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The past several years have witnessed the rapid emergence of a new class of solar 

cells based on mixed organic-inorganic halide perovskites. Today’s state of the 

art pervoskite solar cells (PSCs) cells employ various methods to enhance 

nucleation and improve the smoothness of the perovskite films formed via 

solution processing. However, the lack of precise control over the crystallization 

process creates a risk of forming unwanted defects, e.g. pin holes and grain 

boundaries. Here, we introduce a new approach to prepare perovskite films of 

high electronic quality by using poly(methyl methacrylate) (PMMA) as a 

template to control nucleation and crystal growth. We obtain shiny smooth 

perovskite films of excellent electronic quality, as manifested by a remarkably 

long photoluminescence lifetime. We realize stable PSCs with excellent 

reproducibility showing an extraordinary power conversion efficiency (PCE) of 

up to 21.6% and a certified PCE of 21.02% under standard AM 1.5 reporting 

conditions.  



Organic-inorganic halide perovskites are attractive materials for solar cells, because 

of their ease of fabrication, panchromatic absorption of sunlight and long carrier 

diffusion length1. Although the first solid-state perovskite cell with a power 

conversion efficiency (PCE) of 9.7% was reported only in 20122, the PCE was raised 

to over 20 % in 4 years (http://www.nrel.gov/ncpv/images/efficiency_chart.jpg). The 

control over both morphological and electronic properties of the perovskite films is 

crucial to achieve high-performance perovskite devices. Electronic trap states 

resulting from pinholes or crystal defects and grain boundaries enhance non-radiative 

recombination reducing severely the charge carrier lifetime and the 

photoluminescence (PL) yield. This in turn entails a loss in open-circuit voltage and 

overall conversion efficiency3. The morphology of solution-processed perovskite film 

is mainly governed by nucleation and crystal growth. Generally, inducing rapid 

nucleation and slowing down the crystal growth are promising ways to obtain 

perovskite films of high optoelectronic quality. A variety of methods have been 

developed to retard perovskite crystallization, such as adding HI or HCl acid4-6 , and 

employing additives like N,N-dimethyl sulfoxide (DMSO)  or	 1,8- diiodooctane (DIO) 

to form intermediate adducts with Pb2+ 7,8. Several other techniques9-12 have been 

developed to improve the nucleation process, among which antisolvent-dripping has 

turned out to be an efficient method	 13,14  by triggering homogeneous nucleation at the 

surface of the formed layer (solid/antisolvent/air interfaces) to make smooth 

perovskite film with high surface coverage.15 However, further exploration of  

enabling both faster nucleation and slower crystal growth remains challenging. 

Here, we introduce polymer-templated nucleation and growth (PTNG) as a 

new method for crystal engineering of perovskites. The polymer [poly(methyl 

methacrylate), (PMMA)] enables heterogeneous nucleation which is believed to be 



orders of magnitude faster than the homogeneous nucleation due to the lowering of 

the nucleation free energy barrier16. On the other hand, PMMA slows down the 

perovskite crystal growth by forming an intermediate adduct with PbI2 to allow the 

randomly formed nuclei to adjust their orientation to minimize the total Gibbs free 

energy and grow in the thermodynamically preferred orientation17. The cooperation of 

these two effects results in smooth perovskite films with fewer defects and larger 

oriented grains, enabling us to fabricate perovskite solar cells with a PCE over 21%  

Although PMMA has been widely used as a moisture protection barrier on top 

of the back contact of PSCs or mixed with carbon nanotubes to form the hole 

collection layer18. It has so far not been employed to affect the formation of the 

perovskite itself during solution processing. We produce the mixed cation perovskite 

films in a single step from a solution of formamidinium iodide (FAI), PbI2, 

methylammonium bromide (MABr) and PbBr2 in a mixed solvent of dimethyl 

formamide (DMF), dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone 

(NMP)13. During the spin-coating of the perovskite solution, we introduce PMMA in 

a chlorobenzene/toluene mixture to template crystal formation and growth of the 

perovskite. By using this technique for film deposition we fabricate perovskite solar 

cells with the structure Au/Spiro-OMeTAD/ perovskite /mesoporous TiO2/compact 

TiO2/FTO, the cross sectional scanning electron microscopy (SEM) image of which is 

shown in Fig. 1a. Employing this solar cell configuration, we achieve the best PCE of 

21.6% with a PMMA concentration CPMMA =0.6mg/ml. The photovoltaic metrics of 

the device are as follows: short-circuit current density (JSC) = 23.7 mA cm-2, open 

circuit voltage (VOC) = 1.14 V, and a fill factor (FF) = 0.78 (Fig. 1b). One of the 

devices was sent for certification to Newport Corporation PV Lab, an accredited PV 

testing laboratory, confirming a PCE of 21.02% (supplementary Fig.1). The 



commonly observed hysteresis19 is virtually negligible in our devices as proven by J-

V curves shown in Fig. 1b. A histogram of two batches of cells  (supplementary Fig. 

2, Tab.1) indicates excellent reproducibility with an average PCE of 21.0%. 

Preliminary stability investigations show that the unsealed devices containing PMMA 

are stable showing only a 3.3% decay in PCE during exposure to ambient air for two 

months in the dark (supplementary Fig. 3, Tab. 2a and 2b). The photovoltaic metrics 

of the PSCs fabricated from PTNG method  varying CPMMA are summarized in Fig. 1c. 

Upon increasing the PMMA concentrations (CPMMA, mg/ml) in mixed chlorobenzene 

and toluene (volume ratio of cholorobenzene and toluene is 9:1) solution, the PCE 

first augments and subsequently decreases with a peak at CPMMA = 0.6. Upon 

increasing the CPMMA from 0 to 0.6 mg/ml, the Voc rises from 1.10V to 1.14 V, and the 

FF from 0.74 to 0.78. 

Fig. 2 shows the scanning electron microscopy (SEM) images of perovskite 

films deposited on m-TiO2/c-TiO2/FTO substrate by varying CPMMA. As illustrated by 

the left column of images the morphology of the pre-perovskite intermediates20 

present before annealing, changes from a mixture of randomly-distributed 

nanoparticles into homogeneous nanorods. The middle and right columns of images 

show the perovskite film after annealing, the grain size of the perovskite film 

produced by PTNG method increases with the CPMMA and most of the grain 

boundaries become perpendicular to the substrate, benefitting reducing surface area of 

grain boundaries. Hence, the PMMA is expected to uniformly trigger heterogeneous 

nucleation over the perovskite precursor film, improving the grain size and facilitating 

the perovskite to grow in preferred direction reflection of facet with  (111) indices 

being dominant because of the low symmetry of the trigonal perovskite (p3m1) phase 

as indicated in the XRD pattern in Fig. 3a.. Whereas numerous grain boundaries exist 



in cross-sectional SEM of the reference film, no obvious boundary exists in the PTNG 

treated film. On the other hand, above CPMMA> 0.6 mg/ml, new species appeared on 

the surface of perovskite grains, which we attribute to PMMA particles as the brighter 

signal indicate charge accumulation resulting from poor conductivity. This 

phenomenon accounts for the deterioration of the PV metrics when CPMMA exceeds 

0.6 mg/ml PMMA because of the excess of PMMA will impair charge carrier 

collection. 

To further examine the crystal structure, we conducted thin layer X-ray 

diffraction (XRD) measurements for perovskite films deposited on m-TiO2/bl-

TiO2/FTO substrates (Fig.3a). The peak at 12.5o arises from the (001) lattice planes of 

hexagonal (2H polytype) PbI2.  The excess PbI2 is believed to passivate surface defects, 

increasing the solar cell performance13. All the samples show the same trigonal 

perovskite phase with the dominant (111) lattice reflection. We speculate the (111) 

plane to exhibit the smallest surface energy because the majority of grains exhibit this 

orientation to minimize the total Gibbs free energy of the system. With increasing  

CPMMA, the (111) oriented grains grew faster by consuming neighboring non-oriented 

crystals, either by regular grain growth or grain attachment, as evidenced by the 

increased ratio between the (111) and (123) peak at 13.9 ° and 31.5°  in the presence 

of PMMA. By taking the full width at half maximum (FWHM) of the (111) 

reflection, we calculate the crystallite size using Scherrer's equation. Their dimension 

increases from 41 to 55, 70, 94, and 112 nm by increasing CPMMA from 0 to 4mg/ml. 

We attribute the larger crystal sizes to the templating effect of PMMA on the crystal 

growth. The carbonyl groups in PMMA form an intermediate adduct with PbI2 as 

revealed by the Fourier transform infrared spectroscopy (FTIR) spectra in Fig. 3b. 

The stretching vibration of C=O bond in pure PMMA appears at 1735 cm-1, while it 



shifted to 1723 cm-1 upon interaction with PbI2. The shift of the C=O vibration in 

PMMA to higher wavenumber upon interaction with PbI2 is indicative of formation of 

an intermediate PMMA-PbI2 adduct, since it is a consequence of a weakened C=O 

bond strength caused by interaction with the Lewis acid PbI2. The formation of such 

an adduct7 is expected to retard the crystal growth and improve the crystallity of the 

perovskite film.  

To analyze the dynamics of recombination, we performed time resolved 

photoluminescence (TRPL) decay measurements. (Supplementary Fig.4,5)The PL 

decays for perovskite films with CPMMA=0 and 0.6mg/ml deposited on a m-TiO2/c-

TiO2/FTO substrate are shown in Fig. 3c, revealing a much faster PL decay for the 

reference than the PMMA-treated film. The PL decay curves were fitted to a bi-

exponential rate law:  

Y=A1*exp(-t/τ1) + A2*exp(-t/τ2) + y0,  

where A1 and A2 are relative amplitudes, while τ1 and  τ2, are lifetimes for the fast and 

slow recombination, respectively21. The decay is attributed mainly to trap-assisted 

recombination at defects. The film with the PMMA treatment shows for the fast and 

slow phase lifetimes of τ1=23.9 ns (fraction A1=0.37) and τ2=259.3 ns, (fraction 

A2=0.63), respectively. By contrast, the sample without the PMMA treatment gives 

τ1=18.7 ns (fraction A1=0.66) and τ2=123.6 ns, (fraction A2=0.34), respectively. This 

indicates a lower defect concentration and hence superior electronic quality for the 

PMMA-containing perovskite polycrystalline film, consistent with the higher Voc of 

the corresponding PSC13. 

The X-ray photoelectron spectroscopy (XPS) in Fig. 3d shows Pb 4f spectra.  

There are two main peaks Pb 4f7/2 and Pb 4f5/2 at 138 and 142.8 eV, respectively. 

We attribute the two small peaks located at 136.4 and 141.3 eV to the presence of 



metallic Pb22.The presence of a substantial amount of atomic Pb is an indication of the 

existence of iodide vacancies in the perovskite lattice of the control sample. The 

metallic lead species in the film are likely to act as non-radiative recombination 

centers which impairs solar cell operation. Thus, elimination of the metallic lead 

content is critical to realize perovskite films of better electronic quality21 

Interestingly, the atomic Pb peak is greatly reduced in the PMMA treated films, 

probably due to a lower level of iodide vacancies in the crystal lattice of the PMMA 

treatment films. A lower level of Pb defects can reduce the non-radiative 

recombination and increase the PL lifetime, in line with the TRPL results. 

In conclusion, we introduce a new method for preparing high-electronic 

quality perovskite films and implement it for the fabrication of PSC with excellent 

performance their certified PCE attaining 21 %. Further development of the method 

will enable further performance gains. 
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Fig.1 Device structure and performance. (a) A high-resolution cross section SEM 

image of a complete solar cell fabricated by PTNG method, where a smooth and 

compact perovskite capping layer fully covers the mesoporous TiO2 layer (mp-TiO2) 

infiltrated with perovskite. FTO, fluorine-doped tin oxide; bl-TiO2, TiO2 compact 

layer. (b) J-V curves of the champion PSC prepared by the PTNG method measured 

in both reverse and forward direction. (c) Photovoltaic metrics of devices plotted as a 

function of PMMA concentrations (CPMMA, mg/ml) in mixed chlorobenzene and 

toluene (volume ratio of cholorobenzene and toluene is 9:1) solution.  
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Fig.2. Scanning electron microscopic images. Top (left and middle colum) and 

cross sectional (right column) SEM of perovskite films deposited by PTNG method 

with different concentrations (mg/ml) of PMMA. The left column of images are 

perovskite film before annealing, while the middle ones and the right ones are films 

after annealing. 



 

Fig. 3. Comparison of the XRD patterns, FTIR spectra, time resolved 

photoluminescence (PL) measurements (TRPL) and X-ray photonelectron 

spectrocopy (XPS) spectra for perovskite or PbI2 films containing different 

content of PMMA. (a) XRD patterns of perovskite film using different concentration 

of PMMA solution. (b) FTIR spectra of PbI2·PMMA prepared by mixing PMMA 

with PbI2 in a molar ratio of 1:1. (c) TRPL and (d) XPS of perovskite film treated by 

PTNG method with different PMMA concentrations. 
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