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ABSTRACT

Idiap has made one submission to the fixed condition of the

NIST SRE 2016. It consists of two gender-dependent i-

vector systems that use posteriors from a Universal Back-

ground Model and a Deep Neural Network, respectively,

whose scores have been fused via logistic regression. Both

systems use Linear Discriminant Analysis (LDA) for i-vector

post-processing and Probabilistic LDA for inference. The en-

tire system was implemented using the Kaldi toolkit. The

speech/non-speech senone posteriors from a DNN forward

pass were used to segment the data for Voice Activity De-

tection. The gender-dependent PLDA models were trained

on a subset of past SRE data and unsupervisedly adapted to

the unlabelled development data provided for the SRE’16.

1. INTRODUCTION

Our systems are developed based on the state-of-the-art i-

vector framework for speaker recognition [1], targetting the

fixed condition of the NIST SRE 2016 protocol only. We

follow the standard chain of blocks in both the front-end

and back-end of the system. The inter-speaker variability of

i-vectors is retained and/or other variabilities removed us-

ing techniques such as Linear Discriminant Analysis (LDA),

Within Class Covariance Normalization (WCCN) and PLDA

that provide better discriminability amongst speakers [2].

After applying such techniques, i-vectors are assumed to

represent the speaker information in the original recording.

In our system, two versions of the standard i-vector frame-

work are employed: an i-vector system that uses the conven-

tional UBM/GMM as implemented in [1, 3, 4, 5] and another

i-vector system that computes sufficient statistics based on

the DNN system trained for Automatic Speech Recognition

as presented in [6]. The two systems are described in Sec-

tion 2. The data splits to train the systems are then given in

Section 3. The results on the NIST SRE 2016 development

set are provided in Section 4.

2. I-VECTOR PLDA SYSTEM

The i-vector extractor projects Gaussian mean supervectors

on a low-dimensional subspace called total variability space

(TVS) [1]. The variability model underlying i-vector extrac-

tion is

s = m+Tw, (1)

where s is the supervector adapted with respect to a Universal

Background Model-Gaussian Mixture Model (GMM-UBM)

from a speech recording. The vector m is the mean of the

supervectors,T is the matrix with its columns spanning the to-

tal variability subspace and w is the low-dimensional i-vector

representation. In the above given model, the i-vector is as-

sumed to have standard Normal distribution as prior.

The i-vectors obtained from a speech utterance are further

projected onto a discriminative space using LDA, WCCN [7,

1], mean subtraction, length normalization ([8]) and PLDA [2,

9], which together form the back-end of the i-vector system.

Using PLDA parameters two i-vectors can be compared as

belonging to the same class or as belonging to two different

classes, thus generating a simple log likelihood ratio to score

a pair of speech utterances.

The standard i-vector system was recently implemented

for the Kaldi toolkit [10]. An implementation of PLDA based

on [9] available in the Kaldi toolkit [11] is used. The PLDA

model parameters are later adapted unsupervisedly to the

NIST SRE 2016 development set.

Similar to the I-vector PLDA system, we also used a DNN

trained for ASR to model the acoustic subspaces usually mod-

elled with a GMM. That is, to estimate the sufficient statistics

to extract an i-vector for a speaker, we utilize the posteriors at

the output of the forward pass of a DNN. The UBM param-

eters are estimated based on these posteriors [6]. The rest of

the front-end and back-end remain the same as in the system

described in 2.

3. SYSTEM DEVELOPMENT

As our submissions target only the fixed condition, our en-

tire development set was restricted to: Fisher English Corpus



(Parts I and II), Switchboard Cellular (Parts I and II), Switch-

board Phase II (Parts I, II and III), NIST SREs 04, 05, 06,

08 and 10. For simplicity, we will refer to the NIST SREs

mentioned earlier as preSRE16. In addition, we also used the

unlabelled part of NIST SRE 2016 to optimize our system

performances on the labelled part of the same dataset.

For the GMM-UBM i-vector system, the entire Fisher,

Switchboard and preSRE16 corpora were used to train the

UBM and T-matrix. The PLDA was trained on only the

preSRE16 and was adapted to the unlabelled SRE16 corpus.

The DNN for ASR was trained on both parts of the Fisher

English corpora. Speaker adaptation techniques such as fM-

LLR was not used.

All our systems are gender dependent. To train a gen-

der identification engine, we developed an i-vector system by

pooling all data from the Fisher corpus. This system does

not use any discriminative training technique in the back-end.

The i-vectors for the unlabelled SRE 2016 data are then clus-

tered using K-means cluster with K=2. The i-vectors belong-

ing to the two clusters are then averaged. The averaged i-

vectors are compared against the labelled i-vectors in the SRE

2016 set and the gender labels are assigned accordingly. Fur-

ther, these gender-labelled averaged i-vectors are used on the

evaluation set to identify the speaker’s gender.

3.1. Feature configuration

The front-end used 20 MFCC features along with delta and

acceleration parameters, extracted every 10 ms using a win-

dow of 30 ms (as used by systems such as [12]). They were

further processed through a short term Gaussianization mod-

ule ( [13]) with a context of 300 frames. All systems pre-

sented use the same feature configuration.

3.2. Baseline GMM-UBM I-vector system

Gender-dependent GMM-UBM with 2048 components and

i-vector extractors of 500 dimensions were trained. The i-

vector dimension was reduced to 350 after LDA, followed

by mean subtraction and length normalization before being

scored using PLDA. Means were separately obtained for the

preSRE16 and SRE 16 data sets. For the latter, the unlabelled

SRE 16 set was used for system optimization and the entire

SRE 16 development set was used for system evaluation.

The Kaldi toolkit [11] was used for LDA training, PLDA

training and adaptation. A standard i-vector extractor was im-

plemented for Kaldi as well [10], based on the baseline sys-

tem described in [3].

3.3. DNN I-vector system

The DNN system trained for ASR was bootstrapped from a

HMM/GMM system trained on the Fisher datasets. The input

to the DNNs are 540 dimensional vectors obtained by stack-

ing 9 MFCC feature vectors and the output classes are senone

Table 2. Time taken to extract and compare two i-vectors for

the GMM-UBM and DNN i-vector based systems.

System Time taken (s)

GMM-UBM 12.6

DNN i-vector 22.6

Fusion system 35.2

probabilities. We used the Kaldi toolkit to train a DNN with

6 hidden layers with 2’000 sigmoid units per layer and soft-

max units at the output. The DNN parameters were initialized

with stacked Restricted Boltzmann Machine (RBM) that are

pretrained in a greedy layer-wise fashion [14, 15]. The num-

ber of senone states was automatically derived by the tree-

clustering algorithm that was constrained to have around 2k

states in order to be comparable with the number of GMM-

UBMcomponents.

4. EXPERIMENTS

In this section, we report our results on the part of the NIST

SRE 16 development set available for system optimization.

We also report the time taken to evaluate each trial on an av-

erage.

4.1. System performance

We first report the performance of individual systems fol-

lowed by the performance of the fused systems. All results

are presented in Table 1. In general, the performance of

the male systems are significantly better than that of the

female systems. The DNN-based systems perform poorer

than the GMM-UBM system. However, the fusion of the

GMM-UBM and the DNN-based systems provide significant

improvements. For the male system, system fusion reduces

the equalized EER from 10.1% of the GMM-UBM system to

9.2%, which is equivalent to a relative improvement of 8.9%.

Similarly, the relative improvement for the female system

is 5.3%. Combining the results from the female and male

systems reduces the overall unequalized actual DCF.

4.2. Time requirements

In this section, we report the time required to estimate an i-

vector and compare two i-vectors in the two types of i-vector

systems presented. The time taken for each stage of the i-

vector extraction process are presented in Table 2. The sys-

tem time information reported by the time command in the

current Linux systems are reported. The values are averaged

over 100 experiments performed on the NIST SRE 2016 de-

velopment set. The system is run with a single thread on a

Intel Core i7 5930K system with 32 GB RAM with Network

File System mounted disks.



Table 1. Results on the development set of NIST SRE 2016 dataset for all systems presented. EER: Equal Error Rate, DCF:

Decision Cost Function, minDCF: minimum DCF

System Equalized Unequalized

EER (%) minDCF actual DCF EER (%) minDCF actual DCF

GMM-UBM male 10.1 0.6075 0.8087 11.6 0.5626 0.8588

GMM-UBM female 16.8 0.7381 0.7785 17.4 0.7238 0.8956

SI-DNN male 10.3 0.5751 0.7576 11.6 0.5572 0.8768

SI-DNN female 20.4 0.8311 0.8703 21.0 0.8275 0.9364

Fusion male 9.2 0.5441 0.5661 10.0 0.5062 0.7595

Fusion female 15.9 0.7350 0.7504 16.6 0.7037 0.8652

Fusion male+female 12.6 0.6485 0.6582 13.2 0.6100 0.6247

5. SUMMARY

The Idiap submission to the NIST SRE 2016 evaluation was

presented. Two gender-dependent systems based on the state-

of-the-art i-vector speaker recognition framework were used:

a GMM-UBM based system and a DNN-based system. The

GMM-UBM system performed considerably better than the

DNN-based system. Significant improvements were obtained

after fusing the two systems.

6. ACKNOWLEDGEMENT

This work was supported by project Diarizing Massive

Amounts of Heterogeneous Audio (DIMHA) and EU FP7

project Speaker Identification Integrated Project (SIIP). The

authors would like to thank Mathew Magimai-Doss for his

valuable comments on the paper.

7. REFERENCES

[1] Najim Dehak, Patrick Kenny, Rda Dehak, Pierre Du-

mouchel, and Pierre Ouellet, “Front-end factor analysis

for speaker verification,” IEEE Tran. on Audio, Speech

and Language Processing, pp. 788–798, 2011.

[2] Simon JD Prince and James H Elder, “Probabilistic lin-

ear discriminant analysis for inferences about identity,”

in IEEE 11th International Conference on Computer Vi-

sion (ICCV). IEEE, 2007, pp. 1–8.

[3] O Glembek et al., “Simplification and optimization of

i-vector extraction,” 2011, pp. 4516–4519, In Proc. of

ICASSP.

[4] Srikanth R Madikeri, “A hybrid factor analysis and

probabilistic pca-based system for dictionary learning

and encoding for robust speaker recognition.,” in

Odyssey, 2012, pp. 14–20.

[5] Petr Motlicek, Subhadeep Dey, Srikanth Madikeri, and

Lukas Burget, “Employment of subspace gaussian

mixture models in speaker recognition,” in Acoustics,

Speech and Signal Processing (ICASSP), 2015 IEEE In-

ternational Conference on. IEEE, 2015, pp. 4445–4449.

[6] Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell

McLaren, “A novel scheme for speaker recognition

using a phonetically-aware deep neural network,” in

Acoustics, Speech and Signal Processing (ICASSP),

2014 IEEE International Conference on. IEEE, 2014,

pp. 1695–1699.

[7] Richard O Duda, Peter E Hart, and David G Stork, Pat-

tern classification, John Wiley & Sons, 2012.

[8] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis

of i-vector length normalization in speaker recognition

systems,” August 2011, pp. 249–252, In Proc. of Inter-

speech.

[9] Sergey Ioffe, “Probabilistic linear discriminant analy-

sis,” in Computer Vision–ECCV 2006, pp. 531–542.

Springer, 2006.

[10] Srikanth Madikeri, Subhadeep Dey, Petr Motlicek, and

Marc Ferras, “Implementation of the standard i-vector

system for the kaldi speech recognition toolkit,” Idiap-

RR Idiap-RR-26-2016, Idiap, 10 2016.

[11] D. Povey, A. Ghoshal, et al., “The kaldi speech recog-

nition toolkit,” in In Proc. of ASRU 2011, December

2011.

[12] Pavel Matejka, Ondrej Glembek, Ondrej Novotny,

Oldrich Plchot, Frantisek Grezl, Lukas Burget, and Jan

Cernocky, “Analysis of dnn approaches to speaker iden-

tification,” Proc. IEEE ICASSP, Shanghai, China, pp.

5100–5104, 2016.

[13] Jason Pelecanos and Sridha Sridharan, “Feature warp-

ing for robust speaker verification,” 2001.

[14] George E Dahl, Dong Yu, Li Deng, and Alex Acero,

“Context-dependent pre-trained deep neural networks



for large-vocabulary speech recognition,” Audio,

Speech, and Language Processing, IEEE Transactions

on, vol. 20, no. 1, pp. 30–42, 2012.

[15] Dumitru Erhan, Yoshua Bengio, Aaron Courville,

Pierre-Antoine Manzagol, Pascal Vincent, and Samy

Bengio, “Why does unsupervised pre-training help deep

learning?,” The Journal of Machine Learning Research,

vol. 11, pp. 625–660, 2010.


