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Abstract Programmable self-assembly of modular robots offers promising means
for structure formation at different scales. Rule-based approaches have been previ-
ously employed for distributed control of stochastic self-assembly processes. The
assembly rate in the process directly depends on the concurrency level induced by
the employed ruleset, i.e. the number of concurrent steps necessary to build one
instance of the target structure. Our aim here is to design a formal synthesis algo-
rithm to automatically derive rulesets of high concurrency for a given target struc-
ture composed of robotic modules. In the literature, self-assembly of (simulated
or real) robotic modules has been realized through manually designed rulesets or
manually adjusted rulesets generated by employing graph-grammar formalisms or
metaheuristic methods. In this work, we employ an extended graph-grammar for-
malism, adapted for self-assembly of robotic modules, and propose a novel formal
synthesis algorithm capable of generating rulesets for robotic modules by natively
considering the morphology of their connectors. The synthesized rulesets induce a
high level of concurrency in the self-assembly scheme by exploiting controlled in-
formation propagation, using solely local communication. Simulation results of mi-
croscopic (non-spatial) and submicroscopic (spatial) models of our robotic platform
confirm higher performance of rulesets synthesized by our algorithm compared to
related work in the literature.

1 Introduction

Self-assembly (SA) is defined as the reversible and spontaneous phenomenon of an
ordered spatial structure emerging from the aggregate behavior of simpler preex-
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isting entities, through inherently local and random interactions in the system. In
recent years, SA has been extensively studied both as an enabling technique for
micro/nano-fabrication, and as a coordination mechanism for distributed robotic
systems of miniaturized modules with limited capabilities, where highly stochas-
tic sensing, actuation, and interactions are inevitable [13, 1, 4]. Various implemen-
tations of SA have been demonstrated in engineered systems. For instance, a de-
terministic and quasi-serial approach to shape formation through programmable SA
has been implemented in a large swarm of miniaturized Kilobot robots [13]. A com-
pletely different approach is to achieve SA by taking advantage of the stochastic am-
bient dynamics for module transportation. Such approach typically enables simpler
internal design of the programmable robotic modules as well as their on-board algo-
rithms. The robotic modules in [8] stochastically self-assemble on an air table based
on their behavioral ruleset which is first derived for SA of a similar abstract target
graph by a synthesis algorithm, then tuned to suit the specific modules’ morphology.

The problem of ruleset synthesis for programmable SA of graphs was first ad-
dressed in [9]. In principle, all proposed formal synthesis algorithms in this con-
text generate rules by iteratively browsing and parsing a description of the target
structure. In [10], the formalism of graph-grammar is applied to the SA of graphs
and two rule synthesis algorithms are proposed for acyclic and then cyclic target
graphs. Both algorithms result in rulesets which build the target graph serially, i.e.
by adding one atomic agent (graph vertex) at a time. The same work also discusses
the deadlock situation, where the number of copies of the target being built in par-
allel is higher than the maximally feasible number, considering the total number
of available agents. In order to avoid deadlocks the authors then propose a disas-
sociating rule which requires implementation of a consensus algorithm among the
agents. In [3, 12], SA of graphs is achieved while avoiding deadlocks by employing
probabilistic dissociating rules. In order to accelerate the SA process induced by
an inherently serial ruleset, the authors in [12] employ a broadcast radio commu-
nication scheme to decompose less advanced sub-assemblies in favor of the others.
The formalism of graph-grammar is employed in [3] for modeling and control of
SA of abstract graphs. Two formal synthesis algorithms, Singleton and Linchpin,
are then introduced. While Singleton generates utterly serial rulesets, Linchpin in-
duces a more parallel scheme and allows for sub-assemblies of bigger sizes to merge
and form the target graph. Two main factors limit the concurrency induced by the
Linchpin rulesets. First, in an attempt to fully avoid information propagation for
scalability reasons, all sub-assemblies including the ones with identical structure
are labeled distinctly, determining their final placement in the target structure. As a
consequence, several rules are required to form the target, meaning more assembly
time. Second, at each branching point in the target, i.e. at any vertex with two or
more neighbors, the algorithm generates rules to build the branches in parallel and
eventually join them, regardless of the size of the branches. This imbalance in the
size of the concurrently built branches can result in unnecessary delay, as the longer
branch may need more rules to form. The slow nature of stochastic SA highlights
the importance of inducing a high level of concurrency in the process in order to
reduce the total assembly time.
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(a) (b)

Fig. 1 – (a) The Lily robot [5]. (b) Sketch of the full experimental setup [6].

In a previous contribution, we presented an extended graph-grammar formalism
adapted for formulating the problem of SA of robotic modules. The formalism is
based on the notion of extended vertices [7]. In addition, we showed that our ex-
tended formalism allows for a ruleset of complexity O(N) compared to the O(N2)
in the previous literature. In this work, we employ the extended graph-grammar
formalism presented in [7], and propose a new synthesis algorithm with two key
features: first, our algorithm automatically derives rules for robotic modules consid-
ering their latching connectors morphology, and second, it achieves a parallel assem-
bly scheme by exploiting update rules (i.e. information propagation) of controllable
depth between neighboring robots. In order to avoid deadlocks, our algorithm incor-
porates reversible rules. We consider two target structures composed of our floating
Lily robots and compare the performance of rulesets derived by our algorithm and
those of the extended Linchpin, adapted to generate rules for robotic modules [7], in
simulation. To this end, we leverage non-spatial microscopic simulations in Matlab
and high-fidelity spatial submicroscopic simulations in Webots [11].

2 Fluidic Self-assembly of Lily Robots

In this paper, we study the SA of our robotic modules in simulation. For the sake
of thoroughness, here we give a brief summary of the SA process in our real world
experimental system [6]. Our system consists of two main components: 1) the Lily
robots, originally presented in [5], which serve as the building blocks of the SA pro-
cess, and 2) the experimental setup built around them. Lilies are not self-locomoted,
instead, they float on water and are stirred by the flow field produced within a tank by
several peripheral pumps, colliding randomly with other robots. The robots are en-
dowed with four custom-designed Electro-Permanent Magnets (EPM) to latch and
also to communicate locally with their neighbors. Given a target structure, an appro-
priate ruleset is programmed on all robots. The robots’ EPM latches are by default
enabled, resulting in a default latching upon meeting another robot. Once latched,
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the EPM-to-EPM inductive communication channel is physically established. The
robots then exchange their internal states and look for applicable rules in their rule-
set. If no applicable rule is found, they unlatch by switching off their EPM latches;
otherwise they remain latched and update their internal states accordingly.

3 Graph Grammars for Self-Assembly of Robotic Modules

In this section, we summarize the graph-grammar formalism adapted for formulat-
ing SA of robotic modules [7].

Definition: An extended labeled graph is a quadruple G = (V,E,S, `) where
V = {1, ...,N} is the set of extended vertices, E ⊂ V ×V is the set of edges,
S : E→ K×K, with K = {1, ...,Ns} and Ns the total number of link-slots associated
with an extended vertex, defines which slots are involved in a link between two ver-
tices. ` :V→Σ is a labeling function, with Σ being a set of extended labels. A pair of
vertices {x,y} ∈E is represented by xy. The nE(k) represents the neighbors of vertex
k relative to the edge set E. Two extended graphs are considered to be isomorphic
when there exists a bijection h : VG1→ VG2 such that ∀i j ∈ EG1⇔ h(i)h( j) ∈ EG2.
The function h is called a witness. A label-preserving isomorphism has the addi-
tional property that `G1(x) = `G2(h(x)),∀x ∈VG1.

Definition: An extended vertex has ordered link-slots which correspond to the
latching connectors of a robotic module. The numbering on the slots is assumed to
match the one of the physical module, following a counter-clockwise (CCW) rota-
tion convention. We assume that the robotic modules have a rotational symmetry.
As a result, for an isolated module the connectors are anonymous.

Definition: An extended label is a pair l = (la, ln) encoding the internal state of
a module. la represents the control state of the robotic module and ln represents the
index of the most recently engaged connector.

Once two modules are latched, each communicates its internal state in the form
of a relative extended label of l = (la, lh) with la being the module’s control state and
lh being a relative hop number representing the relative orientation of the currently
engaged connector with respect to its predecessor, assuming a CCW hop convention.
For a vertex with an extended label of (la, ln) on a robotic module with N connectors,
the communicated lh is [(ln− lc)modN]+ 1, where ln and lc are the indexes of the
most recently and the currently engaged connectors, respectively. For further details
on application of extended labels see [7].

Definition: An extended rule is an ordered pair of extended graphs r = (L,R).
An extended binary rule can be depicted as l1 l2 ⇀ l3− l4, with the li = (lia, lih)
values being the relative extended label of the engaged vertex i.

Definition: A rule r = (L,R) is applicable to a graph G if there exists I ⊂VG such
that the subgraph G∩ I has a label-preserving isomorphism h : I→VL.

Definition: The triple (r, I, h) is called an action. Application of an action with
r = (L,R) to G gives a new graph G′ = (VG,EG′ , lG′) defined by
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EG′ = (EG− xy : xy ∈ EG∩ I× I)∪ (xy : h(x)h(y) ∈ ER)

`G′(x) =

{
`G(x), if x ∈VG− I
`R(h(x)), otherwise

Definition: The complement or reverse of a rule r = (L,R), is r̄ = (R,L), such

that G
r,I,h−−→ G′

r̄,I,h−−→ G′′ = G.
Note: When forming an edge, the rule is denoted as a “link rule”. When severing

an edge, the rule is denoted as an “unlink rule”.
Definition: An update rule can be depicted as l1− l2 ⇀ l3− l4; it does not create

or sever an edge between two vertexes, instead it modifies their labels.
Definition: A trajectory of a system (G0,φ), where G0 is the initial graph of the

system and φ is a ruleset, is a sequence of G0
r1,I,h−−−→ G1

r2,I,h−−−→ G2
r3,I,h−−−→ ...

Given a set of rules φ , we can study the sequences of graphs obtained from suc-
cessive application of the rules contained in φ . For a probabilistic ruleset, a prob-
ability may be associated with each rule by the mapping P : φ → (0,1], indicating
the tendency for the corresponding event to take place provided that the conditions
under which the rule is applicable are met.

4 Proposed Synthesis Algorithm

Given an acyclic target structure composed of rotationally symmetrical robotic mod-
ules with any number of connectors, our proposed synthesis algorithm derives rule-
sets based on two principles: 1) limiting the size of the concurrently built sub-
assemblies to a user-defined value, and 2) unifying the rules which give rise to
sub-assemblies with similar structures. The algorithm comprises two stages, each
realizing one of the two principles. The first stage parses a graphical description of
the target, and derives a ruleset which builds the target by merging sub-assemblies
with sizes no more than the user-defined value and with distinct labelings, as a result
of employing distinct rules. The second stage then processes this ruleset to iden-
tify the rules producing structures with identical morphology; such rules are then
merged in a single one. As a result of the second principle, i.e. unifying the rules
and consequently the labelings, the rulesets need to include update rules. Consider
the case where the maximum user-defined size is 2. With the rules unified properly,
all dimers (sub-assemblies composed of 2 modules) are labeled similarly. As the
dimers join to build the target, the labelings of both consisting modules need to be
updated to reflect their placement in the forming target structure to allow for proper
further reactions, completing the target eventually. In other words, the use of update
rules is an alternative to building the target out of distinctly labeled sub-assemblies,
as a result of being formed through distinct link rules, according to their intended
placement in the target structure. Thus in general, introducing update rules into the
rulesets can reduce the number of link rules necessary to build the target, at the ex-
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pense of possibly increasing the total ruleset size to include several update rules.
However, this can offer a significant advantage in terms of assembly time. The oc-
currence of the link rules is probabilistic and is determined by the stochastic nature
and dynamics of the system which is relied upon to provide proper interactions in
order for the SA process to progress. The occurrence rate for link rules is usually in
the order of once in tens of seconds. On the other hand, update rules are purely com-
municational rules and do not depend on the system dynamics. Once a proper inter-
action has happened and two modules have bonded successfully, the occurrence of a
proper update rule is solely determined by the modules communication rate, usually
in the order of once in less than a second. Fewer link rules can thus significantly
decrease the total assembly time. The first principle addresses the propagation delay
concerns which can cause scalability issues. Limiting the size of the concurrently
built sub-assemblies allows for restricting the extent by which the update rules need
to propagate. Therefore, in a robotic system with measurable propagation delay and
interaction rate, the update propagation depth can be set accordingly to allow for
a parallel assembly scheme while minimizing possible propagation delay faults. In
order to avoid deadlocks, we employ probabilistic dissociating rules. Appropriate
reverse rules are generated at the end of Stage II. It should be noted that the algo-
rithm only generates the ruleset. Appropriate probabilities should be assigned to the
rules to reliably build the target while avoiding deadlocks.

4.1 Stage I: Grow Subtrees (GS)

Stage I allows for creating concurrently built sub-assemblies similar to the concur-
rency created by the Linchpin algorithm [3], with the additional capability to control
the maximum permitted size of such sub-assemblies. The GS algorithm employed
in Stage I tries to build a given target structure using as many sub-assemblies of a
defined size as possible built in parallel, before trying to join them to make a bigger
sub-assembly and eventually form the target. In principle, the algorithm addresses
the second issue with the Linchpin algorithm (see Section 1). Linchpin generates
rules to build parallel substructures for every branch split in the target recursively in
order to build the target using one final finishing rule. With one finishing rule in the
ruleset, it is shown in [3] that the target can be built reliably while avoiding dead-
locks by having probabilisitic dissociating rules for all rules except for the finishing
rule. The GS algorithm on the other hand, permits a maximum size for the con-
currently built sub-assemblies and as a result may end up building the target using
several concurrent finishing rules. Stage II then processes this ruleset and results in
one finishing rule. Algorithm 1 shows the pseudo code of the GS algorithm. The first
call to GS is by Size= 0. The algorithm then recursively proceeds to create extended
labels and corresponding rules, moving outwards from a starting vertex k. The rule-
set returned by GS for a chain structure of size 6 and maximum sub-assembly size
of 2, is depicted below along with the link rules generated by Linchpin. In order to
simplify the comparison, the rulesets have been designed for an abstract graph.
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1: C : (V,E,S,L,k, l,Size,Smax)
2: procedure GS(C)
3: φ ← /0
4: φ̄ ← /0
5: Size← Size+1
6: if |nE (k)|= 0 then
7: return (l,φ)
8: else
9: {v j : j = 1,2, ..., |nE (k)|} ← nE (k)
10: for j = 1 to |nE (k)| do
11: sk ← S(vk ,v j)
12: s j ← S(v j ,vk)
13: lk ← GVL(L,sk ,vk)
14: if Size < Smax then
15: l j ← GVL(L,s j ,v j)
16: l̄← INCREMENTSTATE(l,1)
17: l← INCREMENTSTATE(l,2)
18: φ̄ ← φ ∪{lk l j 
 l̄− l}
19: SVL(L,vk ,sk , l̄)
20: SVL(L,v j ,s j , l)
21: Size j ← Size
22: else
23: φ̄ ← /0
24: Size j ← 0
25: end if
26: Let (V j ,E j ,S j) be the

component of (V,E−{kv j}) containing v j
27: C : (V j ,E j ,S,L,v j , l,Size j ,Smax)
28: (l,φ j ,Size j)← GS(C)

29: φ ← φ ∪ φ̄ ∪φ j
30: if Size == Smax then
31: l j ← GVL(L,s j ,v j)
32: l̄← INCREMENTSTATE(l,1)
33: l← INCREMENTSTATE(l,2)
34: φ ← φ ∪{lk l j 
 l̄− l}
35: else
36: Size← Size j
37: end if
38: end for
39: end if
40: return (l,φ ,Size)
41: end procedure

42: procedure GVL(L,s,v)
43: (la, ln)← L(v)
44: lh← (ln− s+1) (mod N)
45: return (la, lh)
46: end procedure

47: procedure SVL(L,v,s, l)
48: (la, lh)← l(1 : 2)
49: ln← s
50: L(v)← (la, ln)
51: end procedure

52: procedure INCREMENTSTATE(l,k)
53: return (la + k, ln)
54: end procedure

Algorithm 1 – Pseudo code of the GS algorithm employed in Stage I.

φGS =


0 0 → 1−2 (r1)

0 0 → 3−4 (r2)

0 0 → 5−6 (r3)

4 5 → 7−8 (r4)

2 3 → 9−10 (r5)

φLinchpin =


0 0 → 1−2 (r1)
0 0 → 3−4 (r2)
0 2 → 5−6 (r3)
0 4 → 7−8 (r4)
5 7 → 9−10 (r5)

Consider a set of initially isolated atomic agents, all labeled 0. The rules gener-
ated by GS allow for the target to be built in two concurrent steps, i.e. first (r1,r2,r3)
and then (r4,r5), while the rules synthesized by Linchpin require three concurrent
steps, i.e. first (r1,r2), then (r3,r4), and eventually (r5).

4.2 Stage II: ReGroup Subtrees (RGS)

Stage II processes the ruleset generated by Stage I to unify the link rules which
create up to the maximum size sub-assemblies and add proper update rules. The
key idea of processing is to apply the rules synthesized by GS to two graphs with
initially fully isolated vertices. The two graphs evolve identically in structure but
differ in labeling, one graph is labeled according to the original ruleset, while in
the other graph the forming sub-assemblies are processed to identify the rules with
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products of identical shapes. In order to identify structures with identical shapes
the shape recognition algorithm explained in Section 5.1.2 is utilized. We omit the
pseudo code for the RGS algorithm employed in this stage for brevity. The RGS
algorithm can be explained in four phases:

Forming dimers Unify the rules (of Stage I) which form dimers.
Forming larger sub-assemblies Grow on the dimers. Recognize the shape of the

resulting sub-assemblies. Unify the rules producing identical structures.
Relabeling max-size sub-assemblies Create update rules for relabeling all the

modules in sub-assemblies of up to the max-size (i.e. user-defined value) size.
Growing on max-size sub-assemblies Create necessary rules, both link and up-

date, to form the target assembly out of the max-size sub-assemblies.

Considering the target shape of a chain of size 6 for an abstract graph, the rules
generated by RGS are as below:

φRGS =



0 0 → 1−2 (r1)

1 2 → 4−3 (r2)

1 8 → 10−9 (r3)

1−3 → 6−5 (ru
4)

2−4 → 8−7 (ru
5)

7−9 → 12−11 (ru
6)

2−10 → 14−13 (ru
7)

Two points are noteworthy here. First, the existence of the update rules in the rule-
set (ru

4 to ru
7). And second, the number of concurrent steps necessary for forming

the target being equal to 3. Assuming that the update events are instantaneous and
that the number of available modules is limited, RGS can on average build the target
faster than Linchpin with the same number of necessary concurrent steps (see Sec-
tion 6). This is due to the fact that RGS makes a better use of the available modules
by limiting the number of distinctly labeled sub-assemblies with identical shapes.
At the end of Stage II, the ruleset is augmented with proper reverse rules accounting
for both the link and the update rules. The application of a reverse rule essentially
takes the SA process back in time by reversing the labeling and/or the bonding.

Proposition 1: The complete ruleset φ f ull generated by our proposed method for
assembling a target structure described as an extended graph G = (V,E,S, l) will
eventually achieve the maximum possible number of copies of the target structure
(i.e. maximum yield) provided that the available assembly modules executing the
ruleset interact often enough and that the corresponding execution probability is set
to p = 1 for link and update rules and to p < 1 for reverse rules.

Proof : The ruleset φ f ull contains an unlink rule for each link and update rule.
Only the last link rule has no corresponding reversal rule. Therefore, while all par-
tially formed structures dis-assemble with a non-zero probability, the finishing rule
is reversed with zero probability, therefore leading to a stable target structure. ut

Proposition 2: The complete ruleset φ f ull generated by our proposed method for
assembling a target structure described as an extended graph G = (V,E,S, l) will
achieve an assembly rate at least as fast as that of a ruleset derived by the Linchpin
algorithm, assuming that the update rules are applied instantaneously.
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Proof : Rulesets generated by Stage I have as many link rules as the ones gen-
erated by the Linchpin algorithm, i.e. the number of edges in the target graph, as a
result of forming the target out of uniquely labeled sub-assemblies. As a result of
merging the link rules in Stage II, φ f ull contains at most as many link rules as the
ruleset φGS created in Stage I. Therefore, φ f ull achieves the target structure in the
same or fewer concurrent steps than rulesets derived by Linchpin. ut

4.3 Synthesized Rulesets for Lily Robots

We consider two targets, a chain and a cross structure, each composed of six Lily
robots (see Fig. 3). The rulesets returned by our algorithm (with the maximum user-
defined size set to 2) for the chain structure φ−, and for the cross structure φ+, are
reported below. The (la, lh) notation is used for the relative extended labels and the
reverse rules are separated. Note that the reverse rules do not correspond to a single
link or update rule, but rather have a time reversal effect, taking the labeling back in
time. For the sake of brevity we skip functional explanation of these rulesets, further
details can be found in [7].

φ− =



(0,0) (0,0)
r1−→ (1,1)− (2,1)

(1,3) (2,3)
r2−→ (4,1)− (3,1)

(1,3) (8,3)
r3−→ (10,1)− (9,1)

(1,1)− (3,3)
ru
4−→ (6,1)− (5,1)

(2,1)− (4,3)
ru
5−→ (8,1)− (7,1)

(7,1)− (9,3)
ru
6−→ (12,1)− (11,1)

(2,1)− (10,3)
ru
7−→ (14,1)− (13,1)

(1,1)− (2,1)
r̄1−→ (0,0) (0,0)

(5,3)− (7,3)
r̄2/4/5−−−−→ (3,1) (4,1)

(3,3)− (6,1)
r̄2/4−−→ (2,1)− (1,1)

(4,3)− (8,1)
r̄2/5−−→ (1,1)− (2,1)

φ+ =



(0,0) (0,0)
r1−→ (1,1)− (2,1)

(0,0) (2,4)
r2−→ (4,1)− (3,1)

(0,0) (5,2)
r3−→ (8,1)− (7,1)

(2,3) (7,2)
r4−→ (10,1)− (9,1)

(1,1)− (3,2)
ru
5−→ (6,1)− (5,1)

(1,1)− (10,3)
ru
6−→ (12,1)− (11,1)

(1,1)− (2,1)
r̄1−→ (0,0) (0,0)

(4,1)− (5,4)
r̄2−→ (0,0) (3,1)

(6,1)− (3,2)
r̄2/5−−→ (1,1)− (2,1)

(7,1)− (8,1)
r̄3−→ (5,3) (0,0)

5 Modeling Levels and Simulation Frameworks

In order to compare the performance of our rulesets for SA of robots and to study
the transient behavior, we conduct simulated studies using two different simulation
frameworks. In the non-spatial microscopic framework implemented in Matlab, the
system is modeled as an extended graph (see Section 3), with each extended ver-
tex in the extended graph corresponding to a robotic module. In the high-fidelity
sub-microscopic simulation framework realized in Webots [11], the physics of the
system including the embodiment of the robotic modules, the hydrodynamic forces
acting on the robots, and the software running on them are recreated.
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5.1 Microscopic Model and Simulation Framework

In this framework, the physical dynamics of our robotic system is abstracted into
randomized interactions between atomic units in favor of gaining simulation speed.
The system is represented as an extended graph which evolves over time. Each
robotic modules corresponds to an extended vertex in the system graph. In order to
model interactions between the robotic modules a randomized scheme along with
appropriate geometrical constraints is utilized. In order to track the progress of the
SA process in the system, we employ a shape recognition algorithm which is an
extension over a graph isomorphism check.

5.1.1 Random Pairwise Interactions

In our extended formalism, a random pairwise interaction dynamics is defined as a
quadruple (G,F,φ ,P). Rule probabilities are assigned by P : φ → (0,1]. The set of
pairs of disjoint vertices is defined as PW (G) = {(x,y) :6 ∃I ⊂ G|(x,y) ∈ VI ,x 6= y},
where I is a connected subgraph of G. The set PW (G) defines modules among which
an interaction is feasible as they are not on the same sub-assembly. F(G) maps an
extended graph G to probabilities of pairwise vertex selections from VG. A random
trajectory of the system, is generated by sampling F(Gt) at each time instant to
obtain a pair (x,y) and then executing an appropriate action on the selected pair.
For two selected vertices to interact, the link-slots are chosen randomly from the
available slots. Sampling from F(Gt) introduces an inherent stochasticity to the tra-
jectories even if the ruleset contains only deterministic rules. The interaction prob-
abilities, defined by F(Gt), depend on the current graph Gt and can be calibrated.

5.1.2 Shape Recognition

Tracking the progress of the SA process of the simulated system requires a mapping
between the connected components of the graph of the system and the shape of
the corresponding sub-assemblies. For the case of SA of graphs where the system
is represented by an abstract graph at each time instant, this describes a problem
of graph isomorphism. However, for the case of our extended graphs, the relative
position of the engaged slots need to be taken into account to recognize the shapes.
We employ a simple method for recognizing the shapes based on traversing the
connected components of the extended graph and constructing a series of locations
of the Center Of Mass (COM) of the robotic modules. The relative ordering of the
slots of neighboring modules determines the orientation of each traverse. The series
of locations are then rotated and translated such that all coordinates are positive.
The resulting ordered set is used as the identifier of the structure. This method can
be applied to modules with a variety of shapes forming structures in 2D.
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(a) (b) (c)

Fig. 2 – (a) Velocity field of the tracked globe and the computed fluid flow. (b) and
(c) Simulated world of Lily robots in Webots.

5.2 Sub-Microscopic Model and Simulation Framework

In this context, submicroscopic means that it provides a higher level of detail than a
canonical microscopic model, faithfully reproducing intra-robot details (e.g., body
shape, individual sensors and actuators). In order to realistically recreate our self-
assembling system in simulation, we use Webots [11], a physics-based robotics sim-
ulator. Webots uses the Open Dynamics Engine (ODE) for simulating rigid body
dynamics. Additionally, in order to simulate specific not natively supported physics,
it is possible to employ custom designed physics plugins. The Lily modules’ CAD
design as well as the robots’ controller software is imported into the Webots sim-
ulated world. The rulesets programmed on the simulated robots are also identical
to the case of the microscopic simulation in the previous section. The latest version
of Webots supports a basic fluid node which allows for a simple uniform stream
velocity, but is not capable of simulating a complex fluidic field. We used a similar
approach as [2] to reproduce the complex flow field and the hydrodynamic forces.

We record the trajectory of a single floating globe (diameter of 3 cm), roughly
the same size of a Lily robot, for 3 experiments with random starting positions and
duration of 10 minutes each. The globe’s weight is tuned such that the submersion
level is similar to that of a Lily robot (25 mm below water level). The captured
velocity fields are then augmented and discretized on a regular grid of 50 cells on
each side, for our water tank of 120 cm in diameter. For each cell of the grid, the
observed velocity vectors are averaged and assigned as the velocity of that cell. The
fluid velocity field can be computed considering the drag force. The value of the
Reynolds number Re determines the flow regime and the form of the drag force:

Re =
ρV L

µ
' 2000 |−→F drag|=

1
2

ρAC|−→v block−−→v f low|2 (1)

where ρ = 103 kg/m3 is the density of water, V ' 20 cm/s the experimentally-
measured mean velocity of the globe, L = 3 cm the characteristic dimension, and
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µ = 8.90 . 10−4 Pa.s the dynamic viscosity of water. The submerged area of the
globe is, A = 7 cm2 and the drag coefficient constant in all directions C = 0.47. The
velocity and acceleration of the globe are computed using the captured trajectory
data. Considering the mass of the globe m, the flow velocity is then computed as:

−→v f low =−→v block +
m−→a√

1
2 ρACm

√
a2

x +a2
y

(2)

We developed a physics plugin for Webots that applies the drag force to the
simulated Lily module based on the velocity of the robot and the flow velocity at
its location at each time instant. In order to account for rotational effects, the drag
force is integrated over each face of the Robot. Each face is divided into N = 10
sections, and the drag force is computed for each section using Eq. 1 with C being
the estimated Lily robot’s drag coefficient CLily. The physics plugin also adds a
stochastic force Fs∼N (0,σ2

f ) to the center of mass of each robotic module in order
to account for non-modeled effects (e.g., physical irregularities, turbulences). The
values of CLily = 0.7 and σ f = 50 mN were empirically set based on our previous
findings in [2]. Two independent Kolmogrov-Smirnov (KS) tests showed that the
simulated and real distributions of the step lengths and step angles extracted from
the trajectories have a KS distance of less than 0.2.

6 Experiments and Results

We evaluate our algorithm leveraging the two modeling levels and corresponding
simulation frameworks of Section 5, studying the SA process in a swarm of 24 ini-
tially isolated Lily robots. Two target shapes of a chain and a cross shape, each
composed of 6 robotic modules, are considered. A maximum of 4 copies of each
target can be assembled thus. The microscopic simulation framework (see Section
5.1) employs a random pairwise interaction dynamics. All interactions among mi-
croscopic nodes are set to be equiprobable, i.e. we make the assumption that the
system is perfectly mixed. We employ rulesets synthesized by our algorithm (see
Section 4.3) and the extended Linchpin algorithm [7], for our simulated Lily robots.
For forward and update rules P(.) = 1 and for reverse rules P(.) = 0.01 is set. The
finishing rule is set to be irreversible in all the rulesets, giving rise to stable target
assemblies once they are formed. Figure 3 depicts the performance of the rulesets
derived by our algorithm along with the ones of the extended Linchpin for the two
target shapes. While for the submicroscopic simulations the results are reported as a
function of the experimental time (emulating the real time progress in a real experi-
ment), the results of the microscopic simulations are reported as a function of steps,
each step representing a formation event in the system. While such choice makes
the results of the two modeling levels not directly comparable, the adopted progress
unit is well suited for measuring the concurrency of the rulesets. It can be seen that
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(a) (b) (c)

(d) (e) (f)

Fig. 3 – Results of microscopic ((a) and (d), 100 runs averaged) and submicroscopic
models ((b) and (e), 30 runs averaged) for two target shapes, cross (c) and chain (f).

our proposed algorithm achieves higher assembly rates in all cases. Interestingly,
the maximum yield of 4 is not obtained in the case of the submicroscopic simu-
lations within the 1 hour simulated time. This can be ascribed to several reasons.
First, it is observed in the submicroscopic simulation that larger structures with sev-
eral corners trap other sub-assemblies and stall the SA process. In addition, as the
structures grow the conditions diverge from perfect mixing since the shape of the
sub-assemblies affects their orientation in the fluidic field and certain interactions
tend to be less probable.

7 Conclusion

In this paper, we addressed the problem of synthesizing parallel rulesets for pro-
grammable SA of robotic modules. We employed an extended graph-grammar for-
malism to account for the morphology of the modules and proposed a formal syn-
thesis algorithm to automatically synthesize rules. Using our new algorithm, we
synthesized rulesets for two target structures. Studies on the synthesized rulesets in
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simulation, using both non-spatial microscopic and spatial submicroscopic models,
demonstrated the superior performance of our algorithm compared to the Linchpin
algorithm [3], appropriately extended to be deployed on our robotic modules [7].
This evidenced the functionality of update rules in increasing the concurrency in
the SA process resulting in higher assembly rates. In the future, we plan to con-
duct studies in simulation and on real robots to investigate the effects and mitigation
strategies of propagation delays on the performance of the rulesets generated by
our algorithm. Additionally, we plan to fully utilize our real experimental setup to
conduct systematic real experiments involving up to 50 Lily robots.
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