
Frugal Topology Construction for Stream
Aggregation in the Cloud

Rachid Guerraoui∗, Erwan Le Merrer†, Rhicheek Patra∗ and Bao-Duy Tran∗†
∗EPFL, †Technicolor,

Email: firstname.lastname@epfl.ch, erwan.lemerrer@technicolor.com, tranbaoduy@gmail.com

Abstract—Aggregation of streamed data is key to the expan-
sion of the Internet of Things. This paper addresses the problem
of designing a topology for reliably aggregating data flows from
many devices arriving at a datacenter. Reliability here means
ensuring operation without data loss. We seek a frugal solution
that prevents wasteful resource consumption (over-provisioning).
This problem is salient when building an aggregation service
out of components (here aggregation nodes) that exhibit hard
constraints on the amount of information they can handle per unit
of time. We first formalize the problem and provide an analysis
of the relation between monitored devices (plus information they
send), and the operations performed at aggregation nodes, in
terms of data rates. Building on this rate analysis, we devise a
novel algorithm, which we call CSA, that basically outputs an
aggregation topology capable of handling those incoming data
rates, preventing thereby empirical trial-and-error design. We
analyze the algorithm, before validating it on the Amazon Kinesis
platform, using a device dataset from a European telco operator.

I. INTRODUCTION

The rise of the Internet of Things and the general migration
of IT services to the cloud push for the adoption of practical
low-latency processing solutions. Applications include the
monitoring of potentially thousands of devices that stream
information to a collection point in the background. Device
Analyzer [30] for instance collects hundreds of thousands
of data points per day per monitored device. It is crucial
to process the data collected in real-time, in particular for
scenarios like continuous analysis of application usage, or
notifications for mention of specific keywords in social media.

Real-time computation is made possible by the progress of
stream processing platforms [6], [18]. Underlying algorithms
require small space and update time [24], [14]. The support for
stream aggregation operations is required for advanced analyt-
ics since it allows advanced applications like the identification
of heavy hitters [10] or anomaly detection [14]. Nevertheless,
several technical challenges are incurred by the increasing
amount of monitored resources. Clearly, no single machine
can sustain millions of concurrent connections for aggregating
device information. In systems where computation precision
is essential (see e.g., [27], [28] for gracefully degrading
systems otherwise), computing units need to be organized in
the form of a topology [6], [11], [18] so that the information
received is reduced layer by layer in a scalable fashion, until
the desired result is obtained [10], [35], [24]. In other words,
data streams for a common aggregation operation are shared
among processors for efficient distributed execution [17], [15].

Amazon Kinesis constitutes a celebrated example of a
cloud-based platform to handle data streams in real-time [3],

 20

 30

 40

 50

 60

 70

 80

 90

 100

1

P
e

rc
e

n
ta

g
e

 (
%

)

Aggregation layer

Dropped
Accepted

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2
Aggregation layer

Dropped
Accepted

Fig. 1. Percentages of dropped data in an experiment on Kinesis
(crosshatched), for a single shard (left), and for a 2-layer aggregation topology
consisting of 13 and 1 shards (right)

along with its open-source counterparts Kestrel [1] and
Kafka [5]. The data buffering functionality proposed by such
platforms is a required step to avoid packet loss [33]. However,
such platforms impose physical or arbitrary data ingest limits.
For instance, Kinesis limits the amount of data one can push to
a shard1 every second at 1MB. In practice, and as advertised
by Amazon, packets causing rate excess at a given point in
time are simply dropped (i.e., lost). Multiple shards are thus
required to sustain the load, and billing is precisely based on
the number and usage duration of those shards.

Unfortunately, using such platforms for large-scale stream
processing is challenging. Indeed there is no systematic way
to design a streaming topology, other than empirically by
trial and error. Research works [24], [14], [15], focusing on
specific operations over data streams, use specific topologies
for validating their algorithms. However, there is no mention
regarding the methodology used for generating those topolo-
gies. Such empirically obtained topologies are likely to over-
provision the number of shards: one can for instance provision
a tangibly high number of those, eliminating data losses from
devices. Operational costs are more than actually required by
the application, which is a clear problem when considering
the general will to consolidate costs in the cloud2. At the other
extreme, if one designs a topology that is “too small” to ingest
the load, device packets are dropped, resulting in aggregation
imprecision.

Figure 1 presents the results of an experiment we conducted
on the Kinesis platform, where the number of shards in the
topology is under-provisioned with regard to the amount of
information received. Five hundred processes continuously
send 50KB packets at a rate of 0.5 packets per second to a
service where aggregation is performed on some counters. The
experiment utilizing a single shard (left sub-figure) exhibits

1A shard is the base throughput unit of an Amazon Kinesis stream.
2See e.g., [18] for a practical over-provisioning example.

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148026288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a high packet drop rate because the amount of received
information is over the threshold set per shard by Kinesis
(1MB/s). Dividing the total load by this threshold, to obtain
a number of shards and align them in the first layer does
not address the problem, as the sink in layer two is also
overwhelmed by data coming out of layer one (right sub-
figure); this means that more aggregation layers are required
for a proper operation.

Contribution: Scalable Aggregation under Ingest Constraint

Acknowledging the commercial or physical limits of shards
(or buffers), there is thus a need for a systematic approach to
designing an aggregation topology on demand. This topology
must be derived from the application settings (number of
devices and their data sending rate) and on the aggregation
operation to be achieved. Meanwhile, this topology should
maintain an invariant that no shard must be overwhelmed by
received data from its neighbors in the topology. Trivially
deriving the number of shards from input load (divided by the
imposed threshold) does not address the problem, as it does not
provide any information on the shape of the topology, so that
shards below the first layer can be overwhelmed, too (Figure 1,
right sub-figure).

The contributions of this paper are threefold:

(i) We formalize the notion of reliable aggregation of
streamed data with ingest constraints. We then introduce
the Frugal Topology Design (FT D) problem, for efficient
aggregation in cloud environments. The problem consists in
designing a topology, in which each shard has ingest rate
constraints, for loss-free aggregation while using as few shards
as possible for cost reasons.

(ii) We present Conservative Sequential Assignments
(CSA), an algorithm that solves the FT D problem. We ana-
lyze its convergence, its approximation of an optimal solution,
and the characteristics of the output topology.

(iii) We experiment and validate CSA on the Kinesis plat-
form and provide empirical demonstration of the effectiveness
of CSA in a practical environment (using real and synthetic
datasets from home gateways).

The remaining of the paper is organized as follows. We
provide the background for stream aggregation in the cloud,
an overview of the Amazon Kinesis service (as it is a concrete
example of a buffering service) before introducing the problem
statement in II. We provide an analytical result of the data rates
implied in stream aggregation under ingest constraints in III.
In IV, we propose our CSA algorithm for a reliable topology
construction by building on the analysis. We validate CSA
on the Kinesis stream processing platform in V. Finally, we
discuss the related work in VI and conclude in VII.

II. SHARED AGGREGATION IN THE CLOUD

There are two ways to process streamed data in the cloud.
The first one reads tuples from structured storage on disks,
like in Photon [4] or Bolt [13]. In this paper, we follow
the second trend, for we target real-time aggregation. We
compute over data streams emitted from sources directly, as
proposed by the Storm general framework [6]. To cope with
the amount of data arriving at the datacenter, there is a need

for buffers (sometimes named queues, or shards in Kinesis
terminology) to temporarily store data (possibly in memory)
before processors can catch up [33]. Examples of buffers
include Kestrel [1] or Kafka [5] (platforms to deploy), and
Amazon Kinesis [3] (available as an online service).

In this work, we adopt Kinesis as a standard building block
for stream aggreagation, as it illustrates the hard constraints
(here ingest rate constraints) faced by a designer when setting
up a cloud-based computing solution. We provide below an
overview of the Kinesis service, as a representative component
of a stream processing platform. We then define the operations
addressed in the paper (shared stream aggregation), before
giving the problem statement.

A. Kinesis: A Buffering Service In The Cloud

In practice, the use of a buffering service before actual
processing is mandatory to cope with high arrival rates and
processing delays [33]. Kinesis implements such a service. It
offers reliable buffers (shards) in the cloud. Kinesis accepts
data records from producers (here devices) and releases them
to consumers (here aggregation nodes) upon request. All
producer and consumer applications are external to Kinesis
and must be deployed elsewhere, albeit in-house or remote
(e.g., using Amazon EC2 [2]).

The considered streamed unit is a data record comprising
the device identifier, an aggregation period identifier, and a
free-format payload. Buffers in Kinesis are named shards
where data actually reside. Every producer only indicates
the desired target shard when pushing data to Kinesis, using
a cryptographic hash function over the device identifier for
instance. Data records are accessed on first-in-first-out (FIFO)
and last-in-first-out (LIFO) consumption orders on a shard.
Billing is conducted primarily on the basis of the active
duration of used shards. Certain service limits concern data
sizes (e.g., maximum 50KB for a record payload). Others
pertain to read/write throughput (each shard can support up
to 2MB of data read per second, and up to 1MB data written
per second).

Most importantly, Kinesis streams and associated applica-
tion instances can be chained in a topology to realize more
complex stream processing scenarios. In the sequel and for
simplicity, a shard is renamed node as it is simply the first of a
two-part component: the buffer-processor (i.e., the aggregation
unit).

B. Shared Stream Aggregation

Our work examines shared stream aggregation over non-
overlapping windows [17], [15]. We employ a model where
data sources emit streams of key-value tuples (T, v) where T
is a time period (often called epoch) ID and v is a payload
value: v in emitted tuple (T, v) is a data item drawn from
an arbitrary but predefined domain, and compatible with an
admissible aggregate function agg(.). This allows queries like
“return MAX(v) in T” for operations over distributive
and algebraic aggregates [12] (used for instance in [17], [15]).

We now reformulate properties of those aggregates for
clarity and completeness. Let V? be a multiset of target
values drawn from domain D, and let {V?i | i ∈ {1..N}} be a

TABLE I. TABLE OF NOTATIONS

θ Ingest rate constraint at aggregation node
L Number of aggregation layers
N Total number of processors in the topology
n0 Number of sources (considered as layer 0)
n` Number of layer-` nodes
λ0 Mean Poisson emission rate at each source
∆t Ideal regular key-change period for sources

λ(in)
`k (t) Total incoming rate at kth node in layer `

partitioning of V? into N disjoint sub-multisets (N ∈ N∗); an
aggregate function agg (V?) ∈ D is admissible if and only if:

agg (V?) = agg

(
N⊎
i=1

{agg (V?i)}

)
(1)

where
⊎

denotes ‘addition of multisets’.

Note that this definition can be generalized with agg (V?)
returning a multiset of D-valued target values (instead of
a single one). Examples of generalized agg(.) include find-
ing top-K and bottom-K from a multiset of totally-ordered
target values. Admissible aggregate function agg(.) can be
defined by initializer agg(∅) (or singleton-based agg ({v}))
and accumulator agg (V?] {v}) = accumagg [agg (V?) , v].
Informally speaking, an aggregate function is admissible if
it can be applied in phases, first on disjoint sub-multisets of
target values to obtain intermediate results, then on the multiset
formed by these intermediate results. In other words, such
functions permit partial accumulation and parallelization of the
aggregation process in a topology.

We finally give the definition of a complete shared stream
aggregation work flow.

Definition 1 (Shared stream aggregation output) For every
time period ID T present in the streams, the aggregation
system must output a single tuple (T, vT) such that:

vT = agg (V?T) (∀T) (2)

where V?T is the multiset of target values v emitted in all tuples
(T, v) from all sources, and agg(.) is the admissible aggregate
function in use.

C. Problem Statement: Frugal Topology Design

Our goal is to design a systematic approach to determining
a sufficient topology for loss-free aggregation.

The Frugal Topology Design Problem (FT D). In
the context of shared stream aggregation for non-overlapping
time windows, under ingest rate constraints at aggregation
nodes, derive a systematic approach to determining a reliable
topology such that ingest rate saturation is avoided at all
nodes, while minimizing the topology size (for reduced cost
and operation latency).

III. RATE TRANSFER ANALYSIS

Traffic rate analysis is a crucial step to design a topology
that tightly matches imposed constraints [11]. We first formal-
ize the problem before actually providing analysis results.

A. Problem Formalization

We now formalize a topology as being the multi-layer
parallelization of shared stream aggregation. The concepts
and notations presented are mandatory as a foundation for
subsequent system analysis, as well as for the derivation of
solutions to solve FT D. The core notations are listed in
Table I.

Definition 2 (Multi-layer parallelization) The multi-layer
parallelization of shared stream aggregation is a topology of
n0 sources (n0 ∈ N∗) in layer 0 and L aggregation layers
(L ∈ N∗). Aggregation layer ` (` ∈ {1..L− 1}) comprises n`
processors (n` ∈ N∗) while the last layer L has a single sink
(nL = 1). The kth node in layer ` (k ∈ {1..n`} , ` ∈ {0..L}) is
denoted as (`, k). Consecutive layers `− 1 and ` (` ∈ {1..L})
form a complete bipartite graph where directed edges point
from layers ` − 1 to `, representing directed flows of data
streams.

This topology for multi-layer parallelization is depicted
in Figure 2. Next, we detail the characteristics and functional-
ities of various nodes in the topology.

Definition 3 (Source) We assume that source (0, k) (k ∈
{1..n0}) in the multi-layer parallelization emits data tuples ac-
cording to a homogeneous Poisson process with same mean ar-
rival rate λ(out)

0k (t) = λ0 ∈ R+ (items/sec), ∀k ∈ {1..n0} ,∀t ∈
R. At each source, tuples are uniformly routed to all processors
(1,m) in the next layer (m ∈ {1..n1}), i.e., a tuple is

routed to processor (1,m) with probability
1

n1
. Furthermore,

at time t ∈ [tki, tk,i+1], source (0, k) emits data tuples in the
form (Tki, v). Key-change moment tki = t(ideal)

i + Ωk where
independent random offset Ωk ∼ Normal

(
0, σ2

k

)
for source

(0, k) and t(ideal)
i = t(ideal)

i−1 + ∆t,∀i with constant ideal key-
change period ∆t ∈ R∗+ applicable to all sources.

The core assumption for allowing analysis is that data
arrivals from sources form a Poisson process. This is a clas-
sic and reasonable approximation for many applications [8],
allowing to construct a model for understanding trends and
implications. For instance, a constant mean for sending report
is the norm in programmed devices, for updating their status
to a collection point (e.g., in the case of home gateways [25]).
For each source, key change moments are normally distributed
around the ideal moment in order to model clock skews [16].
We note that the model of a complete bipartite communication
pattern between consecutive layers is chosen as the use of hash
functions is now commonplace in cloud environments [6], [3],
[4]. It specifically means that every processor (or source) sends
a piece of information to one among all processors in the next
layer whose selection is based on the outcome of the hash
function employed.

Definition 4 (Aggregation node) Every node in layers 1 to
L (L ∈ N∗) in the multi-layer parallelization is an aggregation
node, which can either be a processor or the sink.

Definition 5 (Processor) Processor (`,m) (` ∈
{1..L− 1} ,m ∈ {1..n`} , L ∈ N∗) in the multi-layer
parallelization receives data tuples in the form of stream

Fig. 2. General topology form for stream aggregation. Instantiation in practice often has the form of a “pyramid”.

superposition from all nodes in the previous layer `− 1. Each
processor runs Algorithm 1 (single-buffer, zero-coordination
operation) using an internal time period ID cache T0, a target
value buffer b, as well as the initializer and accumulator of
admissible aggregation function agg(.). Output tuples are
then uniformly routed to all processors (`+ 1, w) in the next
layer (w ∈ {1..n`+1}), i.e., a tuple is routed to processor

(`+ 1, w) with probability
1

n`+1
.

Algorithm 1: Single-buffer, zero-coordination operation
at aggregation node
T0 ← null; b← agg(∅);

foreach tuple (T, v) received do
if T0 = null then

T0 ← T ; b← agg ({v});
else if T 6= T0 then

emit tuple (T0, b);
T0 ← T ; b← agg ({v});

else
b← accumagg(b, v);

Definition 6 (Sink) The sink (L, 1) (L ∈ N∗) in the multi-
layer parallelization behaves in precisely the same manner as
that of a processor, except that there is no uniform routing to
the next layer (as there is no such layer). It constitutes the last
operational node, containing all information needed to provide
the aggregation results.

The following definitions formalize the notations of incom-
ing and outgoing rates incurred at various nodes, as well as the
ingest rate constraint at these nodes (which is the fundamental
condition to be satisfied in our problem statement). These are
also illustrated in Figure 2.

Definition 7 (Rates in multi-layer parallelization) In the
context of multi-layer parallelization, data stream flowing from
nodes (`− 1, k) to (`,m) (` ∈ {1..L}) has rate λ(`−1)k:`m(t)
(items/sec) at time t. Total incoming rate at time t at aggrega-
tion node (`,m) (` ∈ {1..L}) is denoted as λ(in)

`m(t) (items/sec).
Total outgoing rate at time t at source or processor (`,m)
(` ∈ {0..L− 1}) is denoted as λ(out)

`m (t) (items/sec).

Definition 8 (Ingest rate constraint) Every aggregation
node in the multi-layer parallelization imposes the same ingest

rate constraint θ (items/sec) (θ ∈ R+). Ingest rate saturation
can be avoided if and only if:

λ(in)
`m(t) 6 θ (∀` ∈ {1..L} ,∀m ∈ {1..n`} ,∀t ∈ R) (3)

This ingest rate constraint can either be physical (e.g.,
manufacturer hardware limit for a network peripheral) or
commercial (e.g., Kinesis case) in nature. In this work, rate
constraint θ is assumed to be the same for all nodes partici-
pating in the aggregation operation.

Lastly, note that using the above notations, FT D is solved
if a topology is found that given the number of sources n0,
the total emission rate λ0 at each source, and the ingest rate
constraint θ at each aggregation node has a sufficient numbers
of processors n` at layers ` (` ∈ {1..L− 1}), such that
ingest rate saturation can be avoided at all aggregation nodes
[Equation (3)] while employing the least number of nodes
L∑
`=1

n` possible and the least number of layers L possible.

B. Resulting Rate Transfers

Rate transfer analysis refers to the determination of an
output rate given specific input conditions while the existence
of outputs (which governs how the output rate turns out to be)
depends solely on time period IDs T .

We modeled key-change moments at source (0, k) to
always exhibit random offset Ωk from the ideal time point
determined by constant ideal key-change period ∆t. Depend-
ing on variance σ2

k of normally distributed Ωk, it can happen,
though rather unlikely, that an arbitrary number of distinct time
period IDs can be present in a particular consideration period3.
In practice, offsets are expected to be small with respect
to time periods ∆t, causing actual key-change moments to
cluster around their respective ideal counterpart, rather than
spreading infinitely on both sides of the latter. In such a
practical scenario, there are at most two distinct time period
IDs emitted by any sources within a consideration period. We
assume this prerequisite for our analysis.

With all those notations and definitions in place, we are
now ready to present a core result of the analysis of aggrega-
tion transfer rate over non-overlapping windows. We precisely
derived bounds for incoming and outcoming rates occurring in

3Consider the superposition of all key-change moments tki of all sources
(0, k): the universal timeline can be split into several consideration periods
demarcated by these key-change moments. Details are available in [29].

a topology of the form of Figure 2, at each node. Due to space
constraint, please refer to [29] for detailed analysis; we only
report on the main result, that is the bound on the incoming
rate at any aggregation node.

Theorem 1: Total incoming rate at any node (`,m) (` ∈
{1..L} ,m ∈ {1..n`}) is upper bounded by:

λ(in)
`m(t) 6 λ(in)

`,max =
n0λ0

2`−1n`

`−2∏
k=1

(
1 +

1

nk(2nk+1 − 1)

)
,

(4)

with nk being the number of processors in layer k.

IV. FRUGAL CONSTRUCTION ALGORITHM

With a closed-form formula for the upper bound of total
incoming rate at any aggregation node λ(in)

`,max (∀` ∈ {1..L})
[Theorem 1], the ingest rate constraint of Definition 8 be-
comes:

λ(in)
`,max 6 θ ⇔ ψ`(n1, n2, . . . , n`) 6 0 (∀` ∈ {1..L}) (5)

where function ψ`(n1, n2, . . . , n`) is defined as follows ∀` ∈
{1..L}:

ψ`(n1, n2, . . . , n`) = n0λ0

`−2∏
k=1

(2nk+1nk − nk + 1)

−θ2`−1n`

`−2∏
k=1

nk(2nk+1 − 1)

(6)

Using Equation (5) above, FT D can then be stated as:
min

L,n1,n2,...,nL−1

(
β
L−1∑
`=1

n` + γL

)
subject to: L, n1, n2, . . . , nL−1 ∈ N∗

subject to: ψ`(n1, n2, . . . , n`) 6 0 (∀` ∈ {1..L}),

(7)

with two ‘independent’ objective functions (number of
nodes and topology diameter), arbitrarily weighted by intro-
duced parameters β, γ ∈ R∗+.

Designing a topology boils down to finding a plausible
assignment for L, n1, n2, . . . , nL−1 according to the require-
ments stated in Equation (7). We now introduce the CSA
algorithm that solves FT D.

A. The CSA Algorithm

We revisit the constraints (Equation (5)) which can be
equivalently transformed as follows:

n` >
n0λ0

θ2`−1

`−2∏
k=1

(
1 +

1

nk(2nk+1 − 1)

)
= ψ̃`(n1, n2, . . . , n`−1)

(∀` ∈ {1..L})
(8)

As can be seen from Equation (8), the criterion for n` at layer `
relies on the outcome of function ψ̃`(n1, n2, . . . , n`−1) which
only depends on the numbers of nodes at layers preceding `.
This makes sequential assignments of n` with incremental `
possible.

Algorithm 2: Conservative Sequential Assignments CSA
Input: n0 ∈ N∗, λ0 ∈ R+, θ ∈ R+

Output: L, n1, n2, . . . , nL ∈ N∗ (i.e., a topology)

for `← 1 to +∞ do

n` ←

⌈
n0λ0

θ2`−1

`−2∏
k=1

(1 +
1

nk(2nk+1 − 1)
)

⌉
;

if n` = 1 then
L← `; return L, n1, n2, . . . , nL;

The minimization of
L∑
`=1

n` can then be achieved by

conservatively selecting the smallest possible value for every
n`. As n` > ψ̃`(n1, n2, . . . , n`−1) [Equation (8)] and n` ∈ N∗,
this corresponds to picking n` =

⌈
ψ̃`(n1, n2, . . . , n`−1)

⌉
.

The process terminates as soon as n` = 1 at some ` (the
single sink [Definition 6], with ` being the finalized number of
layers L). This Conservative Sequential Assignment (denoted
as CSA) is proposed in Algorithm 2.

B. Analysis of CSA

We first prove that Algorithm 2 converges, and thus outputs
a topology solving FT D. We finally give an approximation
ratio to compare it to a theoretical optimum.

Theorem 2 (Convergence of CSA) In Algorithm 2, the
conservative sequential assignment of n` converges with

lim
`→+∞

n` = 1 and the algorithm terminates at condition
n` = 1.

Proof: At the `th iteration of Algorithm 2, the following
assignment occurs:

n` =

⌈
n0λ0

θ2`−1

`−2∏
k=1

(1 +
1

nk(2nk+1 − 1)
)

⌉

=

⌈
n0λ0

2θ
× 1

2`−2

`−2∏
k=1

(
1 +

1

nk(2nk+1 − 1)

)⌉
> 1

(9)

We have integers nk > 2 and nk+1 > 2, ∀k ∈ {1..(`− 2)}
(otherwise, nk = 1 or nk+1 = 1 which implies the algorithm
has terminated at an iteration earlier than the `th). Therefore:

nk(2nk+1 − 1) > 6

⇔ 1 +
1

nk(2nk+1 − 1)
6

7

6

⇔
`−2∏
k=1

(
1 +

1

nk(2nk+1 − 1)

)
6

(
7

6

)`−2

⇔ n0λ0

2θ
× 1

2`−2

`−2∏
k=1

(
1 +

1

nk(2nk+1 − 1)

)

6
n0λ0

2θ

(
7

12

)`−2

=
72n0λ0

49θ

(
7

12

)`

⇔ n` =

⌈
n0λ0

2θ
× 1

2`−2

`−2∏
k=1

(
1 +

1

nk(2nk+1 − 1)

)⌉

6

⌈
72n0λ0

49θ

(
7

12

)`⌉
(10)

With n0, λ0 and θ being positive constants and
7

12
< 1, con-

sider function f : N∗ → R∗+ where f(`) =
72n0λ0

49θ

(
7

12

)`
.

We have lim
`→+∞

f(`) = 0 while f(`) > 0,∀`, thus

lim
`→+∞

df(`)e = 1. From Equations (9) and (10), 1 6 n` 6

df(`)e, so lim
`→+∞

n` = 1.

We next show that the algorithm terminates in a logarithmic
number of steps with regard to input parameters, and thus
outputs a topology with an also logarithmic diameter.

Lemma 1 (Topology diameter) CSA outputs a topology
whose diameter is logarithmic in the problem input values
n0, λ0 and θ. In particular, CSA terminates in at most

Lmax =

⌈
logb

ηθ

n0λ0

⌉
iterations, with η = 49

72 and b = 7
12 .

Lmax is hence an upper bound for the number of layers L.

Proof: Condition n` = 1 is attained at the latest when

df(`)e = 1 ⇔ f(`) 6 1 ⇔ ` > log(7
12)

49θ

72n0λ0
= L̃max.

Hence the algorithm terminates in at most Lmax =
⌈
L̃max

⌉
iterations.

This bound on the diameter is of particular interest for
practical deployments, in order to estimate for instance the
end-to-end operation latency.

Let N =

L∑
`=1

n` be the total number of processors in the

topology. We now bound N resulting from Algorithm 2.

Corollary 1 (Bound on the number of processors in the
topology) CSA outputs a topology composed of N proces-

sors: N 6
Lmax∑
`=1

⌈
n0λ0

ηθ
b`
⌉

.

Proof: Direct application of Theorem 2 and Lemma 1.

We finally give the approximation ratio of Algorithm 2.

Theorem 3 (Approximation ratio of conservative sequen-
tial assignment) An approximation ratio of CSA is

(1/η)×OPT , plus logb
θ

n0λ0
+ 1.

Proof: Let I be an instance of the frugal topology
construction problem. Clearly, no algorithm can use fewer

nodes in the output topology than OPT =

⌈
n0λ0

θ

⌉
. Let us

denote this quantity as the optimal solution N∗(I), and the
quantity given by Algorithm 2 as NCSA(I). Please note that
OPT does not solve FT D.

From Corollary 1, we have:

NCSA(I) 6
Lmax∑
`=1

⌈
n0λ0

ηθ
b`
⌉

6
Lmax∑
`=1

(
n0λ0

ηθ
b` + 1

)

6
n0λ0

θ

1

η

Lmax∑
`=1

b` +

Lmax∑
`=1

1

6
n0λ0

θ

1

η

(
+∞∑
`=0

b` − b0
)

+ logb
ηθ

n0λ0

6
n0λ0

θ

1

η

(
1

1− b
− 1

)
+ logb η + logb

θ

n0λ0

6 N∗(I)× 1

η
+ logb

θ

n0λ0
+ 1

This last result is a direct indicator of the maximum
operational cost for a given problem instance. In Kinesis
for example, user is billed on the number of shards (nodes)
employed. In essence, this constructive proof for the minimal
number of nodes required for aggregating data in the context of
shared aggregation over non-overlapping windows provides a
result that states that the number of processors in each topology
layer is close to half the preceding layer, until reaching one
(the sink).

V. EVALUATION

In this section, we evaluate our CSA algorithm on real
and synthetic datasets, using the Amazon Kinesis stream
processing platform where practical ingest constraints apply.
We first benchmark the platform for parameter settings. We
then experiment an alternative scenario where lost packets
are re-transmitted, to conclude that for scalability, a solution
to FT D is more desirable than re-transmission. Finally, we
evaluate the topology given by CSA on a home gateway
scenario, before studying the elasticity of CSA instantiations.

A. Experimental setup

Datasets. We use two datasets: The first, EISP, is collected
from real-world home gateways subscribed to a European ISP.
The second, SYN, is a synthetic one based on the empirical
parameters introduced in I.

EISP dataset. This Internet Service Provider dataset con-
sists of data from 5789 devices collected across 240 distinct
home gateways over a year (11/2013 to 10/2014) [25]. The
dataset captures packets from 240 households which were sub-
scribed to a (single) large European ISP during the collection
period and were recruited to take part in the trial deployment.
The home gateways send 30-50KB packets to the cloud around
every 60 seconds (network latency and delays due to load on
the gateways are observed in practice). For simulation purpose
of this private dataset, one can use a Poisson process with
emission rate λ0 = 1/60 items/sec. It results in a Hellinger
distance [22] of 0.55, which leads to a Bhattacharya co-
efficient (ρ) [7] of around 0.69. The distributions of the dataset
and of the Poisson process are overlapping since ρ > 0.

SYN dataset. We synthesized this dataset by re-using the
same parameters as in I: n0 = 500 sources, λ0 = 0.5 items/sec,
∆t = 1, 200 seconds, duration ≈ 1.1 hours.

Deployment. For evaluating the performance of CSA, we
use the Amazon Kinesis platform which is a fully managed,
cloud-based buffering service. The deployment resembles the
structure sketched in Figure 2. In essence, every aggregation
layer comprises as many Kinesis shards as the number of
aggregation nodes (processors), each being a single-worker
consumer. Furthermore, data forwarding between layers is
regulated by Kinesis shard partitioning scheme. We interacted
with Kinesis through a Python script which instantiated the
topology by ‘chaining’ shards according to the topology given
by CSA. After each shard, an Amazon EC2 instance computes
the aggregation function presented in Algorithm 1.

B. Platform Benchmark: Rate Enforcement and Latency

Fig. 3. Rate limit enforcement (1MB/s) at a given shard (plot obtained from
Kinesis monitoring platform). When the limit is reached, packets are lost. θ
should be set accordingly so that CSA can derive a topology without loss.

We first note that an ingest limit for a single shard is indeed
enforced by Amazon, as seen in Figure 3, with no apparent
tolerance over 1MB/s. Parameter θ should be set such that the
actual rate recorded remotely at a given shard is below that
enforced limit.

As an illustration for the need for prior service bench-
marking, we ran the same experiment from a server in the
Eu-central-1 zone (n0 = 20, λ0 = 1, duration = 60s). We
sent data to shards located in different Amazon facilities (there
are currently 7 available). Results of (write) interactions with
shards are shown in Figure 4 (shown numbers are the average
of 40 trials). This variability, due to the location of the server
(source threads) with regard to the Kinesis facility targeted,
is also of importance for the setting of parameter λ0. For
instance, if devices must sequentially send packets to multiples
facilities for geo-replication, this latency constitutes a lower
bound on their emission rate.

 0
 1
 2
 3
 4
 5
 6
 7
 8

Eu-west-1

Eu-central-1

Ap-southeast-1

Ap-southeast-2

Ap-northeast-1

Us-east-1

Us-west-2

Re
sp

on
se

 ti
m

e
(s

)

Fig. 4. Latency of write interactions with a single shard, in various facilities.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 40 80 120 160 200 240

M
a
x
 R

e
tr

a
n
s
m

is
s
io

n
 D

e
la

y
 (

s
e
c
o
n
d
s
)

Number of Gateways

(a) Latency

 0

 5

 10

 15

 20

 25

 40 80 120 160 200 240

D
e
la

y
e
d
 P

a
c
k
e
ts

 (
%

)

Number of Gateways

(b) Delayed packets

Fig. 5. Limitations of aggregation with increasing latency and count of
delayed packets as the number of gateways increase on a single shard.

C. The Case For Avoiding Retransmissions

We highlight in Figure 5 the limitations of packet re-
transmissions upon loss, due to a topology that is not reliable
regarding the service load. In particular, we replay streaming
data from the EISP dataset to a single shard on Kinesis. As
the amounts of data received at the shard are too high, packet
loss occurs. A naive way to cope with this is to buffer lost
packets on devices for later re-transmission. We observe from
our results that this strategy is not scalable, meaning that loss-
free aggregation should prevail. The EISP dataset packets are
replayed by their original generation time-stamp, also around
60s at every gateway.

Latency. Whenever a packet loss occurs
(FailedRecordCount field in the response from Kinesis
to the device), the packet is stored in a queue maintained
locally on each device. The packets from the queue are
re-transmitted following the lognormal distribution to avoid
congestion and bursty loss (i.e., mimicking MAC layer
re-transmissions [20]). Figure 5(a) demonstrates that the
actual acceptance time for a re-transmitted packet increases
as the number of gateways increases to a maximum of 18
seconds for 240 gateways (aggregation period ∆t = 60s).
This delay can lead to either incorrect aggregation results or
longer waiting times which can have a significant impact in
aggregation scenarios like algorithmic trading systems where
one might want aggregates over 5-to-10-minute windows
reported every 60-90 seconds [17].

Delayed packets. We also measure the fraction of delayed
packets while increasing the number of gateways and observed
that more packets get delayed as more streams arrive at the
shard as shown in Figure 5(b). We notice that nearly 25% of
the packets get delayed due to the traffic when there are 240
gateways streaming data to the shard.

Those two experiments at a small scale show that the
use of a frugal topology, in order to avoid loss and re-
transmission, should be preferred, illustrating the necessity for
the consideration of FT D.

D. CSA Algorithm Performance

We use the SYN dataset to validate the performance of
CSA due to the limited number of gateways in the EISP
dataset.

Limitation of an empirical topology. In addition to the
empirically designed solution by trial-and-error already plotted
in I, for instance arbitrarily designing a 3-layer topology
[13 7 1]

ᵀ (Figure 6, left) yields in data drops at the sink
node. Notice that the deeper drops occur in the topology, the

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 3

P
e

rc
e

n
ta

g
e

 (
%

)

Aggregation layer

Dropped
Accepted

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 3 4 5
Aggregation layer

Fig. 6. A 3-layers under-provisioned topology (left), and the result of
aggregation over a topology given by algorithm 2 (right). Trial & error causes
data loss, design by CSA leads to no loss close to the sink.

higher the impact on the final aggregation results (as dropped
packets are the aggregates of many previous packets). Next
step for this empirical run would have been to add a third
layer in between current layer 2 and the sink, with an also
arbitrary number of nodes. As we shall see with our algorithm
run, that solution would have probably failed again, increasing
costs and time to operate the aggregation service.

CSA execution. Execution of CSA (Algorithm 2) yielded a
5-layer topology of the following form [13 7 4 2 1]

ᵀ.
Results are presented in Figure 6. For our designed topology,
there were no packet drops except at the very first layer.
Those drops are due to the fact that we operate at the limit
of tolerance for a single shard (here θ = 20) and also due to
the non-Poissonian nature of the SYN dataset, as compared
to our analysis leading to CSA; the SYN scenario is more
abrupt as all devices send their packets at the same clock tick,
leading to bursty arrivals, and then to packet loss in first layer.
A benchmark prior to execution would in practice lead to a
safe-margin setting for instance θ = 18. Besides this required
initial benchmarking requirement, CSA succeeds in returning
a topology for loss-free aggregation for all other layers.

Topology generation. In this section, we evaluate the elasticity
of CSA in terms of latency to generate a topology. It is of
interest when, for instance, the service operator is inserting a
set of new devices to participate to the aggregation. CSA then
must be invoked again, to derive the new topology; current
topology in the cloud should then be updated, to handle the
load variation. We measure the time needed to operate a
modification on such a topology in production.

When a request is sent to Kinesis for the batch creation of a
pre-defined number of shards, Kinesis replies with a response
status CREATING. After the batch creation phase is over, status
is ACTIVE, and shards are ready to receive data. We observed
empirically that it takes roughly 30 seconds to create a batch of
shards in Kinesis. Also, Kinesis limits the maximum number of
parallel batch creations to 5. Hence, we use two approaches for
the deployment of the topology generated by CSA on Kinesis.

TopoGen-Par. This approach for the topology deploy-
ment creates 5 batches in parallel and then waits for 30 seconds
to create the next set of batches if there are more than 5 layers
in the topology. Finally, after the last batch creation request,
another wait time of 30 seconds is required for the last created
batch of shards to be ACTIVE.

TopoGen-Seq. This approach for the topology gener-
ation waits 6 seconds after each batch creation. Hence, in a

topology with more than 5 layers, when the 6th batch needs to
be created, the first batch of shards is already in the ACTIVE
state. Finally, after the last batch creation request, another wait
time of 30 seconds is required for the last batch to be ACTIVE
similar to the other approach.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

s
e
c
o
n
d
s
)

Gateways

TopoGen-Par TopoGen-Seq

Fig. 7. Latency for instantiating a topology in Kinesis.

Figure 7 demonstrates the topology deployment (i.e., cre-
ation from scratch) latency when the number of gateways
varies from 10 to 950. This in essence captures the minimum
time between two topology instantiations. We experimented
with a maximum of 950 gateways, as this number triggers a
topology of the form [24 12 6 3 2 1]

ᵀ, thus composed
of 48 shards4. We observe that there is a latency difference
of around 30 seconds between 300 to 750 gateways for
TopoGen-Par which results due to the limit (5 batches of
shards) imposed by Kinesis on the number of batches created at
same facility. We observe that the increase in time is sub-linear
regarding the number of devices managed, yet this is totally
dependant on the Kinesis platform implementation and current
policy. As topology size tends to grow larger with the growth
of the IoT phenomenon, we can expect platform providers to
dimension their systems accordingly.

VI. RELATED WORK

Large-scale aggregation is a must in modern computing
systems [34], [4], [23], for it allows to build scalable and timely
data-mining services. In case input data loads are unpredictable
and data loss can be tolerated, techniques exist for graceful
system performance degradation [27], [28], [26], [19]. In the
shared stream processing context considered in this paper [17],
[15], algorithms for solving various problems leverage aggre-
gation topologies, for scalability and correctness reasons. It
is not only the case for sketch-based querying over sliding
windows [24], clustering [35], anomaly detection [14], but
also very common in different contexts like querying sensor
networks [9]. The crucial problem of building aggregation
topologies was however not addressed. It is furthermore not
clear how those approaches build their topologies, and whether
they are barely sufficient or a large over-estimate of resources
that are actually required for reliable service execution.

Recently, special attention has been devoted to optimizing
the process of aggregating intermediate data residing in racks,
for the reduce phase at a particular node in MapReduce
jobs [31], [11]. Those approaches propose to configure the
aggregation topology in the datacenter network, in order to

4We have a maximum limit of 50 shards currently on our Kinesis account.

minimize total network traffic. Algorithms apply to offline
processing paradigms like MapReduce, specifically to traffic
optimization, while we argue that a crucial first step in a stream
context is to cope with rate constraints at processing nodes.

Other works considered constrained aggregation, but fo-
cused on memory limitations instead [36], [21]. Nadi et al. [21]
proposed the creation of an aggregate tree, with the root being
the input stream, and other nodes representing aggregates
for an appropriate query plan. Sketching techniques [24],
[14] constitute scalable approaches for aggregation, regarding
the number of items considered; however, they do not cope
with input rate limits. Finally, Xia et al. [32] considered the
maximization of a distributed system’s utility under CPU and
bandwidth constraints, but for a fixed set of processing nodes,
thus not focusing on system dimensioning.

VII. CONCLUSION

This paper addresses the frugal topology design problem,
that aims at designing a reliable aggregation topology, tailored
for shared operation with no data drop. We propose the CSA
algorithm, that outputs a logarithmic-diameter topology. We
prove an upper bound on the number of processing nodes
for reliable execution; this number depends on problem inputs
(number of sources, data sending rates, and ingest constraints).
This type of informed design is needed to reduce operational
costs, as promised by the cloud paradigm. Our evaluation
in the cloud brings leanings on practical requirements for
deployment, such as latency consideration due to location of
facilities, and required safety margins for incoming rates.

We specifically address the problem of simple aggregation,
as it is a necessary initial step. Interesting future work can
include topology design for other operations like sketching and
clustering where the use of topologies helps ensure scalability.
If the upper bounds on their transfer rates are close to each
other, this would allow to leverage this paper results, and to
build a general framework for topology design algorithms.

REFERENCES

[1] Kestrel. http://twitter.github.io/kestrel/, 2014.
[2] Amazon Web Services Inc. AWS | Amazon Elastic Compute Cloud

(EC2) – scalable cloud hosting. http://aws.amazon.com/ec2, 2014.
[3] Amazon Web Services Inc. AWS | Amazon Kinesis. http://aws.amazon.

com/kinesis, 2014.
[4] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu,

A. Reznichenko, D. Ryabkov, M. Singh, and S. Venkataraman. Photon:
Fault-tolerant and scalable joining of continuous data streams. In
SIGMOD, 2013.

[5] Apache Software Foundation. Kafka. http://kafka.apache.org/, 2014.
[6] Apache Software Foundation. Storm, distributed and fault-tolerant

realtime computation. https://storm.incubator.apache.org, 2014.
[7] A. Bhattacharyya. On a measure of divergence between two multi-

nomial populations. Sankhya: The Indian Journal of Statistics (1933-
1960), 7(4):401–406, 1946.

[8] S. Chakravarthy and Q. Jiang. Stream Data Processing: A Quality of
Service Perspective Modeling, Scheduling, Load Shedding, and Complex
Event Processing. Springer Publishing Company, Incorporated, 1st
edition, 2009.

[9] H. Chan, A. Perrig, and D. Song. Secure hierarchical in-network
aggregation in sensor networks. In CCS, 2006.

[10] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding
hierarchical heavy hitters in data streams. In VLDB, 2003.

[11] S. Das and S. Sahni. Network topology optimization for data aggrega-
tion. In CCGrid, 2014.

[12] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-tab, and
sub-total. In ICDE, 1996.

[13] T. Gupta, R. P. Singh, A. Phanishayee, J. Jung, and R. Mahajan. Bolt:
Data management for connected homes. In NSDI, 2014.

[14] Q. Huang and P. P. Lee. LD-Sketch: A distributed sketching design for
accurate and scalable anomaly detection in network data streams. In
INFOCOM, 2014.

[15] R. Huebsch, M. Garofalakis, J. M. Hellerstein, and I. Stoica. Sharing
aggregate computation for distributed queries. In SIGMOD, 2007.

[16] T. Kohno, A. Broido, and K. Claffy. Remote physical device finger-
printing. Dependable and Secure Computing, IEEE Transactions on,
2(2):93–108, April 2005.

[17] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for
streamed aggregation. In SIGMOD, 2006.

[18] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja. Twitter heron: Stream
processing at scale. In SIGMOD, 2015.

[19] Y. Mansour, B. Patt-Shamir, and D. Rawitz. Overflow management with
multipart packets. In INFOCOM, 2011.

[20] Z. H. Mir, C. Suh, and Y.-B. Ko. Performance improvement of
ieee 802.15. 4 beacon-enabled wpan with superframe adaptation via
traffic indication. In NETWORKING 2007. Ad Hoc and Sensor Net-
works, Wireless Networks, Next Generation Internet, pages 1169–1172.
Springer, 2007.

[21] K. V. M. Naidu, R. Rastogi, S. Satkin, and A. Srinivasan. Memory-
constrained aggregate computation over data streams. In ICDE, 2011.

[22] M. Nikulin. Hellinger distance. Hazewinkel, Michiel, Encyclopedia of
Mathematics, 1946.

[23] N. Pansare, V. Borkar, C. Jermaine, and T. Condie. Online aggregation
for large mapreduce jobs. In VLDB, 2011.

[24] O. Papapetrou, M. Garofalakis, and A. Deligiannakis. Sketch-based
querying of distributed sliding-window data streams. In VLDB, 2012.

[25] I. Pefkianakis, H. Lundgren, A. Soule, J. Chandrashekar, P. Le Guyadec,
C. Diot, M. May, K. Van Doorselaer, and K. Van Oost. Characterizing
home wireless performance: The gateway view. In INFOCOM, 2015.

[26] G. Scalosub, P. Marbach, and J. Liebeherr. Buffer management for
aggregated streaming data with packet dependencies. In INFOCOM,
2010.

[27] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker.
Load shedding in a data stream manager. In VLDB, 2003.

[28] N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation
queries over data streams. In VLDB, 2006.

[29] B.-D. Tran. Systematic approach to multi-layer parallelisation of time-
based stream aggregation under ingest constraints in the cloud. In
Master Thesis. EPFL, 2014. https://infoscience.epfl.ch/record/214751.

[30] D. T. Wagner, A. Rice, and A. R. Beresford. Device analyzer:
Large-scale mobile data collection. SIGMETRICS Perform. Eval. Rev.,
41(4):53–56, Apr. 2014.

[31] G. Wang, T. E. Ng, and A. Shaikh. Programming your network at
run-time for big data applications. In HotSDN, 2012.

[32] C. Xia, D. Towsley, and C. Zhang. Distributed resource management
and admission control of stream processing systems with max utility.
In ICDCS, 2007.

[33] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli.
Druid: A real-time analytical data store. In SIGMOD, 2014.

[34] Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for data-
parallel computing: Interfaces and implementations. In SOSP, 2009.

[35] Q. Zhang, J. Liu, and W. Wang. Approximate clustering on distributed
data streams. In ICDE, 2008.

[36] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple aggrega-
tions over data streams. In SIGMOD, 2005.

