
which is still a very small difference in terms of clock cycles.

Attack core idea. We can see the overall computation time (called F below)
as the time required to process all the previous bits, the attacked bit and the
next bits. For a key k = kl−1kl−2...k1k0 and a base point P , we have:

F (k, P ) =
∑
j>i

f(kj |kl−1, kl−2, ..., kj+1, P )

+ f(ki|kl−1, kl−2, ..., ki+1, P )

+
∑
j<i

f(kj |kl−1, kl−2, ..., ki, ..., kj+1, P )

(1)
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where f is the time of the processing of 1 bit in the Montgomery ladder.

Keeping this in mind, if we choose base points so that there is the same
number of negative coefficients for the ith bit ki the time due to the processing
of the other bits (before and after) can be assumed to be random from one
execution to another.
Thus taking the mean over n executions with different base points Pj ’s, we have:

Fµ(k, Pj ’s) =
1

n

n∑
j=1

(
f(ki|kl−1, kl−2, ..., ki+1, Pj) +N(µN , σ

2)
)

(2)

where N is some Gaussian noise of mean µN and standard deviation σ. We know
that the average of Gaussian noises tends to the mean:

Fµ(k, Pj ’s) ∼=
1

n

n∑
j=1

f(ki|kl−1, kl−2, ..., ki+1, Pj) + µN (3)

Then, for different sets of base points A and B:

Fµ(k, Pj ’s ∈ A) > Fµ(k, Pj ’s ∈ B)⇒

1

n

n∑
j=1

f(ki|kl−1, ..., ki+1, Pj ’s ∈ A) >
1

n

n∑
j=1

f(ki|kl−1, ..., ki+1, Pj ’s ∈ B)
(4)

If we select base points causing more negative coefficients when the bit ki is 0
or 1 respectively (let’s call the sets high0 and high1 respectively) and compare
the overall computation times, we are able to find the value of ki:

ki =

{
0, if Fµ(k, P ij ’s ∈ high0) > Fµ(k, P ij ’s ∈ high1)

1, otherwise
(5)

Timing measurements. The attack procedure is described in Algorithm 1.
We maintain a constructed key (keyc) with the bits we found from the unknown
key (keyu). The base points are chosen by picking a point value at random,
executing the scalar multiplication routing and simply counting the number of
negative coefficients for the cases when ki = 0 and ki = 1. We want the difference
between those two values to be at least 8. If we compare the average of the times
to compute the scalar multiplication for base points of high0 with the mean of
the times for base points of high1 then the difference does not depend on the
rest of the bits.

It can be noted that the difference in the number of negative coefficients
between base points of high0 and the ones of the base points of high1 is at least
6 (a high value is at least 8 and a low value can be at most 2, thus the minimum
is 8− 2 = 6).
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Algorithm 1 Attack Procedure

1: Knowing the i first bits of keyu, set the first bits of keyc to these values
2: Executing the code separately with keyc and a random base point, we count the

number of negative coefficients in the polynomial representation of the point when
multiplying by the bit i + 1, for ki+1 = 0 and ki+1 = 1. We call them coeff0 and
coeff1 respectively.

3: if coeff0 − coeff1 > 7 then
4: Add base point to the set high0

5: else
6: if coeff0 − coeff1 < −7 then
7: Add base point to the set high1

8: Repeat steps 2 to 7 until we have 200 points in each set.
9: For each base point high0 and high1, compute 25,000 times the scalar multiplica-

tion with keyu and measure the overall time of execution.
10: For each base point, take the mean value over the 15 minimum values of timing

measured. We call these means µi’s.
11: Compute the mean (µhigh0) of the µi’s for base points in high0

12: Compute the mean (µhigh1) of the µi’s for base points in high1

13: If µhigh0 > µhigh1 , then ki+1 = 0, otherwise ki+1 = 1
14: Repeat steps 2 to 13 until the same value for ki+1 was found twice.
15: Set ki+1 to the value found twice and go to 1 for the next bit

5 Results

Although the distribution of the µi’s is not a clean Gaussian distribution it is
possible to get some coherent results when taking the minimum values. When
comparing the average values of the high0 and high1 base points computation
times, we observe a difference as expected (Figure 3). In order to obtain some
more accurate timing measurements, each ECC execution was associated to a
specific core (affinity selection) on the server. It seems that, contrary to Linux
systems, Windows has an aggressive management of power consumption of cores,
which induces bigger variations in the timing measurements.

5.1 Evaluation of the Attack

This attack works but it takes some time to recover all the bits of the key.
The time required to compute one ECC computation is around 1.6 million clock
cycles. 25,000 measurements per base point are needed. There are 400 base points
per bit and this is performed 2 to 3 times per bit. On the Intel Xeon processor,
at 2.6 GHz, this represents about 15 seconds for the 25,000 measurements. As
5 bits are fixed we need to recover 251 bits. Hence, we need about 1 month to
recover the whole key with this method. It is probable that an optimization of
the number of measurements and base points would decrease the time needed.

The measurements need to be repeated many times because the execution
times can vary significantly and we are looking for a very small difference in
timing. Taking the mean over the 15 minimum values appears to be a good
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Fig. 3. Comparison of the means of high0 and high1 for ki = 0

compromise as the minimum value is more stable than the mean of the measures
but, if this minimum value is rare (e.g., because of what is running on the same
processor), it can lead to errors. This is certainly not the most efficient way.
It is however robust and allows targeting of all sorts of systems which may
have very different behaviors. Creating a precise model of the distribution of the
measurements would take time and would remain specific to a given system.

As the attack requires knowledge of the bits preceding the bit being attacked
it is not possible to target a specific bit of the key without processing all the
previous bits. Furthermore, once a mistake is made in the presumed value of
a bit, the chance of correctly recovering the subsequent bits is negligible (the
attack makes no sense as we choose the base points high0 and high1 for another
key).

Fine tuning the number of measurements and base points could be performed
in order to decrease the time of the attack. Furthermore, when there are only a
few bits left to recover, a brute-force attack might be faster than continuing the
attack until the very last bit of the key.

Other analyses based on the “profiled attack” approach with a parametric
template (on a multi-dimensional Gaussian model) or a machine learning system
could be interesting to investigate.

5.2 Extension to Remote Attacks.

As the overall times of computation are measured the attack was expected to also
be feasible remotely. In order to test this hypothesis we measured response times
of network communications on a local server (ping requests). When we added
the network delays to the timings of the overall computations and applied the
attack we were still able to retrieve the correct values of the bits.
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6 Conclusion

It has been shown above that simply following the recommendations of the RFC
and having a “constant-time” source code is not sufficient to prevent timing leak-
age. Once a security design is implemented, whatever effort is put into protecting
each part of the code, there still remains a strong possibility of a timing leak. It
is virtually impossible to have control over all the parameters at stake. Compiler
and processor optimizations, processor specificities, hardware construction, and
runtime libraries are all examples of elements that cannot be predicted when
implementing at a high level.

The attack developed shows that the effects of these low-level actors can be
exploited practically for the curve X25519. It is not only theoretically possible
to find weaknesses, they can be found and exploited in a reasonable amount of
time.

Nevertheless, the idea of ensuring that the design itself is secure by using a
formalized approach such as RFC is however an important step in minimizing
the side-channel leakage of any final system.

This paper also highlights one particular aspect: the potential weakness of
other codes implemented using the Windows runtime library.

References

1. Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and Mehdi Tibouchi:
Side-Channel Analysis of Weierstrass and Koblitz Curve ECDSA on Android
Smartphones. Cryptology ePrint Archive, Report 2016/231 (2016)

2. Daniel J. Bernstein: Curve25519: new Diffie-Hellman speed records. In 9th in-
ternational conference on theory and practice in public key cryptography, 207–228
(2006)

3. David Brumley and Dan Boneh: Remote timing attacks are practical. Computer
Networks, 701–716 (2005)

4. Billy Bob Brumley and Nicolas Tuveri: Remote timing attacks are still practical.
ESORICS (2011)

5. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi: Template attacks. In CHES
2002 Proceedings from Springer-Verlag, 13–28 (2002)

6. Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom:
ECDSA key extraction from mobile devices via nonintrusive physical side channels.
Cryptology ePrint Archive, Report 2016/230 (2016)

7. Nick Howgrave-Graham and Nigel P. Smart: Lattice attacks on digital signature
schemes. Des. Codes Cryptography 23(3):283–290 (2001).

8. P. Kocher: Timing attack on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Advances in Cryptology: Proceedings of CRYPTO ’96, 104–113.
Springer-Verlag, (1996)

9. Adam Langley: Implementation of curve25519-donna.
http://code.google.com/p/curve25519-donna. Accessed: 2015-09-16

10. Sean Turner, Adam Langley, and Mike Hamburg: Elliptic Curves for Security.
IETF RFC 7748 (January 2016)


